WorldWideScience

Sample records for supramolecular polymers formed

  1. Supramolecular coordination polymer formed from artificial light-harvesting dendrimer.

    Science.gov (United States)

    Lee, Hosoowi; Jeong, Young-Hwan; Kim, Joo-Ho; Kim, Inhye; Lee, Eunji; Jang, Woo-Dong

    2015-09-30

    We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 μM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased

  2. Supramolecular polymers

    National Research Council Canada - National Science Library

    Ciferri, A

    2000-01-01

    ... to the new class of self-assembled polymers that undergo reversible growth by the formation of noncovalent bonds. This class (Part II) is wider than expected: not only mainchain assemblies of hydrogen-bonded repeating units, but also planar organization of S-layer proteins, micellar and related three-dimensional structures of blo...

  3. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  4. Supramolecular polymers for organocatalysis in water.

    Science.gov (United States)

    Neumann, Laura N; Baker, Matthew B; Leenders, Christianus M A; Voets, Ilja K; Lafleur, René P M; Palmans, Anja R A; Meijer, E W

    2015-07-28

    A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers. This allows us to assess how the density of the L-proline units along the supramolecular polymer affects its activity and selectivity. Both the supramolecular polymers and co-polymers show high activity and selectivity as catalysts for the aldol reaction in water when using p-nitrobenzaldehyde and cyclohexanone as the substrates for the aldol reaction. After optimisation of the reaction conditions, a consistent conversion of 92 ± 7%, deanti of 92 ± 3%, and eeanti of 97 ± 1% are obtained with a concentration of L-proline as low as 1 mol%.

  5. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    Science.gov (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  6. Enhanced intermolecular forces in supramolecular polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Lin

    2017-09-01

    Full Text Available Ureido-pyrimidone (Upy can dimerize in a self-complementary array of quadruple hydrogen bonds. In this paper, supramolecular polymer composites were prepared by blending Upy functionalized nanosilica with Upy end-capped polycarbonatediol. Surface characteristics of Upy functionalized nanosilica and influences of supramolecular forces on interfacial binding were researched. Fourier transform infrared spectroscopy (FTIR, Nuclear magnetic resonance (NMR and Gel permeation chromatography (GPC were used to characterize the synthesized molecules. Grafting ratio of Upy segments on the surface of nanosilica was analysed by Thermogravimetic analysis (TGA. Hydrophobicity and morphology of Upy modified nanosilica were analysed by Contact angle tester and Scanning electron microscope (SEM. Furthermore, dynamic thermo mechanical properties, mechanical properties and distribution of nanosilica in supramolecular polymer composites were also researched. Compared with the matrix resin, tensile stress and young's modulus of supramolecular polymer composites containing 5 wt% modified nanosilica were increased by 292 and 198% respectively.

  7. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and supramolecular assembly of biomimetic polymers

    Science.gov (United States)

    Marciel, Amanda Brittany

    oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.

  9. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

    Science.gov (United States)

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe

    2014-07-15

    /physical properties, including stimuli responsiveness, self-healing, and environmental adaptation. It has been reported that macrocycle-based supramolecular polymers can respond to pH change, photoirradition, anions, cations, temperature, and solvent. Macrocycle-based supramolecular polymers have been prepared in solution, in gel, and in the solid state. Furthermore, the solvent has a very important influence on the formation of these supramolecular polymers. Crown ether- and pillararene-based supramolecular polymers have mainly formed in organic solvents, such as chloroform, acetone, and acetonitrile, while cyclodextrin- and cucurbituril-based supramolecular polymerizations have been usually observed in aqueous solutions. For calixarenes, both organic solvents and water have been used as suitable media for supramolecular polymerization. With the development of supramolecular chemistry and polymer science, various methods, such as nuclear magnetic resonance spectroscopy, X-ray techniques, electron microscopies, and theoretical calculation and computer simulation, have been applied for characterizing supramolecular polymers. The fabrication of macrocycle-based supramolecular polymers has become a currently hot research topic. In this Account, we summarize recent results in the investigation of supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. These supramolecular polymers are classified based on the different macrocycles used in them. Their monomer design, structure control, stimuli-responsiveness, and applications in various areas are discussed, and future research directions are proposed. It is expected that the development of supramolecular polymers will not only change the way we live and work but also exert significant influence on scientific research.

  10. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supramolecular networks of telechelic polymers

    NARCIS (Netherlands)

    Bohdan, M.A.

    2016-01-01

    This thesis focuses on the fundamental understanding of phenomena associated with the gelation of end-functionalized polymers and the dynamic processes occurring inside of the gel network. To address particular questions we use two types of telechelic polymers, in which the assembly occurs due to

  12. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and mechanical properties...Supramolecular polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and

  13. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  14. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers

    Science.gov (United States)

    Roy, Sangita; Ulijn, Rein V.

    This chapter details the exploitation of biocatalysis in generating supramolecular polymers. This approach provides highly dynamic supramolecular structures, inspired by biological polymeric systems found in the intra- and extracellular space. The molecular design of the self-assembling precursors is discussed in terms of enzyme recognition, molecular switching mechanisms and non-covalent interactions that drive the supramolecular polymerisation process, with an emphasis on aromatic peptide amphiphiles. We discuss a number of unique features of these systems, including spatiotemporal control of nucleation and growth of supramolecular polymers and the possibility of kinetically controlling mechanical properties. Fully reversible systems that operate under thermodynamic control allow for defect correction and selection of the most stable structures from mixtures of monomers. Finally, a number of potential applications of enzymatic supramolecular polymerisations are discussed in the context of biomedicine and nanotechnology.

  15. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    Science.gov (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  16. Triggering activity of catalytic rod-like supramolecular polymers.

    Science.gov (United States)

    Huerta, Elisa; van Genabeek, Bas; Lamers, Brigitte A G; Koenigs, Marcel M E; Meijer, E W; Palmans, Anja R A

    2015-02-23

    Supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) functionalized with an L- or D-proline moiety display high catalytic activity towards aldol reactions in water. High turnover frequencies (TOF) of up to 27×10(-4) s(-1) and excellent stereoselectivities (up to 96% de, up to 99% ee) were observed. In addition, the catalyst could be reused and remained active at catalyst loadings and substrate concentrations as low as 0.1 mol % and 50 mM, respectively. A temperature-induced conformational change in the supramolecular polymer triggers the high activity of the catalyst. The supramolecular polymer's helical sense in combination with the configuration of the proline (L- or D-) is responsible for the observed selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  18. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said...

  19. Azobenzene-based supramolecular polymers for processing MWCNTs.

    Science.gov (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  20. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  1. Blends of conjugated rigid-rod polymers: Novel supramolecular materials for electronics, optoelectronics and photonics

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, S.A. [Univ. of Rochester, NY (United States)

    1996-12-31

    Selected examples of binary blends of conjugated polymers will be presented to illustrate the vast scope of their supramolecular structures and electronic, optical, nonlinear optical, and optoelectronic properties.

  2. Self-healing supramolecular polymer nanocomposites

    NARCIS (Netherlands)

    Liu, Z.; Besseling, N.A.M.; Mendes, E.; Picken, S.J.

    2013-01-01

    Polyborosiloxanes (PBSs) are viscoelastic, transparent, colourless, self-healable polymer matrices, synthesized by reacting linear polydimethylsiloxanes (PDMSs) with boric acid (BA) above 150°C. BA takes part not only in cleaving the PDMS chains, but also contributes boronic-acid like moieties to

  3. Phase stability of a reversible supramolecular polymer solution mixed with nanospheres

    NARCIS (Netherlands)

    Tuinier, R.

    2011-01-01

    Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory,

  4. Supramolecular network formed through OH $\\cdots $ O and - ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 4. Supramolecular network formed through O-H ⋯ O and - stacking interactions: Hydrothermal syntheses and crystal structures of M(H2O)6](optp)2 (M = Mg, Ni, Zn, and optp = 1-oxopyridinium-2-thiopropionate). Murugan Indrani Ramasamy ...

  5. Rational design of fiber forming supramolecular structures

    Science.gov (United States)

    Wang, Benjamin K; Kanahara, Satoko M

    2016-01-01

    Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry. PMID:27022140

  6. Novel Supramolecular Polymer Networks Based on Melamine- and Imide-Containing Oligomers

    NARCIS (Netherlands)

    Loontjens, Ton; Put, Jos; Coussens, Betty; Palmen, Jo; Sleijpen, Ton; Plum, Bart

    2001-01-01

    Reversible, supramolecular polymer networks based on commercially available bulk chemicals, and prepared using an industrially attractive route are described. The difunctional, low molecular weight polytetramethyleneoxide is functionalized with trimellitic imide, and reversibly crosslinked with the

  7. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  8. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and characterization of metallo-supramolecular polymers from thiophene-based unimers bearing pybox ligands

    Czech Academy of Sciences Publication Activity Database

    Hladysh, S.; Václavková, D.; Vrbata, D.; Bondarev, D.; Havlíček, D.; Svoboda, Jan; Zedník, J.; Vohlídal, J.

    2017-01-01

    Roč. 7, č. 18 (2017), s. 10718-10728 ISSN 2046-2069 Institutional support: RVO:61389013 Keywords : metallo-supramolecular polymers * XPS Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.108, year: 2016

  10. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    Science.gov (United States)

    Lou, Xianwen; Lafleur, René P. M.; Leenders, Christianus M. A.; Schoenmakers, Sandra M. C.; Matsumoto, Nicholas M.; Baker, Matthew B.; van Dongen, Joost L. J.; Palmans, Anja R. A.; Meijer, E. W.

    2017-05-01

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  11. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Single Molecule Force Spectroscopy of self complementary hydrogen-bonded supramolecular systems: dimers, polymers and solvent effects

    NARCIS (Netherlands)

    Embrechts, A.

    2011-01-01

    The work described in this Thesis aimed at a better understanding of the structure-property relationships of supramolecular assemblies with a specific focus on hydrogen-bond dimers and polymers. The hydrogen-bond strength of (supra)molecular complexes in different solvents is usually determined by

  13. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  14. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    Science.gov (United States)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  15. Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid.

    Science.gov (United States)

    Wei, Yan; Zhang, Lei; Wang, Meng-Jie; Chen, Si-Chun; Wang, Zi-Hao; Zhang, Kou-Lin

    2015-07-01

    Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H(2)asba) in the presence/absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-κO(1))bis(1,10-phenanthroline-κ(2)N,N')copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena-poly[[diaquacopper(II)]-μ-3-amino-4-carboxylatobenzene-1-sulfonato-κ(2)O(4):O(4')], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular π-π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba(-) anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba(-) anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three-dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration-rehydration behaviour, while complex (2) shows an irreversible dehydration-rehydration behaviour.

  16. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks

    NARCIS (Netherlands)

    Domeradzka, N.E.; Werten, M.W.T.; Vries, de R.J.; Wolf, de F.A.

    2016-01-01

    Some combinations of leucine zipper peptides are capable of forming a-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions

  17. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail: shcherbina@ispm.ru; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)

    2012-03-15

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  18. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Science.gov (United States)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.

    2012-03-01

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  19. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals.

    Science.gov (United States)

    Zhang, Xiaoyan; Hsu, Chih-Hao; Ren, Xiangkui; Gu, Yan; Song, Bo; Sun, Hao-Jan; Yang, Shuang; Chen, Erqiang; Tu, Yingfeng; Li, Xiaohong; Yang, Xiaoming; Li, Yaowen; Zhu, Xiulin

    2015-01-02

    Fullerene-based liquid crystalline materials have both the excellent optical and electrical properties of fullerene and the self-organization and external-field-responsive properties of liquid crystals (LCs). Herein, we demonstrate a new family of thermotropic [60]fullerene supramolecular LCs with hierarchical structures. The [60]fullerene dyads undergo self-organization driven by π-π interactions to form triple-layer two-dimensional (2D) fullerene crystals sandwiched between layers of alkyl chains. The lamellar packing of 2D crystals gives rise to the formation of supramolecular LCs. This design strategy should be applicable to other molecules and lead to an enlarged family of 2D crystals and supramolecular liquid crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels

    KAUST Repository

    Shi, Junfeng

    2015-10-14

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.

  1. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    FERNANDO GALEMBECK

    2001-12-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a

  2. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Pochorovski, Igor; Wang, Huiliang; Feldblyum, Jeremy I; Zhang, Xiaodong; Antaris, Alexander L; Bao, Zhenan

    2015-04-08

    Semiconducting, single-walled carbon nanotubes (SWNTs) are promising candidates for applications in thin-film transistors, solar cells, and biological imaging. To harness their full potential, however, it is necessary to separate the semiconducting from the metallic SWNTs present in the as-synthesized SWNT mixture. While various polymers are able to selectively disperse semiconducting SWNTs, the subsequent removal of the polymer is challenging. However, many applications require semiconducting SWNTs in their pure form. Toward this goal, we have designed a 2-ureido-6[1H]-pyrimidinone (UPy)-based H-bonded supramolecular polymer that can selectively disperse semiconducting SWNTs. The dispersion purity is inversely related to the dispersion yield. In contrast to conventional polymers, the polymer described herein was shown to disassemble into monomeric units upon addition of an H-bond-disrupting agent, enabling isolation of dispersant-free, semiconducting SWNTs.

  3. Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Properties

    Directory of Open Access Journals (Sweden)

    Salla Välimäki

    2015-05-01

    Full Text Available Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol methyl ether methacrylate linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS, and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc, \\( Fm\\overline{3}m \\ Bravais lattice where lattice parameter a = 18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion.

  4. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices.

    Science.gov (United States)

    Zhang, Shiyi; Bellinger, Andrew M; Glettig, Dean L; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A; Gu, Li; Nash, Landon D; Maitland, Duncan J; Langer, Robert; Traverso, Giovanni

    2015-10-01

    Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

  5. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices

    Science.gov (United States)

    Zhang, Shiyi; Bellinger, Andrew M.; Glettig, Dean L.; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A.; Gu, Li; Nash, Landon D.; Maitland, Duncan J.; Langer, Robert; Traverso, Giovanni

    2015-10-01

    Devices resident in the stomach--used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery--typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

  6. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  7. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  8. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    Science.gov (United States)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  9. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    Science.gov (United States)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  10. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets.

    Science.gov (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J

    2017-10-04

    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  11. Hydrogen-Bonded Polymer-Porphyrin Assemblies in Water: Supramolecular Structures for Light Energy Conversion.

    Science.gov (United States)

    Kutz, Anne; Alex, Wiebke; Krieger, Anja; Gröhn, Franziska

    2017-09-01

    In this study, a new type of functional, self-assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar-energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self-assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    Science.gov (United States)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  13. Thermally bisignate supramolecular polymerization

    Science.gov (United States)

    Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo

    2017-11-01

    One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

  14. Supramolecular coordination polymers using a close to 'V-shaped' fluorescent 4-amino-1,8-naphthalimide Tröger's base scaffold.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; Hawes, Chris S; Savyasachi, Aramballi J; Blasco, Salvador; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-11-21

    A V-shaped 4-amino-1,8-naphthalimide derived dipyridyl ligand comprising the Tröger's base structural motif has been synthesised and subsequently used in the formation of two new supramolecular coordination polymers.

  15. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  17. On the kinetics of body versus end evaporation and addition of supramolecular polymers.

    Science.gov (United States)

    Tiwari, Nitin S; van der Schoot, Paul

    2017-06-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of a hitherto ignored molecular aggregation pathway that we refer to as "body evaporation and addition". In this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In this paper, we compare predictions for the well-established end evaporation and addition pathway with those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass relative to that of the end evaporation and addition. However, the presence of the body evaporation and addition pathway does not affect the dependence of the lag time on the total monomer concentration and it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

  18. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  19. Synergy in supramolecular chemistry

    CERN Document Server

    Nabeshima, Tatsuya

    2014-01-01

    Synergy and Cooperativity in Multi-metal Supramolecular Systems, T. NabeshimaHierarchically Assembled Titanium Helicates, Markus AlbrechtSupramolecular Hosts and Catalysts Formed by Self-assembly of Multinuclear Zinc Complexes in Aqueous Solution, Shin AokiSupramolecular Assemblies Based on Interionic Interactions, H. MaedaSupramolecular Synergy in the Formation and Function of Guanosine Quadruplexes, Jeffery T. DavisOn-Surface Chirality in Porous Self-Assembled Monolayers at Liquid-Solid Interface, Kazukuni Tahar

  20. Mirror image supramolecular helical tapes formed by the enantiomeric-depsipeptide derivatives of the amyloidogenic peptide amylin(20-29)

    NARCIS (Netherlands)

    Elgersma, Ronald C.; Mulder, Gwenn E.; Posthuma, George; Rijkers, Dirk T. S.; Liskamp, Rob M. J.

    2008-01-01

    Factors that determine the chirality of supramolecular helical tapes formed by a backbone-modified amylin(20-29) depsipeptide and inverso-depsipeptide, were studied by Fourier transform infrared spectroscopy, circular dichroism and transmission electron microscopy. Although P-sheet propensity was

  1. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  3. Time-resolved transient optical absorption study of bis(terpyridyl)oligothiophenes and their metallo-supramolecular polymers with Zn(II) ion couplers

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, P.; Svoboda, J.; Vohlídal, J.; Pfleger, Jiří

    2015-01-01

    Roč. 119, č. 24 (2015), s. 6203-6214 ISSN 1089-5639 R&D Projects: GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polymers * supramolecular structures * structure-property relations Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.883, year: 2015

  4. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

    Science.gov (United States)

    Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

    2014-11-19

    Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface relief gratings in azobenzene supramolecular systems based on polyimides

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Sobolewska, Anna; Stumpe, Joachim; Hamryszak, Lukasz; Bujak, Piotr

    2012-12-01

    The paper describes formation of new supramolecular azopolymers based on hydrogen bonds as perspective materials for laser induced surface relief gratings (SRGs) and for polarization gratings. Supramolecular films were built on the basis of hydrogen bonds between the functional groups of polymer and azobenzene derivatives, that is 4-[4-(3-hydroxypropyloxy)phenylazo]-pyridine and 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for polymer-dye supramolecular systems. They revealed glass transition temperatures (Tg) in the range of 170-260 °C, whereas supramolecular systems exhibited lower Tg (88-187 °C). The polymers were easily soluble in aprotic polar solvents and exhibited remarkable good film forming properties. Moreover, new chromophore 4-[4-(3-hydroxypropyloxy)phenylazo]pyridine was synthesized and characterized. The light induced SRGs formation and simultaneous formation of the polarization gratings were explored in prepared polymer-chromophore assembles films using a holographic grating recording technique. First time to the best of our knowledge SRGs were formed in hydrogen-bonded supramolecular systems based on polyimides. The highest SRG amplitude and thus the highest diffraction efficiency were obtained in poly(esterimide)s with the hydroxyl functional group. Additionally, the thermal stability of the photoinduced surface gratings and polarization gratings were tested revealing in the case of the SRGs partial stability and almost complete erasure of the polarization gratings.

  6. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite.

    Science.gov (United States)

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S

    2010-10-01

    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  7. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    Science.gov (United States)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  8. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  9. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    Science.gov (United States)

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Supramolecular isomerism in cadmium (II) coordination polymers from benzene-1,3,5-tribenzoate (BTB): Syntheses, structures and luminescent properties

    Science.gov (United States)

    Zhang, Jian-Yong; Cui, Peng-Hui; Shi, Jun-Xia; Zhang, Na; Deng, Wei

    2017-12-01

    By tuning the solvent mixture, four CdII-based compounds, [Cd3(BTB)2(DMA)4]·2DMA (1α), [Cd3(BTB)2(DMA)4]·2DMA (1β), [Cd3(BTB)2(DMF)4]·2DMF (1γ), Cd2(BTB)(HCOO)(DMF)3 (2) have been successfully separated from H3BTB ligand and Cd(NO3)2 salts. Structural analyses revealed that compounds 1α, 1β and 1γ are iso-structural and have essentially identical local and two-dimensional structures constructed from trinuclear Cd3(OCO)6 unit. Their structural differences only arise from the different packing fashions, which are novel modes of supramolecular isomerism in coordination polymers. Compound 2 displays 3D two-fold interpenetrated network based on 1D infinite Cd3(μ1,1,3-OCO)2(HCOO) chains containing mixed BTB3- and formate ligands. The fluorescence measurements show that compounds 2 exhibit red-shifts (about 25 nm) in the solid state, compared with three iso-structural 1α, 1β and 1γ, and this can be attributed to the cooperative effects of intraligand π-π* transitions and ligand-to-metal charge transfer (LMCT).

  11. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials.

    Science.gov (United States)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-28

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.

  12. Supramolecular catalysis: Refocusing catalysis

    NARCIS (Netherlands)

    van Leeuwen, P.W.N.M.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2008-01-01

    This chapter contains sections titled: * Introduction: A Brief Personal History * Secondary Phosphines or Phosphites as Supramolecular Ligands * Host-Guest Catalysis * Ionic Interactions as a Means to Form Heterobidentate Assembly Ligands * Ditopic Ligands for the Construction of Bidentate Phosphine

  13. De Novo Design of Supercharged, Unfolded Protein Polymers, and Their Assembly into Supramolecular Aggregates

    NARCIS (Netherlands)

    Kolbe, Anke; Mercato, Loretta L. del; Abbasi, Azhar Z.; Rivera Gil, Pilar; Gorzini, Sekineh J.; Huibers, Willem; Poolman, Bert; Parak, Wolfgang J.; Herrmann, Andreas

    2011-01-01

    Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide

  14. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane.

    Science.gov (United States)

    Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning

    2017-04-01

    Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nitroxide radicals formed in situ as polymer chain growth regulators

    Energy Technology Data Exchange (ETDEWEB)

    Kolyakina, Elena V; Grishin, Dmitry F [Research Insitute of Chemistry, N.I. Lobachevskii Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation)

    2009-06-30

    Published data on controlled synthesis of macromolecules using nitroxide radicals, formed in situ during polymerization, as polymer chain growth regulators are systematized and generalized. The attention is focused on the mechanism of polymer chain growth control during reversibly inhibited radical homopolymerization and the effect of structure of precursors and regulating additives on the polymerization kinetics of monomers of different nature and the molecular-mass characteristics of the polymers thus formed. The key methods for generation of nitroxide radicals directly during polymerization are considered. The prospects for development and practical use of these approaches for the synthesis of new polymeric materials are evaluated.

  16. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  17. Rheology of Supramolecular Polymers

    OpenAIRE

    Shabbir, Aamir; Hassager, Ole; Skov, Anne Ladegaard

    2016-01-01

    Supramolekylære materialer er en bred klasse af materialer, som inkluderer polymerersom selvorganiserer via intermolekylære eller intramolekylære kræfter. Materialernebesidder en række egenskaber som gør dem til attraktive alternativer tilklassiske polymerer f.eks. til emballage til overfladebehandling eller til medicinskeanvendelser.For at designe og udvikle supramolekylære polymerer med ion-bindinger, hydrogenbindingereller metal-komplex-bindinger med ønskede egenskaber krævesen god forst°a...

  18. Supramolecular network formed through O–H⋅⋅⋅O and π–π ...

    Indian Academy of Sciences (India)

    Administrator

    the coordination ability of the ligand. The coordina- tion geometry of barium(II) ions in [Ba(μ-opta)2. (H2O)3]n⋅3nH2O, was described as a distorted do- decahedron,14 in which the opta anions and a water molecule were forming bridges between two Ba(II) ions whereas in transition metal complexes, the metal ions (cobalt ...

  19. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.

    Science.gov (United States)

    Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei

    2017-02-01

    Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth

  20. Bispentafluorophenyl-Containing Additive: Enhancing Efficiency and Morphological Stability of Polymer Solar Cells via Hand-Grabbing-Like Supramolecular Pentafluorophenyl-Fullerene Interactions.

    Science.gov (United States)

    Hung, Kai-En; Tsai, Che-En; Chang, Shao-Ling; Lai, Yu-Ying; Jeng, U-Ser; Cao, Fong-Yi; Hsu, Chain-Shu; Su, Chun-Jen; Cheng, Yen-Ju

    2017-12-20

    A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C 6 F 5 ) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C 6 F 5 groups and the surface of fullerene, the P3HT:PC 61 BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C 6 F 5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerene's movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C 6 F 5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C 6 F 5 -C 60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C 6 F 5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC 71 BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC 71 BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully

  1. Mesoscale Simulation of Polymer Reaction Equilibrium: Combining Dissipative Particle Dynamics with Reaction Ensemble Monte Carlo. II. Supramolecular Diblock Copolymers

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2009-01-01

    Roč. 130, č. 10 (2009), 104902-1-104902-15 ISSN 0021-9606 R&D Projects: GA ČR GA203/08/0094; GA AV ČR 1ET400720507; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : mesoscale simulation s * supramolecular diblock copolymers * reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.093, year: 2009

  2. Conformational supramolecular isomerism in one-dimensional silver(I) coordination polymer of a flexible bis(bidentate) N,N-donor ligand with p-xylyl spacer.

    Science.gov (United States)

    Chakraborty, Biswarup; Halder, Partha; Paine, Tapan Kanti

    2011-04-14

    The isolation and structural characterisation of three isomeric silver(I) complexes, 1a, 1b and 2 with the general formula {[AgL(1)]ClO(4)}(n) (where L(1) is a bis(bidentate) N,N-donor ligand derived from the Schiff-base condensation of α,α'-diamino-p-xylene and pyridine-2-carboxaldehyde) are discussed. Single-crystal X-ray structures reveal the polymeric nature for the complexes where all the silver ions are in pseudotetrahedral geometry with the AgN(4) coordination environment. Isomers 1a (Pc space group) and 1b (Cc space group) were crystallised from acetonitrile whereas 2 (C2/c space group) was crystallised during the synthesis from a solvent mixture of dicholormethane and methanol. The flexible ligand (L(1)) adopts only an anti conformation in 1b and the presence of two different anti conformations in the repeating unit results in the formation of a trapezoidal wave polymeric chain. However, both gauche and anti conformations of the ligand are found to be present in the polymeric chains of 1a. In the polymeric chain of 2, only one anti isomer of the ligand is present in the repeating unit resulting in a triangular wave chain. The structure of isomer 1a is solvent induced and solvent plays a major role in the crystal packing of this isomer. One-dimensional coordination polymers 1a, 1b and 2 are related to each other as conformational supramolecular isomers. Additionally, two independent polymeric chains parallel to each other: one triangular wave consisting of only an anti conformation and a trapezoidal wave chain consisting of alternate gauche and anti conformations of the ligand are observed in 1a. This is a rare example of two supramolecular isomers present in the same crystal. Six different conformers of the flexible ligand are observed in the crystals of coordination polymers. © The Royal Society of Chemistry 2011

  3. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  4. From helical supramolecular arrays to gel-forming networks: lattice restructuring and aggregation control in peptide-based sulfamides to integrate new functional attributes.

    Science.gov (United States)

    Raghava, Saripalli V; Srivastava, Bhartendu K; Ramshad, Kalluruttimmal; Antharjanam, Sudhadevi; Varghese, Babu; Muraleedharan, Kannoth M

    2018-03-02

    While supramolecular organisation is central to both crystallization and gelation, the latter is more complex considering its dynamic nature and multifactorial dependence. This makes the rational design of gelators an extremely difficult task. In this report, the assembly preference of a group of peptide-based sulfamides was modulated by making them part of an acid-amine two-component system to drive the tendency from crystallization to gelation. Here, the peptide core directed the assembly while the long-chain amines, introduced through salt-bridges, promoted layering and anisotropic development of primary aggregates. This proved to be very successful, leading to gelation of a number of solvents. Apart from this, it was possible to fine-tune their aggregation using an amphiphilic polymer like F-127 as an additive to get honey-comb-like 3D molecular architectures. These gels also proved to be excellent matrices for entrapping silver nanoparticles with superior emissive properties.

  5. End group functionalization of poly(ethylene glycol with phenolphthalein: towards star-shaped polymers based on supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Carolin Fleischmann

    2014-09-01

    Full Text Available The synthesis of a new phenolphthalein azide derivative, which can be easily utilized in polymer analogous reactions, is presented. The subsequent cycloaddition reaction with propargyl-functionalized methoxypoly(ethylene glycol yielded polymers bearing phenolphthalein as the covalently attached end group. In presence of per-β-cyclodextrin-dipentaerythritol, the formation of stable inclusion complexes was observed, representing an interesting approach towards the formation of star shaped polymers. The decolorization of a basic polymer solution caused by the complexation was of great advantage since this behavior enabled following the complex formation by UV–vis spectroscopy and even the naked eye.

  6. End group functionalization of poly(ethylene glycol) with phenolphthalein: towards star-shaped polymers based on supramolecular interactions.

    Science.gov (United States)

    Fleischmann, Carolin; Wöhlk, Hendrik; Ritter, Helmut

    2014-01-01

    The synthesis of a new phenolphthalein azide derivative, which can be easily utilized in polymer analogous reactions, is presented. The subsequent cycloaddition reaction with propargyl-functionalized methoxypoly(ethylene glycol) yielded polymers bearing phenolphthalein as the covalently attached end group. In presence of per-β-cyclodextrin-dipentaerythritol, the formation of stable inclusion complexes was observed, representing an interesting approach towards the formation of star shaped polymers. The decolorization of a basic polymer solution caused by the complexation was of great advantage since this behavior enabled following the complex formation by UV-vis spectroscopy and even the naked eye.

  7. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    Science.gov (United States)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  8. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  9. Application of atomic force microscopy to protein anatomy:. Imaging of supramolecular structures of self-assemblies formed from synthetic peptides

    Science.gov (United States)

    Shibata-Seki, T.; Masai, J.; Ogawa, Y.; Sato, K.; Yanagawa, H.

    This paper reports morphological studies of structures of self-assemblies from synthetic peptide fragments with the use of atomic force microscope (AFM) and transmission electron microscope (TEM). Two systems of synthetic peptides have been examined: one is peptides from barnase (a ribonuclease) and the other is those from tau protein (Alzheimer's disease-related protein). The AFM observation was carried out by using a commercially available AFM operated in the tapping mode in air. The general appearance in shape and size of the peptide assemblies in AFM images was essentially similar to that in TEM images, except that the AFM images provide us with fruitful three-dimensional information about the assemblies. For assemblies from barnase peptides, possible formation processes of the supramolecular structures from the corresponding peptide fragment have been proposed on the basis of the AFM images.

  10. Singlet fission in thin films of metallo-supramolecular polymers with ditopic thiophene-bridged terpyridine ligands

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Pfleger, Jiří; Menšík, Miroslav; Zhigunov, Alexander; Štenclová, P.; Svoboda, Jan; Vohlídal, J.

    2017-01-01

    Roč. 5, č. 32 (2017), s. 8041-8051 ISSN 2050-7526 R&D Projects: GA ČR(CZ) GAP108/12/1143; GA MŠk(CZ) LD14011; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : triplet exciton * excimer * zinc Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.256, year: 2016

  11. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    Science.gov (United States)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  12. Programming supramolecular biohybrids as precision therapeutics.

    Science.gov (United States)

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  13. Data Mining as a Guide for the Construction of Crosslinked Nanoparticles with Low Immunotoxicity via Controlling Polymer Chemistry and Supramolecular Assembly

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L.

    2015-01-01

    CONSPECTUS The potential immunotoxicity of nanoparticles that are currently being approved or in different phases of clinical trials or under rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger the various components of the immune system, unintentionally, and lead to serious adverse reactions. Cytokines are one of the useful biomarkers to predict the effect of biotherapeutics on modulating the immune system and for screening the immunotoxicity of nanoparticles, both in vitro and in vivo, and were found recently to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse and experiments are usually conducted using different assays and under specific conditions, making direct comparisons nearly impossible and, thus, tailoring properties of nanomaterials based on the available data is challenging. In this account, the effects of chemical structure, crosslinking, degradability, morphology, concentration and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with focus being given on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized, uniquely, to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple and easy way to compare the immunotoxicity of various nanomaterials, and the values were found to correlate-well with published data. Based on the investigated polymeric systems in this study, valuable information has been collected that aids in the

  14. Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2015-06-16

    The potential immunotoxicity of nanoparticles that are currently being approved, in different phases of clinical trials, or undergoing rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger various components of the immune system unintentionally and lead to serious adverse reactions. Cytokines are one of the useful biomarkers for predicting the effect of biotherapeutics on modulation of the immune system and for screening the immunotoxicity of nanoparticles both in vitro and in vivo, and they were recently found to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for the construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse, and experiments are usually conducted using different assays under specific conditions. As a result, making direct comparisons nearly impossible, and thus, tailoring the properties of nanomaterials on the basis of the available data is challenging. In this Account, the effects of chemical structure, cross-linking, degradability, morphology, concentration, and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with a focus on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized uniquely to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple way to compare the immunotoxicities of various nanomaterials, and the values were found to correlate well with published data. On the basis of the polymeric systems investigated in this study, valuable information has been collected that

  15. Resorbable fiber-forming polymers for biotextile applications

    CERN Document Server

    Gajjar, Chirag R

    2014-01-01

    This book summarizes the properties and applications of conventional and commercially available fiber-forming, bioresorbable polymers, as well as those currently under study, for use as biotextiles. Factors affecting the performance of these biomaterials are presented, and precautionary measures to reduce premature, hydrolytic degradation during manufacturing and processing are discussed. Because of the structural requirements of medical devices and the technological advancements in synthetic fibers and textile technology, the new field of "Biotextiles" has evolved to exploit the potential of various woven, knitted, braided and non-woven textile structures for biomedical applications. Textile substrates provide certain unique mechanical properties to the medical device and because of an inherently high level of porosity, they can encourage cell growth and promote migration and proliferation. Bioresorbable devices that assist in the repair and regeneration of damaged tissues have in recent years replaced many ...

  16. Recent Advances in Supramolecular Gels and Catalysis.

    Science.gov (United States)

    Fang, Weiwei; Zhang, Yang; Wu, Jiajie; Liu, Cong; Zhu, Haibo; Tu, Tao

    2018-04-04

    Over the past two decades, supramolecular gels have attracted significant attention from scientists in diverse research fields and have been extensively developed. This review mainly focuses on the significant achievements in supramolecular gels and catalysis. First, by incorporating diverse catalytic sites and active organic functional groups into gelator molecules, supramolecular gels have been considered as a novel matrix for catalysis. In addition, these rationally designed supramolecular gels also provide a variety of templates to access metal nanocomposites, which may function as catalysts and exhibit high activity in diverse catalytic transformations. Finally, as a new kind of biomaterial, supramolecular gels formed in situ by self-assembly triggered by catalytic transformations are also covered herein. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter

  18. DNA polyplexes formed using PEGylated biodegradable hyperbranched polymers.

    Science.gov (United States)

    Tao, Lei; Chou, William C; Tan, Beng H; Davis, Thomas P

    2010-06-11

    A novel PEGylated biodegradable hyperbranched PEG-b-PDMAEMA has been synthesized. The low toxicity, small molecular weight PDMAEMA chains were crosslinked using a biodegradable disulfide-based dimethacrylate (DSDMA) agent to yield higher molecular weight hyperbranched polymers. PEG chains were linked onto the polymer surface, masking the positive charge (as shown by Zeta potential measurements) and reducing the toxicity of the polymer. The hyperbranched structures were also cleaved under reducing conditions and analyzed, confirming the expected component structures. The hyperbranched polymer was mixed with DNA and efficient binding was shown to occur through electrostatic interactions. The hyperbranched structures could be reduced easily, generating lower toxicity oligomer chains.

  19. A triaxial supramolecular weave

    Science.gov (United States)

    Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma

    2017-11-01

    Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

  20. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  1. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  2. On some problems of inorganic supramolecular chemistry.

    Science.gov (United States)

    Pervov, Vladislav S; Zotova, Anna E

    2013-12-02

    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.

    Science.gov (United States)

    Makam, Pandeeswar; Gazit, Ehud

    2018-03-02

    Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

  4. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  5. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    Science.gov (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  6. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  7. Supramolecular Photodimerization of Coumarins

    Directory of Open Access Journals (Sweden)

    Koichi Tanaka

    2012-02-01

    Full Text Available Stereoselective photodimerization of coumarin and its derivatives in supra-molecular systems is reviewed. The enantioselective photodimerization of coumarin and thiocoumarin in inclusion crystals with optically active host compounds is also described.

  8. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    Science.gov (United States)

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  9. Hydrogen motions and the α-relaxation in glass- forming polymers ...

    Indian Academy of Sciences (India)

    forming polymers; α-relaxation; fully atomistic molecular dynamics simulations; quasi-elastic neutron scattering. PACS Nos 64.70.Pf; 61.12.Ex; 61.41.+e. The freezing of the structural (α) relaxation in a glass-forming system leads to the.

  10. "Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes.

    Science.gov (United States)

    Nie, Zhihong; Fava, Daniele; Rubinstein, Michael; Kumacheva, Eugenia

    2008-03-19

    We report a predefined self-organization of gold nanorods (NRs) end-terminated with multiple polymer arms ("pom-poms") in higher-order structures. The assembly of polymer-tethered NRs was controlled by changing the structure of the polymer pom-poms. We show that the variation in the molecular weight of the polymer molecules and their relative location with respect to the long side of the NRs resulted in two competing association modes of the nanorods, that is, their side-by-side and end-to-end assembly, and produced bundles, chains, rings, and bundled chains of the NRs. The superposition of the two variables controlling the organization of NRs allowed us to create a map showing the variation in the longitudinal plasmonic bands of the NRs achieved by their self-assembly.

  11. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  12. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  13. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  14. Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms.

    Science.gov (United States)

    Debotton, Nir; Dahan, Arik

    2017-01-01

    Over the last few decades, polymers have been extensively used as pharmaceutical excipients in drug delivery systems. Pharmaceutical polymers evolved from being simply used as gelatin shells comprising capsule to offering great formulation advantages including enabling controlled/slow release and specific targeting of drugs to the site(s) of action (the "magic bullets" concept), hence hold a significant clinical promise. Oral administration of solid dosage forms (e.g., tablets and capsules) is the most common and convenient route of drug administration. When formulating challenging molecules into solid oral dosage forms, polymeric pharmaceutical excipients permit masking undesired physicochemical properties of drugs and consequently, altering their pharmacokinetic profiles to improve the therapeutic effect. As a result, the number of synthetic and natural polymers available commercially as pharmaceutical excipients has increased dramatically, offering potential solutions to various difficulties. For instance, the different polymers may allow increased solubility, swellability, viscosity, biodegradability, advanced coatings, pH dependency, mucodhesion, and inhibition of crystallization. The aim of this article is to provide a wide angle prospect of the different uses of pharmaceutical polymers in solid oral dosage forms. The various types of polymeric excipients are presented, and their distinctive role in oral drug delivery is emphasized. The comprehensive know-how provided in this article may allow scientists to use these polymeric excipients rationally, to fully exploit their different features and potential influence on drug delivery, with the overall aim of making better drug products. © 2016 Wiley Periodicals, Inc.

  15. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  16. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    Science.gov (United States)

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  17. Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System

    NARCIS (Netherlands)

    Boekema, Egbert J.; Braun, Hans-Peter

    2007-01-01

    The protein complexes of the mitochondrial oxidative phosphorylation system were recently reported to form supramolecular assemblies termed respiratory supercomplexes or respirasomes. These supercomplexes are considered to be of great functional importance. Here we review new insights into

  18. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  19. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    Science.gov (United States)

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  20. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.

    1996-01-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  1. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  2. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  3. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  4. All-fiber maskless lithographic technology to form microcircular interference pattern on Azo polymer film

    Science.gov (United States)

    Kim, Junki; Jung, Yongmin; Oh, Kyunghwan; Chun, Chaemin; Hong, Jeachul; Kim, Dongyu

    2005-03-01

    We report a novel all-fiber, maskless lithograpic technology to form various concentric grating patterns for micro zone plate on azo polymer film. The proposed technology is based on the interference pattern out of the cleaved end of a coreless silica fiber (CSF)-single mode fiber (SMF) composite. The light guided along SMF expands into the CSF segment to generate various circular interference patterns depending on the length of CSF. Interference patterns are experimentally observed when the CSF length is over a certain length and the finer spacing between the concentric rings are obtained for a longer CSF. By using beam propagation method (BPM) package, we could further investigated the concentric interference patterns in terms of intensity distribution and fringe spacing as a function of CSF length. These intereference patterns are directly projected over azo polymer film and their intensity distrubution formed surface relief grating (SRG) patterns. Compared to photoresist films azo polymer layers produce surface relief grating (SRG), where the actual mass of layer is modulated rather than refractive index. The geometric parameters of the CSF length as well as diameter and the spacing between the cleaved end of a CSF and azo polymer film, were found to play a major role to generate various concentric structures. With the demonstration of the circular SRG patterns, we confirmed that the proposed technique do have an ample potential to fabricate micro fresnel zone plate, that could find applications in lens arrays for optical beam formings as well as compact photonic devices.

  5. Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(Isopropyl)acrylamide copolymers and β-cyclodextrin complexation.

    Science.gov (United States)

    Fleischmann, Carolin; Ritter, Helmut

    2013-07-12

    The copolymerization parameters of N-(isopropyl)acrylamide (1) and N-(2-hydroxy-5-(1-(4-hydroxyphenyl)-3-oxo-1,3-dihydroisobenzofuran-1-yl)benzyl)acrylamide (2) are determined. For both monomers, the homoaddition proceeds slightly faster than the heteroaddition step; however, the polymer formation occurs in a statistic fashion. Copolymers of different compositions are prepared and the cloud points are determined. Thereby, a significant influence of the concentration of monomer 2 and the pH value is found. For the first time, the complexation of polymer attached phenolphthalein by β-cyclodextrins is shown. Furthermore, it is possible to achieve a decomplexation by the addition of suitable guest molecules. Both procedures can be followed with the naked eye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of Film-Forming Polymers on Release of Naftifine Hydrochloride from Nail Lacquers

    Directory of Open Access Journals (Sweden)

    Indrė Šveikauskaitė

    2017-01-01

    Full Text Available The successful topical therapy of onychomycosis depends on effective drug release and penetration into nail, which can be achieved by using an adequately developed delivery system. This study evaluated and compared effect of film-forming polymers Eudragit RL100, Eudragit RS100, and ethyl cellulose on naftifine hydrochloride release from experimental nail lacquer formulations. Quality of formulations was evaluated by determining drying time and water resistance. Interactions between active pharmaceutical ingredient and excipients were investigated using microcalorimetry and FT-IR. Optimization of nail lacquer formulations was performed by naftifine hydrochloride release testing. Release of naftifine hydrochloride increased with increasing concentration of Eudragit RL100. Plasticizer triacetin affected the release of naftifine hydrochloride, when Eudragit RS100 polymer was used. Ethyl cellulose polymer was determined to be not applicable for naftifine hydrochloride nail lacquer formulations. Two compositions of nail lacquers were optimized and could be used in further development of transungual delivery systems.

  7. Effect of low-molecular-weight beta-cyclodextrin polymer on release of drugs from mucoadhesive buccal film dosage forms.

    Science.gov (United States)

    Arakawa, Yotaro; Kawakami, Shigeru; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2005-09-01

    We investigated the effect of low-molecular-weight beta-cyclodextrin (beta-CyD) polymer on in vitro release of two drugs with different lipophilicities (i.e., lidocaine and ketoprofen) from mucoadhesive buccal film dosage forms. When beta-CyD polymer was added to hydroxypropylcellulose (HPC) or polyvinylalcohol (PVA) film dosage forms, the release of lidocaine into artificial saliva (pH 5.7) was reduced by 40% of the control. In contrast, the release of ketoprofen from the polymer film was enhanced by addition of beta-CyD polymer to the vehicle. When lidocaine and ketoprofen was incubated with beta-CyD polymer in the artificial saliva, concentration of free lidocaine molecules decreased in a beta-CyD polymer concentration-dependent manner. The association constant with beta-CyD polymer was 6.9+/-0.6 and 520+/-90 M(-1) for lidocaine and ketoprofen, respectively. Retarded release of the hydrophilic lidocaine by beta-CyD polymer might be due to the decrease in thermodynamic activity by inclusion complex formation, whereas enhanced release of the lipophilic ketoprofen by the beta-CyD polymer might be due to prevention of recrystallization occurring after contacting the film with aqueous solution. Thus, effects of low-molecular-weight beta-CyD polymer to the drug release rate from film dosage forms would vary according to the strength of interaction with and the solubility of active ingredient.

  8. Effect of gas inlet angle on the gas-assisted extrusion forming of polymer melt

    Science.gov (United States)

    Ren, Z.; Huang, X. Y.

    2017-06-01

    In this paper, the effect of gas inlet angle on the gas-assisted extrusion (GAE) forming of polymer melt was studied by means of numerical simulation method. The geometric models and the corresponding finite element meshes of four different gas inlet angles (0°, 30°, 60°, and 90°) were established. The computed fluid dynamic software package Polyflow was used. The shear stress, normal stress, and first normal stress difference of melt at the gas/melt interface were obtained. The results show that the influence of gas inlet angle at 30 on the gas-assisted extrusion forming of melt is lest, which can provide the technique guidance for the optimal designing of the gas-assisted die for the polymer melt.

  9. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  10. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  11. Different Supramolecular Coordination Polymers of [N,N'-di(pyrazin-2-yl-pyridine-2,6-diamine]Ni(II with Anions and Solvent Molecules as a Result of Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2007-04-01

    Full Text Available Ni(II complexes of N,N'–di(pyrazin–2–ylpyridine–2,6–diamine (H2dpzpda with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm-1 for [Ni(H2dpzpda2](ClO42 (1 and g = 2.18 and D = 2.19 cm-1 for [Ni(H2dpzpda2](NO32 (2, respectively.

  12. Mechanically Strong Aerogels Formed by Templated Growth of Polymer Cross- Linkers on Inorganic Nanoparticles

    Science.gov (United States)

    Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann

    2004-01-01

    In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.

  13. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    Science.gov (United States)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  14. Supramolecular Chemistry in Microflow Fields: Toward a New Material World of Precise Kinetic Control.

    Science.gov (United States)

    Numata, Munenori

    2015-12-01

    Constructing new and versatile self-assembling systems in supramolecular chemistry is much like the development of new reactions or new catalysts in synthetic organic chemistry. As one such new technology, conventional supramolecular assembly systems have been combined with microflow techniques to control intermolecular or interpolymer interactions through precise regulation of a flowing self-assembly field. The potential of the microflow system has been explored by using various simple model compounds. Uniform solvent diffusion in the microflow leads to rapid activation of molecules in a nonequilibrium state and, thereby, enhanced interactions. All of these self-assembly processes begin from a temporally activated state and proceed in a uniform chemical environment, forming a synchronized cluster and resulting in effective conversion to supramolecules, with precise tuning of molecular (or polymer) interactions. This approach allows the synthesis of a variety of discrete microstructures (e.g., fibers, sheets) and unique supramolecules (e.g., hierarchical assemblies, capped fibers, polymer networks, supramolecules with time-delayed action) that have previously been inaccessible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supramolecular Complexes of DNA

    Science.gov (United States)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the

  16. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host–guest systems, cocrys- tals, and polymorphs. Understanding ...

  17. Linear Viscoelastic and Dielectric Relaxation Response of Unentangled UPy-Based Supramolecular Networks

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Javakhishvili, Irakli; Cerveny, Silvina

    2016-01-01

    Supramolecular polymers possess versatile mechanical properties and a unique ability to respond to external stimuli. Understanding the rich dynamics of such associative polymers is essential for tailoring user-defined properties in many products. Linear copolymers of 2-methoxyethyl acrylate (MEA)...

  18. Intelligent chiral sensing based on supramolecular and interfacial concepts.

    Science.gov (United States)

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  19. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  20. Physics and engineering of peptide supramolecular nanostructures.

    Science.gov (United States)

    Handelman, Amir; Beker, Peter; Amdursky, Nadav; Rosenman, Gil

    2012-05-14

    The emerging "bottom-up" nanotechnology reveals a new field of bioinspired nanomaterials composed of chemically synthesized biomolecules. They are formed from elementary constituents in supramolecular structures by the use of a developed nature self-assembly mechanism. The focus of this perspective paper is on intrinsic fundamental physical properties of bioinspired peptide nanostructures and their small building units linked by weak noncovalent bonds. The observed exceptional optical properties indicate a phenomenon of quantum confinement in these supramolecular structures, which originates from nanoscale size of their elementary building blocks. The dimensionality of the confinement gives insight into intrinsic packing of peptide supramolecular nanomaterials. QC regions, revealed in bioinspired nanostructures, were found by us in amyloid fibrils formed from insulin protein. We describe ferroelectric and related properties found at the nanoscale based on original crystalline asymmetry of the nanoscale building blocks, packing these structures. In this context, we reveal a classic solid state physics phenomenon such as reconstructive phase transition observed in bioorganic peptide nanotubes. This irreversible phase transformation leads to drastic reshaping of their quantum structure from quantum dots to quantum wells, which is followed by variation of their space group symmetry from asymmetric to symmetric. We show that the supramolecular origin of these bioinspired nanomaterials provides them a unique chance to be disassembled into elementary building block peptide nanodots of 1-2 nm size possessing unique electronic, optical and ferroelectric properties. These multifunctional nanounits could lead to a new future step in nanotechnology and nanoscale advanced devices in the fields of nanophotonics, nanobiomedicine, nanobiopiezotronics, etc. This journal is © the Owner Societies 2012

  1. Supramolecular analytical chemistry.

    Science.gov (United States)

    Anslyn, Eric V

    2007-02-02

    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  2. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    Science.gov (United States)

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  3. Pairs and heptamers of C(70) molecules ordered via PTCDI-melamine supramolecular networks

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Porfyrakis, Kyriakos; Briggs, G. A. D.; Castell, Martin R.

    2007-01-01

    In this paper, we report on the use of two PTCDI-melamine supramolecular networks on Au(111) to trap C(70) molecules. The different supramolecular networks were formed by changing the postannealing temperature after molecular deposition. We observed, using scanning tunneling microscopy, that the

  4. A novel polymer of tubulin forms the conoid of Toxoplasma gondii

    Science.gov (United States)

    Hu, Ke; Roos, David S.; Murray, John M.

    2002-01-01

    Toxoplasma gondii is an obligatory intracellular parasite, an important human pathogen, and a convenient laboratory model for many other human and veterinary pathogens in the phylum Apicomplexa, such as Plasmodium, Eimeria, and Cryptosporidia. 22 subpellicular microtubules form a scaffold that defines the cell shape of T. gondii. Its cytoskeleton also includes an intricate apical structure consisting of the conoid, two intraconoid microtubules, and two polar rings. The conoid is a 380-nm diameter motile organelle, consisting of fibers wound into a spiral like a compressed spring. FRAP analysis of transgenic T. gondii expressing YFP-α-tubulin reveals that the conoid fibers are assembled by rapid incorporation of tubulin subunits during early, but not late, stages of cell division. Electron microscopic analysis shows that in the mature conoid, tubulin is arranged into a novel polymer form that is quite different from typical microtubules. PMID:11901169

  5. Supramolecular architecture in a co-crystal of the N(7—H tautomeric form of N6-benzoyladenine with adipic acid (1/0.5

    Directory of Open Access Journals (Sweden)

    Robert Swinton Darious

    2016-06-01

    Full Text Available The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one molecule of N6-benzoyladenine (BA and one half-molecule of adipic acid (AA, the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7°. The N6-benzoyladenine molecule crystallizes in the N(7—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the carbonyl (C=O group and the N(7—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7 ring motif. The two carboxyl groups of adipic acid interact with the Watson–Crick face of the BA molecules through O—H...N and N—H...O hydrogen bonds, generating an R22(8 ring motif. The latter units are linked by N—H...N hydrogen bonds, forming layers parallel to (10-5. A weak C—H...O hydrogen bond is also present, linking adipic acid molecules in neighbouring layers, enclosing R22(10 ring motifs and forming a three-dimensional structure. C=O...π and C—H...π interactions are also present in the structure.

  6. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties

    Directory of Open Access Journals (Sweden)

    Luis Marcelo Lozano-Sánchez

    2018-04-01

    Full Text Available Sheets of polycaprolactone (PCL and ultra-high molecular weight polyethylene (UHMWPE were fabricated and shaped by the Single-Point Incremental Forming process (SPIF. The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box–Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

  7. Self-assembly of boron-based supramolecular structures

    OpenAIRE

    Christinat, Nicolas

    2008-01-01

    This work describes the synthesis and characterization of boronic acid-based supramolecular structures. Macrocycles, dendritic structures, polymers, rotaxanes, and cages were assembled using four types of reversible reactions. The key point of the strategy is the parallel utilization of two –or more– of these reactions. Initially, aryl and alkylboronic acids were condensed with dihydroxypyridine ligands to give tetrameric or pentameric macrocycles, in which four or five boronate esters are co...

  8. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lubin [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Zhang, Wang [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Diao, Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2017-02-28

    Graphical abstract: Supramolecular assembled three-dimensdional graphene-based architectures were built by host-guest interactions of β-cyclodextrin polymers(β-CDPs) with adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD), exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. - Highlights: • Supramolecular assembled three-Dimensional (3D) graphene was first fabricated by host-guest interactions of β-CDPs with PEG-AD linkers. • The incorporation of PEG-AD linker into rGO sheets can provide efficient 3D electron transfer pathways and ion diffusion channels. • The 3D self-assembled graphene exhibits high specific capacitance, remarkable rate capability, and excellent cycling stability. • This study shed new lights to design 3D self-assembled graphene materials and their urgent applications in energy storage. - Abstract: Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms

  9. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    International Nuclear Information System (INIS)

    Ni, Lubin; Zhang, Wang; Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming; Piao, Yuanzhe; Diao, Guowang

    2017-01-01

    Graphical abstract: Supramolecular assembled three-dimensdional graphene-based architectures were built by host-guest interactions of β-cyclodextrin polymers(β-CDPs) with adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD), exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. - Highlights: • Supramolecular assembled three-Dimensional (3D) graphene was first fabricated by host-guest interactions of β-CDPs with PEG-AD linkers. • The incorporation of PEG-AD linker into rGO sheets can provide efficient 3D electron transfer pathways and ion diffusion channels. • The 3D self-assembled graphene exhibits high specific capacitance, remarkable rate capability, and excellent cycling stability. • This study shed new lights to design 3D self-assembled graphene materials and their urgent applications in energy storage. - Abstract: Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms

  10. Understanding the grafting of telechelic polymers on a solid substrate to form loops

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu [University of Tennessee, Knoxville (UTK); Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2008-01-01

    Recent experimental and theoretical studies have demonstrated that relative to singly tethered chains, the presence of polymer loops at interfaces significantly improves interfacial properties such as adhesion, friction, and wettability. In the present study, a simple system was studied to examine the formation of polymeric loops on a solid surface, where the grafting of carboxylic acid terminated telechelic polystyrene from the melt to an epoxy functionalized silicon is chosen. The impact of telechelic molecular weight, grafting temperature, and surface functionality on the telechelic attachment process is studied. It was found that grafting of the telechelic to the surface at both ends to form loops is the primary product of this grafting process. Moreover, examination of the kinetics of the grafting process indicates that it is reaction controlled. Fluorescence tagging of the dangling ends of singly bound chains provides a mechanism to monitor their time evolution during grafting, and these results indicate that the grafting process is accurately described by recent Monte Carlo simulation work. The results also provide a method to control the extent of loop formation at interfaces and therefore provide an opportunity to further understand the role of the loops in the interfacial properties in multicomponent polymer systems.

  11. Complex-forming polymer prepared by electron beam radiation-induced graft polymerization

    Science.gov (United States)

    Okamoto, Jiro; Sugo, Takanobu; Katakai, Akio; Omichi, Hideki

    In order to prepare a complex-forming polymer useful as a selective adsorbent, radiation-induced graft polymerization of acrylonitrile onto a fibrous tetrafluoroethylene ethylene copolymer has been studied by using preirradiation method. The resulting grafted fibers were treated with 3% hydroxylamine alcohol-water solution, followed by controlling in alkali solution. The adsorbents containing amidoxime are able to take up transition metal ions from neutral and weakly acidic solutions while not sorbing the ions of alkaline and alkaline earth metals to any significant extent. It was shown that by introducing a small amount of hydrophilic groups to the fiber, it was possible to increase the exchange rate between the external water and the internal water interacted with functional groups in polymer matrix and to induce the diffusion of hydrated metal ions. The efficiency for adsorption of transition metal ions was successfully improved either by adding small amount of hydrophilic part composed of poly(acrylic acid) or by restricting the distribution of amidoxime groups at the fiber surface. A high stability of this adsorbents to various treatments ( alkali treatment at 80° C, contact with seawater for 24 h at 30° C, etc.) was confirmed. It's applicability to the recovery of uranium from seawater is demonstrated by laboratory scale experiments.

  12. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  13. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  14. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  15. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    Science.gov (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug

  16. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren

    2014-01-01

    networks, formed by mixing multifunctional carboxylic acids such as citric acid (CA), tricarballylic acid (TCAA), trimesic acid (TMA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DETPA) with two di ff erent Je ff amine polyetheramines (designated as D400 and D2000......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  17. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol.

    Science.gov (United States)

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk

    2017-01-01

    Naturally occurring acylated β-sitosteryl glucosides have been investigated for their novel properties. The synthetic protocol based on the literature data was improved and optimized. The main improvement consists in employing systems of ionic liquids combined with organic solvents in lipase-mediated esterification of (3β)-stigmast-5-en-3-yl β-d-glucopyranoside to get (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides. Maximum yields of these products were achieved with Candida antarctica lipase B immobilized on Immobead 150, recombinant from yeast, in absolute THF and in the presence of either ionic liquid [1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF 4 ) or 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM]PF 6 )] employed. Pharmacological activity of (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides was studied in tests on MCF7 tumor cell lines; the compounds displayed moderate activity which was higher than the activity of β-sitosterol. Supramolecular characteristics were discovered at (3β)-stigmast-5-en-3-yl 6-O-dodecanoyl-β-d-glucopyranoside that formed supramolecular polymer through multiple H-bonds in a methanol/water system (60/40). Its formation was confirmed by the independent UV-vis measurements during certain time period, by variable temperature DOSY-NMR measurement in deuteriochloroform, and visualized by transmission electron microscopy (TEM) and atomic force microscopy (AFM) showing chiral helical structures and complex superassembly systems based on fibrous supramolecular polymer. In contrary, no such properties have been observed for the other two (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides under the given experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Solubilization of Phenol Derivatives in Polymer Micelles Formed by Cationic Block Copolymer

    Directory of Open Access Journals (Sweden)

    Irma Fuentes

    2017-01-01

    Full Text Available The aggregation of cationic block copolymers formed by polystyrene (PS and poly(ethyl-4-vinylpyridine (PS-b-PE4VP was studied in aqueous solution. Diblock copolymers of PS and poly(4-vinylpyridine were synthesized by sequential anionic polymerization using BuLi as initiator. Subsequently, the 4-vinylpyridine units were quaternized with ethyl bromide to obtain cationic PS-b-PE4VP block copolymers with different quaternization degree. The self-aggregation of cationic block copolymers was studied by fluorescence probing, whereas the morphology and size of polymer micelles were determined by transmission electronic microscopy. Results indicate that spherical micelles with sizes lower than 100 nm were formed, whereas their micropolarity decreases with increasing quaternization degree. The partition of phenols between the micellar and aqueous phase was studied by using the pseudo-phase model, and the results show that the partition coefficients increase with increasing length of the side alkyl chain and are larger for star micelles. These results are discussed in terms of three-region model.

  19. Energetically demanding transport in a supramolecular assembly.

    Science.gov (United States)

    Cheng, Chuyang; McGonigal, Paul R; Liu, Wei-Guang; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Frasconi, Marco; Stern, Charlotte L; Goddard, William A; Stoddart, J Fraser

    2014-10-22

    A challenge in contemporary chemistry is the realization of artificial molecular machines that can perform work in solution on their environments. Here, we report on the design and production of a supramolecular flashing energy ratchet capable of processing chemical fuel generated by redox changes to drive a ring in one direction relative to a dumbbell toward an energetically uphill state. The kinetics of the reaction pathway juxtapose a low energy [2]pseudorotaxane that forms under equilibrium conditions with a high energy, metastable [2]pseudorotaxane which resides away from equilibrium.

  20. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems.

    Science.gov (United States)

    Yang, Dong; Zhao, Yin; Lv, Kai; Wang, Xiufeng; Zhang, Wei; Zhang, Li; Liu, Minghua

    2016-01-28

    A general strategy to tune the achiral main chain polymers into helical nanoassemblies was proposed based on the co-gelation approach. As an example, two achiral main chain polymers, PCz8 and PSi8, were selected, and their co-assembly with an amphiphilic l- or d-glutamide gelator was investigated. Although the polymers could not form gels individually, they could form co-gels with the gelator and the resultant gels exhibited macroscopic supramolecular chirality, which could be confirmed by CD spectra and SEM observations. Moreover, the supramolecular chirality can be memorized even after the gelator molecules were removed. Remarkably, either the gelator-containing or gelator-free chiral polymer assemblies showed circularly polarized luminescence (CPL), which is usually inherent to intrinsic chiral polymers. It was suggested that during the co-gelation, the chirality of the gelator was transferred to and memorized by the achiral polymers. The approach seems to be general and we provided the first example to tune the achiral polymers into helical assemblies through the co-gelation.

  1. The Long-Term Study of Some mechanical and Chemical Properties of Polymer Modified Cement Waste Forms

    International Nuclear Information System (INIS)

    Shatta, H.A.; Eskander, S.B.

    2002-01-01

    The present work is a new experimental trend to study the long-term durability of polymer/cement/borate waste forms in storage and disposal sites during the long period of time. The data obtained indicate that all the samples of polymer modified cement waste forms immersed in both distilled and ground water (for more than 2700 days) show a slight increase in the compressive strength values. The chemical stability of the immobilized borate waste forms in distilled and ground water was studied. The cumulative leach fraction in percentage, of Cs-137 isotope from the final solidified waste forms in case of using ground water was lower than that in distilled water for all samples used and the presence of polymer lowered the percent release of radioactive Cs-137 isotope in all samples studied . The leach coefficients (Lc) and the leach indices (Li) of radioactive cesium-137 isotope for cement borate and polymer modified cement waste forms were also calculated. It was found that the leach indices values greater than 6

  2. Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions.

    Science.gov (United States)

    Yoshida, Yasuyuki; Kawahara, Keisuke; Mitsumune, Shintaro; Kuzuya, Akinori; Ohya, Yuichi

    Aqueous solutions of biodegradable polymers exhibiting sol-to-gel transitions in response to external stimuli such as temperature and pH are expected to be used as injectable polymers (IPs) for biomedical applications. In this study, we prepared novel biodegradable temperature-responsive IP systems providing variable gel-forming pH regions. We synthesized PCGA-b-PEG-b-PCGA (tri-PCG) and attached carboxylic acid or primary amine groups on both termini, tri-PCG-COOH and tri-PCG-NH 2 , and investigated the temperature-responsive sol-to-gel transition behavior of the mixtures of these two copolymers at various pHs. We found that the gel-forming pH region of the mixed system could be easily controlled by simply changing the mixing ratios of these polymers.

  3. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery.

    Science.gov (United States)

    Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi

    2017-03-28

    Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.

  4. Simulation of sub-molecular and supra-molecular fluids

    NARCIS (Netherlands)

    Frenkel, D.

    1991-01-01

    Computer simulations indicate that many forms of liquid crystalline order in lyotropic systems may be due to simple excluded volume effects. Yet, there is more to liquid crystalline ordering than simple hard-core repulsion. In order to understand liquid crystalline order in supra-molecular systems

  5. Polymer Stabilized Nanosuspensions Formed via Flash Nanoprecipitation: Nanoparticle Formation, Formulation, and Stability

    Science.gov (United States)

    Zhu, ZhengXi

    ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.

  6. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or

  7. Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations.

    Science.gov (United States)

    Podgórski, M; Wang, C; Bowman, C N

    2015-09-14

    This investigation details the formation of polymer network trilayer laminates formed by thiol-X click chemistries, and their subsequent implementation and evaluation for quadruple shape memory behavior. Thiol-Michael addition and thiol-isocyanate-based crosslinking reactions were employed to fabricate each of the laminate's layers with independent control of the chemistry and properties of each layer and outstanding interlayer adhesion and stability. The characteristic features of step-growth thiol-X reactions, such as excellent network uniformity and narrow thermal transitions as well as their stoichiometric nature, enabled fabrication of trilayer laminates with three distinctly different glass transition temperatures grouped within a narrow range of 100 °C. Through variations in the layer thicknesses, a step-wise modulus drop as a function of temperature was achieved. This behavior allowed multi-step programming and the demonstration and quantification of quadruple shape memory performance. As is critical for this performance, the interface connecting the layers was evaluated in stoichiometric as well as off-stoichiometric systems. It was shown that the laminated structures exhibit strong interfacial binding and hardly suffer any delamination during cyclic material testing and deformation.

  8. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  9. Photoluminescence Spectra of Self-Assembling Helical Supramolecular Assemblies: A Theoretical Study

    NARCIS (Netherlands)

    van Dijk, Leon; Kersten, Sander P.; Jonkheijm, Pascal; van der Schoot, Paul; Bobbert, Peter A.

    2008-01-01

    The reversible assembly of helical supramolecular polymers of chiral molecular building blocks is known to be governed by the interplay between mass action and the competition between weakly and strongly bound states of these building blocks. The highly co-operative transition from free monomers at

  10. Small angle neutron scattering form polymer melts: structural investigation and phase behaviour

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2004-01-01

    The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)

  11. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    recognition and binding, ice structures, and supramolecular chemistry. The traditional view is .... pair-wise leads to synthon control and crystal design in multifunctional molecules. ..... Crystal structure of Na(sac)•1.875H2O (Na pink, O red, N blue, S yellow, C gray, H cream). The regular region on the left side has 10 sac. −.

  12. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  13. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly.

    Science.gov (United States)

    Iyoda, Masahiko; Hasegawa, Masashi

    2015-01-01

    The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed.

  14. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  15. Molecular reorientation in cross polarization gratings formed in thin photoreactive-polymer-liquid-crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiroshi [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)], E-mail: onoh@nagaokaut.ac.jp; Hatayama, Akira; Emoto, Akira [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Kawatsuki, Nobuhiro [Department of Materials Science and Chemistry, Himeji Institute of Technology, 2167 Shosha, Himeji 671-2201 (Japan)

    2008-04-30

    We present the results from some experimental and theoretical studies aimed at revealing the mechanism leading to the diffraction properties of two-dimensional cross polarization gratings in photocrosslinkable polymer liquid crystals. Although the polarization gratings are overwritten at the same place, each polarization grating works independently in our material system. The above-mentioned characteristic of our cross polarization gratings originates in the grating formation mechanism in the photocrosslinkable polymer liquid crystals, in which the molecules in the solid-state polymeric materials are not reoriented during exposure and reorientation is generated during the annealing process after multiple exposure.

  16. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    Science.gov (United States)

    2008-01-20

    difluoroalkoxyborane compounds were applied as additives to solid polymeric electrolytes comprising PEO as polymer matrix and 10 mol. % of lithium salt. In all...compounds and on composite electrolytes with supramolecular anion receptors. 15. SUBJECT TERMS EOARD, Power, Electrochemistry...BF3 33 II. COMPOSITE ELECTROLYTES WITH SUPRAMOLECULAR ANION RECEPTORS 43 II.1. Introduction 39 II.2 Experimental 44 II.3 Results and discussion

  17. The formation of dissipative structures in polymers as a model of synergy

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg A.

    2016-01-01

    Full Text Available Synergetic is an interdisciplinary area and describes the emergence of various kinds of structures, using the representation of the natural sciences. In this paper we studied the conditions for the appearance of thermodynamically stable amorphous-crystalline supramolecular structures on the basis of practical importance for the production of heat-resistant high-strength polymer fibers semi-rigid systems. It is found that in the process of structure formation in the coagulation of the polymer from solutions having supramolecular structures area a definite geometric shape and dimensions. Pattern formation in such systems can simulate the processes studied synergy. This is occurring in the process of self-organization of dissipative structures, transitions from one structure to another. This most discussed matter of self-organization on the “optical” scale level, are observed spherulites have a “correct” form and certain geometric dimensions comparable to the wavelength of visible light. Previously, this polymer does not crystallize at all considered. It is shown that for the study of supramolecular structures are the most convenient and informative experimental approaches are polarization-optical methods, which are directly “tuned” to the optical anisotropy of the structure and morphology. The great advantage of these methods is also possible to study the kinetics of structure formation processes without interfering the system under study.

  18. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2016-05-01

    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  19. Two Supramolecular Inorganic–Organic Hybrid Crystals Based on Keggin Polyoxometalates and Crown Ethers

    Directory of Open Access Journals (Sweden)

    Jun Xiong

    2018-01-01

    Full Text Available New supramolecular structures were designed in this work using large-sized polyoxometalates (POMs and crown-ether-based supramolecular cations selected as building blocks. Two novel supramolecular inorganic–organic hybrids [(3-F-4-MeAnis([18]crown-6]2[SMo12O40]•CH3CN (1 and [(4-IAnis([18]crown-6]3[PMo12O40]•4CH3CN (2 (3-F-4-MeAnis = 3-fluoro-4-methylanilinium and 4-IAnis = 4-iodoanilinium were synthesized. Crystals 1 and 2 have been characterized by infrared spectroscopy (IR and elemental analysis (EA. Based on X-ray diffraction analysis, Crystals 1 and 2 were constructed through noncovalent bonding interactions and belong to different space groups due to the difference of the building blocks used. Supramolecular cations formed due to strong N–H···O hydrogen bonding interactions between the six oxygen atoms of [18]crown-6 molecules and nitrogen atoms of anilinium derivatives. Crystal 1 has two different supramolecular cations with an anti-paralleled arrangement that forms a dimer through weak hydrogen bonding interactions between adjacent [18]crown-6 molecules. Crystal 2 has three independent supramolecular cations that fill large spaces between the [PMo12O40] polyoxoanions forming a rhombus-shape packing arrangement in the ac plane. Crystals 1 and 2 are unstable at room temperature.

  20. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  1. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  2. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  3. Supramolecular photochemistry of drugs in biomolecular environments.

    Science.gov (United States)

    Monti, Sandra; Manet, Ilse

    2014-06-21

    In this tutorial review we illustrate how the interaction of photoactive drugs/potential drugs with proteins or DNA in supramolecular complexes can determine the course of the reactions initiated by the drug absorbed photons, evidencing the mechanistic differences with respect to the solution conditions. We focus on photoprocesses, independent of oxygen, that lead to chemical modification of the biomolecules, with formation of new covalent bonds or cleavage of existing bonds. Representative systems are mainly selected from the literature of the last decade. The photoreactivity of some aryl propionic acids, (fluoro)quinolones, furocoumarins, metal coordination complexes, quinine-like compounds, naphthaleneimides and pyrenyl-peptides with proteins or DNA is discussed. The use of light for biomolecule photomodification, historically relevant to biological photosensitization processes and some forms of photochemotherapy, is nowadays becoming more and more important in the development of innovative methods in nanomedicine and biotechnology.

  4. Improvement of characteristics of solidified radioactive waste forms with polymer-concrete layer

    International Nuclear Information System (INIS)

    Grebenkov, A.J.; Trubnikov, V.P.; Verzhynskaja, A.B.; Nikolajev, V.A.; Kapustina, I.B.

    1995-01-01

    Within the framework of the Belarus National Programme, IPEP is performing research on the immobilization of low level radioactive waste after decontamination and remediation of Chernobyl Zone. The goal of the R and D program is to develop a composite matrix for embedding these wastes using special encapsulation technology and reinforced and hydro-resisting polymer-concrete layer on solidified waste blocks to minimize the amount of cement for conditioning of waste

  5. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  6. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  7. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    Science.gov (United States)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  8. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  9. Investigation of preparation and mechanisms of a dispersed particle gel formed from a polymer gel at room temperature.

    Directory of Open Access Journals (Sweden)

    Guang Zhao

    Full Text Available A dispersed particle gel (DPG was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value. The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles.

  10. Multivalency in supramolecular chemistry and nanofabrication

    NARCIS (Netherlands)

    Mulder, A.; Huskens, Jurriaan; Reinhoudt, David

    2004-01-01

    Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general

  11. Regenerative electronic biosensors using supramolecular approaches

    NARCIS (Netherlands)

    Duan, X.; Rajan, N.; Routenberg, D.; Huskens, Jurriaan; Reed, M.

    2013-01-01

    A supramolecular interface for Si nanowire FETs has been developed with the aim of creating regenerative electronic biosensors. The key to the approach is Si-NWs functionalized with β-cyclodextrin (β-CD), to which receptor moieties can be attached with an orthogonal supramolecular linker. Here we

  12. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  13. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min [Research Institute of Natural Science and Dept. of Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Moon, Suk Hee [Dept. of Food and Nutrition, Kyungnam College of Information and Technology, Busan (Korea, Republic of)

    2017-01-15

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported.

  14. Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form

    International Nuclear Information System (INIS)

    Borcia, G; Anderson, C A; Brown, N M D

    2003-01-01

    In this paper, we report and discuss a surface treatment method, using a dielectric barrier discharge (DBD) of random filamentary type. This offers a convenient, reliable and economic alternative for the controlled modification (so far, largely dependent on surface oxidation) of various categories of material surfaces. Remarkably uniform treatment and markedly stable modified surface properties result over the entire area of the test surfaces exposed to the discharge even at transit speeds simulating those associated with continuous on-line processing. The effects of air-DBD treatment on the surfaces of various polymer films and polymer-based fabrics were studied. The dielectric barrier concerned has been characterized in terms of the energy deposited by the discharge at the processing electrodes and the resultant modifications of the surface properties of the treated samples were investigated using x-ray photoelectron spectroscopy, contact angle/wickability measurement and scanning electron microscopy. The influence of the surface treatment parameters, such as the energy deposited by the discharge, the inter-electrode gap and the treatment time were examined and related to the post-treatment surface characteristics of the materials processed. Relationships between the processing parameters and the properties of the DBD treated samples were thus established. Of the three process variables investigated, the duration of the treatment was found to have a more significant effect on the surface modifications found than did the discharge energy or the inter-electrode gap. Very short air-DBD treatments (fractions of a second in duration) markedly and uniformly modified the surface characteristics for all the materials treated, to the effect that wettability, wickability and the level of oxidation of the surface appear to be increased strongly within the first 0.1-0.2 s of treatment. Any subsequent surface modification following longer treatment (>1.0 s) was less important

  15. Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form

    Science.gov (United States)

    Borcia, G.; Anderson, C. A.; Brown, N. M. D.

    2003-08-01

    In this paper, we report and discuss a surface treatment method, using a dielectric barrier discharge (DBD) of random filamentary type. This offers a convenient, reliable and economic alternative for the controlled modification (so far, largely dependent on surface oxidation) of various categories of material surfaces. Remarkably uniform treatment and markedly stable modified surface properties result over the entire area of the test surfaces exposed to the discharge even at transit speeds simulating those associated with continuous on-line processing. The effects of air-DBD treatment on the surfaces of various polymer films and polymer-based fabrics were studied. The dielectric barrier concerned has been characterized in terms of the energy deposited by the discharge at the processing electrodes and the resultant modifications of the surface properties of the treated samples were investigated using x-ray photoelectron spectroscopy, contact angle/wickability measurement and scanning electron microscopy. The influence of the surface treatment parameters, such as the energy deposited by the discharge, the inter-electrode gap and the treatment time were examined and related to the post-treatment surface characteristics of the materials processed. Relationships between the processing parameters and the properties of the DBD treated samples were thus established. Of the three process variables investigated, the duration of the treatment was found to have a more significant effect on the surface modifications found than did the discharge energy or the inter-electrode gap. Very short air-DBD treatments (fractions of a second in duration) markedly and uniformly modified the surface characteristics for all the materials treated, to the effect that wettability, wickability and the level of oxidation of the surface appear to be increased strongly within the first 0.1-0.2 s of treatment. Any subsequent surface modification following longer treatment (>1.0 s) was less important

  16. Pad printing as a film forming technique for polymer solar cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin...... coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver...

  17. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  18. Supramolecular Hydrogels Based on DNA Self-Assembly.

    Science.gov (United States)

    Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng

    2017-04-18

    Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell

  19. Self-Calibrating Mechanochromic Fluorescent Polymers Based on Encapsulated Excimer-Forming Dyes.

    Science.gov (United States)

    Calvino, Céline; Guha, Anirvan; Weder, Christoph; Schrettl, Stephen

    2018-01-18

    While mechanochemical transduction principles are omnipresent in nature, mimicking these in artificial materials is challenging. The ability to reliably detect the exposure of man-made objects to mechanical forces is, however, of great interest for many applications, including structural health monitoring and tamper-proof packaging. A useful concept to achieve mechanochromic responses in polymers is the integration of microcapsules, which rupture upon deformation and release a payload causing a visually detectable response. Herein, it is reported that this approach can be used to create mechanochromic fluorescent materials that show a direct and ratiometric response to mechanical deformation. This can be achieved by filling poly(urea-formaldehyde) microcapsules with a solution of a photoluminescent aggregachromic cyano-substituted oligo(p-phenylene vinylene) and embedding these particles in poly(dimethylsiloxane). The application of mechanical force by way of impact, incision, or tensile deformation opens the microcapsules and releases the fluorophore in the damaged area. Due to excimer formation, the subsequent aggregation of the dye furnishes a detectable fluorescence color change. With the emission from unopened microcapsules as built-in reference, the approach affords materials that are self-calibrating. This new concept appears to be readily applicable to a range of polymer matrices and allows for the straightforward assessment of their structural integrity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Supramolecular Structure and Function 9

    CERN Document Server

    Pifat-Mrzljak, Greta

    2007-01-01

    The book is based on International Summer Schools on Biophysics held in Croatia which, contrary to other workshops centered mainly on one topic or technique, has very broad scope providing advanced training in areas related to biophysics. This volume is presenting papers in the field of biophysics for studying biological phenomena by using physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.) and/or concepts (predictions of protein-protein interactions, virtual ligand screening etc.). The interrelationship of supramolecular structures and there functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.

  1. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes.

    Science.gov (United States)

    Robinson, Matthew E; Nazemi, Ali; Lunn, David J; Hayward, Dominic W; Boott, Charlotte E; Hsiao, Ming-Siao; Harniman, Robert L; Davis, Sean A; Whittell, George R; Richardson, Robert M; De Cola, Luisa; Manners, Ian

    2017-09-26

    Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG n , where n = 16, 12, 7]. The complex with the longest solubilizing PEG ligand, Pt-PEG 16 , self-assembled to form polydisperse one-dimensional (1D) nanofibers (diameters fibers of length up to ca. 400 nm. The fiber lengths were dependent on the Pt-PEG 16 complex to seed mass ratio in a manner analogous to a living covalent polymerization of molecular monomers. Moreover, the fiber lengths were unchanged in solution after 1 week and were therefore "static" with respect to interfiber exchange processes on this time scale. In contrast, similarly formed near-uniform fibers of Pt-PEG 12 exhibited dynamic behavior that led to broadening of the length distribution within 48 h. After aging for 4 weeks in solution, Pt-PEG 12 fibers partially evolved into 2D platelets. Furthermore, self-assembly of Pt-PEG 7 yielded only transient fibers which rapidly evolved into 2D platelets. On addition of further fiber-forming Pt complex (Pt-PEG 16 ), the platelets formed assemblies via the growth of fibers selectively from their short edges. Our studies demonstrate that when interfiber dynamic exchange is suppressed, dimensional control and hierarchical structure formation are possible for supramolecular polymers through the use of kinetically controlled seeded growth methods.

  2. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  3. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these

  4. Methods of nanoassembly of a fractal polymer and materials formed thereby

    Science.gov (United States)

    Newkome, George R [Medina, OH; Moorefield, Charles N [Akron, OH

    2012-07-24

    The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.

  5. Seeded on-surface supramolecular growth for large area conductive donor-acceptor assembly.

    Science.gov (United States)

    Goudappagouda; Chithiravel, Sundaresan; Krishnamoorthy, Kothandam; Gosavi, Suresh W; Babu, Sukumaran Santhosh

    2015-07-04

    Charge transport features of organic semiconductor assemblies are of paramount importance. However, large-area extended supramolecular structures of donor-acceptor combinations with controlled self-assembly pathways are hardly accessible. In this context, as a representative example, seeded on-surface supramolecular growth of tetrathiafulvalene and tetracyano-p-quinodimethane (TTF-TCNQ) using active termini of solution-formed sheaves has been introduced to form an extended assembly. We demonstrate for the first time, the creation of a large-area donor-acceptor assembly on the surface, which is practically very tedious, using a seeded, evaporation-assisted growth process. The excellent molecular ordering in this assembly is substantiated by its good electrical conductivity (~10⁻² S cm⁻¹). The on-surface assembly via both internally formed and externally added sheaf-like seeds open new pathways in supramolecular chemistry and device applications.

  6. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.

    Science.gov (United States)

    Rossow, Torsten; Bayer, Sebastian; Albrecht, Ralf; Tzschucke, C Christoph; Seiffert, Sebastian

    2013-09-01

    Supramolecular microgel capsules based on polyethylene glycol (PEG) are a promising class of soft particulate scaffolds with tailored properties. An approach to fabricate such particles with exquisite control by droplet-based microfluidics is presented. Linear PEG precursor polymers that carry bipyridine moieties on both chain termini are gelled by complexation to iron(II) ions. To investigate the biocompatibility of the microgels, living mammalian cells are encapsulated within them. The microgel elasticity is controlled by using PEG precursors of different molecular weights at different concentrations and the influence of these parameters on the cell viabilities, which can be optimized to exceed 90% is studied. Reversion of the supramolecular polymer cross-linking allows the microcapsules to be degraded at mild conditions with no effect on the viability of the encapsulated and released cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.

    Science.gov (United States)

    Frey, S; Weysser, F; Meyer, H; Farago, J; Fuchs, M; Baschnagel, J

    2015-02-01

    We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.

  8. Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.

    Science.gov (United States)

    Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu

    2015-09-30

    The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. YIELD FORMING EFFECT OF APPLICATION OF COMPOSTS CONTAINING POLYMER MATERIALS ENRICHED IN BIOCOMPONENTS

    Directory of Open Access Journals (Sweden)

    Florian Gambuś

    2014-01-01

    Full Text Available In a pot experiment the impact of composts containing polymeric materials modified with biocomponents on the diversity of crops of oats and mustard was examined. The composts used in the study were produced in the laboratory from wheat and rape straw, and pea seed cleaning waste with 8-percent addition of chopped biopolymer materials (films which were prepared in the Central Mining Institute (GIG in Katowice. Three polymers differing in content of starch and density were selected for the composting. The pot experiment was conducted on three substrates: light and medium soil and on the sediment obtained after flotation of zinc and lead ores, coming from the landfill ZGH “Boleslaw” S.A. in Bukowno. The need for using such materials and substrates results from the conditions of processing some morphological fractions of municipal waste and from improving methods of reclamation. Yield enhancing effect of composts depends on the substrate on which the compost was used, cultivated plants and crop succession. Application of composts prepared with 8% of polymeric materials based on polyethylene, modified with starch as biocomponent, resulted in significantly lower yields in sandy (light soil in case of oats and, in some cases, in medium soil. Subsequent plant yield did not differ significantly between the objects fertilized with compost.

  10. Multivalent supramolecular dendrimer-based drugs.

    Science.gov (United States)

    Galeazzi, Simone; Hermans, Thomas M; Paolino, Marco; Anzini, Maurizio; Mennuni, Laura; Giordani, Antonio; Caselli, Gianfranco; Makovec, Francesco; Meijer, E W; Vomero, Salvatore; Cappelli, Andrea

    2010-01-11

    Supramolecular complexes consisting of a hydrophobic dendrimer host [DAB-dendr-(NHCONH-Ad)(64)] as well as solubilizing and bioactive guest molecules have been synthesized using a noncovalent approach. The guest-host supramolecular assembly is first preassembled in chloroform and transferred via the neat phase to aqueous solution. The bioactive guest molecules can bind to a natural (serotonin 5-HT(3)) receptor with nanomolar affinity as well as to the synthetic dendrimer receptor in aqueous solution, going toward a dynamic multivalent supramolecular construct capable of adapting itself to a multimeric receptor motif.

  11. Dielectric properties of barium titanate supramolecular nanocomposites.

    Science.gov (United States)

    Lee, Keun Hyung; Kao, Joseph; Parizi, Saman Salemizadeh; Caruntu, Gabriel; Xu, Ting

    2014-04-07

    Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

  12. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  13. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles.

    Science.gov (United States)

    Zhang, Peng; Yuan, Kangjun; Li, Cheng; Zhang, Xiaoke; Wu, Wei; Jiang, Xiqun

    2017-12-01

    Cisplatin-rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)-terminated poly(aspartic acid) (Ad-P(Asp)) and the β-cyclodextrin (β-CD)-terminated poly(2-methyl-2-oxazoline). In the formation of the nanoparticles, the β-CD/admantane inclusion complex integrates poly(2-methyl-2-oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin-rich supramolecular nanoparticles have 53% cisplatin-loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near-infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin-rich nanoparticles can target the tumor in vivo effectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  15. Mixed waste solidification testing on polymer and cement-based waste forms in support of Hanford's WRAP 2A facility

    International Nuclear Information System (INIS)

    Burbank, D.A. Jr.; Weingardt, K.M.

    1993-10-01

    A testing program has been conducted by the Westinghouse Hanford Company to confirm the baseline waste form selection for use in Waste Receiving and Processing (WRAP) Module 2A. WRAP Module 2A will provide treatment required to properly dispose of containerized contact-handled, mixed low-level waste at the US Department of Energy Hanford Site in south-central Washington State. Solidification/stabilization has been chosen as the appropriate treatment for this waste. This work is intended to test cement-based, thermosetting polymer, and thermoplastic polymer solidification media to substantiate the technology approach for WRAP Module 2A. Screening tests were performed using the major chemical constituent of each waste type to measure the gross compatibility with the immobilization media and to determine formulations for more detailed testing. Surrogate materials representing each of the eight waste types were prepared in the laboratory. These surrogates were then solidified with the selected immobilization media and subjected to a battery of standard performance tests. Detailed discussion of the laboratory work and results are contained in this report

  16. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    Science.gov (United States)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  17. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr2(μ2-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr2(µ2-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr2(µ2-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  18. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    International Nuclear Information System (INIS)

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms)

  19. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  20. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  1. Supramolecular chemistry - interdisciplinary branch of science

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1997-01-01

    The scientific problems connected with supramolecular chemistry have been reviewed. The basic concepts have been defined as well as rules governed of macromolecules formation. The special emphasize has been put on present and possible in future application of such systems

  2. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  3. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  4. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  5. Form measurements in an industrial CT scanner investigated using a polymer step gauge

    DEFF Research Database (Denmark)

    Angel, J.; Stolfi, Alessandro; De Chiffre, Leonardo

    2015-01-01

    Computed Tomography (CT) is a promising technology for both geometrical measurements and form measurements. However, a number of influence factors such as magnification, threshold determination strategies, and position of feature in the CT volume, have effect on the CT measurement performance...... error and good surface finish. A total of 132 flatness measurements were performed on the left step gauge grooves. The linear distribution of the grooves pointed out a non-uniform CT performance over the step gauge length with max deviation up to 25 μm. However, an appropriate choice of parameters...... yielded a reduction of the max deviation along the step gauge length by approximately 13 μm....

  6. Development of polymer film dosage forms of lidocaine for buccal administration: II. Comparison of preparation methods.

    Science.gov (United States)

    Okamoto, Hirokazu; Nakamori, Takahiko; Arakawa, Yotaro; Iida, Kotaro; Danjo, Kazumi

    2002-11-01

    In previous studies, we prepared film dosage forms of lidocaine (LC) with hydroxypropylcellulose (HPC) as a film base using the solvent evaporation (SE) method. However, from the viewpoint of environmental issues, a reduction in organic solvent use in pharmaceutical and other industries is required. In this study, we prepared the LC films by direct compression of the physical mixture (DCPM method) and direct compression of the spray dried powder (DCSD method). Magnesium stearate, which was required as a lubricant for direct compression, showed no effect on the LC release rate. The LC release rate (%/h) was independent of the compression pressure, but a higher pressure was preferable to easily remove the film from the punches. An increase in the film weight decreased the LC release rate expressed in %/h, whereas no significant effect of film weight was observed on the LC release rate from unit surface area expressed in mg/h/cm(2). The LC release rate (%/h) was independent of the LC content, suggesting that the LC release rate (mg/h) can be quantitatively controlled by changing the LC content in the formulation. The LC release rate and penetration rate were affected by the preparation method; that is, DCPM method dosage form. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2424-2432, 2002

  7. Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2014-05-01

    Full Text Available In this paper, the molecule 12-amidine dodecanoic acid (M with ending groups of carboxyl and amidine groups respectively was designed and synthesized as CO2-responsive guest molecules. The block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO was chosen as the host polymer to fabricate a composite membrane through H-bonding assembly with guest molecule M. We attempted to tune the phase separation structure of the annealed film by varying the amount of M added, and investigated the nanostructures via transmission electron microscope (TEM, fourier transform infrared (FT-IR etc. As a result, a reverse worm-like morphology in TEM image of bright PS phase in dark PEO/M matrix was observed for PS-b-PEO/M1 membrane in which the molar ratio of EO unit to M was 1:1. The following gas permeation measurement indicated that the gas flux of the annealed membranes dramatically increased due to the forming of ordered phase separation structure. As we expected, the obtained composite membrane PS-b-PEO/M1 with EO:M mole ratio of 1:1 presented an evident selectivity for moist CO2 permeance, which is identical with our initial proposal that the guest molecule M in the membranes will play the key role for CO2 facilitated transportation since the amidine groups of M could react reversibly with CO2 molecules in membranes. This work provides a supramolecular approach to fabricating CO2 facilitated transport membranes.

  8. Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules.

    Science.gov (United States)

    Janjić, Goran V; Ninković, Dragan B; Zarić, Snezana D

    2013-08-01

    Parallel stacking interactions between pyridines in crystal structures and the influence of hydrogen bonding and supramolecular structures in crystals on the geometries of interactions were studied by analyzing data from the Cambridge Structural Database (CSD). In the CSD 66 contacts of pyridines have a parallel orientation of molecules and most of these pyridines simultaneously form hydrogen bonds (44 contacts). The geometries of stacked pyridines observed in crystal structures were compared with the geometries obtained by calculations and explained by supramolecular structures in crystals. The results show that the mean perpendicular distance (R) between pyridine rings with (3.48 Å) and without hydrogen bonds (3.62 Å) is larger than that calculated, because of the influence of supramolecular structures in crystals. The pyridines with hydrogen bonds show a pronounced preference for offsets of 1.25-1.75 Å, close to the position of the calculated minimum (1.80 Å). However, stacking interactions of pyridines without hydrogen bonds do not adopt values at or close to that of the calculated offset. This is because stacking interactions of pyridines without hydrogen bonds are less strong, and they are more susceptible to the influence of supramolecular structures in crystals. These results show that hydrogen bonding and supramolecular structures have an important influence on the geometries of stacked pyridines in crystals.

  9. Supra-molecular Association and Polymorphic Behaviour In Systems Containing Bile Acid Salts

    Directory of Open Access Journals (Sweden)

    Camillo La Mesa

    2007-08-01

    Full Text Available A wide number of supra-molecular association modes are observed in mixtures containing water and bile salts, BS, (with, eventually, other components. Molecular or micellar solutions transform into hydrated solids, fibres, lyotropic liquid crystals and/or gels by raising the concentration, the temperature, adding electrolytes, surfactants, lipids and proteins. Amorphous or ordered phases may be formed accordingly. The forces responsible for this very rich polymorphism presumably arise from the unusual combination of electrostatic, hydrophobic and hydrogen-bond contributions to the system stability, with subsequent control of the supra-molecular organisation modes. The stabilising effect due to hydrogen bonds does not occur in almost all surfactants or lipids and is peculiar to bile acids and salts. Some supra-molecular organisation modes, supposed to be related to malfunctions and dis-metabolic diseases in vivo, are briefly reported and discussed.

  10. Photoinduced electron transfer in supramolecular ruthenium-porphyrin assemblies

    OpenAIRE

    Rota Martir, Diego; Averardi, Mattia; Escudero, Daniel; Jacquemin, Denis; Zysman-Colman, Eli

    2017-01-01

    EZ-C acknowledges the University of St Andrews and EPSRC (EP/M02105X/1) for financial support. DE thanks funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 700961. DJ acknowledges the European Research Council (grant: 278845) and the RFI Lumomat for financial support. We present dynamic supramolecular systems composed of a Ru(II) complex of the form of [Ru(dtBubpy)2(qpy)][PF6]2 (where dtBubpy is 4,4′-di-tert-...

  11. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman

    2016-02-15

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  12. Ternary supramolecular quantum-dot network flocculation for selective lectin detection

    NARCIS (Netherlands)

    Oikonomou, Maria; Wang, Junyou; Carvalho, Rui Rijo; Velders, Aldrik H.

    2016-01-01

    We present a versatile, tuneable, and selective nanoparticle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are β-cyclodextrin-capped CdTe quantum dots,

  13. Photoresponsive Molecular Recognition and Adhesion of Vesicles in a Competitive Ternary Supramolecular System

    NARCIS (Netherlands)

    Nalluri, Siva Krishna Mohan; Bultema, Jelle B.; Boekema, Egbert J.; Ravoo, Bart Jan

    A competitive photoresponsive supramolecular system is formed in a dilute aqueous solution of three components: vesicles of amphiphilic alpha-cyclodextrin host 1a, divalent p-methylphenyl guest 2 or divalent p-methylbenzamide guest 3, and photoresponsive azobenzene monovalent guest 5. Guests 2 and 3

  14. Supramolecular self-assembly of nonlinear amphiphilic and double hydrophilic block copolymers in aqueous solutions.

    Science.gov (United States)

    Ge, Zhishen; Liu, Shiyong

    2009-09-17

    Supramolecular self-assembly of block copolymers in aqueous solution has received ever-increasing interest over the past few decades due to diverse biological and technological applications in drug delivery, imaging, sensing and catalysis. In addition to relative block lengths, molecular weights and solution conditions, chain architectures of block copolymers can also dramatically affect their self-assembling properties in selective solvents. This feature article mainly focuses on recent developments in the field of supramolecular self-assembly of amphiphilic and double hydrophilic block copolymers (DHBCs) possessing nonlinear chain topologies, including miktoarm star polymers, dendritic-linear block copolymers, cyclic block copolymers and comb-shaped copolymer brushes. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    International Nuclear Information System (INIS)

    Kuklin, A I; Rogachev, A V; Soloviov, D V; Ivankov, O I; Kovalev, Yu S; Kutuzov, S A; Soloviev, A G; Rulev, M I; Gordeliy, V I; Utrobin, P K

    2017-01-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures. (paper)

  16. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  17. Studies on the supramolecular shape memory polyurethane containing pyridine moieties

    Science.gov (United States)

    Shaojun, Chen

    Fabricating smart materials with supramolecular switch is an attractive research topic. In this study, supramolecular polyurethane networks containing pyridine moieties (PUPys) were synthesized from N,N-bis(2-hydroxylethyl)isonicotinamide (BINA), hexamethylene diisocyanate (HDI), 4, 4-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). A series of studies were carried out to investigate the supramolecular structure, morphology and shape memory properties including of thermal-induced shape memory effect and moisture-sensitive shape memory effect. Results show that hydrogen-bonded supramolecular structure and phase separation morphology are formed in the PUPys. The glass transition temperature (Tg) of soft phase is controlled by the hydrogen bonding while the hard phase grows up from amorphous phase to crystalline phase as the BINA content increases. The addition of MDI-BDO promotes the formation of amorphous hard phase. PUPys have high shape fixity and high shape recovery with the recovery temperature of 45 °C-55 °C. To achieve satisfying shape recovery, 30wt% BINA contents are required. The addition of MDI-BDO improves the shape recovery force. In addition, PUPys have high moisture absorption which increases with the increase of temperature, relative humidity, BINA content as well as the decrease of MDI-BDO content. The final shape recovery decreases with the decrease of BINA content significantly and the strain recovery start time, strain recovery time, strain recovery end time and the time length are also short in the higher BINA content PUPys. Moreover, it is found that the low critical value of BINA unit for PUPys having moisture-sensitive SME is still 30wt%. The addition of MDI-BDO improves the moisture-sensitive shape recovery. Finally, it is proposed that the hydrogen bonding present in the pyridine ring serves as "switch" whereas the formed hard phase via hydrogen bonding present in the urethane groups acts as the physical netpoints for the both

  18. Analysis of supramolecular surface nanostructures using secondary ion mass spectrometry (poster)

    International Nuclear Information System (INIS)

    Halaszova, S.; Velic, D.

    2013-01-01

    Our system consists of host molecules β-cyclodextrin (C 42 H 70 O 35 ), of implemented Iron nanoparticles (guest). Whole supramolecular complex is placed on a gold substrate. In our project we work with monotiolated β-cyclodextrin (C 42 H 70 O 34 S), consisting of seven α-D-1-4 glucopyranose units. Cyclodextrins have been selected deliberately because of their ability to form inclusion complexes .They are also capable of forming structures similar to self-assembly monolayers. To study the formation of these supramolecular surface nanostructures mass secondary ion spectrometry is used. With this technique fragmentation of monotiolated β-cyclodextrin and the presence of the supramolecular complex on a gold surface can be examined. The observed fragments of monotiolated cyclodextrines films can be divided into three groups: Au X H Y S Z , fragments originating from cyclodextrin molecules associated with Au. Fragments as (C 42 H 70 O 34 S)Na + , (C 42 H 70 O 35 )Na + and (AuC 42 H 69 O 34 S)Na + were identified as well as fragments thereof in cationized form with K + . The main objective of the project is a detailed study and preparation of supramolecular nanostructures consisting of complex guest-host monotiolated β-cyclodextrin host-iron), and a gold substrate. (Authors)

  19. Thin molecular films of supramolecular porphyrins

    Directory of Open Access Journals (Sweden)

    KOITI ARAKI

    2000-03-01

    Full Text Available A relevant series of symmetric supramolecular porphyrins has been obtained by attaching four [Ru II(bipy2Cl] groups to the pyridyl substituents of meso-tetra(4-pyridylporphyrin and its metallated derivatives. These compounds display a rich electrochemistry and versatile catalytic, electrocatalytic and photochemical properties, associated with the ruthenium-bipyridine and the porphyrin complexes. These properties can be transferred to the electrodes by attaching thin molecular films of the compounds, by dip-coating, electrostatic assembly or electropolymerization. In this way, the interesting properties of those supermolecules and supramolecular assemblies can be used to prepare molecular devices and sensors.

  20. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)

    2005-07-01

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  1. A Sub-Microanalysis Approach in Chemical Characterisation of Gold Nanorods Formed by a Novel Polymer-Immobilised Gold Seeds Base

    Directory of Open Access Journals (Sweden)

    Majid Kazemian Abyaneh

    2017-10-01

    Full Text Available Gold nanorods (GNRs have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV photoreduced gold-polymethylmethacrylate (Au–PMMA nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray absorption fine structure (NEXAFS spectroscopy and X-ray fluorescence (XRF mapping. In this report, it is shown that investigating polymer nanocomposites using combination of XRF mapping and NEXAFS spectromicroscopy can help to see the growth phenomenon from different perspective than conventional characterisation techniques. XRF maps are used to explore distribution of the constituent elements and showing how polymer matrix making stripe patterns along with regions where GNRs are formed. NEXAFS carbon (C K-edge spectra have been taken at three different stages of synthesis: (1 on Au–PMMA nanocomposites before UV irradiation, (2 after gold nanoparticles formation, and (3 after GNRs formation. It reveals how polymer matrix has been degraded during GNRs formation and avoiding chemically or physically damage to polymer matrix is crucial to control the formation of GNRs.

  2. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  3. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)

    TECS

    2007-05-16

    May 16, 2007 ... Indian Academy of Sciences. 243. #. Dedicated to Prof. Dr. Werner Weisweiler on the occasion of his 69th birthday. *For correspondence. Synthesis, spectroscopy and supramolecular structures of two magnesium 4-nitrobenzoate complexes. #. BIKSHANDARKOIL R SRINIVASAN,. 1,. * JYOTI V SAWANT,.

  4. Two new supramolecular compounds induced by novel ...

    Indian Academy of Sciences (India)

    Min Xiao

    2017-09-19

    Sep 19, 2017 ... Our group has been devoted to the construction of inorganic–organic hybrid compounds ... supramolecular construction has been rarely reported.23. The introduction of C=C bonds in ..... Figure 8. (a) IR spectra of the as-synthesized and solid residue samples of 1 after the photocatalytic degradation of MB.

  5. Supramolecular liquid crystal displays : construction and applications

    NARCIS (Netherlands)

    Hoogboom, Joannes Theodorus Valentinus

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and

  6. What Triggers Supramolecular Isomerism in Nonmolecular Solids ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. What Triggers ... interpret the phase diagram of a system. The structure-synthesis correlation discussed here provides chemical insight to evolve a synthetic protocol to interpret and predict the possibilityof supramolecular isomers in metal organic solids.

  7. Synthesis, spectroscopy, thermal studies and supramolecular ...

    Indian Academy of Sciences (India)

    TECS

    structures of two new alkali-earth 4-nitrobenzoate complexes containing ... adopt a cis orientation in 2 resulting in different supramolecular structures. Complex 1 .... The compound analysed satisfactorily and exhibited an identical IR spectrum as that of the product from method 1. 2.2 Preparation of anhydrous complexes.

  8. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, B.

    2016-01-01

    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  9. Strong and Reversible Monovalent Supramolecular Protein Immobilization

    NARCIS (Netherlands)

    Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc

    2010-01-01

    Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The

  10. Construction of diverse supramolecular assemblies of dimetal ...

    Indian Academy of Sciences (India)

    Construction of diverse supramolecular assemblies of dimetal subunits differing in coordinated water molecules via strong hydrogen bonding interactions: Synthesis, crystal structures and spectroscopic properties. Sadhika Khullar Sanjay K Mandal. Special issue on Chemical Crystallography Volume 126 Issue 5 September ...

  11. Supramolecular assembly based on a heteropolyanion: Synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Supramolecular assembly based on a heteropolyanion: Synthesis and crystal structure of Na3(H2O)6[Al(OH)6Mo6O18] ⋅ 2H2O. Vaddypally Shivaiah Samar K Das. Volume 117 Issue 3 May 2005 pp 227-233 ...

  12. Three silver (I) supramolecular compounds constructed from ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Three silver (I) supramolecular compounds constructed from pyridinium or methylimidazolium polycations: Synthesis, crystal structure and properties. Yao Li Wen Li Zhang Hai Juan Du Chao-Hai Wang Ya Bin Lu Yun-Yin Niu. Volume 127 Issue 9 ...

  13. Structural modifications leading to changes in supramolecular ...

    Indian Academy of Sciences (India)

    1347–1356. c Indian Academy of Sciences. Structural modifications leading to changes in supramolecular aggregation of thiazolo[3, 2-a]pyrimidines: Insights into their conformational features. H NAGARAJAIAH and NOOR SHAHINA BEGUM. ∗. Department of Studies in Chemistry, Bangalore University, Bangalore 560 001, ...

  14. Synthesis, properties and supramolecular structure of ...

    Indian Academy of Sciences (India)

    Synthesis, properties and supramolecular structure of piperazinediium thiosulfate monohydrate. +. BIKSHANDARKOIL R SRINIVASANa*, ASHISH R NAIKa. , SUNDER N DHURIa. ,. CHRISTIAN NÄTHERb and WOLFGANG BENSCHb. aDepartment of Chemistry, Goa University, Goa 403 206, India. bInstitut für ...

  15. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    Science.gov (United States)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  16. Mesoscale characterization of supramolecular transient networks using SAXS and rheology.

    Science.gov (United States)

    Pape, A C H; Bastings, Maartje M C; Kieltyka, Roxanne E; Wyss, Hans M; Voets, Ilja K; Meijer, E W; Dankers, Patricia Y W

    2014-01-16

    Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used.

  17. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid.

    Science.gov (United States)

    Jun-Bo, Liu; Yang, Shi; Shan-Shan, Tang; Rui-Fa, Jin

    2015-03-01

    The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol-imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC-WPBE/6-31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol-imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol-imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-assembly of a supramolecular hexagram and a supramolecular pentagram

    Science.gov (United States)

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan

    2017-05-01

    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium-terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+ however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature.

  19. Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks.

    Science.gov (United States)

    Herzer, Nicole; Guneysu, Hilal; Davies, Dylan J D; Yildirim, Derya; Vaccaro, Antonio R; Broer, Dirk J; Bastiaansen, Cees W M; Schenning, Albertus P H J

    2012-05-09

    A printable H-bonded cholesteric liquid crystal (CLC) polymer film has been fabricated that, after conversion to a hygroscopic polymer salt film, responds to temperature and humidity by changing its reflection color. Fast-responding humidity sensors have been made in which the reflection color changes between green and yellow depending on the relative humidity. The change in reflection band is a result of a change in helix pitch in the film due to absorption and desorption of water, resulting in swelling/deswelling of the film material. When the polymer salt was saturated with water, a red-reflecting film was obtained that can potentially act as a time/temperature integrator. Finally, the films were printed on a foil, showing the potential application of supramolecular CLC materials as low-cost, printable, battery-free optical sensors.

  20. Development of New Supramolecular Lyotropic Liquid Crystals and Their Application as Alignment Media for Organic Compounds.

    Science.gov (United States)

    Leyendecker, Martin; Meyer, Nils-Christopher; Thiele, Christina M

    2017-09-11

    Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod-like polymers dissolved in organic solvents or of swollen cross-linked polymer gels. Thus far, the synthesis of polymer-based alignment media has been a challenging process, which is often followed by a time-consuming sample preparation. We herein propose the use of non-polymeric alignment media based on benzenetricarboxamides (BTAs), which self-assemble into rod-like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant-and-soldier principle by blending achiral with chiral substituted BTAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Neutral coordination polymers based on a metal-mono(dithiolene) complex: synthesis, crystal structure and supramolecular chemistry of [Zn(dmit)(4,4'-bpy)]n, [Zn(dmit)(4,4'-bpe)]n and [Zn(dmit)(bix)]n (4,4'-bpy = 4,4'-bipyridine, 4,4'-bpe = trans-1,2-bis(4-pyridyl)ethene, bix = 1,4-bis(imidazole-1-ylmethyl)-benzene.

    Science.gov (United States)

    Madhu, Vedichi; Das, Samar K

    2011-12-28

    This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions. This journal is © The Royal Society of Chemistry 2011

  2. Influence of the electric field on supramolecular structure and properties of amyloid-specific reagent Congo red.

    Science.gov (United States)

    Spólnik, Paweł; Król, Marcin; Stopa, Barbara; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Zemanek, Grzegorz; Jagusiak, Anna; Piwowar, Piotr; Szoniec, Grzegorz; Roterman, Irena

    2011-10-01

    Among specific amyloid ligands, Congo red and its analogues are often considered potential therapeutic compounds. However, the results of the studies so far have not been univocal because the properties of this dye, derived mostly from its supramolecular nature, are still poorly understood. The supramolecular structure of Congo red, formed by π-π stacking of dye molecules, is susceptible to the influence of the electric field, which may significantly facilitate electron delocalization. Consequently, the electric field may generate altered physico-chemical properties of the dye. Enhanced electron delocalization, induced by the electric field, alters the total charge of Congo red, making the dye more acidic (negatively charged). This is a consequence of withdrawing electrons from polar substituents of aromatic rings-sulfonic and amino groups-thus increasing their tendency to dissociate protons. The electric field-induced charge alteration observed in electrophoresis depends on dye concentration. This concentration-dependent charge alteration effect disappears when the supramolecular structure disintegrates in DMSO. Dipoles formed from supramolecular fibrillar species in the electric field become ordered in the solution, introducing the modified arrangement to liquid crystalline phase. Experimental results and theoretical studies provide evidence confirming predictions that the supramolecular character of Congo red is the main reason for its specific properties and reactivity.

  3. Photo-Mediated Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) "Click" Reactions for Forming Polymer Networks as Shape Memory Materials.

    Science.gov (United States)

    McBride, Matthew K; Gong, Tao; Nair, Devatha P; Bowman, Christopher N

    2014-11-05

    The formation of polymer networks polymerized with the Copper (I) - catalyzed azide - alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials.

  4. Photo-Mediated Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) “Click” Reactions for Forming Polymer Networks as Shape Memory Materials

    Science.gov (United States)

    McBride, Matthew K.; Gong, Tao; Nair, Devatha P.; Bowman, Christopher N.

    2014-01-01

    The formation of polymer networks polymerized with the Copper (I) – catalyzed azide – alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials. PMID:25378717

  5. Supramolecular structures and self-association processes in polymer systems

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Martin; Filippov, Sergey K.; Štěpánek, Petr

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S165-S178 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : copolymers * nanoparticles * phase separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S165.pdf

  6. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  7. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin.

    Science.gov (United States)

    Marcos, Xelhua; Pérez-Casas, Silvia; Llovo, José; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2016-03-16

    Supramolecular gels of poloxamer-hydroxyethyl cellulose (HEC)-α-cyclodextrin (αCD) were developed aiming to obtain synergisms regarding solubilization and sustained release of griseofulvin for topical application. The effects of αCD concentration (0-10%w/w) on the phase behavior of aqueous dispersions of Pluronic(®) P123 (14%w/w) mixed with HEC (2%w/w) were evaluated at 4, 20 and 37°C. The cooperative effects of the inclusion complex formation between poly(ethylene oxide) (PEO) blocks and HEC with αCD prevented phase separation and led to supramolecular networks that solubilize the antifungal drug. Rheological and bioadhesive properties of gels with and without griseofulvin could be easily tuned modulating the polymers proportions. Supramolecular gels underwent sol-gel transition at lower temperature than P123 solely dispersions and enabled drug sustained release for at least three weeks. All gels demonstrated good biocompatibility in the HET-CAM test. Furthermore, the drug-loaded gels showed activity against Trichophyton rubrum and Trichophyton mentagrophytes and thus may be useful for the treatment of tinea capitis and other cutaneous fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    Science.gov (United States)

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  9. Effect of Polymer Form and its Consolidation on Mechanical Properties and Quality of Glass/PBT Composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Pillai, Saju; Charca, Samuel

    2014-01-01

    different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final...

  10. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites.

    Science.gov (United States)

    Benítez, Alejandro J; Lossada, Francisco; Zhu, Baolei; Rudolph, Tobias; Walther, Andreas

    2016-07-11

    Cellulose nanofibrils (CNFs) are considered next generation, renewable reinforcements for sustainable, high-performance bioinspired nanocomposites uniting high stiffness, strength and toughness. However, the challenges associated with making well-defined CNF/polymer nanopaper hybrid structures with well-controlled polymer properties have so far hampered to deduce a quantitative picture of the mechanical properties space and deformation mechanisms, and limits the ability to tune and control the mechanical properties by rational design criteria. Here, we discuss detailed insights on how the thermo-mechanical properties of tailor-made copolymers govern the tensile properties in bioinspired CNF/polymer settings, hence at high fractions of reinforcements and under nanoconfinement conditions for the polymers. To this end, we synthesize a series of fully water-soluble and nonionic copolymers, whose glass transition temperatures (Tg) are varied from -60 to 130 °C. We demonstrate that well-defined polymer-coated core/shell nanofibrils form at intermediate stages and that well-defined nanopaper structures with tunable nanostructure arise. The systematic correlation between the thermal transitions in the (co)polymers, as well as its fraction, on the mechanical properties and deformation mechanisms of the nanocomposites is underscored by tensile tests, SEM imaging of fracture surfaces and dynamic mechanical analysis. An optimum toughness is obtained for copolymers with a Tg close to the testing temperature, where the soft phase possesses the best combination of high molecular mobility and cohesive strength. New deformation modes are activated for the toughest compositions. Our study establishes quantitative structure/property relationships in CNF/(co)polymer nanopapers and opens the design space for future, rational molecular engineering using reversible supramolecular bonds or covalent cross-linking.

  11. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  13. Static Electricity-Responsive Supramolecular Assembly.

    Science.gov (United States)

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design of supramolecular ordered systems for mesoscopic colloids and molecular composites. Progress report, November 10, 1993--June 10, 1994

    International Nuclear Information System (INIS)

    1995-01-01

    During this reporting period, the authors group has been active in five areas of research: (1) improvements on their x-ray instrumentation at the SUNY Beamline, National Synchrotron Light Source (NSLS) so that they can perform new experiments which are not accessible otherwise; (2) characterization of functionalized hairy rod polymers designed for studying the macromolecular structures in molecular composites; (3) investigation of supramolecular ordered systems composed mainly of block copolymers from dilute to concentrated solutions, including the gel state; (4) evolution of crystalline structures in polymer blends and melts; and (5) multiphase structure of segment polyurethanes

  15. Design of supramolecular ordered systems for mesoscopic colloids and molecular composites. Progress report, November 10, 1993--June 10, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    During this reporting period, the authors group has been active in five areas of research: (1) improvements on their x-ray instrumentation at the SUNY Beamline, National Synchrotron Light Source (NSLS) so that they can perform new experiments which are not accessible otherwise; (2) characterization of functionalized hairy rod polymers designed for studying the macromolecular structures in molecular composites; (3) investigation of supramolecular ordered systems composed mainly of block copolymers from dilute to concentrated solutions, including the gel state; (4) evolution of crystalline structures in polymer blends and melts; and (5) multiphase structure of segment polyurethanes.

  16. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  18. Liquid biphase systems formed in ternary mixtures of two organic solvents and ethylene oxide oligomers or polymers

    Directory of Open Access Journals (Sweden)

    Spitzer Marcos

    2000-01-01

    Full Text Available Phase equilibrium data were determined for ternary systems containing ethylene oxide oligomers or polymers, heptane and one of three organic solvents (methanol, dichloromethane or chloroform. The effects of temperature, of polymer molecular weight and of the chemical nature of the organic solvent on phase equilibrium were investigated. For all the studied systems, the miscibility region was reduced as temperature decreased, indicating an exothermic phase separation process. For both binary and ternary mixtures, the miscibility also decreased as the macromolecule size increased, although this effect was less significant for the ternary mixtures. These features suggest that phase separation is more influenced by enthalpic than entropic contributions. Regarding the different polar solvents investigated, methanol presented a much smaller miscibility region, in accordance with its inferior solvation ability for PEO. The largest miscibility region was observed with chloroform, not much different from the behaviour observed with dichloromethane. Tie lines were determined for some systems, confirming the strong segregation between polymer and the hydrocarbon solvent.

  19. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    Science.gov (United States)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  20. Friction mediated by redox-active supramolecular connector molecules.

    Science.gov (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-06

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  1. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  2. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  3. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    Science.gov (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  4. Molecular and supramolecular speciation of monoamide extractant systems

    International Nuclear Information System (INIS)

    Ferru, G.

    2012-01-01

    DEHiBA (N,N-di-(ethyl-2-hexyl)isobutyramide, a monoamide, was chosen as selective extractant for the recovery of uranium in the first cycle of the GANEX process, which aims to realize the grouped extraction of actinides in the second step of the process. The aim of this work is an improved description of monoamide organic solutions in alkane diluent after solutes extraction: water, nitric acid and uranyl nitrate. A parametric study was undertaken to characterize species at molecular scale (by IR spectroscopy, UV-visible spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and electro-spray ionisation mass spectrometry) and at supramolecular scale (by vapor pressure osmometry and small angle X-ray scattering coupled to molecular dynamic simulations). Extraction isotherms were modelled taking into account the molecular and supramolecular speciation. These works showed that the organization of the organic solution depends on the amide concentration, the nature and the concentration of the extracted solute. Three regimes can be distinguished. 1/For extractant concentration less than 0.5 mol/L, monomers are predominate species. 2/ For extractant concentrations between 0.5 and 1 mol/L, small aggregates are formed containing 2 to 4 molecules of monoamide. 3/ For more concentrated solutions (greater than 1 mol/L), slightly larger species can be formed after water or nitric acid extraction. Concerning uranyl nitrate extraction, an important and strong organization of the organic phase is observed, which no longer allows the formation of well spherical defined aggregates. At molecular scale, complexes are not sensitive to the organization of the solution: the same species are observed, regardless of the solute and extractant concentrations in organic phase. (author) [fr

  5. A dynamic combinatorial approach for identifying side groups that stabilize DNA-templated supramolecular self-assemblies.

    Science.gov (United States)

    Paolantoni, Delphine; Cantel, Sonia; Dumy, Pascal; Ulrich, Sébastien

    2015-02-06

    DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  6. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  7. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    Science.gov (United States)

    Chui, Tin Ki

    This thesis described the development of a new type of branched peptidomimetics using a class of previously reported triazole-containing peptidomimetics as the structural motif. The propensity of these new branched peptiomimetics in being an organogelator, forming supramolecular assemblies and recognizing anions and biomolecules was investigated. The quest began with the preparation of two different series of branched peptidomimetics, namely 69-K-aa3 (aa = V or L) and 70-B-aa3. The former series made use of the flexible L-lysine (K) as the branching unit while the latter series was composed of the relatively rigid 3,5-diminobenzoate (B). In each series, the peptidomimetic arms were composed of solely valine (V) or leucine (L). The effects of the identity of the amino acids and the branching units on the gelation and self-assembling properties of these branched bis(tripeptidomimetic)s were investigated. The 69-K-aa3 series was found to exhibit poor solubility in common organic solvents yet it was able to form strong and stable gels in aromatic solvents. The 70-B-aa3 series, on the other hand, was a poor organogelator despite its excellent solubility. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the ability of the former to form a hyperbranched 3D network whereas the latter was only capable of forming isolated spherical lumps. Nevertheless, the latter displayed the ability in forming supramolecular polymers as shown from viscometric studies. Solution-to-gel transition temperature measurement of the gels formed by the 69-K-aa3 series and association constants determination by 1H NMR titration experiments for the supramolecular polymerization of the 70-B-aa3 series both suggested that peptidomimetic arms comprised of valine performed better than those made up of leucine in terms of association strength, and such a difference was attributed to the bulkier nature of the leucine side chain. In order to

  8. Supramolecular assemblies formed by diolein and stearyl alcohol

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Pohle, W.; Gauger, D. R.; Bouř, Petr

    2011-01-01

    Roč. 18, č. 1 (2011), s. 17-18 ISSN 1211-5894. [Discussions in Structural Molecular Biology /9./. 24.03.2011-26.03.2011, Nové Hrady] R&D Projects: GA ČR GAP208/10/0559; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR spectroscopy * quantum chemistry computations * molecular dynamics * amphiphiles Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands

    OpenAIRE

    Tanh Jeazet, Harold Brice

    2010-01-01

    Self-assembly processes were used to construct supramolecular architectures based on metal-ligand interactions. The structures formed strongly depend on the used metal ion, the ligand type, the chosen counter ion and solvent as well as on the experimental conditions. The focus of the studies was the design of multifunctional N-donor ligands and the characterization of their complexing and structural properties. This work was divided into three distinct main parts: The bis(2-pyridylimine), the...

  10. Vortex-Induced Alignment of a Water Soluble Supramolecular Nanofiber Composed of an Amphiphilic Dendrimer

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuda

    2013-06-01

    Full Text Available We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID. NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  11. Functional supramolecular ruthenium cyclodextrin dyes for nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Pikramenou, Z. [School of Chemistry, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Philippopoulos, A.I.; Kontos, A.G.; Falaras, P. [NCSR ' ' Demokritos' ' , Institute of Physical Chemistry, Aghia Paraskevi Atiikis, 15310, Athens (Greece)

    2007-01-05

    A supramolecular complex [Ru(dcb){sub 2}({alpha}-CD-5-bpy)]Cl{sub 2} (1-{alpha}-CD) (dcb = 4,4'-dicarboxyl-2,2'-bipyridine, {alpha}-CD-5-bpy = 6-mono[5-methyl(5'-methyl-2,2'-bipyridyl)]-permethylated {alpha}-CD) (CD: cyclodextrin) based on a ruthenium tris-bipyridyl core with an appended {alpha}-CD cavity is designed and synthesised, in order to facilitate dye/redox couple interaction and dye regeneration in nanocrystalline TiO{sub 2} solar cells. The luminescent complex is fully characterized and anchored on mesoporous titania electrodes showing increased power-conversion efficiency in solid-state dye-sensitized solar cells using a composite polymer electrolyte. Direct comparison of the properties of the CD complex with an analogous ruthenium complex [Ru(dcb){sub 2}(5,5'-dmbpy)]Cl{sub 2} (2) (5,5'-dmbpy = 5,5'-dimethylbipyridine) without the CD cavity reveals that the photovoltaic performance of 1-{alpha}-CD is enhanced by about 40 % compared to 2. Independent studies have shown complexation of the iodide redox couple to the CD in 1-{alpha}-CD. These results indicate that the CD moiety is able to act as a mediator and fine tune the photoelectrode/electrolyte interface. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Polymerizable Supramolecular Approach to Highly Conductive PEDOT:PSS Patterns.

    Science.gov (United States)

    Kim, Tae Geun; Ha, Su Ryong; Choi, Hyosung; Uh, Kyungchan; Kundapur, Umesha; Park, Sumin; Lee, Chan Woo; Lee, Sang-Hwa; Kim, Jaeyong; Kim, Jong-Man

    2017-06-07

    Owing to its high conductivity, solution processability, mechanical flexibility, and transparency, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively explored for use in functional devices including solar cells, sensors, light-emitting diodes, and supercapacitors. The ability to fabricate patterned PEDOT:PSS on a solid substrate is of significant importance to develop practical applications of this conducting polymer. Herein, we describe a new approach to obtain PEDOT:PSS patterns that are based on a polymerizable supramolecular concept. Specifically, we found that UV irradiation of a photopolymerizable diacetylene containing PEDOT:PSS film followed by development in deionized water and subsequent treatment with sulfuric acid (glass and silicon wafer) or formic acid (PET) produces micron-sized PEDOT:PSS patterns on solid substrates. The newly designed photolithographic method, which can be employed to generate highly conductive (>1000 S/cm) PEDOT:PSS patterns, has many advantages including the use of aqueous process conditions, a reduced number of process steps, and no requirement for plasma etching procedures.

  13. Intracellular Environment-Responsive Stabilization of Polymer Vesicles Formed from Head-Tail Type Polycations Composed of a Polyamidoamine Dendron and Poly(L-lysine

    Directory of Open Access Journals (Sweden)

    Kenji Kono

    2013-09-01

    Full Text Available For the development of effective drug carriers, nanocapsules that respond to micro-environmental changes including a decrease in pH and a reductive environment were prepared by the stabilization of polymer vesicles formed from head-tail type polycations, composed of a polyamidoamine dendron head and a poly(L-lysine tail (PAMAM dendron-PLL, through the introduction of disulfide bonds between the PLL tails. Disulfide bonds were successfully introduced through the reaction of Lys residues in the PAMAM dendron-PLL polymer vesicles with 2-iminothiolane. The stabilization of PAMAM dendron-PLL polymer vesicles was confirmed by dynamic light scattering measurements. In acid-base titration experiments, nanocapsules cross-linked by disulfide bonds had a buffering effect during the cellular uptake process. The PAMAM dendron-PLL nanocapsules were used to incorporate the fluorescent dyes rhodamine 6G and fluorescein as a drug model. Cationic rhodamine 6G was generally not released from the nanocapsules because of the electrostatic barrier of the PLL membrane. However, the nanocapsules were destabilized at high glutathione concentrations corresponding to intracellular concentrations. Rhodamine 6G was immediately released from the nanocapsules because of destabilization upon the cleavage of disulfide bonds. This release of rhodamine 6G from the nanocapsules was also observed in HeLa cells by laser confocal microscopy.

  14. Sound attenuation of polymerizing actin reflects supramolecular structures: viscoelastic properties of actin gels modified by cytochalasin D, profilin and alpha-actinin.

    Science.gov (United States)

    Wagner, O; Schüler, H; Hofmann, P; Langer, D; Dancker, P; Bereiter-Hahn, J

    2001-05-01

    Polymerization and depolymerization of cytoskeletal elements maintaining cytoplasmic stiffness are key factors in the control of cell crawling. Rheometry is a significant tool in determining the mechanical properties of the single elements in vitro. Viscoelasticity of gels formed by these polymers strongly depends on both the length and the associations of the filaments (e.g. entanglements, annealings and side-by-side associations). Ultrasound attenuation is related to viscosity, sound velocity and supramolecular structures in the sample. In combination with a small glass fibre (2 mm x 50 microm), serving as a viscosity sensor, an acoustic microscope was used to measure the elasticity and acoustic attenuation of actin solutions. Changes in acoustic attenuation of polymerizing actin by far exceed the values expected from calculations based on changes in viscosity and sound velocity. During the lag-phase of actin polymerization, attenuation slightly decreases, depending on actin concentration. After the half-maximum viscosity is accomplished and elasticity turns into steady state, attenuation distinctly rises. Changes in ultrasound attenuation depend on actin concentration, and they are modulated by the addition of alpha-actinin, cytochalasin D and profilin. Thus absorption and scattering of sound on the polymerization of actin is related to the packing density of the actin net, entanglements and the length of the actin filaments. Shortening of actin filaments by cytochalasin D was also confirmed by electron micrographs and falling-ball viscosimetry. In addition to viscosity and elasticity, the attenuation of sound proved to be a valuable parameter in characterizing actin polymerization and the supramolecular associations of F-actin.

  15. Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G.P.; Vilanova, Neus; De Feijter, Isja; Kegel, Willem K.; Voets, Ilja K.

    2017-01-01

    In this article, we report the synthesis and physical characterization of colloidal polystyrene particles that carry water-soluble supramolecular N,N′,N″,-trialkyl-benzene-1,3,5-tricarboxamides (BTAs) on their surface. These molecules are known to assemble into one-dimensional supramolecular

  16. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  17. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    Science.gov (United States)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  18. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Margherita De Rosa

    2018-04-01

    Full Text Available In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs, we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under “on-water” conditions with a significant selectivity toward the reactants. Under “on-water conditions” the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of

  19. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2015-10-27

    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  20. Supramolecular structure of a perylene derivative in thin films deposited by physical vapor deposition

    International Nuclear Information System (INIS)

    Fernandes, Jose D.; Aoki, Pedro H.B.; Constantino, Carlos J.J.; Junior, Wagner D.M.; Teixeira, Silvio R.

    2014-01-01

    Full text: Thin films of a perylene derivative, the bis butylimido perylene (BuPTCD), were produced using thermal evaporation (PVD, physical vapor deposition). The main objective is to investigate the supramolecular structure of the BuPTCD in these PVD films, which implies to control the thickness and to determine the molecular organization, morphology at micro and nanometer scales and crystallinity. This supramolecular structure is a key factor in the optical and electrical properties of the film. The ultraviolet-visible absorption revealed an uniform growth of the PVD films. The optical and atomic force microscopy images showed a homogeneous surface of the film at micro and nanometer scales. A preferential orientation of the molecules in the PVD films was determined via infrared absorption. The X-ray diffraction showed that both powder and PVD film are in the crystalline form. (author)

  1. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width

    KAUST Repository

    Zhang, Ye

    2013-04-03

    The integration of a tripeptide derivative, which is a versatile self-assembly motif, with a ruthenium(II)tris(bipyridine) complex affords the first supramolecular metallo-hydrogelator that not only self assembles in water to form a hydrogel but also exhibits gel-sol transition upon oxidation of the metal center. Surprisingly, the incorporation of the metal complex in the hydrogelator results in the nanofibers, formed by the self-assembly of the hydrogelator in water, to have the width of a single molecule of the hydrogelator. These results illustrate that metal complexes, besides being able to impart rich optical, electronic, redox, or magnetic properties to supramolecular hydrogels, also offer a unique geometrical control to prearrange the self-assembly motif prior to self-assembling. The use of metal complexes to modulate the dimensionality of intermolecular interactions may also help elucidate the interactions of the molecular nanofibers with other molecules, thus facilitating the development of supramolecular hydrogel materials for a wide range of applications. © 2013 American Chemical Society.

  2. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  3. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  4. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  5. SINTESIS Y CARACTERIZACION DE SISTEMAS SUPRAMOLECULARES DECORADOS CON NANOPARTICULAS METALICAS

    OpenAIRE

    HERRERA IBARRA, BARBARA ANDREA

    2013-01-01

    Esta tesis tiene como objetivo principal aportar al conocimiento de la Química Supramolecular y de la Nanoquímica considerando la síntesis y caracterización de sistemas supramoleculares, funcionalización de nanopartículas (NPs), nanodecoración de cristales supramoleculares y su evaluación sobre los efectos de los mismos en la viabilidad celular. La promoción de estos sistemas básicos para la creación de sistemas útiles en aplicaciones biomédicas, es del interés de esta tesis. ...

  6. Polymer adhesion predictions for oral dosage forms to enhance drug administration safety. Part 2: In vitro approach using mechanical force methods.

    Science.gov (United States)

    Drumond, Nélio; Stegemann, Sven

    2018-03-05

    Predicting the potential for unintended adhesion of solid oral dosage forms (SODF) to mucosal tissue is an important aspect that should be considered during drug product development. Previous investigations into low strength mucoadhesion based on particle interactions methods provided evidence that rheological measurements could be used to obtain valid predictions for the development of SODF coatings that can be safely swallowed. The aim of this second work was to estimate the low mucoadhesive strength properties of different polymers using in vitro methods based on mechanical forces and to identify which methods are more precise when measuring reduced mucoadhesion. Another aim was to compare the obtained results to the ones achieved with in vitro particle interaction methods in order to evaluate which methodology can provide stronger predictions. The combined results correlate between particle interaction methods and mechanical force measurements. The polyethylene glycol grades (PEG) and carnauba wax showed the lowest adhesive potential and are predicted to support safe swallowing. Hydroxypropyl methylcellulose (HPMC) along with high molecular grades of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) exhibited strong in vitro mucoadhesive strength. The combination of rheological and force tensiometer measurements should be considered when assessing the reduced mucoadhesion of polymer coatings to support safe swallowing of SODF. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Physical vapor deposited films of a perylene derivative: supramolecular arrangement and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Jose Diego; Alessio, Priscila; Silva, Matheus Rodrigues Medeiros; Aroca, Ricardo Flavio; Souza, Agda Eunice de; Constantino, Carlos Jose Leopoldo, E-mail: case@fct.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica

    2017-07-15

    The analysis of supramolecular arrangement is essential to understand the role of this key factor on the optical and electrical properties of organic thin films. In this work, thin solid films of bis(phenethylimido) perylene (PhPTCD) fabricated using physical vapor deposition (PVD) technique (thermal evaporation), deposited simultaneously onto different substrates (Ag mirror, Ge, and quartz plates) contingent on the characterization technique. The main objective is to study the PhPTCD supramolecular arrangement and the thermal stability of this arrangement in PVD films. The ultraviolet-visible absorption reveals a controlled growth of the PVD films, and the micro-Raman scattering data show that the PhPTCD molecule is not thermally degraded in the conditions of these experiments. The microscopy also shows a homogeneous morphological surface of the PVD film at macro and micro scales, with molecular aggregates at nanoscale. Besides, the PVD film roughness does not follow substrate roughness. The X-ray diffraction indicates a crystalline structure for PhPTCD powder and an amorphous form for PhPTCD PVD film. The infrared absorption spectroscopy points to a preferential flat-on organization of the molecules in the PVD films. In addition, the annealing process (200 deg C for 20 minutes) does not affect the supramolecular arrangement of the PhPTCD PVD films. (author)

  8. An electron induced two-dimensional switch made of azobenzene derivatives anchored in supramolecular assemblies.

    Science.gov (United States)

    Henzl, Jörg; Morgenstern, Karina

    2010-06-21

    Supramolecular assemblies of 4-anilino-4'-nitroazobenzene are investigated on the Au(111) surface by low temperature scanning tunneling microscopy and spectroscopy with submolecular resolution. Adsorption at 250 K leads to three different structures that are formed via hydrogen bonds: a star structure and two types of line structures: a meandering and a zigzag line. The formation of these supramolecular assemblies is affected by the available space on the fcc domains of the reconstructed Au(111) substrate as well as by the two-dimensional chirality of the molecules on the surface. The star structure is enantiomerically pure, while both types of lines consist of a racemic mixture. Bonding between homochiral pairs differ from the one between heterochiral pairs in the position of the hydrogen bonds. Inside these supramolecular assemblies two configurations of the molecules are identified: An almost straight trans-configuration and a slightly bent cis*-configuration. The trans-configuration largely reflects the structure of this isomer in gas phase, while the cis*-configuration is two-dimensional on the surface in contrast to the three-dimensional gas phase cis-configuration. The reversible trans-cis* isomerization is induced by electron tunneling through the LUMO+1 state of the molecule, which is located at +2.9 V.

  9. Physical vapor deposited films of a perylene derivative: supramolecular arrangement and thermal stability

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego; Alessio, Priscila; Silva, Matheus Rodrigues Medeiros; Aroca, Ricardo Flavio; Souza, Agda Eunice de; Constantino, Carlos Jose Leopoldo

    2017-01-01

    The analysis of supramolecular arrangement is essential to understand the role of this key factor on the optical and electrical properties of organic thin films. In this work, thin solid films of bis(phenethylimido) perylene (PhPTCD) fabricated using physical vapor deposition (PVD) technique (thermal evaporation), deposited simultaneously onto different substrates (Ag mirror, Ge, and quartz plates) contingent on the characterization technique. The main objective is to study the PhPTCD supramolecular arrangement and the thermal stability of this arrangement in PVD films. The ultraviolet-visible absorption reveals a controlled growth of the PVD films, and the micro-Raman scattering data show that the PhPTCD molecule is not thermally degraded in the conditions of these experiments. The microscopy also shows a homogeneous morphological surface of the PVD film at macro and micro scales, with molecular aggregates at nanoscale. Besides, the PVD film roughness does not follow substrate roughness. The X-ray diffraction indicates a crystalline structure for PhPTCD powder and an amorphous form for PhPTCD PVD film. The infrared absorption spectroscopy points to a preferential flat-on organization of the molecules in the PVD films. In addition, the annealing process (200 deg C for 20 minutes) does not affect the supramolecular arrangement of the PhPTCD PVD films. (author)

  10. Supramolecular assembly of Yin(IV) porphyrin cations stabilized by ionic hydrogen bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwa Jin; Kim, Sung Hyun; Kim, Hee Joon [Dept. of Applied Chemistry, Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2015-09-15

    Our concern for hydrogen-bonded supramolecular assembly with metalloporphyrins led us to exploiting ionic hydrogen bonds, a special class of hydrogen bonds formed between ions and molecules. Because these interactions have up to a third of the strength of covalent bonds, they are expected to be very useful in self-assembly in supramolecular chemistry and molecular crystals. Here we report the preparation and supramolecular assembly of highly charged tin(IV) porphyrin cations stabilized by ionic hydrogen-bonding interactions. We demonstrated that tin(IV) porphyrin cations such as [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} can be a useful three-dimensional building block for the construction of porous porphyrin materials. Our X-ray structural analysis revealed that [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} cations act as ionic hydrogen-bonding donors possessing electro-deficient six protons from the two axially coordinated aqua ligands and the four equatorial pyridinium peripheral groups.

  11. Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times.

    Science.gov (United States)

    Choi, Jin-Sil; Zhu, Yazhen; Li, Hongsheng; Peyda, Parham; Nguyen, Thuy Tien; Shen, Mo Yuan; Yang, Yang Michael; Zhu, Jingyi; Liu, Mei; Lee, Mandy M; Sun, Shih-Sheng; Yang, Yang; Yu, Hsiao-Hua; Chen, Kai; Chuang, Gary S; Tseng, Hsian-Rong

    2017-01-24

    Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.

  12. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  13. Light beams interaction with highly effective holographic diffraction structure formed in polymer-stabilized liquid crystal under the impact of arbitrarily spatially inhomogeneous electric field

    Science.gov (United States)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2016-11-01

    In this work we developed the analytical model of highly effective diffraction on holographic diffraction structures in polymer-stabilized liquid crystals (PSLC) under the impact of arbitrarily inhomogeneous external electric field. The exact self-consistent analytical solutions are obtained by solving the system of coupled-wave equations describing the diffraction process by Riemann's method. They takes into account the electrically-induced phase mismatch changing's inhomogeneity caused by the strong adhesion between liquid crystal molecules and bounding surfaces. According to the obtained relations, numerical simulation of the diffraction characteristics under the influence of external fields with different form of spatial inhomogeneity was made. The simulation results show qualitative compliance with the earlier obtained results.

  14. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  15. Self-assembling nanocomposites for protein delivery: supramolecular interactions between PEG-cholane and rh-G-CSF.

    Science.gov (United States)

    Salmaso, Stefano; Bersani, Sara; Mastrotto, Francesca; Tonon, Giancarlo; Schrepfer, Rodolfo; Genovese, Stefano; Caliceti, Paolo

    2012-08-20

    PEG(5 kDa)-cholane, PEG(10 kDa)-cholane and PEG(20 kDa)-cholane self-assembling polymers have been synthesised by the end-functionalisation of 5, 10 and 20 kDa linear amino-terminating monomethoxy-poly(ethylene glycol) (PEG-NH(2)) with 5β-cholanic acid. Spectroscopic studies and isothermal titration calorimetry showed that the CMC of the PEG-cholane derivatives increased from 23.5 ± 1.8 to 60.2 ± 2.4 μM as the PEG molecular weight increased. Similarly, light scattering analysis showed that the micelle size increased from 15.8 ± 4.9 to 23.2 ± 11.1 nm with the PEG molecular weight. Gel permeation studies showed that the polymer bioconjugates associate with recombinant human granulocyte colony stimulating factor (rh-G-CSF) to form supramolecular nanocomposites according to multi-modal association profiles. The protein loadings obtained with PEG(5 kDa)-cholane, PEG(10 kDa)-cholane and PEG(20 kDa)-cholane were 7.4 ± 1.1, 2.7 ± 0.3 and 2.1 ± 0.4% (protein/polymer, w/w %), respectively. Scatchard and Klotz analyses showed that the protein/polymer affinity constant increased and that the number of PEG-cholane molecules associated to rh-G-CSF decreased as the PEG molecular weight increased. Isothermal titration calorimetry confirmed the protein/polymer multi-modal association. Circular dichroism analyses showed that the polymer association alters the secondary structure of the protein. Nevertheless, in vitro studies performed with NFS-60 cells showed that the polymer interaction does not impair the biological activity of the cytokine. In vivo studies performed by intravenous and subcutaneous administrations of rh-G-CSF to rats showed that the association with PEG(5 kDa)-cholane prolongs the body exposure of the protein. After subcutaneous administration, the protein t(max) values obtained with rh-G-CSF and 1:14 and 1:21 rh-G-CSF/PEG(5 kDa)-cholane (w/w ratio) nanocomplexes were 2, 8 and 24h, respectively. The 1:21 (w/w) rh-G-CSF/PEG(5kDa)-cholane formulation

  16. 2010 POLYMER PHYSICS - JUNE 27 - JULY 2, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Karen Winey

    2010-07-02

    The 2010 Gordon Research Conference on Polymer Physics will provide outstanding lectures and discussions in this critical field that impacts every industrial sector from electronics to transportation to medicine to textiles to energy generation and storage. Fundamental topics range from mechanical properties of soft gels to new understanding in polymer crystallization to energy conversion and transmission to simulating polymer dynamics at the nanoscale. This international conference will feature 22 invited lectures, wherein the opening 10 minutes are specifically designed for a general polymer physics audience. In addition, poster sessions and informal activities provide ample opportunity to discuss the latest advances in polymer physics. The technical content of the meeting will include new twists on traditional polymer physics topics, recent advances in previously underrepresented topics, and emerging technologies enabled by polymer physics. Here is a partially listing of targeted topics: (1) electrically-active and light-responsive polymers and polymer-based materials used in energy conversion and storage; (2) polymers with hierarchical structures including supramolecular assemblies, ion-containing polymers, and self-assembled block polymers; (3) mechanical and rheological properties of soft materials, such as hydrogels, and of heterogeneous materials, particularly microphase separated polymers and polymer nanocomposites; and (4) crystallization of polymers in dilute solutions, polymer melts, and miscible polymer blends.

  17. Zwitterionic supramolecular nanoparticles: self-assembly and responsive properties

    NARCIS (Netherlands)

    Stoffelen, C.; Huskens, Jurriaan

    2015-01-01

    Supramolecular nanoparticles (SNPs) are of high interest in both nanoscience and molecular diagnostics and therapeutics, because of their reversible and designable properties. To ensure colloidal stabilization and biocompatibility, most reported strategies require the use of hydrophilic long-chain

  18. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  19. Gold nanoparticle assemblies through Hydrogen-bonded supramolecular mediators

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2007-01-01

    The synthesis of spherical gold nanoparticle assemblies with multicomponent double rosette molecular boxes as mediators is presented. These nine-component hydrogen-bonded supramolecular structures held together by 36 hydrogen bonds induce gold nanoparticle assembly. The morphologies of the

  20. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. Deepak Gupta Palanisamy Rajakannu Bhaskaran Shankar Firasat Hussain Malaichamy Sathiyendiran. Special issue on Chemical Crystallography Volume 126 ...

  1. Self-assembly of a supramolecular square between [Ni(dppe(TOF2] and 4,4'-Bipyridine

    Directory of Open Access Journals (Sweden)

    Paulo Torres

    2013-08-01

    Full Text Available The main interest of this research is to contribute to the development and understanding of supramolecular chemistry and molecular architectures, which are constructed by the self-assembly of supramolecular entities. Therefore, the synthesis and characterization (IR, UV, 1H NMR, 31P, 19F, 1H-1H COSY of a nickel (II supramolecular square [7] was performed through the synthesis between nickel chloride [1] and diphenylphosphinoethane (dppe [2] to form the precursor complex [Ni(dppeCl2] [3]. This was followed by the synthesis of the complex of interest, [Ni(dppe(TOF2] [5], using the precursor and silver trifluoromethanesulfonate (Ag-TOF. Finally, the self-assembly was performed between the complex [1,2-bis(diphenylphosphinoethanebistriflatonickel(II] [Ni(dppe(OSO2CF32] [5] and the organic ligand 4,4'-bipyridine [6], which act as vertex and edge, respectively.According to various analyses, it was found that the self-assembly generated only one supramolecular species; a square is the most probable thermodynamic structure.

  2. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides

    International Nuclear Information System (INIS)

    Jacobsen, Alan J.; Barvosa-Carter, William; Nutt, Steven

    2008-01-01

    A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values (ρ/ρ s = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity

  3. Chiral supramolecular order revealed during the formation of calf thymus and phage DNA crystals.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2017-11-01

    The control of DNA packaging has been reported to be dependent on an ordered liquid-crystalline state. However, the textural characteristics that are typical of crystals and that resemble mesophases have not been reported for highly polymerized or even shorter types of DNA filaments under in vitro conditions that favor crystallization. Because DNA crystals are expected to exhibit particular textural optical anisotropies, pure and highly polymerized calf thymus DNA and simpler λ phage DNA were crystallized from solution drops and were analyzed using high-performance polarization microscopy with and without differential interference contrast (DIC) optics. Both types of DNA formed crystals that exhibited chiral supramolecular textures resembling the twist-grain boundary (TGB) columnar mesophases described for liquid crystals and exhibited intrinsic negative birefringence. To the best of our knowledge, this is the first observation using polarization/interference optics of pure DNA crystals that have TGB columnar mesophase-like textural characteristics. A comparison of the crystals formed from the highly polymerized calf thymus DNA and those formed from the shorter phage DNA strands revealed textural differences. Compared to the phage DNA crystals, the crystals of highly polymerized thymus DNA exhibited a more intertwisted columnar distribution and a fibrous texture between their columnar structures. In addition, a form birefringence phenomenon was detected only in the thymus DNA crystals. These characteristics are presumed to reflect the higher level of supramolecular order, self-assembly and chirality in highly polymerized calf thymus DNA crystals relative to that of crystals formed from the simpler, shorter, λ phage DNA. The higher-order supramolecular organization revealed here for in vitro DNA preparations raises the possibility that this structure could also occur, possibly to a smaller degree, during DNA self-aggregation under specific in vivo conditions

  4. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  5. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  6. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of beta-sitosterol

    Czech Academy of Sciences Publication Activity Database

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk

    2017-01-01

    Roč. 117, JAN (2017), s. 38-43 ISSN 0039-128X R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1507 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:61389013 Keywords : glycosides * esterification * resolution * sterols * esters * foods * l. * beta-Sitosterol * Acylated steryl glycoside * Lipase * Ionic liquid * Supramolecular self-assembly * Pharmacological activity Subject RIV: CC - Organic Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Organic chemistry; Polymer science (UMCH-V); Organic chemistry (UOCHB-X) Impact factor: 2.282, year: 2016

  7. Thermoresponsive Delivery of Paclitaxel by β-Cyclodextrin-Based Poly(N-isopropylacrylamide) Star Polymer via Inclusion Complexation.

    Science.gov (United States)

    Song, Xia; Wen, Yuting; Zhu, Jing-Ling; Zhao, Feng; Zhang, Zhong-Xing; Li, Jun

    2016-12-12

    Paclitaxel (PTX), a hydrophobic anticancer drug, is facing several clinical limitations such as low bioavailability and drug resistance. To solve the problems, a well-defined β-cyclodextrin-poly(N-isopropylacrylamide) star polymer was synthesized and used as a nanocarrier to improve the water solubility and aim to thermoresponsive delivery of PTX to cancer cells. The star polymer was able to form supramolecular self-assembled inclusion complex with PTX via host-guest interaction at room temperature, which is below the low critical solution temperature (LCST) of the star polymer, significantly improving the solubilization of PTX. At body temperature (above LCST), the phase transition of poly(N-isopropylacrylamide) segments induced the formation of nanoparticles, which greatly enhanced the cellular uptake of the polymer-drug complex, resulting in efficient thermoresponsive delivery of PTX. In particular, the polymer-drug complex exhibited better antitumor effects than the commercial formulation of PTX in overcoming the multi-drug resistance in AT3B-1 cells.

  8. Development of polymer film dosage forms of lidocaine for buccal administration. I. Penetration rate and release rate.

    Science.gov (United States)

    Okamoto, H; Taguchi, H; Iida, K; Danjo, K

    2001-12-13

    We examined the penetration rate of lidocaine (LC) through excised oral mucosa from hamster cheek pouch and the in vitro release rate of LC from film dosage forms with hydroxypropylcellulose (HPC) as a film base. Addition of glycyrrhizic acid (GL) to the HPC films increased the LC release rate almost GL-content-dependently, while an optimum GL content was observed for the LC penetration rate. No LC penetration was observed from an acidic aqueous solution (pH 3.4) of LC, suggesting only unionized LC can substantially penetrate through the mucosa. A significant relationship between the penetration rate of LC and the release rate of unionized LC was found, suggesting that the in vitro dissolution study is a useful tool to predict the penetration rate taking the unionized drug fraction into consideration.

  9. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  10. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    Science.gov (United States)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  11. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert.

    Science.gov (United States)

    Hemp, Sean T; Long, Timothy E

    2012-01-01

    Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  13. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho [North-Eastern Federal University, Yakutsk (Russian Federation); Jeong, Dae-Yong [Inha University, Incheon (Korea, Republic of)

    2016-04-15

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  14. Controlling molecular deposition and layer structure with supramolecular surface assemblies

    Science.gov (United States)

    Theobald, James A.; Oxtoby, Neil S.; Phillips, Michael A.; Champness, Neil R.; Beton, Peter H.

    2003-08-01

    Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces stabilized by hydrogen bonding, dipolar coupling or metal co-ordination. Structures realized to date include isolated rows, clusters and extended networks, as well as more complex multi-component arrangements. Another approach to controlling surface structures uses adsorbed molecular monolayers to create preferential binding sites that accommodate individual target molecules. Here we combine these approaches, by using hydrogen bonding to guide the assembly of two types of molecules into a two-dimensional open honeycomb network that then controls and templates new surface phases formed by subsequently deposited fullerene molecules. We find that the open network acts as a two-dimensional array of large pores of sufficient capacity to accommodate several large guest molecules, with the network itself also serving as a template for the formation of a fullerene layer.

  15. Conductive Supramolecular Architecture Constructed from Polyoxovanadate Cluster and Heterocyclic Surfactant

    Directory of Open Access Journals (Sweden)

    Toshiyuki Misawa

    2018-01-01

    Full Text Available Proton-conductive solid electrolytes are significant for fuel-cell battery technology. Especially for use in motor vehicles, proton conductors which work at intermediate temperatures (373–673 K under an anhydrous atmosphere are desired to improve the fuel cell stability and efficiency. Inorganic–organic hybrid supramolecular architectures are a promising option for the realization of highly conductive proton conductors. Here, a hybrid layered crystal was synthesized for the first time by using an proton-containing decavanadate (V10 anion and a heterocyclic surfactant cation. A simple ion-exchange reaction led to the formation of an inorganic–organic hybrid of V10 by using dodecylpyridazinium (C12pda as the heterocyclic surfactant. Single crystal X-ray analyses revealed that four C12pda cations were associated with one V10 anion, which was a diprotonated species forming a one-dimensional infinite chain structure through hydrogen bonds. Anhydrous proton conductivity was investigated by alternating current (AC impedance spectroscopy in the range of 313–393 K, exhibiting a maximum value of 1.7 × 10−5 S cm−1 at 373 K.

  16. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Ryan F Donnelly

    Full Text Available We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

  17. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward

    2007-08-01

    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  18. Highly stereoselective recognition and deracemization of amino acids by supramolecular self-assembly.

    Science.gov (United States)

    So, Soon Mog; Moozeh, Kimia; Lough, Alan J; Chin, Jik

    2014-01-13

    The highly stereoselective supramolecular self-assembly of α-amino acids with a chiral aldehyde derived from binol and a chiral guanidine derived from diphenylethylenediamine (dpen) to form the imino acid salt is reported. This system can be used to cleanly convert D-amino acids into L-amino acids or vice versa at ambient temperature. It can also be used to synthesize α-deuterated D- or L-amino acids. A crystal structure of the ternary complex together with DFT computation provided detailed insight into the origin of the stereoselective recognition of amino acids. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Irreversible transformation of the porphyrin supramolecular structures under a water vapor environment

    International Nuclear Information System (INIS)

    Ye Ming; Zhang Yi

    2011-01-01

    Supramolecular structures formed by H 4 TPPS 4 2- have been widely used for different applications. In this paper, the stability of H 4 TPPS 4 2- nanorods on mica substrate is investigated by atom force microscopy (AFM) observation.An irreversible transformation of H 4 TPPS 4 2- from nanorods (3.8±0.4 nm in height) to a lower film structure (1.9±0.4 nm in height) was found with the samples incubated at various relative humidities (RH). The transformation rate depends strongly on the RH and environment temperature. (authors)

  20. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  1. Origin of Both Right- and Left-Handed Helicities in a Supramolecular Gel with and without Ni2+at the Supramolecular Level.

    Science.gov (United States)

    Go, Misun; Choi, Heekyoung; Moon, Cheol Joo; Park, Jaehyeon; Choi, Yeonweon; Lee, Shim Sung; Choi, Myong Yong; Jung, Jong Hwa

    2018-01-02

    We demonstrate the different origins of helical directions in polymeric gels derived from a hydrazone reaction in the absence and presence of Ni 2+ . The right-handed helicity of polymeric gels without Ni 2+ originates from the enantiomeric d-form alanine moiety embedded in the building block. However, the right-handed helicity is inverted to a left-handed helicity upon the addition of Ni 2+ , indicating that added Ni 2+ greatly affects the conformation of the polymeric gel by overcoming the influence of the enantiomer embedded in the building block on the helicity at the supramolecular level. More interestingly, the ratio of the right-toleft-handed helical fibers varies with the concentration of Ni 2+ , which converts from 100% right-handed helical fiber to 90% left-handed helical fiber. In the presence of Ni 2+ , both right- and left-handed helical fibers coexist at the supramolecular level. Some fibers also exhibit both right- and left-handed helicities in a single fiber.

  2. Stabilization of reactive species by supramolecular encapsulation.

    Science.gov (United States)

    Galan, Albano; Ballester, Pablo

    2016-03-21

    Molecular containers have attracted the interest of supramolecular chemists since the early beginnings of the field. Cavitands' inner cavities were quickly exploited by Cram and Warmuth to construct covalent containers able to stabilize and assist the characterization of short-lived reactive species such as cyclobutadiene or o-benzyne. Since then, more complex molecular architectures have been prepared able to store and isolate a myriad of fleeting species (i.e. organometallic compounds, cationic species, radical initiators…). In this review we cover selected examples of the stabilization of reactive species by encapsulation in molecular containers from the first reports of covalent containers described by Cram et al. to the most recent examples of containers with self-assembled structure (metal coordination cages and hydrogen bonded capsules). Finally, we briefly review examples reported by Rebek et al. in which elusive reaction intermediates could be detected in the inner cavities of self-folding resorcin[4]arene cavitands by the formation of covalent host-guest complexes. The utilization of encapsulated reactive species in catalysis or synthesis is not covered.

  3. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  4. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  5. Supramolecular stabilization of metastable tautomers in solution and the solid state.

    Science.gov (United States)

    Juribašić, Marina; Bregović, Nikola; Stilinović, Vladimir; Tomišić, Vladislav; Cindrić, Marina; Sket, Primož; Plavec, Janez; Rubčić, Mirta; Užarević, Krunoslav

    2014-12-22

    This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non-heterocyclic, tautomeric solids. Quantum-chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3-methoxysalicylaldehyde and 2-amino-3-hydroxypyridine (ap), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen-bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap. The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid-state and solvent-mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photoinduced formation of an azobenzene-based CD-active supramolecular cyclic dimer.

    Science.gov (United States)

    Sogawa, Hiromitsu; Terada, Kayo; Miyagi, Yu; Shiotsuki, Masashi; Inai, Yoshihito; Masuda, Toshio; Sanda, Fumio

    2015-04-27

    A series of new photo-responsive amino acid-derived azobenzenedicarboxylic acid derivatives (S)-1 a-e were synthesized. Compound (S)-1 a in the trans form exhibited no circular dichroism (CD) signal in DMF under ambient conditions, whereas intense Cotton effects were observed upon UV irradiation, indicating the formation of a chiral supramolecular structure in the cis form. The CD signals disappeared when trifluoroacetic acid (TFA) was added to the solution. The ester counterpart [(S)-1 a'] showed no CD signal. Hydrogen bonding between the carboxy groups seemed necessary for constructing the supramolecular structure. The kinetic studies of cis to trans isomerization of (S)-1 a demonstrated that the formation of a chiral supramolecule enhances the stability of the cis-azobenzene structure. The ESI mass spectrum of stilbenedicarboxylic acid (S)-4, an analogue of (S)-1 b, confirmed the formation of a dimer. A theoretical CD study revealed that (S)-1 a in the cis form should be present as a cyclic chiral dimer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reversible Guest Exchange Mechanisms in Supramolecular Host-GuestAssemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.

    2006-09-01

    Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characterizing guest exchange such as NMR, UV-VIS, mass spectroscopy, electrochemistry, and calorimetry and also presents representative examples of guest exchange mechanisms. The guest exchange mechanisms of hemicarcerands, cucurbiturils, hydrogen-bonded assemblies, and metal-ligand assemblies are discussed. Special attention is given to systems which exhibit constrictive binding, a motif common in supramolecular guest exchange systems.

  8. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-01

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  9. Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends

    KAUST Repository

    Jahnke, Ashlee A.

    2015-02-27

    Polymer blends are broadly important in chemical science and chemical engineering and have led to a wide range of commercial products, however their precise structure and phase morphology is often not well understood. Here we show for the first time that π-conjugated polytellurophenes and high-density polyethylene form blends that can serve as active layers in field-effect transistor devices and can be characterized by a variety of element-specific imaging techniques such as STEM and EDX. Changing the hydrocarbon content and degree of branching on the polytellurophene side-chain leads to a variety of blend structures, and these variations can be readily visualized. Characterization by electron microscopy is complemented by topographic and X-ray methods to establish a nano- to micro-scale picture of these systems. We find that blends that possess microscale networks function best as electronic devices; however, contrary to previous notions a strong correlation between nanofiber formation and electrical performance is not observed. Our work demonstrates that use of organometallic polymers assists in clarifying relevant structure–property–function relationships in multicomponent systems such as semiconductor:insulator blends and sheds light on the structure development in polymer:polymer blends including crystallization, phase separation, and formation of supramolecular arrangements.

  10. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jeffery T. [Univ. of Maryland, College Park, MD (United States)

    2015-09-18

    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See http://www.indiana.edu/~ismsc8/ for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  11. Symposium Supramolecular Assemblies on Surface: Nanopatterning, Functionality and Reactivity

    Science.gov (United States)

    2016-05-19

    modules, steer their organisational and dynamic behaviour , and afford novel functions using well-defined homogenous surfaces, textured and sp2...three electron oxidations of singleIndiana University 11:00 AM 11:30 AM Frida 30 Beton, Peter Supramolecular  organisation  on layered semiconductors and...change in oxidation state of the metal. See J. Am. Chem. Soc. 136, 9862 (2014). 1841 - Supramolecular organisation on layered semiconductors and

  12. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Liu R

    2012-10-01

    Full Text Available Rong Liu,1,2,* Yusi Lai,1,* Bin He,1 Yuan Li,1 Gang Wang,1 Shuang Chang,1 Zhongwei Gu1 1National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China; 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China*These authors contributed equally to this paperAbstract: A new approach of fabricating supramolecular nanoparticles generated by self-assembly polyrotaxanes for antitumor drug delivery has been reported. Cinnamic-acid-modified poly(ethylene glycol chains were threaded in a-cyclodextrins to form polyrotaxanes. The polyrotaxanes self-assembled supramolecular nanoparticles. The morphology of the nanoparticles was changed from nanovesicle to micelle after the antitumor drug, doxorubicin, was loaded. The release profile of the drug-loaded nanoparticles was investigated, and it was found that the sustaining release time could last for 32 hours. The drug-loaded nanoparticles were co-cultured with mouse 4T1 breast cancer cells with a drug concentration of 10 µg/mL; the cell survival rate was 3.3% after a 72-hour incubation. In an in vivo study of breast cancer in a mouse model, the drug-loaded nanoparticles were injected in the tail veins of mice with a dose of 5 mg/kg body weight. The tumor inhibition rate of drug-loaded nanoparticles was 53%, which was better than that of doxorubicin hydrochloride. The cardiac toxicity of doxorubicin was decreased greatly after the encapsulation into supramolecular polyrotaxane nanoparticles.Keywords: polyrotaxane, self-assembly, nanoparticle, doxorubicin, supermolecular

  13. Solid-state supramolecular structure of tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate

    Science.gov (United States)

    Janczak, Jan

    2018-03-01

    The single crystals of tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate suitable for the X-ray analysis were grown using a solution growth technique at room temperature. The compound crystallises in the centrosymmetric space group P21/c of the monoclinic system. Asymmetric unit consists of half of the tetrakis(1-(diaminomethylene)thiouron-1-ium) pyromellate molecule. Both independent parts of the 1-(diaminomethylene)-thiouron-1-ium cations are not strictly planar, but twisted. Both planar arms of the cation are oppositely rotated around the Csbnd N bonds involving the central N atom of the cation. The arrangement of the oppositely charged components, i.e. 1-(diaminomethylene)-thiouron-1-ium cations and pyromellate(4-) anion is determined by the Nsbnd H⋯O hydrogen bonds with R22(8) and R21(6) graphs forming supramolecular tetrakis(1-(diaminomethylene)-thiouron-1-ium) pyromellate units that further interact each other forming three dimensional hydrogen bonded network. Hirshfeld surface and the analysis of the 2D-fingerprint plots are illustrating both qualitatively and quantitatively interactions governing the formation of the supramolecular tetrakis(1-(diaminomethylene)-thiouron-1-ium) pyromellate complex as well as the mutual arrangement of the supramolecules in the crystal. The compound was also characterized by the FT-IR and Raman spectroscopy. Assignment of the bands have been supported by the isotropic frequency shift.

  14. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis.

    Science.gov (United States)

    Yang, L; Weiss, T M; Harroun, T A; Heller, W T; Huang, H W

    1999-11-01

    In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.

  15. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy

    Science.gov (United States)

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-03-01

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.

  16. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  17. Side-chain Liquid Crystal Polymers (SCLCP: Methods and Materials. An Overview

    Directory of Open Access Journals (Sweden)

    Włodzimierz Stańczyk

    2009-03-01

    Full Text Available This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.

  18. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery.

    Science.gov (United States)

    Hu, Xiao-Yu; Jia, Keke; Cao, Yu; Li, Yan; Qin, Shan; Zhou, Fan; Lin, Chen; Zhang, Dongmei; Wang, Leyong

    2015-01-12

    Two novel types of supramolecular nanocarriers fabricated by the amphiphilic host-guest inclusion complex formed from water-soluble pillar[6]arene (WP6) and azobenzene derivatives G1 or G2 have been developed, in which G1 is structurally similar to G2 but has an extra phenoxy group in its hydrophobic region. Supramolecular micelles can be initially formed by WP6 with G1, which gradually transform into layered structures with liquid-crystalline properties, whereas stable supramolecular vesicles are obtained from WP6 and G2, which exhibit dual photo- and pH-responsiveness. Notably, the resulting WP6⊃G2 vesicles can efficiently encapsulate anticancer drug mitoxantrone (MTZ) to achieve MTZ-loaded vesicles, which maintain good stability in a simulated normal physiological environment, whereas in an acid environment similar to that of tumor cells or with external UV irradiation, the encapsulated drug is promptly released. More importantly, cytotoxicity assay indicates that such vesicles have good biocompatibility and the MTZ-loaded vesicles exhibit comparable anticancer activity to free MTZ, especially with additional UV stimulus, whereas its cytotoxicity for normal cells was remarkably reduced. Flow cytometric analysis further confirms that the cancer cell death caused by MTZ-loaded vesicles is associated with apoptosis. Therefore, the dual pH- and UV-responsive supramolecular vesicles are a potential platform for controlled release and targeted anticancer drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The crystal structures of three pyrazine-2,5-dicarboxamides: three-dimensional supramolecular structures

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-05-01

    Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.

  20. Cytosine-Cytosine Base-Pair Mismatch and Chirality in Nucleotide Supramolecular Coordination Complexes.

    Science.gov (United States)

    Qiu, Qi-Ming; Zhou, Pei; Gu, Leilei; Hao, Liang; Liu, Minghua; Li, Hui

    2017-05-29

    The base-pair sequences are the foundation for the biological processes of DNA or RNA, and base-pair mismatch is very important to reveal genetic diseases and DNA rearrangements. However, the lack of well-defined structural information about base-pair mismatch is obstructing the investigation of this issue. The challenge is to crystallize the materials containing the base-pair mismatch. Engineering the small-molecule mimics or model is an effective strategy to solve this issue. Here, six cytidine-5'-monophosphate (CMP) and 2'-deoxycytidine-5'-monophosphate (dCMP) coordination polymers were reported containing cytosine-cytosine base-pair mismatch (i-motif), and their single-crystal structures and chiralities were studied. The precise control over the formation of the i-motif was demonstrated, in which the regulating of supramolecular interactions was achieved based on molecular design. In addition, the chiralities of these coordination polymers were investigated according to their crystal structures and solution- and solid-state circular dichroism spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetic Control of Macromolecular Conformations in Supramolecular Anionic Polysaccharide-Iron Complexes.

    Science.gov (United States)

    Schefer, Larissa; Bulant, Ariane; Zeder, Christophe; Saha, Abhijit; Mezzenga, Raffaele

    2015-11-02

    The anionic iota carrageenan polysaccharide is enriched with Fe(II) and Fe(III) by ion exchange against FeSO4 and FeCl3 . With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single-chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5-fold stiffening and 1.1-fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil-helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron-enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe(2+) and Fe(3+) contents, respectively, with the most promising iota-Fe(III) yielding 53% of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self-assembled polymer host. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  3. Preparation of supramolecular networks using Langmuir-Blodgett techniques

    Czech Academy of Sciences Publication Activity Database

    Dudič, Miroslav; Perman, Jason; Cipolloni, Marco; Michl, Josef

    2012-01-01

    Roč. 106, - (2012), s1218-s1218 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : supramolecular * monolayer * Langmuir - Blodgett Subject RIV: CC - Organic Chemistry

  4. Supramolecular structures constructed from three novel rare earth ...

    Indian Academy of Sciences (India)

    Three complexes assembled into 3D frameworks based on C-H··· O, O-H··· O hydrogen bond linkages. Keywords. Rare earth metal complex; crystal structure; hydrogen bonds; 3D supramolecular structure. 1. Introduction. The self-assembly of supramolecules via non-covalent bonds is currently an interesting topic of ...

  5. Bile Acids as Building Blocks of Supramolecular Hosts

    Directory of Open Access Journals (Sweden)

    Erkki Kolehmainen

    2001-01-01

    Full Text Available A review of the use of bile acid-based compounds as building blocks for designing novel supramolecular hosts for molecular recognition is presented. Pharmacological applications and the newest spectroscopic and computational studies of bile acid derivatives are also shortly considered.

  6. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  7. A chiral Mn (IV) complex and its supramolecular assembly ...

    Indian Academy of Sciences (India)

    Singlecrystal X-ray analysis revealed that compound 1 crystallises in the monoclinic 21 space group with six mononuclear [MnIVL2] units in the asymmetric unit along with three solvent DMF molecules. In the crystal structure, each Mn(IV) complex, acting as the building unit, undergoes supramolecular linking through C-H ...

  8. Linear sweep voltammetric studies on the supramolecular complex ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. Linear sweep voltammetric studies on the supramolecular complex of alizarin red S with lysozyme and determination of lysozyme. Wei Sun Na Zhao Xueliang Niu Yan Wang Kui Jiao. Full Papers Volume 121 Issue 2 March 2009 pp 217-223 ...

  9. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. DEEPAK GUPTA, PALANISAMY RAJAKANNU, BHASKARAN SHANKAR,. FIRASAT HUSSAIN and MALAICHAMY SATHIYENDIRAN. ∗. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: mvdiran@yahoo.com; ...

  10. Linear sweep voltammetric studies on the supramolecular complex ...

    Indian Academy of Sciences (India)

    Administrator

    Linear sweep voltammetric studies on the supramolecular complex of alizarin red S with lysozyme and determination of lysozyme. WEI SUN*, NA ZHAO, XUELIANG NIU, YAN WANG and KUI JIAO. Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and. Molecular Engineering ...

  11. Supramolecular structure of S-(+)-marmesin—a linear ...

    Indian Academy of Sciences (India)

    Unknown

    The crystal structure was determined from X-ray diffraction data using direct methods. The compound crys- tallizes into monoclinic space group P21 with unit cell ... Supramolecular structure; direct methods; hydrogen bond; π–π interaction; envelope; furano- coumarin. 1. Introduction. Furanocoumarins are found to possess ...

  12. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying ...

  13. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction.

    Science.gov (United States)

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek

    2017-01-01

    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  14. Cyclodextrin-grafted polymers functionalized with phosphanes: a new tool for aqueous organometallic catalysis

    Directory of Open Access Journals (Sweden)

    Jonathan Potier

    2014-11-01

    Full Text Available New cyclodextrin (CD-grafted polymers functionalized with water-soluble phosphanes were synthesized in three steps starting from polyNAS. Once characterized by NMR spectroscopy and size-exclusion chromatography, they were used as additives in Rh-catalyzed hydroformylation of 1-hexadecene. The combined supramolecular and coordinating properties of these polymers allowed increasing the catalytic activity of the reaction without affecting the selectivities.

  15. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  16. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity.

    Science.gov (United States)

    Saha, Tanmoy; Gautam, Amitosh; Mukherjee, Arnab; Lahiri, Mayurika; Talukdar, Pinaki

    2016-12-21

    Despite the great interest in artificial ion channel design, only a small number of channel-forming molecules are currently available for addressing challenging problems, particularly in the biological systems. Recent advances in chloride-mediated cell death, aided by synthetic ion carriers, encouraged us to develop chloride selective supramolecular ion channels. The present work describes vicinal diols, tethered to a rigid 1,3-diethynylbenzene core, as pivotal moieties for the barrel-rosette ion channel formation, and the activity of such channels was tuned by controlling the lipophilicity of designed monomers. Selective transport of chloride ions via an antiport mechanism and channel formation in the lipid bilayer membranes were confirmed for the most active molecule. A theoretical model of the supramolecular barrel-rosette, favored by a network of intermolecular hydrogen bonding, has been proposed. The artificial ion-channel-mediated transport of chloride into cells and subsequent disruption of cellular ionic homeostasis were evident. Perturbation of chloride homeostasis in cells instigates cell death by inducing the caspase-mediated intrinsic pathway of apoptosis.

  17. Synthesis and characterization of supramolecular biovector (SMBV) specifically designed for the entrapment of ionic molecules.

    Science.gov (United States)

    De Miguel, I; Ioualalen, K; Bonnefous, M; Peyrot, M; Nguyen, F; Cervilla, M; Soulet, N; Dirson, R; Rieumajou, V; Imbertie, L

    1995-07-06

    Supramolecular biovectors (SMBV) are nanoparticular drug carriers composed of an internal crosslinked solid core externally grafted with fatty acids and surrounded with a phospholipid layer. We show in this paper that the internal core can be derivatized with anionic ligands such as phosphate in order to allow the efficient entrapment of cationic molecules through a process akin to ion exchange. Synthesis of SMBV involved first a cross linking and derivatization step of polysaccharides followed by a homogenization, a drying and a regioselective acylation step. Acylated polysaccharide cores are thus obtained which can be loaded with drugs and wrapped with a phospholipid layer. The SMBVs obtained are characterized through their size, 20 nm, and their ability to filter through 0.22 microns pore size membrane. Gel permeation chromatography experiments performed with various phospholipid/acylated cores ratios indicate that SMBVs form entities distinct from liposomes and that the optimum phospholipid/acylated cores ratio for this specific type of SMBVs is close to 100%. The supramolecular structure of SMBVs and in particular the spatial proximity between acylated cores and phospholipids is demonstrated through resonance energy transfer experiments. The drug loading capability of SMBVs is illustrated by the preparation of gentamicin and doxorubicin loaded SMBV. The therapeutic potential of SMBVs is then discussed notably in the light of a possible biomimetism with low density lipoproteins (LDL).

  18. Viscoelastic Properties of Polymer Blends

    Science.gov (United States)

    Hong, S. D.; Moacanin, J.; Soong, D.

    1982-01-01

    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  19. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  20. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity.

    Science.gov (United States)

    Lü, Jian; Perez-Krap, Cristina; Suyetin, Mikhail; Alsmail, Nada H; Yan, Yong; Yang, Sihai; Lewis, William; Bichoutskaia, Elena; Tang, Chiu C; Blake, Alexander J; Cao, Rong; Schröder, Martin

    2014-09-17

    A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)dihydropyridyl)benzene (1) and 5,5'-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-7 comprises 2 and 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)benzene (3); the latter formed in situ from the oxidative dehydrogenation of 1. SOF-7 shows a three-dimensional four-fold interpenetrated structure with complementary O-H···N hydrogen bonds to form channels that are decorated with cyano and amide groups. SOF-7 exhibits excellent thermal stability and solvent and moisture durability as well as permanent porosity. The activated desolvated material SOF-7a shows high CO2 adsorption capacity and selectivity compared with other porous organic materials assembled solely through hydrogen bonding.

  1. Synthesis, crystal and supramolecular structure of rac-N-acetyl-2- thiohydantoin-asparagine

    Directory of Open Access Journals (Sweden)

    Gerzon E. Delgado

    2014-05-01

    Full Text Available The title compound, C7H9N3O3S, also known as rac-N-acetyl-5-propionamide-2-thioxo-imidazolidin-4-one, crystallize in the monoclinic system with space group P21/n (Nº14, Z=4, and unit cell parameters a= 9.338 (7 Å, b= 7.545 (5 Å, c= 13.212 (10 Å, E= 97.10 (2°, V= 932.8 (12 Å3. The acetyl group and the mean plane of the ureido group form an angle of 81.0 (2°. In the supramolecular structure, the molecules are joined by N--H···O hydrogen bonds into cyclic structures with graph-set R2 2(14 and R2 2(16, forming a three-dimensional network.

  2. A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly.

    Science.gov (United States)

    Wang, Lin; Shi, Xuefeng; Wu, Yaqian; Zhang, Jian; Zhu, Yuejun; Wang, Jinben

    2018-01-24

    A novel supramolecular hydrogel was designed and constructed by molecular self-assembly of a cationic gemini surfactant, 1,3-bis(N,N-dimethyl-N-cetylammonium)-2-propylacrylate dibromide (AGC 16 ), and an anionic aromatic compound, trisodium 1,3,6-naphthalenetrisulfonate (NTS). Owing to its unique structure, the hydrogel (abbreviated as AGC 16 /NTS) has the potential to be used as a multifunctional drug delivery system. The structure and properties of AGC 16 /NTS were characterized by rheological measurements, differential scanning calorimetry, variable-temperature 1 H nuclear magnetic resonance, ultraviolet-visible spectroscopy, variable-temperature fluorescence emission spectroscopy, cryogenic scanning electron microscopy, transmission electron microscopy and X-ray diffraction methods. The rheological and DSC analysis results revealed that the gel AGC 16 /NTS was formed below 57 °C. It was found from UV-vis, fluorescence and 1 H NMR spectroscopy characterization that aromatic π-π stacking and hydrophobic forces were indispensable to the formation of AGC 16 /NTS. The Cryo-SEM and TEM observation results indicated that gelators AGC 16 and NTS self-assembled into one-dimensional fibers which further tightly intertwined to form a three-dimensional network structure. Based on the spectroscopic data and X-ray diffraction measurement results, a self-assembly model was proposed, helping to further understand the molecular self-assembly mechanism of AGC 16 /NTS. It was also found that the electrostatic force, hydrophobic force and π-π interaction were the three main driving forces for the gelation. The multiple non-covalent interactions between AGC 16 and NTS endowed the hydrogel with excellent performance when the hydrogel was used as a carrier for drug delivery, due to multiple micro-domains within the same gel system. We further investigated the encapsulation and releasing properties of the hydrogel, using the hydrophobic model drug curcumin (Cur) and the model

  3. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    Science.gov (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  4. Syntheses and structures of three supramolecular complexes based on 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid

    Science.gov (United States)

    Yu, Xiao-Yang; Zhang, Xiao; Liu, Zhi-Gang; Cui, Xiao-Bing; Xu, Jia-Ning; Luo, Yu-Hui

    2017-11-01

    Three new supramolecular compounds, [Cu(o-HPIDC)(bpy)(H2O)]·2H2O 1, [Cu(o-H2PIDC)(phen)Cl]·[Cu(phen)2Cl]·10H2O·Cl 2 and {[Cd(o-H2PIDC)(H2O)2Cl]·H2O}23 (o-H3PIDC = 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), were hydrothermally synthesized and characterized. In compound 1, the adjacent two supramolecular layers are constructed from different types of helical chains with the same pitch. In compound 2, the adjacent 2D water-chloride layers, {[(H2O)10Cl]-}n, are pillared by [Cu(o-H2PIDC)(phen)Cl] units to form the overall 3D supramolecular network with 1D channels through Osbnd H⋯O hydrogen bond interactions. In compound 3, two Cd(II) are linked into a binuclear [Cd2(o-H2PIDC)2(H2O)4Cl2] with a ten-membered ring by two o-H2PIDC- ligands. The three compounds self-assemble into 3D supramolecular structures via hydrogen bond and π-π stacking interactions. The fluorescence properties of compound 3 was also investigated.

  5. Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms.

    Science.gov (United States)

    Jones, David S; Margetson, Daniel N; McAllister, Mark S; Andrews, Gavin P

    2015-09-30

    Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300 s(-1)) and injection moulding (approximately 900 s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in

  6. Synthesis and Characterization of thermo/pH-responsive Supramolecular G-Quadruplexes for the Construction of Supramolecular Hacky Sacks for Biorelevant Applications

    Science.gov (United States)

    Negron Rios, Luis M.

    The impact of size, shape, and distribution of lipophilic regions on the surfaces of nanoscopic objects that are amphiphilic or patchy (such as proteins) are yet to be fully understood. One of the reasons for this is the lack of an appropriate model systems in which to probe this question. Our group has previously reported 2'-deoxyguanosine (8ArG) derivatives that self-assemble in aqueous media into discrete supramolecular hexadecamers that show the lower critical solution temperature (LCST) phenomenon. The LCST phenomenon is a convenient and rigorous strategy to measure the hydrophobicity of a system. Although these SGQs are potentially attractive for biomedical applications like drug-delivery, the narrow window of physiological temperatures complicates their implementation. This moved us to redesign the constituent 8ArG subunits to incorporate imidazole moieties that would lead to pH-responsive SGQs, working isothermally. Upon reaching a threshold temperature (Lower Critical Solution Temperature, LCST) at pH 7, these dual-responsive SGQs further self-assemble to form nano/micro hydrogel globules that we called them supramolecular hacky sacks (SHS). However, we can isolate kinetically stable versions of these SHS by lowering the ionic strength of the medium (i.e., from the molar to the millimolar range) in a process that we term "fixing the SHS", in which these SHS maintain their integrity (size and shape) and stability without the requirement of crosslinking agents. After structural characterization and in vitro studies of SHS, we performed encapsulation studies of DOX, rhodamine, dsDNA (F26T), thrombin binding aptamer (TBA) and dextran (3 kDa) Texas Red conjugate. Then we performed in vivo studies of cell internalization and drug delivery with neuroblastoma SY-SH5Y. The performed studies will bring new approaches for the development of new biotechnology for fundamental applications and the emerging of novel therapeutic agents for biomedical applications.

  7. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery against cestode infection of animals.

    Science.gov (United States)

    Arkhipov, Ivan A; Sadov, Konstantin M; Limova, Yulia V; Sadova, Alexandra K; Varlamova, Anastasiya I; Khalikov, Salavat S; Dushkin, Alexandr V; Chistyachenko, Yulia S

    2017-11-15

    Niclosamide is an anthelmintic that is widely used to treat cestode infection of animals. The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery was studied in hymenolepiosis of mice and monieziosis of sheep. The efficacy of new substances of niclosamide with polyvinylpyrrolidone polymer in different ratios (1:10; 1:5; 1:2) was determined by the results of helminthological necropsy of the small intestine of sheep and mice. Pre-treatment eggs per gram (EPG) were not significantly different (P>0.1) among groups. The controlled test was used to evaluate the efficacy. A high efficacy (>95% efficacy) of the supramolecular complexes of niclosamide with PVP (SCoNwPVP) was shown in different ratios (1:10; 1:5 and 1:2) at a dose of 20mg/kg of body weight at oral administration against Hymenolepis nana in mice and Moniezia expansa in sheep. Whereas the basic drug - substance of niclosamide was effective at a dose of 100mg/kg of b/w. No adverse effects of the drugs on animal health were detected during the study. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Selective high capacity adsorption of Congo red, luminescence and antibacterial assessment of two new cadmium(II) coordination polymers

    Science.gov (United States)

    Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein

    2018-02-01

    Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.

  9. Construction of polymer-protein bioconjugates with varying chain topologies: polymer molecular weight and steric hindrance effects.

    Science.gov (United States)

    Wan, Xuejuan; Zhang, Guoying; Ge, Zhishen; Narain, Ravin; Liu, Shiyong

    2011-10-04

    We report on the fabrication of well-defined polymer-protein bioconjugates with varying chain architectures, including star polymers, star block copolymers, and heteroarm star copolymers through the specific noncovalent interaction between avidin and biotinylated synthetic polymer precursors. Homopolymer and diblock precursors site-specifically labeled with a single biotin moiety at the chain terminal, chain middle, or diblock junction point were synthesized by a combination of atom-transfer radical polymerization (ATRP) and click reactions. By taking advantage of molecular recognition between avidin and biotin moieties, supramolecular star polymers, star block copolymers, and heteroarm star copolymers were successfully fabricated. This specific binding process was also assessed by using the diffraction optic technology (DOT) technique. We further investigated the effects of polymer molecular weights, location of biotin functionality within the polymer chain, and polymer chain conformations, that is, steric hindrance effects, on the binding numbers of biotinylated polymer chains per avidin within the polymer-protein bioconjugates, which were determined by the standard avidin/2-(4-hydroxyazobenzene)benzoic acid (HABA) assay. The binding numbers vary in the range of 1.9-3.3, depending on the molecular weights, locations of biotin functionality within synthetic polymer precursors, and polymer chain conformations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Probing supramolecular complexation of cetylpyridinium chloride with crown ethers

    Science.gov (United States)

    Saha, Subhadeep; Roy, Mahendra Nath

    2017-11-01

    Supramolecular complexations of cetylpyridinium chloride with three comparable cavity dimension based crown ethers, namely, dibenzo-18-crown-6, 18-crown-6 and dicyclohexano-18-crown-6 have been explored and adequately compared in acetonitrile with the help of conductivity in a series of temperatures to reveal the stoichiometry of the three host-guest complexes. Programme based mathematical treatment of the conductivity data affords association constants for complexations from which the thermodynamic parameters were derived for better comprehension about the process. The interactions at molecular level have been explained and decisively discussed by means of FT-IR and 1H NMR spectroscopic studies that demonstrate H-bond type interactions as the primarily force of attraction for the investigated supramolecular complexations.

  11. Advances in anion supramolecular chemistry: from recognition to chemical applications.

    Science.gov (United States)

    Evans, Nicholas H; Beer, Paul D

    2014-10-27

    Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under-exploited anion-π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion-templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The use of supramolecular chemistry in dye delivery systems

    CERN Document Server

    Merckel, D A S

    2002-01-01

    This thesis reports an investigation into supramolecular recognition of the sulfate/ sulfonate oxoanionic group, a moiety present in the majority of reactive dyes. In the first section the problems associated with the use of reactive dyes in dyeing cotton fabrics together with a literature review of supramolecular approaches to anion recognition are discussed. Drawing on the current literature concerning anion recognition (in particular the recognition of phosphates), the main body of the thesis concerns the design and synthesis of several series ofC-shaped (tweezer) and tripodal potential sulfate/ sulfonate receptors. These receptors incorporate the H-bond donor groups guanidine and thiourea and to a lesser extent urea and amide functionalities. In addition the behaviour of potential tweezer-like receptor molecules based on s-triazine (derived from cyanuric chloride) has also been investigated. The sulfate/ sulfonate and related phosphonate association properties of these potential receptors have been studie...

  13. Hydrochromic conjugated polymers for human sweat pore mapping.

    Science.gov (United States)

    Lee, Joosub; Pyo, Minkyeong; Lee, Sang-hwa; Kim, Jaeyong; Ra, Moonsoo; Kim, Whoi-Yul; Park, Bum Jun; Lee, Chan Woo; Kim, Jong-Man

    2014-04-29

    Hydrochromic materials have been actively investigated in the context of humidity sensing and measuring water contents in organic solvents. Here we report a sensor system that undergoes a brilliant blue-to-red colour transition as well as 'Turn-On' fluorescence upon exposure to water. Introduction of a hygroscopic element into a supramolecularly assembled polydiacetylene results in a hydrochromic conjugated polymer that is rapidly responsive (polymer. As a result, the sensor can be used to construct a precise map of active sweat pores on fingertips. The sensor technology, developed in this study, has the potential of serving as new method for fingerprint analysis and for the clinical diagnosis of malfunctioning sweat pores.

  14. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  15. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  16. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an

    2015-09-09

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  17. Synthesis, structure, and properties of supramolecular charge-transfer complexes between bis(18-crown-6)stilbene and ammonioalkyl derivatives of 4,4'-bipyridine and 2,7-diazapyrene.

    Science.gov (United States)

    Vedernikov, Artem I; Ushakov, Evgeny N; Efremova, Asya A; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Lobova, Natalia A; Churakov, Andrei V; Strelenko, Yuri A; Alfimov, Michael V; Howard, Judith A K; Gromov, Sergey P

    2011-08-19

    4,4'-Bipyridine and 2,7-diazapyrene derivatives (A) having two ammonioalkyl N-substituents were synthesized. The complex formation of these compounds with bis(18-crown-6)stilbene (D) was studied by spectrophotometry, cyclic voltammetry, (1)H NMR spectroscopy, and X-ray diffraction analysis. In MeCN, π-donor D and π-acceptors A form supramolecular 1:1 (D·A) and 2:1 (D·A·D) charge-transfer complexes. The D·A complexes have a pseudocyclic structure as a result of ditopic binding of the ammonium groups to the crown-ether fragments. The better the geometric matching between the components, the higher the stability of the D·A complexes (log K up to 9.39). A key driving force of the D·A·D complex formation is the excessive steric strain in the precursor D·A complexes. The pseudocyclic D·A complexes involving the ammoniopropyl derivative of 4,4'-bipyridine were obtained as single crystals. Crystallization of the related ammonioethyl derivative was accompanied by transition of the D·A complexes to a structure of the (D·A)(m) coordination polymer type.

  18. Glucosamine-Based Supramolecular Nanotubes for Human Mesenchymal Cell Therapy.

    Science.gov (United States)

    Talloj, Satish Kumar; Cheng, Bill; Weng, Jen-Po; Lin, Hsin-Chieh

    2018-04-23

    Herein, we demonstrate an example of glucosamine-based supramolecular hydrogels that can be used for human mesenchymal cell therapy. We designed and synthesized a series of amino acid derivatives based on a strategy of capping d-glucosamine moiety at the C-terminus and fluorinated benzyl group at the N-terminus. From a systematic study on chemical structures, we discovered that the glucosamine-based supramolecular hydrogel [pentafluorobenzyl (PFB)-F-Glu] self-assembled with one-dimensional nanotubular structures at physiological pH. The self-assembly of a newly discovered PFB-F-Glu motif is attributed to the synergistic effect of π-π stacking and extensive intermolecular hydrogen bonding network in aqueous medium. Notably, PFB-F-Glu nanotubes are proven to be nontoxic to human mesenchymal stem cells (hMSCs) and have been shown to enhance hMSC proliferation while maintaining their pluripotency. Retaining of pluripotency capabilities provides potentially unlimited source of undifferentiated cells for the treatment of future cell therapies. Furthermore, hMSCs cultured on PFB-F-Glu are able to secrete paracrine factors that downregulate profibrotic gene expression in lipopolysaccharide-treated human skin fibroblasts, which demonstrates that PFB-F-Glu nanotubes have the potential to be used for wound healing applications. Overall, this article addresses the importance of chemical design to generate supramolecular biomaterials for stem cell therapy.

  19. Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry

    Directory of Open Access Journals (Sweden)

    Xin-Yue Lou

    2017-09-01

    Full Text Available The fabrication of smart materials is gradually becoming a research focus in nanotechnology and materials science. An important criterion of smart materials is the capacity of stimuli-responsiveness, while another lies in selective recognition. Accordingly, supramolecular host-guest chemistry has proven a promising support for building intelligent, responsive systems; hence, synthetic macrocyclic hosts, such as calixarenes, cucurbiturils, cyclodextrins, and pillararenes, have been used as ideal building blocks. Meanwhile, manipulating and harnessing light artificially is always an intensive attempt for scientists in order to meet the urgent demands of technological developments. Fluorescence resonance energy transfer (FRET, known as a well-studied luminescent activity and also a powerful tool in spectroscopic area, has been investigated from various facets, of which the application range has been broadly expanded. In this review, the innovative collaboration between FRET and supramolecular macrocyclic chemistry will be presented and depicted with typical examples. Facilitated by the dynamic features of supramolecular macrocyclic motifs, a large variety of FRET systems have been designed and organized, resulting in promising optical materials with potential for applications in protein assembly, enzyme assays, diagnosis, drug delivery monitoring, sensing, photosynthesis mimicking and chemical encryption.

  20. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  1. Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity

    Science.gov (United States)

    2018-01-01

    Controlled assembly of two-dimensional (2D) supramolecular organic frameworks (SOFs) has been demonstrated through a binary strategy in which 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)naphthalene (2), generated in situ by oxidative dehydrogenation of 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)dihydropyridyl)naphthalene (1), is coupled in a 1:1 ratio with terphenyl-3,3′,4,4′-tetracarboxylic acid (3; to form SOF-8), 5,5′-(anthracene-9,10-diyl)diisophthalic acid (4; to form SOF-9), or 5,5′-bis-(azanediyl)-oxalyl-diisophthalic acid (5; to form SOF-10). Complementary O–H···N hydrogen bonds assemble 2D 63-hcb (honeycomb) subunits that pack as layers in SOF-8 to give a three-dimensional (3D) supramolecular network with parallel channels hosting guest DMF (DMF = N,N′-dimethylformamide) molecules. SOF-9 and SOF-10 feature supramolecular networks of 2D → 3D inclined polycatenation of similar hcb layers as those in SOF-8. Although SOF-8 suffers framework collapse upon guest removal, the polycatenated frameworks of SOF-9 and SOF-10 exhibit excellent chemical and thermal stability, solvent/moisture durability, and permanent porosity. Moreover, their corresponding desolvated (activated) samples SOF-9a and SOF-10a display enhanced adsorption and selectivity for CO2 over N2 and CH4. The structures of these activated compounds are well described by quantum chemistry calculations, which have allowed us to determine their mechanical properties, as well as identify their soft deformation modes and a large number of low-energy vibration modes. These results not only demonstrate an effective synthetic platform for porous organic molecular materials stabilized solely by primary hydrogen bonds but also suggest a viable means to build robust SOF materials with enhanced gas uptake capacity and selectivity. PMID:29651229

  2. Smart polymers for implantable electronics

    Science.gov (United States)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff

  3. Self-assembling graphene-anthraquinone-2-sulphonate supramolecular nanostructures with enhanced energy density for supercapacitors

    Science.gov (United States)

    Gao, Lifang; Gan, Shiyu; Li, Hongyan; Han, Dongxue; Li, Fenghua; Bao, Yu; Niu, Li

    2017-07-01

    Boosting the energy density of capacitive energy storage devices remains a crucial issue for facilitating applications. Herein, we report a graphene-anthraquinone supramolecular nanostructure by self-assembly for supercapacitors. The sulfonated anthraquinone exhibits high water solubility, a π-conjugated structure and redox active features, which not only serve as a spacer to interact with and stabilize graphene but also introduce extra pseudocapacitance contributions. The formed nest-like three-dimensional (3D) nanostructure with further hydrothermal treatment enhances the accessibility of ion transfer and exposes the redox-active quinone groups in the electrolytes. A fabricated all-solid-state flexible symmetric device delivers a high specific capacitance of 398.5 F g-1 at 1 A g-1 (1.5 times higher than graphene), superior energy density (52.24 Wh kg-1 at about 1 kW kg-1) and good stability (82% capacitance retention after 10 000 cycles).

  4. Drug delivery's quest for polymers: Where are the frontiers?

    Science.gov (United States)

    Merkle, Hans P

    2015-11-01

    Since the legendary 1964 article of Folkman and Long entitled "The use of silicone rubber as a carrier for prolonged drug therapy" the role of polymers in controlled drug delivery has come a long way. Today it is evident that polymers play a crucial if not the prime role in this field. The latest boost owes to the interest in drug delivery for the purpose of tissue engineering in regenerative medicine. The focus of this commentary is on a selection of general and personal observations that are characteristic for the current state of polymer therapeutics and carriers. It briefly highlights selected examples for the long march of synthetic polymer-drug conjugates from bench to bedside, comments on the ambivalence of selected polymers as inert excipients versus biological response modifiers, and on the yet unsolved dilemma of cationic polymers for the delivery of nucleic acid therapeutics. Further subjects are the complex design of multifunctional polymeric carriers including recent concepts towards functional supramolecular polymers, as well as observations on stimuli-sensitive polymers and the currently ongoing trend towards natural and naturally-derived biopolymers. The final topic is the discovery and early development of a novel type of biodegradable polyesters for parenteral use. Altogether, it is not the basic and applied research in polymer therapeutics and carriers, but the translational process that is the key hurdle to proceed towards an authoritative approval of new polymer therapeutics and carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications

    Directory of Open Access Journals (Sweden)

    Robert M. Strongin

    2007-08-01

    Full Text Available Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any measuring devices, transducers or power supplies. Until recently the most often used of these materials responded to changes in pH. Chemists are now increasingly using supramolecular recognition sites in materials, which are covalently bound to the polymer backbone. This allows one to use a nearly unlimited variety of guest (or effector compounds in the environment for a selective response by automatically triggered size changes. This is illustrated with non-covalent interactions of effectors comprising of metal ions, isomeric organic compounds, including enantiomers, nucleotides, aminoacids, and peptides. Two different effector molecules can induce motions as functions of their concentration, thus representing a logical AND gate. This concept is particularly fruitful with effector compounds such as peptides, which only trigger size changes if, e.g. copper ions are present in the surroundings. Another principle relies on the fast formation of covalent bonds between an effector and the chemomechanical polymer. The most promising application is the selective interaction of covalently fixed boronic acid residues with glucose, which renders itself not only for sensing, but eventually also for delivery of drugs such as insulin. The speed of the responses can significantly increase by increasing the surface to volume ratio of the polymer particles. Of particular interest is the sensitivity increase which can be reached by downsizing the particle volume.

  6. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2017-03-15

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.

  7. Composites incorporated a conductive polymer nanofiber network

    Science.gov (United States)

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  8. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    International Nuclear Information System (INIS)

    Yin Xia; Fan Jun; Wang Zhihong; Zheng Shengrun; Tan Jingbo; Zhang Weiguang

    2011-01-01

    Four new luminescent complexes, namely, [Eu(aba) 2 (NO 3 )(C 2 H 5 OH) 2 ] (1), [Eu(aba) 3 (H 2 O) 2 ].0.5 (4, 4'-bpy).2H 2 O (2), [Eu 2 (aba) 4 (2, 2'-bpy) 2 (NO 3 ) 2 ].4H 2 O (3) and [Tb 2 (aba) 4 (phen) 2 (NO 3 ) 2 ].2C 2 H 5 OH (4) were obtained by treating Ln(NO 3 ) 3 .6H 2 O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed. - Graphical abstract: Structure variation of four complexes is attributed to the change of coligands and various coordination modes of aba molecules. Moreover, they show characteristic emissions in the visible region. Highlights: → Auxiliary ligands have played the crucial roles on the structures of the resulting complexes. → Isolated structure units are further assembled via H-bonds to form supramolecular networks. → These solid-state complexes exhibit strong, characteristic emissions in the visible region.

  9. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications.

    Science.gov (United States)

    Semeraro, Paola; Chimienti, Guglielmina; Altamura, Emiliano; Fini, Paola; Rizzi, Vito; Cosma, Pinalysa

    2018-04-01

    Chlorophyll a (Chl a), an amphipathic porphyrin, was employed as natural photosensitizer for photodynamic therapy applications. Due to its lacking solubility in water and high tendency to aggregate, Chl a was included into different modified cyclodextrins (CDs) to form stable water-soluble supramolecular complexes. To achieve this aim, 2-Hydroxypropyl-β-cyclodextrin (2-HP-β-CD), 2-Hydroxypropyl-γ-cyclodextrin (2-HP-γ-CD), Heptakis(2,6-di-o-methyl)-β-cyclodextrin (DIMEB) and Heptakis(2,3,6-tri-o-methyl)-β-cyclodextrin (TRIMEB) were used. The chemical physical properties of Chl a/CD complexes in cellular medium were studied by means of UV-Vis absorption spectroscopy. Results demonstrated the good aptitude of 2-HP-γ-CD, and more particularly of 2-HP-β-CD, to solubilize the Chl a in cell culture medium in monomeric and photoactive form. Then, Chl a/2-HP-β-CD and Chl a/2-HP-γ-CD complexes were evaluated in vitro on human colorectal adenocarcinoma HT-29 cell line, and cytotoxicity and intracellular localization were respectively assessed. Further tests, such as phototoxicity, ROS generation, intracellular localization and mechanism of cell death were then focused exclusively on Chl a/2-HP-β-CD system. This complex exhibited no dark toxicity and a high phototoxicity toward HT-29 cells inducing cell death via necrotic mechanism. Therefore, it is possible to affirm that Chl a/2-HP-β-CD supramolecular complex could be a promising and potential formulation for applications in photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    Science.gov (United States)

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  11. Building inorganic supramolecular architectures using principles adopted from the organic solid state

    Directory of Open Access Journals (Sweden)

    Marijana Đaković

    2018-01-01

    Full Text Available In order to develop transferable and practical avenues for the assembly of coordination complexes into architectures with specific dimensionality, a strategy utilizing ligands capable of simultaneous metal coordination and self-complementary hydrogen bonding is presented. The three ligands used, 2(1H-pyrazinone, 4(3H-pyrimidinone and 4(3H-quinazolinone, consistently deliver the required synthetic vectors in a series of CdII coordination polymers, allowing for reproducible supramolecular synthesis that is insensitive to the different steric and geometric demands from potentially disruptive counterions. In all nine crystallographically characterized compounds presented here, directional intermolecular N—H...O hydrogen bonds between ligands on adjacent complex building blocks drive the assembly and orientation of discrete building blocks into largely predictable topologies. Furthermore, whether the solids are prepared from solution or through liquid-assisted grinding, the structural outcome is the same, thus emphasizing the robustness of the synthetic protocol. The details of the molecular recognition events that take place in this series of compounds have been clearly delineated and rationalized in the context of calculated molecular electrostatic potential surfaces.

  12. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi

    2016-11-01

    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  13. Supramolecular assemblies of nucleoside functionalized carbon nanotubes: synthesis, film preparation, and properties.

    Science.gov (United States)

    Micoli, Alessandra; Turco, Antonio; Araujo-Palomo, Elsie; Encinas, Armando; Quintana, Mildred; Prato, Maurizio

    2014-04-25

    Nucleoside-functionalized multi-walled carbon nanotubes (N-MWCNTs) were synthesized and characterized. A self-organization process using hydrogen bonding interactions was then used for the fabrication of self-assembled N-MWCNTs films free of stabilizing agents, polymers, or surfactants. Membranes were produced by using a simple water-dispersion-based vacuum-filtration method. Hydrogen-bond recognition was confirmed by analysis with IR spectroscopy and TEM images. Restoration of the electronic conduction properties in the N-MWCNTs membranes was performed by removing the organic portion by thermal treatment under an argon atmosphere to give d-N-MWCNTs. Electrical conductivity and thermal gravimetric analysis (TGA) measurements confirmed the efficiency of the annealing process. Finally, oxidative biodegradation of the films N-MWCNTs and d-N-MWCNTs was performed by using horseradish peroxidase (HRP) and low concentrations of H2 O2 . Our results confirm that functional groups play an important role in the biodegradation of CNT by HRP: N-MWCNTs films were completely biodegraded, whereas for d-N-MWCNTs films no degradation was observed, showing that the pristine CNT undergoes minimal enzyme-catalyzed oxidation This novel methodology offers a straightforward supramolecular strategy for the construction of conductive and biodegradable carbon nanotube films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Coordination-Enhanced Luminescence on Tetra-Phenylethylene-Based Supramolecular Assemblies

    Directory of Open Access Journals (Sweden)

    Qian-Qian Yan

    2018-02-01

    Full Text Available Materials with aggregation-induced emission (AIE properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE-based tetra-dentate (La and bidentate (Lb ligands and the cis-Pd(en(NO32 (en = ethylenediamine unit. While the free ligands are non-emissive in dilute solution and show typical AIE properties in both mixed solvent system and the solid state, the self-assembled complexes maintain their fluorescent nature in the solution state. In particular, the Pd4(La2 complex shows remarkable 6-fold fluorescent enhancement over La in dilute solution. We anticipate that these kinds of coordination-enhanced emissive supramolecules will find applications in biomedical sensing or labeling.

  15. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  16. Supramolecular rotators of (aniliniums)([18]crown-6) in electrically conducting [Ni(dmit)2] crystals.

    Science.gov (United States)

    Hoshino, Norihisa; Yoshii, Yuuya; Aonuma, Masaki; Kubo, Kazuya; Nakamura, Takayoshi; Akutagawa, Tomoyuki

    2012-12-03

    Supramolecular assemblies of anilinium (Ani(+)) and fluoroanilinium derivatives (FAni(+)) with [18]crown-6 were introduced into electrically conducting [Ni(dmit)(2)] crystals (dmit(2-) is 2-thioxo-1,3-dithiole-4,5-dithiolate). The crystal structures, electrical conductivities, and magnetic susceptibilities of four new crystals of (Ani(+))([18]crown-6)[Ni(dmit)(2)](3) (1), (o-FAni(+))([18]crown-6)[Ni(dmit)(2)](3) (2), (m-FAni(+))([18]crown-6)[Ni(dmit)(2)](3) (3), and (p-FAni(+))([18]crown-6)[Ni(dmit)(2)](3) (4) were examined from the viewpoint of dynamic supramolecular rotator structures within the crystals. The crystal structures, electrical conduction, and magnetic properties were classified into group-I (crystals 1 and 4) and group-II (crystals 2 and 3). The hydrogen-bonding interaction between -NH(3)(+) and the oxygen atoms of [18]crown-6 formed the stand-up configuration of rotator-stator structures of (Ani(+))([18]crown-6) and (FAni(+))([18]crown-6) supramolecules. The potential energy barriers for the 2-fold flip-flop motion of phenyl- and p-fluorophenyl-rings in crystals 1 and 4 had a relatively small magnitude of ∼150 kJ mol(-1), suggesting that rotations of Ani(+) and p-FAni(+) cations around the C-NH(3)(+) axis occurred in the crystals. In contrast, a large magnitude of the potential energy barriers for the rotations of o-FAni(+) and m-FAni(+) cations in crystals 2 and 3 (>600 kJ mol(-1)) resulted in static supramolecular cationic structures. The cation:anion ratio of 1:3 in these crystals yielded a trimer π-stack of [Ni(dmit)(2)] with a semiconductor-like temperature dependence. The magnetic susceptibilities of the static crystals 2 and 3 were reproduced by the one-dimensional antiferromagnetic linear Heisenberg chain through the one-dimensional linear trimer arrangement. The magnetic susceptibilities of dynamic crystals 1 and 4 enhanced electron delocalization through the intratrimer and intertrimer interactions within the trimer stack, where the

  17. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    Science.gov (United States)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  18. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    Science.gov (United States)

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-06

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  19. Cucurbiturils as supramolecular inhibitors of DNA restriction by type II endonucleases.

    Science.gov (United States)

    Parente Carvalho, Cátia; Norouzy, Amir; Ribeiro, Vera; Nau, Werner M; Pischel, Uwe

    2015-03-14

    Cucurbiturils (CB6 and CB7) were shown to inhibit the enzymatically catalyzed restriction of plasmids and linear DNA. This effect can be inverted by supramolecular masking of the macrocycles through competitive complexation with polyamines. These experiments provide supramolecular control of biocatalytic processes.

  20. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  1. Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System.

    Science.gov (United States)

    Shang, Xiaobo; Song, Inho; Ohtsu, Hiroyoshi; Tong, Jiaqi; Zhang, Haoke; Oh, Joon Hak

    2017-07-14

    Chiral supramolecular structures are attracting great attention due to their specific properties and high potential in chiral sensing and separation. Herein, supramolecular assembling behaviors of chiral perylene diimides have been systematically investigated in a mixed solution of tetrahydrofuran and water. They exhibit remarkably different morphologies and chiral aggregation behaviors depending on the mixing ratio of the solvents, i.e., the fraction of water. The morphogenesis and optoelectronic properties of chiral supramolecular structures have been thoroughly studied using a range of experimental and theoretical methods to investigate the morphological effects of chiral supramolecular assemblies on the electrical performances and photogenerated charge-carrier behaviors. In addition, chiral perylene diimides have been discriminated by combining vibrational circular dichroism with theoretical calculations, for the first time. The chiral supramolecular nanostructures developed herein strongly absorb visible spectral region and exhibit high photoresponsivity and detectivity, opening up new opportunities for practical applications in optoelectronics.

  2. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case

    OpenAIRE

    Mroczy?ska, Karina; Kaczorowska, Ma?gorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; O?mia?owski, Borys

    2015-01-01

    Summary The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance...

  3. Direct modification of hydrogen/deuterium-terminated diamond particles with polymers to form reversed and strong cation exchange solid phase extraction sorbents.

    Science.gov (United States)

    Yang, Li; Jensen, David S; Vail, Michael A; Dadson, Andrew; Linford, Matthew R

    2010-12-03

    We describe direct polymer attachment to hydrogen and deuterium-terminated diamond (HTD and DTD) surfaces using a radical initiator (di-tert-amyl peroxide, DTAP), a reactive monomer (styrene) and a crosslinking agent (divinylbenzene, DVB) to create polystyrene encapsulated diamond. Chemisorbed polystyrene is sulfonated with sulfuric acid in acetic acid. Surface changes were followed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Finally, both polystyrene-modified DTD and sulfonated styrene-modified DTD were used in solid phase extraction (SPE). Percent recovery and column capacity were investigated for both phenyl (polystyrene) and sulfonic acid treated polystyrene SPE columns. These diamond-based SPE supports are stable under basic conditions, which is not the case for silica-based SPE supports. Copyright © 2010. Published by Elsevier B.V.

  4. Study of the influence of the molecular structure of vinyl compounds on their ability to form polymer films by electro-polymerization under cathodic polarisation

    International Nuclear Information System (INIS)

    Deniau, Guy

    1990-01-01

    This research thesis addresses the study of new vinyl compounds, and aims at improving knowledge on the interaction between metal and a vinyl molecule under an intense electric field (the field of the double electrochemical layer), and more particularly at studying the influence of the molecular structure of the vinyl compound as well as the occurring reactions. After a first part presenting physical-chemical principles and knowledge which govern the whole set of reactions which are occurring within an electrolysis reactor, and a brief historical overview, this research thesis proposes a presentation of molecules which have been chosen for this study (vinyl compounds) and a justification of this choice. The author also presents the experimental device and describes the process implementation. Then, he presents and analyses experimental results. It appears that only some studied molecules result in the formation of polymer film [fr

  5. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  6. Spectrofluorimetric study of the {beta}-cyclodextrin-dapsone-linear alcohol supramolecular system and determination of dapsone

    Energy Technology Data Exchange (ETDEWEB)

    Ma Li; Tang Bo; Chu Chun

    2002-10-03

    Dapsone (DDS) forms a 1:1 supramolecular complex with {beta}-cyclodextrin ({beta}-CD) both in the absence and presence of linear alcohols. The apparent association constants (K{sub app}) were measured using a steady-state fluorescence method. K{sub app} decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the {beta}-CD hydrophobic cavity as detailed analysis of K{sub app} as a function of the concentration of alcohol suggests that the interactions in the {beta}-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the {beta}-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the {beta}-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of {beta}-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50x10{sup 3} ng ml{sup -1}, with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml{sup -1}. There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method.

  7. Spectrofluorimetric study of the β-cyclodextrin-dapsone-linear alcohol supramolecular system and determination of dapsone

    International Nuclear Information System (INIS)

    Ma Li; Tang Bo; Chu Chun

    2002-01-01

    Dapsone (DDS) forms a 1:1 supramolecular complex with β-cyclodextrin (β-CD) both in the absence and presence of linear alcohols. The apparent association constants (K app ) were measured using a steady-state fluorescence method. K app decreases linearly with an increasing number of carbon atoms in the chain of the alcohol. We attribute this to a competition between dapsone and linear alcohol for the β-CD hydrophobic cavity as detailed analysis of K app as a function of the concentration of alcohol suggests that the interactions in the β-CD-dapsone-linear alcohol system do not result in the formation of ternary supramolecular complex. Quenching the fluorescence of dapsone with NaI shows that the β-CD cavity acts as a shield against contact between dapsone and this aqueous phase quencher, while addition of alcohols inhibits this protective effect. This again suggests that alcohols occupy the space within the β-CD cavity with the result that dapsone molecules are forced to reside in the aqueous environment. Based on the significant enhancement of the fluorescence intensity of dapsone produced through complex formation, a spectrofluorimetric method for the determination of dapsone in bulk aqueous solution in the presence of β-CD is developed. The linear relationship between the fluorescence intensity and dapsone concentration was obtained in the range of 3.39 to 1.50x10 3 ng ml -1 , with a correlation coefficient (r) of 0.9998. The detection limit was 1.02 ng ml -1 . There was no interference from the excipients normally used in tablet formulations. The application of the present method to the determination of dapsone in tablets and human plasma gave satisfactory results and was compared with the pharmacopoeia method

  8. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  9. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  10. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  11. Preface: special topic on supramolecular self-assembly at surfaces.

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  12. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells.

    Science.gov (United States)

    Haruk, Alexander M; Mativetsky, Jeffrey M

    2015-06-11

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  13. Lanthanide-Organic Gels as a Multifunctional Supramolecular Smart Platform.

    Science.gov (United States)

    Silva, José Yago Rodrigues; da Luz, Leonis Lourenço; Mauricio, Filipe Gabriel Martinez; Vasconcelos Alves, Iane Bezerra; Ferro, Jamylle Nunes de Souza; Barreto, Emiliano; Weber, Ingrid Távora; de Azevedo, Walter Mendes; Júnior, Severino Alves

    2017-05-17

    A multifunctional smart supramolecular platform based on a lanthanide-organic hydrogel is presented. This platform, which provides unique biocompatibility and tunable optical properties, is synthesized by a simple, fast, and reproducible eco-friendly microwave-assisted route. Photoluminescent properties enable the production of coated light-emitting diodes (LED), unique luminescent barcodes dependent on the excitation wavelength and thin-films for use in tamper seals. Moreover, piroxicam entrapped in hydrogel acts as a transdermal drug release device efficient in inhibiting edemas as compared to a commercial reference.

  14. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.

    Science.gov (United States)

    Ciesielski, Artur; Palma, Carlos-Andres; Bonini, Massimo; Samorì, Paolo

    2010-08-24

    Materials with a pre-programmed order at the supramolecular level can be engineered with a sub-nanometer precision making use of reversible non- covalent interactions. The intrinsic ability of supramolecular materials to recognize and exchange their constituents makes them constitutionally dynamic materials. The tailoring of the materials properties relies on the full control over the self-assembly behavior of molecular modules exposing recognition sites and incorporating functional units. In this review we focus on three classes of weak-interactions to form complex 2D architectures starting from properly designed molecular modules: van der Waals, metallo-ligand and hydrogen bonding. Scanning tunneling microscopy studies will provide evidence with a sub-nanometer resolution, on the formation of responsive multicomponent architectures with controlled geometries and properties. Such endeavor enriches the scientist capability of generating more and more complex smart materials featuring controlled functions and unprecedented properties.

  15. Solvent-induced chirality inversion involving supramolecular helix transformation and color-tunable fluorescence of a C(6)-symmetric hexakis(phenylethynyl)benzene derivative.

    Science.gov (United States)

    Sakajiri, Koichi; Sugisaki, Takeshi; Moriya, Keiichi; Kutsumizu, Shoichi

    2009-09-21

    A C(6)-symmetric disk-like molecule, a hexakis(phenylethynyl)benzene derivative bearing chiral alanine parts, L-1, exhibited a solvent-induced supramolecular helix-sense inversion involving conformational changes followed by destruction of the supramolecular helical column. This phenomenon has been found by investigating the supramolecular assembly state of L-1 in mixed solvents of various chloroform (CHCl(3))/n-hexane (Hx) ratios. L-1 forms a stable helical columnar assembly via multiple noncovalent bonding interactions in nonpolar Hx, while the molecules in relatively polar CHCl(3) are in a molecularly dispersed state. Although one would expect disruption of the helical column with the addition of nonhelicogenic CHCl(3), an opposite-handed helical columnar structure was formed at 8-15 vol% of CHCl(3), and subsequently the inverted helical column was disassembled by a further increase of CHCl(3). In addition, this morphological transformation was accompanied by a significant change in fluorescent color, which varies over a wide visible range from orange in an original helical columnar state to light blue in a molecularly dispersed state through yellow in an inverted helical columnar state. These unprecedented behaviors are shown by the spectroscopic results, and the molecular conformations of L-1 and the driving force for the helical sense inversion are discussed.

  16. Synthesis, structural characterization and photoluminescent properties of 2D multilayer Cu+ coordination polymers via Csbnd H⋯π and π⋯π interactions

    Science.gov (United States)

    Huang, Ting-Hong; Zhu, Sheng-Lan; Xiong, Xian-Lian; Li, Jia-Dong; Yang, Hu; Huang, Xin; Huang, Xue-Ren; Zhang, Kunming

    2017-09-01

    Two Cu(I) coordination polymers, {[Cu(pmbb)0.5(4,4'-bipy)0.5(PPh3)](BF4) (H2O)2}n (1) and {[Cu(pmbb)0.5(bpe)0.5(PPh3)](BF4)(DMF)}n (2) (pmbb = N, N'-bis(pyridin-2-ylmethylene)biphenyl -4,4'-diamine, 4,4'-bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene), PPh3 = triphenyl phosphine), have been synthesized and characterized by IR, 1H NMR, 13C NMR, 31P NMR, 19F NMR, 11B-NMR, TG and X-ray crystal structure analysis. The structural analysis shows that complexes 1 and 2 contain diverse and interesting 2D supramolecular networks based on inter-chain interactions. Complex 1 displays a 1D zig-zag chain and a 1D+1D→2D supramolecular network formed by intermolecular Csbnd H···π interaction. For 2, each 1D zig-zag chain interacts with neighboring ones via intermolecular Csbnd H···π and π···π stacking interactions, leading to the formation of a 2D-stacking network. Furthermore, solid-state UV-Vis absorption spectra of complexes 1 and 2 indicate the existence of MLCT absorption. Complexes 1 and 2 show efficient luminescent emission peaks at 435 and 452 nm assigned to MLCT excited states, and the emission decay lifetimes are 20.82 μs for 1 and 20.72 μs for 2, displaying strong room-temperature solid-state photoluminescence. Moreover, thermogravimetric analysis shows that the heat stability of polymers is 1>2.

  17. Supramolecular "Big Bang" in a Single-Ionic Surfactant/Water System Driven by Electrostatic Repulsion: From Vesicles to Micelles.

    Science.gov (United States)

    Leclercq, Loïc; Bauduin, Pierre; Nardello-Rataj, Véronique

    2017-04-11

    In aqueous solution, dimethyldi-n-octylammonium chloride, [DiC 8 ][Cl], spontaneously forms dimers at low concentrations (1-10 mM) to decrease the strength of the hydrophobic-water contact. Dimers represent ideal building blocks for the abrupt edification of vesicles at 10 mM. These vesicles are fully characterized by dynamic and static light scattering, self-diffusion nuclear magnetic resonance, and freeze-fracture transmission electron microscopy. An increase in concentration leads to electrostatic repulsion between vesicles that explode into small micelles at 30 mM. These transitions are detected by means of surface tension, conductivity, and solubility of hydrophobic solutes as well as by isothermal titration microcalorimetry. These unusual supramolecular transitions emerge from the surfactant chemical structure that combines two contradictory features: (i) the double-chain structure tending to form low planar aggregates with low water solubility and (ii) the relatively short chains giving high hydrophilicity. The well-balanced hydrophilic-hydrophobic character of [DiC 8 ][Cl] is then believed to be at the origin of the unusual supramolecular sequence offering new opportunities for drug delivery systems.

  18. Metallofoldamers supramolecular architectures from helicates to biomimetics

    CERN Document Server

    Maayan, Galia

    2013-01-01

    Metallofoldamers are oligomers that fold into three-dimensional structures in a controlled manner upon coordination with metal ions. Molecules in this class have shown an impressive ability to form single-handed helical structures and other three-dimensional architectures. Several metallofoldamers have been applied as sensors due to their selective folding when binding to a specific metal ion, while others show promise for applications as responsive materials on the basis of their ability to fold and unfold upon changes in the oxidation state of the coordinated metal ion, and as novel catalysts. Metallofoldamers: From Helicates to Biomimetic Architectures describes the variety of interactions between oligomers and metal species, with a focus on non-natural synthetic molecules. Topics covered include: the major classes of foldamers and their folding driving force metalloproteins and metalloenzymes helicates: self-assembly, structure and applications abiotic metallo-DNA metallo-PNA and iDNA metallopeptides inte...

  19. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case.

    Science.gov (United States)

    Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; Ośmiałowski, Borys

    2015-01-01

    The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes.

  20. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl-dextran-MMA graft copolymer and paclitaxel used as an artificial enzyme.

    Science.gov (United States)

    Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Onishi, Masayasu; Kobayashi, Takashi; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji

    2014-01-01

    The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl-dextran-methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50-300 nm in size. This complex is considered to be useful as a drug delivery system (DDS) for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis-Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm), and DDMC/PTX5 (particle size 290 nm) groups were 120 h (treatment (T)/control (C), 1.0), 176 h (T/C, 1.46), 328 h (T/C, 2.73), and 280 h (T/C, 2.33), respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036). Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.

  1. A simple but efficient strategy to enhance hydrostability of intensely fluorescent Mg-based coordination polymer (CP) via forming a composite of CP with hydrophobic PVDF.

    Science.gov (United States)

    Zhai, Lu; Zhang, Wen-Wei; Zuo, Jing-Lin; Ren, Xiao-Ming

    2016-02-28

    A coordination polymer (CP) of Mg(2+) with 1,3,5-benzenetricarboxylate (BTC(3-)) was synthesized using a solvothermal method. The Mg-CP, with a formula of Mg3(BTC)(HCOO)3(DMF)3, crystallizes in the trigonal space group P3[combining macron], with cell parameters of a = b = 13.972(5) Å, c = 8.090(5) Å and V = 1367.6(11) Å(3), and shows a lamella structure built from planar rosette-type hexanuclear architectures. The Mg-CP emits intense blue fluorescence arising from π* → π transition of intra-ligand of BTC(3-) with 21.69% quantum yield, yet it exhibits poor stability to water. The composites of Mg-CP with hydrophobic polyvinylidene fluoride (PVDF) were sequentially prepared by mechanically mixed, tableted and annealed processes, which showed good compatibility between Mg-CP and PVDF, high hydrostability, and intense blue emission. This study suggests a simple but efficient method to solve the drawbacks of some functional CPs unstable to water and to promote them as practical applications in the field of functional materials.

  2. A nanocomposite material formed by benzofulvene polymer nanoparticles loaded with a potent 5-HT{sub 3} receptor antagonist (CR3124)

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea, E-mail: cappelli@unisi.it; Galeazzi, Simone; Zanardi, Iacopo; Travagli, Valter; Anzini, Maurizio [Universita Degli Studi di Siena, Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development (Italy); Mendichi, Raniero [Istituto per lo Studio delle Macromolecole (CNR) (Italy); Petralito, Stefania; Memoli, Adriana [Sapienza - Universita di Roma, Dipartimento di Chimica e Tecnologie del Farmaco (Italy); Paccagnini, Eugenio [Universita di Siena, Dipartimento di Biologia Evolutiva (Italy); Peris, Walter; Giordani, Antonio; Makovec, Francesco [Rottapharm SpA (Italy); Fresta, Massimo [Universita ' Magna Graecia' di Catanzaro, Dipartimento di Scienze Farmacobiologiche (Italy); Vomero, Salvatore [Universita Degli Studi di Siena, Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development (Italy)

    2010-03-15

    Poly-BF3a, a new hydrophobic polymer obtained by spontaneous polymerization of 1-methylene-3-phenyl-1H-indene, was found to give nanoparticles characterized by favorable shape and dimensions. Poly-BF3a nanoparticles were loaded with CR3124, a potent 5HT{sub 3} antagonist, as a drug model by desolvation methods either in the absence or in the presence of polyethylene glycol (PEG1000) as a wetting agent. The SEM studies showed that the introduction of CR3124 into the preparation led to a variable degree of aggregation-cementation, which afforded a sort of nanocomposite material. In the absence of PEG1000, the drug molecule was found to stay in the amorphous state (DSC studies) when its percentage is not higher than 10% by weight. In vitro release experiments showed that the formation and stability of the dispersion as well as the drug release were remarkably affected by the presence of PEG1000, demonstrating its beneficial effect to the nanoparticle morphology and disaggregation.

  3. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  4. 2,2 ':6 ',2 ''-terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Schöller, K.; Toncelli, C.; Experton, J.; Widmer, S.; Rentsch, D.; Vetushka, Aliaksi; Martin, C.J.; Heuberger, M.; Housecroft, C.E.; Constable, E.C.; Boesel, L.F.; Scherer, L.J.

    2016-01-01

    Roč. 6, č. 100 (2016), s. 97921-97930 ISSN 2046-2069 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : metallo-supramolecular polymers * drug-delivery * biomedical applications Subject RIV: JJ - Other Materials Impact factor: 3.108, year: 2016

  5. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination.

    Science.gov (United States)

    Ikeda, Masato; Tanaka, Yoshie; Hasegawa, Takashi; Furusho, Yoshio; Yashima, Eiji

    2006-05-31

    We describe the construction of the first double-stranded metallosupramolecular helical polymers. We designed and synthesized a supramolecular duplex comprised of complementary m-terphenyl-based strands bearing a chiral amidine or achiral carboxylic acid together with two pyridine groups at the four ends. Supramolecular polymerization of the duplex with cis-PtPh2(DMSO)2 in 1,1,2,2-tetrachloroethane produced the double-stranded metallosupramolecular polymer with a controlled helicity of which the two complementary metallostrands are intertwined through the amidinium-carboxylate salt bridges. The structures and hydrodynamic dimensions of the metallosupramolecular polymers were characterized by 1H NMR, diffusion-ordered NMR, dynamic light scattering, absorption, and CD measurements. The polymeric structure was also visualized by atomic force microscopy.

  6. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  7. The crystal structures of three pyrazine-2,5-dicarb-oxamides: three-dimensional supra-molecular structures.

    Science.gov (United States)

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-05-01

    The complete mol-ecules of the title compounds, N 2 , N 5 -bis-(pyridin-2-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (I), 3,6-dimethyl- N 2 , N 5 -bis-(pyridin-2-yl-meth-yl)pyrazine-2,5-dicarboxamide, C 20 H 20 N 6 O 2 (II), and N 2 , N 5 -bis-(pyridin-4-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol-ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol-ecules are linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (II), mol-ecules are also linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (III), mol-ecules are again linked by N-H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π-π inter-actions [inter-centroid distance = 3.739 (1) Å]. The sheets are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. Compound (I) crystallizes in the monoclinic space group P 2 1 / c . Another monoclinic polymorph, space group C 2/ c , has been reported on by Cockriel et al. [ Inorg. Chem. Commun. (2008), 11 , 1-4]. The mol-ecular structures of the two polymorphs are compared.

  8. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry.

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2014-10-03

    Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are essential for the next generation of electronic devices, such as field-effect transistors and photovoltaic applications; however, contamination by metallic SWNTs reduces the efficiency of their associated devices. Here we report a simple and efficient method for the separation of semiconducting- and metallic SWNTs based on supramolecular complex chemistry. We here describe the synthesis of metal-coordination polymers (CP-Ms) composed of a fluorene-bridged bis-phenanthroline ligand and metal ions. On the basis of a difference in the 'solubility product' of CP-M-solubilized semiconducting SWNTs and metallic SWNTs, we readily separated semiconducting SWNTs. Furthermore, the CP-M polymers on the SWNTs were simply removed by adding a protic acid and inducing depolymerization to the monomer components. We also describe molecular mechanics calculations to reveal the difference of binding and wrapping mode between CP-M/semiconducting SWNTs and CP-M/metallic SWNTs. This study opens a new stage for the use of such highly pure semiconducting SWNTs in many possible applications.

  9. Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics.

    Science.gov (United States)

    Hoy, Robert S; Fredrickson, Glenn H

    2009-12-14

    Hybrid molecular dynamics/Monte Carlo simulations are used to study melts of unentangled, thermoreversibly associating supramolecular polymers. In this first of a series of papers, we describe and validate a model that is effective in separating the effects of thermodynamics and chemical kinetics on the dynamics and mechanics of these systems, and is extensible to arbitrarily nonequilibrium situations and nonlinear mechanical properties. We examine the model's quiescent (and heterogeneous) dynamics, nonequilibrium chemical dynamics, and mechanical properties. Many of our results may be understood in terms of the crossover from diffusion-limited to kinetically limited sticky bond recombination, which both influences and is influenced by polymer physics, i.e., the connectivity of the parent chains.

  10. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  11. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  12. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  13. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian, E-mail: qiantang@swu.edu.cn; Liu, Chang-Hua; Ma, Xue-Bing

    2014-06-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability.

  14. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  15. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  16. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  17. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  18. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  19. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  20. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  1. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.

    Science.gov (United States)

    Nummelin, Sami; Liljeström, Ville; Saarikoski, Eve; Ropponen, Jarmo; Nykänen, Antti; Linko, Veikko; Seppälä, Jukka; Hirvonen, Jouni; Ikkala, Olli; Bimbo, Luis M; Kostiainen, Mauri A

    2015-10-05

    Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self-assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G'≫G'') with outstanding mechanical properties and storage modulus of G'>1000 Pa. The G' value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol-solvated dendrimers into an aqueous solution. Cryogenic TEM, small-angle X-ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small-molecule drugs, to be used for sustained release in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: yjyang@mail.hust.edu.c [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  3. Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy.

    Science.gov (United States)

    Tong, Hongxin; Du, Jianwei; Li, Huan; Jin, Qiao; Wang, Youxiang; Ji, Jian

    2016-09-29

    A programmed supramolecular nanocarrier was developed for multistage targeted photodynamic therapy. This smart nanocarrier exhibited enhanced cellular uptake and controlled mitochondria targeting, as well as an excellent photodynamic therapeutic effect after light irradiation.

  4. Template-directed supramolecular self-assembly of coordination dumbbells at surfaces.

    Science.gov (United States)

    Lin, Nian; Langner, Alexander; Tait, Steven L; Rajadurai, Chandrasekar; Ruben, Mario; Kern, Klaus

    2007-12-14

    Scanning tunneling microscopy reveals, at single-molecular resolution, how external parameters--substrate morphology and guest addition--re-direct the assembly of dumbbell-shaped coordination supramolecules towards different surface-confined supramolecular organizations.

  5. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    thane, PVC, polyesters, polystyrene and polypropylene. Also, some biocompatible polymers like PLA, poly (E-caprolactone) to mention a few, have been synthesized by varying methods and with different clay loadings (%by weight). The hydrophobicity /hydrophilicity ofthe polymer affects its dispersion in the clay.

  6. Form-stable crystalline polymer pellets for thermal energy storage: high density polyethylene intermediate products. Final report, October 1, 1977--January 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Botham, R.A.; Ball, G.L. III; Jenkins, G.H.; Salyer, I.O.

    1978-01-01

    The primary objectives of this program were to demonstrate: (1) that form-stable high density polyethylene (HDPE), which has been shown to have desirable properties as a phase-change type of thermal energy storage material, could be produced by processing in a polyethylene plant for a projected price near 26 cents/lb; and (2) that the raw material, ethylene, will be available in the very long-term from alternate sources (other than petroleum and natural gas). These objectives were accomplished. Production of useful, form-stable HDPE pellets by radiation cross-linking was demonstrated. Such pellets are estimated to be obtainable at 26 cents/lb, using large-volume (> or equal to 10,000,000 lb/yr) in-plant processing. Well-developed technologies exist for obtaining ethylene from coal and plant (or biomass) sources, thus assuring its long-term availability and therefore that of polyethylene. A cost-benefit analysis of the HDPE thermal energy storage system was conducted over its 120 to 140/sup 0/C optimum operating range which is most suited for absorption air conditioning. The HDPE is more cost effective than either rocks, ethylene glycol, or pressurized water and is even competitive with a hypothetical 5 cents/lb salt-hydrate melting in this temperature range. These results applied, as appropriate, to both air and liquid transfer systems.

  7. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  8. Supramolecular Gold Metallogelators: The Key Role of Metallophilic Interactions

    Directory of Open Access Journals (Sweden)

    João Carlos Lima

    2014-12-01

    Full Text Available Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present an overview about gold metallogelators divided in two different groups depending on the type of solvent used in the gelation process (organogelators and hydrogelators. A careful analysis of the data shows that aurophilic interactions are a common motif directly involved in gelation involving Au(I complexes. There are also some Au(III derivatives able to produce gels but in this case the organic ligands determine the aggregation process. A last section is included about the potential applications that have been reported until now with this new and amazing class of supramolecular assemblies.

  9. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Science.gov (United States)

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  10. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

    Science.gov (United States)

    Liu, Jiewei; Chen, Lianfen; Cui, Hao; Zhang, Jianyong; Zhang, Li; Su, Cheng-Yong

    2014-08-21

    This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

  11. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  12. Electrochemical supramolecular recognition of hemin-carbon composites

    Science.gov (United States)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung

    2018-04-01

    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  13. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    Science.gov (United States)

    2015-07-10

    Felder , Stuart J. Rowan. Metallo-, Thermo-, and Photoresponsive Shape Memory and Actuating Liquid Crystalline Elastomers, Macromolecules, (05 2015...1965, 4, 612-616. 18 Michal, B.T.; McKenzie, B.M.; Felder S.E.; Rowan S.J.; Photo-, Thermo- and Metallo-Responsive Shape Memory and Actuating Liquid Crystalline Elastomers; Macromolecules, 2015, 48, 3239-3246.

  14. From random coil polymers to helical structures induced by carbon nanotubes and supramolecular interactions.

    Science.gov (United States)

    Huang, Kai-Wei; Wu, Yu-Rong; Jeong, Kwang-Un; Kuo, Shiao-Wei

    2013-10-01

    A simple method is reported for the preparation of double-helical structures through a series of achiral random and block copolymers poly(styrene-co-4-vinylbenzyl triazolylmethyl methylthymine) (PS-co-PVBT) with various T units on the side chains through click reactions of poly(styrene-co-4-vinylbenzyl azide) (PS-co-PVBN(3)) with propargyl thymine (PT) and also the synthesis of the A-appended pyrene derivative (A-Py) through click chemistry. This double-helical structure is observed from achiral random-coil polystyrene (PS) main chains, stabilized through the combination of multiple A-T hydrogen bonds, and π-π stacking between pyrene units and single-walled carbon nanotubes (SWCNTs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; van Leeuwen, Ellen N. M.; van Gemert, Gaby M. L.; Spiering, A. J. H.; Harmsen, Martin C.; Brouwer, Linda A.; Janssen, Henk M.; Bosman, Anton W.; van Luyn, Maria J. A.; Meijer, E. W.

    2006-01-01

    We show that materials with a diverse range of mechanical and biological properties can be obtained using a modular approach by simply mixing different ratios of oligocaprolactones that are either end-functionalized or chain-extended with quadruple hydrogen bonding ureido-pyrimidinone (UPy)

  16. Information processing in the CNS: a supramolecular chemistry?

    Science.gov (United States)

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  17. Non-volatile organic transistor memory devices using the poly(4-vinylpyridine)-based supramolecular electrets.

    Science.gov (United States)

    Chou, Y-H; Chiu, Y-C; Lee, W-Y; Chen, W-C

    2015-02-14

    Supramolecular electrets consisting of poly(4-vinylpyridine) (P4VP) and conjugated molecules of phenol, 2-naphthol and 2-hydroxyanthracene were investigated for non-volatile transistor memory applications. The memory windows of these supramolecular electret devices were significantly enhanced upon increasing the π-conjugation size of the molecule. A high ON/OFF current ratio of more than 10(7) over 10(4) s was achieved on the supramolecule based memory devices.

  18. New Pseudopeptidic Bis(Amino Amides): Supramolecular Behaviour in the Presence of Transition Metals

    OpenAIRE

    Gorla, Lingaraju

    2016-01-01

    La presente tesis doctoral se ubica dentro del área de la Química Supramolecular y más concretamente en el campo del reconocimiento molecular de cationes metálicos. Los capítulos describen la síntesis y el estudio de nuevos sistemas supramoleculares pseudopeptídicos, así como su aplicación en el reconocimiento molecular de cationes.

  19. Using magnetic birefringence to determine the molecular arrangement of supramolecular nanostructures

    International Nuclear Information System (INIS)

    Gielen, Jeroen C; Shklyarevskiy, Igor O; Christianen, Peter C M; Maan, J C; Schenning, Albertus P H J

    2009-01-01

    Supramolecular aggregates can be aligned in solution using a magnetic field. Because of the optical anisotropy of the molecular building blocks, the alignment results in an anisotropic refractive index of the solution parallel and perpendicular to the magnetic field. We present a model for calculating the magnetic birefringence, using solely the magnetic susceptibilities and optical polarizabilities of the molecules, for any molecular arrangement. We demonstrate that magnetic birefringence is a very sensitive tool for determining the molecular organization within supramolecular aggregates.

  20. A supramolecular approach on using poly(fluorenylstyrene)-block-poly(2-vinylpyridine):PCBM composite thin films for non-volatile memory device applications.

    Science.gov (United States)

    Hsu, Jung-Ching; Liu, Cheng-Liang; Chen, Wen-Chang; Sugiyama, Kenji; Hirao, Akira

    2011-03-16

    Supramolecular composite thin films of poly[4-(9,9-dihexylfloren-2-yl)styrene]-block-poly(2-vinylpyridine) (P(St-Fl)-b-P2VP):[6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) were prepared for write-once-read-many times (WORM) non-volatile memory devices. The optical absorption and photoluminescence results indicated the formation of charge transfer complexation between the P2VP block and PCBM, which led to the varied PCBM aggregated size and memory characteristics. The ITO/PCBM:(P(St-Fl)-b-P2VP)/Al device exhibited the WORM characteristic with low threshold voltage (-1.6 to -3.2 V) and high ON/OFF ratio (10(3) to 10(5)) by tuning the PCBM content. The switching behavior could be explained by the charge injection dominated thermionic emission in the OFF state and field-induced charge transfer in the ON state. The present study provides a novel approach system for tuning polymer memory device characteristics through the supramolecular materials approach. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  2. Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State.

    Science.gov (United States)

    Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei

    2017-06-05

    Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid

  3. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  4. Polymer adhesion predictions for oral dosage forms to enhance drug administration safety. Part 3: Review of in vitro and in vivo methods used to predict esophageal adhesion and transit time.

    Science.gov (United States)

    Drumond, Nélio; Stegemann, Sven

    2018-05-01

    The oral cavity is frequently used to administer pharmaceutical drug products. This route of administration is seen as the most accessible for the majority of patients and supports an independent therapy management. For current oral dosage forms under development, the prediction of their unintended mucoadhesive properties and esophageal transit profiles would contribute for future administration safety, as concerns regarding unintended adhesion of solid oral dosage forms (SODF) during oro-esophageal transit still remain. Different in vitro methods that access mucoadhesion of polymers and pharmaceutical preparations have been proposed over the years. The same methods might be used to test non-adhesive systems and contribute for developing safe-to-swallow technologies. Previous works have already investigated the suitability of non-animal derived in vitro methods to assess such properties. The aim of this work was to review the in vitro methodology available in the scientific literature that used animal esophageal tissue to evaluate mucoadhesion and esophageal transit of pharmaceutical preparations. Furthermore, in vivo methodology is also discussed. Since none of the in vitro methods developed are able to mimic the complex swallowing process and oro-esophageal transit, in vivo studies in humans remain as the gold standard. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-27

    increased complexity of synthetic host molecules, most assembly conditions utilize self-assembly to form complex highly-symmetric structures from relatively simple subunits. For supramolecular assemblies able to encapsulate guest molecules, the chemical environment in each assembly--defined by the size, shape, charge, and functional group availability--greatly influences the guest-binding characteristics.[6, 13-17

  6. Oligomer functionalized nanotubes and composites formed therewith

    Science.gov (United States)

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  7. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  8. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling

    Science.gov (United States)

    Fanelli, Francesca; De Benedetti, Pier G.

    2006-08-01

    Herein we make an overview of the results of our computational experiments aimed at gaining insight into the molecular mechanisms of GPCR functioning either in their normal conditions or when hit by gain-of-function or loss-of-function mutations. Molecular simulations of a number of GPCRs in their wild type and mutated as well as free and ligand-bound forms were instrumental in inferring the structural features, which differentiate the mutation- and ligand-induced active from the inactive states. These features essentially reside in the interaction pattern of the E/DRY arginine and in the degree of solvent exposure of selected cytosolic domains. Indeed, the active states differ from the inactive ones in the weakening of the interactions made by the highly conserved arginine and in the increase in solvent accessibility of the cytosolic interface between helices 3 and 6. Where possible, the structural hallmarks of the active and inactive receptor states are translated into molecular descriptors useful for in silico functional screening of novel receptor mutants or ligands. Computational modeling of the supramolecular organization of GPCRs and their intracellular partners is the current challenge toward a deep understanding of their functioning mechanisms.

  9. A new supramolecular chromium(III) complex: Synthesis, structural determination, optical study, magnetic and antibacterial activity

    Science.gov (United States)

    Dridi, Rihab; Dhieb, Cyrine; Cherni, Saoussen Namouchi; Boudjada, Nassira Chniba; Sadfi Zouaoui, Najla; Zid, Mohamed Faouzi

    2018-01-01

    A new chromium (III) complex 1,5-Naphthyridine Trans-diaquadioxalatochromate (III) dihydrate, had been synthesized by self-assembly of chromium (III) nitrate with oxalic acid and 1,5-Naphthyridine. The complex was characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, thermogravimetric analysis and UV-Visible spectroscopy. The crystal morphology was carried out using Bravais-Friedel-Donnay-Harker (BFDH) model. Single crystal X-Ray structure determination revealed that the complex posses two crystallographically independent Cr(III) centers. Each Cr(III) has a distorted octahedron geometry involving two axial O atoms from two water molecules and four equatorial O atoms from two oxalate dianions forming trans-[Cr(C2O4)2(H2O)2]- complex anions. The charge compensation is accomplished by the incorporation of 1,5-Naphthyridine cations. Connection between these entities is ensured by means of strong hydrogen bonds giving rise to 3D supramolecular architecture. Hirshfeld surface analysis and the related 2D fingerprint plots were used for decoding plausible intermolecular interactions in the crystal packing. The magnetic properties of the complex had been investigated and discussed in the context of its structure. The antimicrobial activity was evaluated by disc diffusion method highlighting an antagonistic effect of the synthesized complex against Gram-positive and Gram-negative species.

  10. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels

    Directory of Open Access Journals (Sweden)

    Shawn Matthew Dirk

    2010-11-01

    Full Text Available Phenylpropanoid metabolism yields a mixture of monolignols that undergo chaotic, non-enzymatic reactions such as free radical polymerization and spontaneous self-assembly in order to form the polyphenolic lignin which is a barrier to cost-effective lignocellulosic biofuels. Post-synthesis lignin integration into the plant cell wall is unclear, including how the hydrophobic lignin incorporates into the wall in an initially hydrophilic milieu. Self-assembly, self-organization and aggregation give rise to a complex, 3D network of lignin that displays randomly branched topology and fractal properties. Attempts at isolating lignin, analogous to archaeology, are instantly destructive and non-representative of in planta. Lack of plant ligninases or enzymes that hydrolyze specific bonds in lignin-carbohydrate complexes (LCCs also frustrate a better grasp of lignin. Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lignin-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.

  11. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    Energy Technology Data Exchange (ETDEWEB)

    Dante, Roberto C., E-mail: rcdante@yahoo.com [Facultad de Mecánica, Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253, Quito (Ecuador); Sánchez-Arévalo, Francisco M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Chamorro-Posada, Pedro [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Vázquez-Cabo, José [Dpto. de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, Vigo (Spain); Huerta, Lazaro [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro y Nanotecnologías—IPN, Luis Enrique Erro s/n, U. Prof. Adolfo López Mateos, 07738 Ciudad de Mexico, Distrito Federal (Mexico); Santoyo-Salazar, Jaime [Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07360 (Mexico); and others

    2015-03-15

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.

  12. Construction of Supramolecular Nanostructures from V-Shaped Amphiphilic Rod-Coil Molecules Incorporating Phenazine Units

    Directory of Open Access Journals (Sweden)

    Junying Xu

    2017-12-01

    Full Text Available A series of bent-shaped molecules, consisting of dibenzo[a,c]phenazine and phenyl groups connected together as a rod segment, and poly(ethylene oxide (PEO with a degree of polymerization (DP of 6 as the coil segment, were synthesized. The self-assembling behavior of these molecules by differential scanning calorimetry (DSC, thermal optical polarized microscopy (POM, small-angle X-ray scattering spectroscopy (SAXS, atomic force microscopy (AFM, and transmission electron microscopy (TEM, revealed that carboxyl or butoxy carbonyl groups at the 11 position of dibenzo[a,c]phenazine noticeably influence self-organization of molecules into supramolecular aggregates in bulk and aqueous solutions. Molecules 1 and 2 with chiral or non-chiral PEO coil chains and the carboxyl group at the rod segments self-organize into a hexagonal perforated lamellar structure and a hexagonal columnar structure in the solid state. In aqueous solution, molecules 1 and 2 self-assemble into diverse lengths of nanofibers, whereas molecules 3 and 4 with butoxy carbonyl groups exhibit a self-organizing capacity to form diverse sizes of spherical aggregates.

  13. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes.

    Science.gov (United States)

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas

    2013-12-15

    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  14. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    Science.gov (United States)

    Yin, Xia; Fan, Jun; Wang, Zhi Hong; Zheng, Sheng Run; Tan, Jing Bo; Zhang, Wei Guang

    2011-07-01

    Four new luminescent complexes, namely, [Eu(aba) 2(NO 3)(C 2H 5OH) 2] ( 1), [Eu(aba) 3(H 2O) 2]·0.5 (4, 4'-bpy)·2H 2O ( 2), [Eu 2(aba) 4(2, 2'-bpy) 2(NO 3) 2]·4H 2O ( 3) and [Tb 2(aba) 4(phen) 2(NO 3) 2]·2C 2H 5OH ( 4) were obtained by treating Ln(NO 3) 3·6H 2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains ( 1- 2) and dimeric structures ( 3- 4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.

  15. Self-assembling graphene-anthraquinone-2-sulphonate supramolecular nanostructures with enhanced energy density for supercapacitors.

    Science.gov (United States)

    Gao, Lifang; Gan, Shiyu; Li, Hongyan; Han, Dongxue; Li, Fenghua; Bao, Yu; Niu, Li

    2017-07-07

    Boosting the energy density of capacitive energy storage devices remains a crucial issue for facilitating applications. Herein, we report a graphene-anthraquinone supramolecular nanostructure by self-assembly for supercapacitors. The sulfonated anthraquinone exhibits high water solubility, a π-conjugated structure and redox active features, which not only serve as a spacer to interact with and stabilize graphene but also introduce extra pseudocapacitance contributions. The formed nest-like three-dimensional (3D) nanostructure with further hydrothermal treatment enhances the accessibility of ion transfer and exposes the redox-active quinone groups in the electrolytes. A fabricated all-solid-state flexible symmetric device delivers a high specific capacitance of 398.5 F g -1 at 1 A g -1 (1.5 times higher than graphene), superior energy density (52.24 Wh kg -1 at about 1 kW kg -1 ) and good stability (82% capacitance retention after 10 000 cycles).

  16. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor

    Science.gov (United States)

    Zhang, Yi-Qi; Paszkiewicz, Mateusz; Du, Ping; Zhang, Liding; Lin, Tao; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; Seitsonen, Ari P.; Barth, Johannes V.; Klappenberger, Florian

    2018-03-01

    Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl-Ag-alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  17. Structural Consequences of Anionic Host-Cationic Guest Interactions in a Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Johnson, Darren W.; Szigethy, Geza; Davis, Anna V.; Teat, Simon J.; Oliver, Allen G.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-07-09

    The molecular structure of the self-assembled supramolecular assembly [M{sub 4}L{sub 6}]{sup 12-} has been explored with different metals (M = Ga{sup III}, Fe{sup III}, Ti{sup IV}) and different encapsulated guests (NEt{sub 4}{sup +}, BnNMe{sub 3}{sup +}, Cp{sub 2}Co{sup +}, Cp*{sub 2}Co{sup +}) by X-ray crystallography. While the identity of the metal ions at the vertices of the M{sub 4}L{sub 6} structure is found to have little effect on the assembly structure, encapsulated guests significantly distort the size and shape of the interior cavity of the assembly. Cations on the exterior of the assembly are found to interact with the assembly through either {pi}-{pi}, cation-{pi}, or CH-{pi} interactions. In some cases, the exterior guests interact with only one assembly, but cations with the ability to form multiple {pi}-{pi} interactions are able to interact with adjacent assemblies in the crystal lattice. The solvent accessible cavity of the assembly is modeled using the rolling probe method and found to range from 253-434 {angstrom}{sup 3}, depending on the encapsulated guest. Based on the volume of the guest and the volume of the cavity, the packing coefficient for each host-guest complex is found to range from 0.47-0.67.

  18. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro; Vázquez-Cabo, José; Huerta, Lazaro; Lartundo-Rojas, Luis; Santoyo-Salazar, Jaime

    2015-01-01

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures

  19. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  20. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Olga A. Krasheninina

    2017-11-01

    Full Text Available In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield, ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs, aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.