WorldWideScience

Sample records for supramolecular coordination polymer

  1. Supramolecular coordination polymer formed from artificial light-harvesting dendrimer.

    Science.gov (United States)

    Lee, Hosoowi; Jeong, Young-Hwan; Kim, Joo-Ho; Kim, Inhye; Lee, Eunji; Jang, Woo-Dong

    2015-09-30

    We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 μM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased

  2. Supramolecular polymers

    National Research Council Canada - National Science Library

    Ciferri, A

    2000-01-01

    ... to the new class of self-assembled polymers that undergo reversible growth by the formation of noncovalent bonds. This class (Part II) is wider than expected: not only mainchain assemblies of hydrogen-bonded repeating units, but also planar organization of S-layer proteins, micellar and related three-dimensional structures of blo...

  3. Supramolecular coordination polymers using a close to 'V-shaped' fluorescent 4-amino-1,8-naphthalimide Tröger's base scaffold.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; Hawes, Chris S; Savyasachi, Aramballi J; Blasco, Salvador; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-11-21

    A V-shaped 4-amino-1,8-naphthalimide derived dipyridyl ligand comprising the Tröger's base structural motif has been synthesised and subsequently used in the formation of two new supramolecular coordination polymers.

  4. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  5. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  6. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials.

    Science.gov (United States)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-28

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.

  7. Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid.

    Science.gov (United States)

    Wei, Yan; Zhang, Lei; Wang, Meng-Jie; Chen, Si-Chun; Wang, Zi-Hao; Zhang, Kou-Lin

    2015-07-01

    Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H(2)asba) in the presence/absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-κO(1))bis(1,10-phenanthroline-κ(2)N,N')copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena-poly[[diaquacopper(II)]-μ-3-amino-4-carboxylatobenzene-1-sulfonato-κ(2)O(4):O(4')], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular π-π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba(-) anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba(-) anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three-dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration-rehydration behaviour, while complex (2) shows an irreversible dehydration-rehydration behaviour.

  8. Supramolecular isomerism in cadmium (II) coordination polymers from benzene-1,3,5-tribenzoate (BTB): Syntheses, structures and luminescent properties

    Science.gov (United States)

    Zhang, Jian-Yong; Cui, Peng-Hui; Shi, Jun-Xia; Zhang, Na; Deng, Wei

    2017-12-01

    By tuning the solvent mixture, four CdII-based compounds, [Cd3(BTB)2(DMA)4]·2DMA (1α), [Cd3(BTB)2(DMA)4]·2DMA (1β), [Cd3(BTB)2(DMF)4]·2DMF (1γ), Cd2(BTB)(HCOO)(DMF)3 (2) have been successfully separated from H3BTB ligand and Cd(NO3)2 salts. Structural analyses revealed that compounds 1α, 1β and 1γ are iso-structural and have essentially identical local and two-dimensional structures constructed from trinuclear Cd3(OCO)6 unit. Their structural differences only arise from the different packing fashions, which are novel modes of supramolecular isomerism in coordination polymers. Compound 2 displays 3D two-fold interpenetrated network based on 1D infinite Cd3(μ1,1,3-OCO)2(HCOO) chains containing mixed BTB3- and formate ligands. The fluorescence measurements show that compounds 2 exhibit red-shifts (about 25 nm) in the solid state, compared with three iso-structural 1α, 1β and 1γ, and this can be attributed to the cooperative effects of intraligand π-π* transitions and ligand-to-metal charge transfer (LMCT).

  9. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    Science.gov (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  10. Conformational supramolecular isomerism in one-dimensional silver(I) coordination polymer of a flexible bis(bidentate) N,N-donor ligand with p-xylyl spacer.

    Science.gov (United States)

    Chakraborty, Biswarup; Halder, Partha; Paine, Tapan Kanti

    2011-04-14

    The isolation and structural characterisation of three isomeric silver(I) complexes, 1a, 1b and 2 with the general formula {[AgL(1)]ClO(4)}(n) (where L(1) is a bis(bidentate) N,N-donor ligand derived from the Schiff-base condensation of α,α'-diamino-p-xylene and pyridine-2-carboxaldehyde) are discussed. Single-crystal X-ray structures reveal the polymeric nature for the complexes where all the silver ions are in pseudotetrahedral geometry with the AgN(4) coordination environment. Isomers 1a (Pc space group) and 1b (Cc space group) were crystallised from acetonitrile whereas 2 (C2/c space group) was crystallised during the synthesis from a solvent mixture of dicholormethane and methanol. The flexible ligand (L(1)) adopts only an anti conformation in 1b and the presence of two different anti conformations in the repeating unit results in the formation of a trapezoidal wave polymeric chain. However, both gauche and anti conformations of the ligand are found to be present in the polymeric chains of 1a. In the polymeric chain of 2, only one anti isomer of the ligand is present in the repeating unit resulting in a triangular wave chain. The structure of isomer 1a is solvent induced and solvent plays a major role in the crystal packing of this isomer. One-dimensional coordination polymers 1a, 1b and 2 are related to each other as conformational supramolecular isomers. Additionally, two independent polymeric chains parallel to each other: one triangular wave consisting of only an anti conformation and a trapezoidal wave chain consisting of alternate gauche and anti conformations of the ligand are observed in 1a. This is a rare example of two supramolecular isomers present in the same crystal. Six different conformers of the flexible ligand are observed in the crystals of coordination polymers. © The Royal Society of Chemistry 2011

  11. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    Science.gov (United States)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  12. Enhanced intermolecular forces in supramolecular polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Lin

    2017-09-01

    Full Text Available Ureido-pyrimidone (Upy can dimerize in a self-complementary array of quadruple hydrogen bonds. In this paper, supramolecular polymer composites were prepared by blending Upy functionalized nanosilica with Upy end-capped polycarbonatediol. Surface characteristics of Upy functionalized nanosilica and influences of supramolecular forces on interfacial binding were researched. Fourier transform infrared spectroscopy (FTIR, Nuclear magnetic resonance (NMR and Gel permeation chromatography (GPC were used to characterize the synthesized molecules. Grafting ratio of Upy segments on the surface of nanosilica was analysed by Thermogravimetic analysis (TGA. Hydrophobicity and morphology of Upy modified nanosilica were analysed by Contact angle tester and Scanning electron microscope (SEM. Furthermore, dynamic thermo mechanical properties, mechanical properties and distribution of nanosilica in supramolecular polymer composites were also researched. Compared with the matrix resin, tensile stress and young's modulus of supramolecular polymer composites containing 5 wt% modified nanosilica were increased by 292 and 198% respectively.

  13. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supramolecular polymers for organocatalysis in water.

    Science.gov (United States)

    Neumann, Laura N; Baker, Matthew B; Leenders, Christianus M A; Voets, Ilja K; Lafleur, René P M; Palmans, Anja R A; Meijer, E W

    2015-07-28

    A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers. This allows us to assess how the density of the L-proline units along the supramolecular polymer affects its activity and selectivity. Both the supramolecular polymers and co-polymers show high activity and selectivity as catalysts for the aldol reaction in water when using p-nitrobenzaldehyde and cyclohexanone as the substrates for the aldol reaction. After optimisation of the reaction conditions, a consistent conversion of 92 ± 7%, deanti of 92 ± 3%, and eeanti of 97 ± 1% are obtained with a concentration of L-proline as low as 1 mol%.

  15. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

    Science.gov (United States)

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe

    2014-07-15

    CONSPECTUS: Supramolecular polymers, fabricated via the combination of supramolecular chemistry and polymer science, are polymeric arrays of repeating units held together by reversible, relatively weak noncovalent interactions. The introduction of noncovalent interactions, such as hydrogen bonding, aromatic stacking interactions, metal coordination, and host-guest interactions, endows supramolecular polymers with unique stimuli responsiveness and self-adjusting abilities. As a result, diverse monomer structures have been designed and synthesized to construct various types of supramolecular polymers. By changing the noncovalent interaction types, numbers, or chemical structures of functional groups in these monomers, supramolecular polymeric materials can be prepared with tailored chemical and physical properties. In recent years, the interest in supramolecular polymers has been extended from the preparation of intriguing topological structures to the discoveries of potential applications as functional materials. Compared with traditional polymers, supramolecular polymers show some advantages in the fabrication of reversible or responsive materials. The development of supramolecular polymers also offers a platform to construct complex and sophisticated materials with a bottom-up approach. Macrocylic hosts, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, are the most commonly used building blocks in the fabrication of host-guest interaction-based supramolecular polymers. With the introduction of complementary guest molecules, macrocylic hosts demonstrate selective and stimuli-responsive host-guest complexation behaviors. By elaborate molecular design, the resultant supramolecular polymers can exhibit diverse structures based on the self-selectivity of host-guest interactions. The introduction of reversible host-guest interactions can further endow these supramolecular polymers with interesting and fascinating chemical

  16. Supramolecular networks of telechelic polymers

    NARCIS (Netherlands)

    Bohdan, M.A.

    2016-01-01

    This thesis focuses on the fundamental understanding of phenomena associated with the gelation of end-functionalized polymers and the dynamic processes occurring inside of the gel network. To address particular questions we use two types of telechelic polymers, in which the assembly occurs due to

  17. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and mechanical properties...Supramolecular polymers provide potential innovative applications in coatings, adhesives, fuel cells, and biosensors due to retention of physical and

  18. Synthesis and supramolecular assembly of biomimetic polymers

    Science.gov (United States)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  19. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  20. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers

    Science.gov (United States)

    Roy, Sangita; Ulijn, Rein V.

    This chapter details the exploitation of biocatalysis in generating supramolecular polymers. This approach provides highly dynamic supramolecular structures, inspired by biological polymeric systems found in the intra- and extracellular space. The molecular design of the self-assembling precursors is discussed in terms of enzyme recognition, molecular switching mechanisms and non-covalent interactions that drive the supramolecular polymerisation process, with an emphasis on aromatic peptide amphiphiles. We discuss a number of unique features of these systems, including spatiotemporal control of nucleation and growth of supramolecular polymers and the possibility of kinetically controlling mechanical properties. Fully reversible systems that operate under thermodynamic control allow for defect correction and selection of the most stable structures from mixtures of monomers. Finally, a number of potential applications of enzymatic supramolecular polymerisations are discussed in the context of biomedicine and nanotechnology.

  1. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    Science.gov (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  2. Triggering activity of catalytic rod-like supramolecular polymers.

    Science.gov (United States)

    Huerta, Elisa; van Genabeek, Bas; Lamers, Brigitte A G; Koenigs, Marcel M E; Meijer, E W; Palmans, Anja R A

    2015-02-23

    Supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) functionalized with an L- or D-proline moiety display high catalytic activity towards aldol reactions in water. High turnover frequencies (TOF) of up to 27×10(-4) s(-1) and excellent stereoselectivities (up to 96% de, up to 99% ee) were observed. In addition, the catalyst could be reused and remained active at catalyst loadings and substrate concentrations as low as 0.1 mol % and 50 mM, respectively. A temperature-induced conformational change in the supramolecular polymer triggers the high activity of the catalyst. The supramolecular polymer's helical sense in combination with the configuration of the proline (L- or D-) is responsible for the observed selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  4. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said...

  6. Azobenzene-based supramolecular polymers for processing MWCNTs.

    Science.gov (United States)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  7. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  8. Blends of conjugated rigid-rod polymers: Novel supramolecular materials for electronics, optoelectronics and photonics

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, S.A. [Univ. of Rochester, NY (United States)

    1996-12-31

    Selected examples of binary blends of conjugated polymers will be presented to illustrate the vast scope of their supramolecular structures and electronic, optical, nonlinear optical, and optoelectronic properties.

  9. Self-healing supramolecular polymer nanocomposites

    NARCIS (Netherlands)

    Liu, Z.; Besseling, N.A.M.; Mendes, E.; Picken, S.J.

    2013-01-01

    Polyborosiloxanes (PBSs) are viscoelastic, transparent, colourless, self-healable polymer matrices, synthesized by reacting linear polydimethylsiloxanes (PDMSs) with boric acid (BA) above 150°C. BA takes part not only in cleaving the PDMS chains, but also contributes boronic-acid like moieties to

  10. Phase stability of a reversible supramolecular polymer solution mixed with nanospheres

    NARCIS (Netherlands)

    Tuinier, R.

    2011-01-01

    Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory,

  11. Template-directed supramolecular self-assembly of coordination dumbbells at surfaces.

    Science.gov (United States)

    Lin, Nian; Langner, Alexander; Tait, Steven L; Rajadurai, Chandrasekar; Ruben, Mario; Kern, Klaus

    2007-12-14

    Scanning tunneling microscopy reveals, at single-molecular resolution, how external parameters--substrate morphology and guest addition--re-direct the assembly of dumbbell-shaped coordination supramolecules towards different surface-confined supramolecular organizations.

  12. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    Science.gov (United States)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  13. Cytosine-Cytosine Base-Pair Mismatch and Chirality in Nucleotide Supramolecular Coordination Complexes.

    Science.gov (United States)

    Qiu, Qi-Ming; Zhou, Pei; Gu, Leilei; Hao, Liang; Liu, Minghua; Li, Hui

    2017-05-29

    The base-pair sequences are the foundation for the biological processes of DNA or RNA, and base-pair mismatch is very important to reveal genetic diseases and DNA rearrangements. However, the lack of well-defined structural information about base-pair mismatch is obstructing the investigation of this issue. The challenge is to crystallize the materials containing the base-pair mismatch. Engineering the small-molecule mimics or model is an effective strategy to solve this issue. Here, six cytidine-5'-monophosphate (CMP) and 2'-deoxycytidine-5'-monophosphate (dCMP) coordination polymers were reported containing cytosine-cytosine base-pair mismatch (i-motif), and their single-crystal structures and chiralities were studied. The precise control over the formation of the i-motif was demonstrated, in which the regulating of supramolecular interactions was achieved based on molecular design. In addition, the chiralities of these coordination polymers were investigated according to their crystal structures and solution- and solid-state circular dichroism spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Novel Supramolecular Polymer Networks Based on Melamine- and Imide-Containing Oligomers

    NARCIS (Netherlands)

    Loontjens, Ton; Put, Jos; Coussens, Betty; Palmen, Jo; Sleijpen, Ton; Plum, Bart

    2001-01-01

    Reversible, supramolecular polymer networks based on commercially available bulk chemicals, and prepared using an industrially attractive route are described. The difunctional, low molecular weight polytetramethyleneoxide is functionalized with trimellitic imide, and reversibly crosslinked with the

  15. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  16. The Coordination and Supramolecular Chemistry of Gold Metalloligands.

    Science.gov (United States)

    Gil-Rubio, Juan; Vicente, José

    2018-01-02

    This review article deals with the use of gold metalloligands as building blocks for the assembly of heterometallic complexes. Several families of gold complexes decorated with crown-ether, amide, pyridine, bipyridine, terpyridine, carboxylato, amino acid or π-alkyne binding sites have been reported. Adducts of these metalloligands with alkaline or transition-metal cations, or with transition-metal or lanthanide complexes, have been isolated and structurally characterized. The reported heterometallic species range from simple dinuclear complexes to self-assembled supramolecules, coordination polymers, or solids. New structural motifs have been found in these complexes. Most of these metalloligands and complexes are photoluminescent and some of them show switchable emissions based on the formation and rupture of metallophilic contacts. Potential applications as sensors, sensitizers, in vivo imaging agents, and anticancer drugs are envisaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coordination-Enhanced Luminescence on Tetra-Phenylethylene-Based Supramolecular Assemblies

    Directory of Open Access Journals (Sweden)

    Qian-Qian Yan

    2018-02-01

    Full Text Available Materials with aggregation-induced emission (AIE properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE-based tetra-dentate (La and bidentate (Lb ligands and the cis-Pd(en(NO32 (en = ethylenediamine unit. While the free ligands are non-emissive in dilute solution and show typical AIE properties in both mixed solvent system and the solid state, the self-assembled complexes maintain their fluorescent nature in the solution state. In particular, the Pd4(La2 complex shows remarkable 6-fold fluorescent enhancement over La in dilute solution. We anticipate that these kinds of coordination-enhanced emissive supramolecules will find applications in biomedical sensing or labeling.

  18. Synthesis and characterization of metallo-supramolecular polymers from thiophene-based unimers bearing pybox ligands

    Czech Academy of Sciences Publication Activity Database

    Hladysh, S.; Václavková, D.; Vrbata, D.; Bondarev, D.; Havlíček, D.; Svoboda, Jan; Zedník, J.; Vohlídal, J.

    2017-01-01

    Roč. 7, č. 18 (2017), s. 10718-10728 ISSN 2046-2069 Institutional support: RVO:61389013 Keywords : metallo-supramolecular polymers * XPS Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.108, year: 2016

  19. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  20. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  1. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    Science.gov (United States)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  2. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    Science.gov (United States)

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  3. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    Science.gov (United States)

    Lou, Xianwen; Lafleur, René P. M.; Leenders, Christianus M. A.; Schoenmakers, Sandra M. C.; Matsumoto, Nicholas M.; Baker, Matthew B.; van Dongen, Joost L. J.; Palmans, Anja R. A.; Meijer, E. W.

    2017-05-01

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  4. Single Molecule Force Spectroscopy of self complementary hydrogen-bonded supramolecular systems: dimers, polymers and solvent effects

    NARCIS (Netherlands)

    Embrechts, A.

    2011-01-01

    The work described in this Thesis aimed at a better understanding of the structure-property relationships of supramolecular assemblies with a specific focus on hydrogen-bond dimers and polymers. The hydrogen-bond strength of (supra)molecular complexes in different solvents is usually determined by

  5. Different Supramolecular Coordination Polymers of [N,N'-di(pyrazin-2-yl-pyridine-2,6-diamine]Ni(II with Anions and Solvent Molecules as a Result of Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2007-04-01

    Full Text Available Ni(II complexes of N,N'–di(pyrazin–2–ylpyridine–2,6–diamine (H2dpzpda with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm-1 for [Ni(H2dpzpda2](ClO42 (1 and g = 2.18 and D = 2.19 cm-1 for [Ni(H2dpzpda2](NO32 (2, respectively.

  6. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  7. Porous phosphorescent coordination polymers for oxygen sensing.

    Science.gov (United States)

    Xie, Zhigang; Ma, Liqing; deKrafft, Kathryn E; Jin, Athena; Lin, Wenbin

    2010-01-27

    Phosphorescent cyclometalated iridium tris(2-phenylpyridine) derivatives were designed and incorporated into coordination polymers as tricarboxylate bridging ligands. Three different crystalline coordination polymers were synthesized using a solvothermal technique and were characterized using a variety of methods, including single-crystal X-ray diffraction, PXRD, TGA, IR spectroscopy, gas adsorption measurements, and luminescence measurements. The coordination polymer built from Ir[3-(2-pyridyl)benzoate](3), 1, was found to be highly porous with a nitrogen BET surface area of 764 m(2)/g, whereas the coordination polymers built from Ir[4-(2-pyridyl)benzoate](3), 2 and 3, were nonporous. The (3)MLCT phosphorescence of each of the three coordination polymers was quenched in the presence of O(2). However, only 1 showed quick and reversible luminescence quenching by oxygen, whereas 2 and 3 exhibited gradual and irreversible luminescence quenching by oxygen. The high permanent porosity of 1 allows for rapid diffusion of oxygen through the open channels, leading to efficient and reversible quenching of the (3)MLCT phosphorescence. This work highlights the opportunity of designing highly porous and luminescent coordination polymers for sensing other important analytes.

  8. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  9. Design of non-molecular coordination solids from aqueous solution ...

    Indian Academy of Sciences (India)

    provides chemical insights to the supramolecular aggregation of a crystal driven by the various competing intermolecular forces. Keywords. Non-molecular coordination solids; supramolecular aggregation; coordination polymers. 1. Introduction. Non-molecular solids such as coordination polymers. (CPs) and metal organic ...

  10. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry.

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2014-10-03

    Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are essential for the next generation of electronic devices, such as field-effect transistors and photovoltaic applications; however, contamination by metallic SWNTs reduces the efficiency of their associated devices. Here we report a simple and efficient method for the separation of semiconducting- and metallic SWNTs based on supramolecular complex chemistry. We here describe the synthesis of metal-coordination polymers (CP-Ms) composed of a fluorene-bridged bis-phenanthroline ligand and metal ions. On the basis of a difference in the 'solubility product' of CP-M-solubilized semiconducting SWNTs and metallic SWNTs, we readily separated semiconducting SWNTs. Furthermore, the CP-M polymers on the SWNTs were simply removed by adding a protic acid and inducing depolymerization to the monomer components. We also describe molecular mechanics calculations to reveal the difference of binding and wrapping mode between CP-M/semiconducting SWNTs and CP-M/metallic SWNTs. This study opens a new stage for the use of such highly pure semiconducting SWNTs in many possible applications.

  11. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min [Research Institute of Natural Science and Dept. of Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Moon, Suk Hee [Dept. of Food and Nutrition, Kyungnam College of Information and Technology, Busan (Korea, Republic of)

    2017-01-15

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported.

  12. Neutral coordination polymers based on a metal-mono(dithiolene) complex: synthesis, crystal structure and supramolecular chemistry of [Zn(dmit)(4,4'-bpy)]n, [Zn(dmit)(4,4'-bpe)]n and [Zn(dmit)(bix)]n (4,4'-bpy = 4,4'-bipyridine, 4,4'-bpe = trans-1,2-bis(4-pyridyl)ethene, bix = 1,4-bis(imidazole-1-ylmethyl)-benzene.

    Science.gov (United States)

    Madhu, Vedichi; Das, Samar K

    2011-12-28

    This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions. This journal is © The Royal Society of Chemistry 2011

  13. Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Properties

    Directory of Open Access Journals (Sweden)

    Salla Välimäki

    2015-05-01

    Full Text Available Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol methyl ether methacrylate linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS, and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc, \\( Fm\\overline{3}m \\ Bravais lattice where lattice parameter a = 18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion.

  14. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    Science.gov (United States)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  15. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  16. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    Science.gov (United States)

    Si, Zhen-Xiu; Xu, Wei; Zheng, Yue-Qing

    2016-07-01

    An uranium coordination polymer, namely [(UO2(pydc)(H2O)]·H2O (1) (H2pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO22+ ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O-H···O hydrogen bond interactions and π-π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed.

  17. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong Hong [Huaibei Normal Univ., Huaibei (China)

    2013-04-15

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH{sub 2}){sub n}, spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures.

  18. Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties

    Directory of Open Access Journals (Sweden)

    Matasebia T. Munie

    2011-10-01

    Full Text Available Supramolecular coordination polymers with wavelike structures have been synthesized by self-assembly and their structures analyzed using the sine trigonometric function. Slow evaporation of a methylene chloride-methanol solution of a 1:1 molar mixture of [M(tmhd2], where M = Co or Ni, and quinoxaline; a 1:2:1 molar mixture of [M(acac2], where M = Co or Ni, 2,2,6,6-tetramethyl-3,5-heptadione and quinoxaline; or a 1:2:1 molar mixture of [Co(acac2], dibenzoylmethane, and quinoxaline, yielded the crystalline coordination polymers. In the presence of the nitrogenous base, ligand scrambling occurs yielding the most insoluble product. The synthesis and structures of the following wavelike polymers are reported: trans-[Co(DBM2(qox]n·nH2O (2, trans-[Co(tmhd2(qox]n (3, trans-[Ni(tmhd2(qox]n (4, where DBM− = dibenzoylmethanate, tmhd− = 2,2,6,6-tetramethyl-3,5-heptadionate, and qox = quinoxaline. The wavelike structures are generated by intramolecular steric interactions and crystal packing forces between the chains. Some of the tert-butyl groups show a two-fold disorder. The sine function, φ = A sin 2πx/λ, where φ = distance (Ǻ along the polymer backbone, λ = wavelength (Ǻ, A = amplitude (Ǻ, x = distance (Ǻ along the polymer axis, provides a method to approximate and visualize the polymer structures.

  19. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    Science.gov (United States)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  20. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    Science.gov (United States)

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-06

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  1. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr2(μ2-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr2(µ2-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr2(µ2-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  2. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stability of complex coacervate core micelles containing metal coordination polymer

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Drechsler, M.; Besseling, N.A.M.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  4. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  5. On the kinetics of body versus end evaporation and addition of supramolecular polymers.

    Science.gov (United States)

    Tiwari, Nitin S; van der Schoot, Paul

    2017-06-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of a hitherto ignored molecular aggregation pathway that we refer to as "body evaporation and addition". In this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In this paper, we compare predictions for the well-established end evaporation and addition pathway with those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass relative to that of the end evaporation and addition. However, the presence of the body evaporation and addition pathway does not affect the dependence of the lag time on the total monomer concentration and it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

  6. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    Science.gov (United States)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  7. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    FERNANDO GALEMBECK

    2001-12-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a

  8. Two new hexacoordinated coordination polymers of cadmium (II ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 9. Two new hexacoordinated coordination polymers of cadmium(II) containing bridging units only: Syntheses, structures and molecular properties. DIPU SUTRADHAR HABIBAR CHOWDHURY SUSHOVAN KONER SUBHASIS ROY BARINDRA KUMAR ...

  9. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  10. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2017-03-15

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.

  11. Syntheses, structures and properties of two coordination polymers of ...

    Indian Academy of Sciences (India)

    Dipu Sutradhar

    2017-11-10

    Nov 10, 2017 ... Thermally stable compounds 1 and 2 show intraligand 1(π-π∗) fluorescence in DMF solution at room temperature. Keywords. Cadmium(II) coordination polymers; in situ generated Schiff base; dicyanamide/thiocyanate;. X-ray structures; luminescence. 1. Introduction. Construction of different coordination ...

  12. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  13. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A lanthanum pyromellitate coordination polymer with three ...

    Indian Academy of Sciences (India)

    H2O)2(H2BTEC)(BTEC)],. 1, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. The three- dimensional framework is built up from La2O16 dimers connected by carboxylate anions. The polymer exhibits strong ...

  15. Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors.

    Science.gov (United States)

    Hu, Kong-Qiu; Wu, Qun-Yan; Mei, Lei; Zhang, Xiao-Lin; Ma, Lei; Song, Gang; Chen, Di-Yun; Wang, Yi-Tong; Chai, Zhi-Fang; Shi, Wei-Qun

    2017-12-19

    A series of novel uranyl coordination polymers have been synthesized by hydrothermal reactions. Both complexes 1 and 2 prosess two ipbp - ligands (H 2 ipbpCl=1-(3,5-dicarboxyphenyl)-4,4'-bipyridinium chloride), one uranyl cation, and two coordination water molecules, which can further extend to 2D networks through hydrogen bonding. In complex 1, two sets of equivalent nets are entangled together, resulting in a 2D + 2D → 3D polycatenated framework. In complex 2, the neighbouring equivalent nets interpenetrate each other, forming a twofold interpenetrated network. Complexes 3 and 4 are isomers, and both of them are constructed from (UO 2 ) 2 (OH) 2 dinuclear units, which are connected with four ipbp - ligands. The 3D structures of complexes 3 and 4 are similar along the b axis. Similar to other viologen-based coordination polymers, complexes 3 and 4 exhibit photochromic and thermochromic properties, which are rarely observed in actinide coordination polymers. Unlike the monotonous coordination mode in complexes 1-4, the ipbp - ligands feature a μ 3 -bridge through two kinds of coordination modes in complex 5. Notably, complex 5 presents a unique example in which terminal pyridine nitrogen atom is involved in the coordination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystal structures and luminescent properties of lanthanide nitrate coordination polymers with structurally related amide type bridging podands

    Science.gov (United States)

    Wang, Qing; Yan, Xuhuan; Zhang, Hongrui; Liu, Weisheng; Tang, Yu; Tan, Minyu

    2011-01-01

    A one-dimensional linear chain coordination polymer [ErL I(NO 3) 3(CH 3CO 2Et)] n (L I=1,2-bis{[(2'-furfurylaminoformyl)phenoxyl]methyl}benzene) and a one-dimensional zig-zag coordination polymer {[TbL II(NO 3) 3(H 2O)]·(H 2O)} n (L II=1,2-bis{[2'-(2-pyridylmethylaminoformyl)phenoxyl]methyl}benzene) were assembled by two structurally related bridging podands L I and L II which have uniform skeleton and different terminal groups. In {[TbL II(NO 3) 3(H 2O)]·(H 2O)} n, the neutral chains were linked by the hydrogen bonding interactions between the free and coordinated water molecules from two different directions to interpenetrate into a 3D supramolecular structure. At the same time, the luminescent properties of the solid Tb(III) nitrate complexes of these podands were investigated at room temperature. The lowest triplet state energy levels T 1 of the podands L I and L II indicate that the triplet state energy levels of the antennae are both above the lowest excited resonance level of 5D 4 of Tb 3+ ion. Thus the absorbed energy could be transferred from ligands to the central Tb 3+ ions. And the influence of the hydrogen bonding on the luminescence efficiencies of the coordination polymers was also discussed.

  17. Nitrate-Bridged One-Dimension Coordination Polymer Self-Assembled from a N4O2-Tetraiminodiphenolate Dicopper(II Macrocyclic Complex

    Directory of Open Access Journals (Sweden)

    Julio Cesar da Rocha

    2015-01-01

    Full Text Available Herein we report on the synthesis and single crystal X-ray structure characterization of [{Cu2(tidf(μ-NO3}∞]ClO4 (tidf = a Robson type macrocyclic ligand obtained upon condensation of 2,6-diformyl-4-methylphenol and 1,3-diaminopropane. The coordination geometry around the copper(II is square-pyramidal and has [Cu2(tidf]2+ units connected to each other through nitrate bridges extending as a one-dimension coordination polymer. The compound exhibits an extensive supramolecular structure supported by nonclassic hydrogen bonding between C-H⋯Operchlorate and C-H⋯Onitrate.

  18. Cobalt-cadmium bimetallic porphyrin coordination polymers for electrochemistry application

    Science.gov (United States)

    Wang, C. Y.; Cui, G. Y.; Ding, D.; Zhou, B.

    2018-01-01

    In this paper, we used tetra (4-carboxyphenyl) porphyrin (H2TCPP) and metal cadmium, cobalt as reactants to synthesize metal porphyrin coordination polymers that they had different metal ratio. They were expressed as Co1Cd3TCPP, Co1Cd1TCPP, Co3Cd1TCPP, respectively. The results were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma atomic emission spectrometer (ICP). Herein, a series of metal porphyrin coordination polymers has multiple metal active centers and constructs electrochemistry sensors. In order to increase the conductivity, multi-walled carbon nanotubes (MWCNTs) can be used to modify the electrodes. The polymer/MWCNTs/GCE electrode was studied by cyclic voltammetry and chronoamperometry as sensor for sodium nitrite. The performance of Co1Cd1TCPP/MWCNTs/GCE electrode is best, the sensitivity for sodium nitrite is 350.95 mA M-1 cm-2 and the. The results indicate that metal porphyrin coordination polymers have excellent performance. It also enriches the application of metal porphyrin coordination polymer in electrochemistry sensor.

  19. Assembling one-dimensional coordination polymers into ...

    Indian Academy of Sciences (India)

    ... analyses of these complexes reveal that the one-dimensional networks observed here are of three types: simple linear chain, chains with wavy nature and chains containing cavities. The self-complementary amide groups of the ligands assembled these coordination networks into higher dimensional architectures via N-H ...

  20. Time-resolved transient optical absorption study of bis(terpyridyl)oligothiophenes and their metallo-supramolecular polymers with Zn(II) ion couplers

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, P.; Svoboda, J.; Vohlídal, J.; Pfleger, Jiří

    2015-01-01

    Roč. 119, č. 24 (2015), s. 6203-6214 ISSN 1089-5639 R&D Projects: GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polymers * supramolecular structures * structure-property relations Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.883, year: 2015

  1. Robust Cross-Linked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization.

    Science.gov (United States)

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-08-03

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust cross-linked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site-controlled propagation mechanism. Postfunctionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible cross-linked thin-film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Cross-linking of such complexes affords robust cross-linked stereocomplexes that are solvent-resistant and also exhibit considerably enhanced thermal and mechanical properties compared with the un-cross-linked stereocomplexes.

  2. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  3. Reversible Mechanochemistry of a PdII Coordination Polymer

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Sijbesma, Rint P.

    2004-01-01

    Breaking up and making up: The ultrasonic cleavage of high-molecular-weight linear coordination polymers of phosphane telechelic polytetrahydrofuran and palladium dichloride in dilute solution is a reversible process (see picture). Sonication for 1 h led to a decrease in the weight-averaged

  4. Strategies, linkers and coordination polymers for high-performance sorbents

    Science.gov (United States)

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  5. Syntheses, structures and properties of two coordination polymers of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 12. Syntheses, structures and properties of two coordination polymers of Cadmium(II) pseudohalide containing an in situ generated bidentate Schiff base: Control of dimensionality by varying pseudohalides. REGULAR ARTICLE Volume 129 Issue 12 ...

  6. Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties

    Directory of Open Access Journals (Sweden)

    Chengfeng Zhu

    2017-03-01

    Full Text Available Two new Cr(III complexes based on 2-substituted 8-hydroxyquinoline ligands, namely [Cr(L13] (1, (HL1=(E-2-[2-(4-nitro-phenyl-vinyl]-8-hydroxy-quinoline and [Cr(L23] (2, (HL2=(E-2-[2-(4-chloro-phenylvinyl]-8-hydroxy-quinoline, were prepared by a facile hydrothermal method and characterized thoroughly by single crystal X-ray diffraction, powder X-ray diffraction, FTIR, TGA, ESI-MS, UV-Visible absorption spectra and fluorescence emission spectra. Single crystal X-ray diffraction analyses showed that the two compounds featured 3D supramolecular architectures constructed from noncovalent interactions, such as π···π stacking, C-H···π, C-H···O, C-Cl···π, C-H···Cl interactions. The thermogravimetric analysis and ESI-MS study of compounds 1 and 2 suggested that the Cr(III complexes possessed good stability both in solid and solution. In addition, the ultraviolet and fluorescence response of the HL1 and HL2 shown marked changes upon their complexation with Cr(III ion, which indicated that the two 8-hydroxyquinolinate based ligand are promising heavy metal chelating agent for Cr3+.

  7. White-light phosphorescence from binary coordination polymer nanoparticles

    International Nuclear Information System (INIS)

    Qin, Lijie; Zhu, Yachao; Yang, Hong; Ding, Liang; Sun, Feng; Shi, Mei; Yang, Shiping

    2013-01-01

    Phosphorescent nanoscale coordination polymer nanoparticles (NCPs) were conveniently synthesized by phosphorescent carboxyl-functionalized iridium complexes as a building block and rare earth Y(III) ions as metallic nodes. They reveal to be uniform nanospheres with average diameter around 200 nm. Multi-color emission from blue to orange was obtained by tuning the ratios of two iridium complexes with energy transfer between them. Furthermore, the white-light emission with CIE coordinates of (0.319, 0.388) was performed. - Highlights: ► Phosphorescent nanoscale coordination polymer nanoparticles (NCPs) were conveniently synthesized. ► The phosphorescent carboxyl-functionalized iridium complex was a building block with rare earth Y(III) ions as metallic nodes. ► Multi-color emission from blue to orange was obtained

  8. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    Science.gov (United States)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  9. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

    Science.gov (United States)

    Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

    2014-11-19

    Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices.

    Science.gov (United States)

    Zhang, Shiyi; Bellinger, Andrew M; Glettig, Dean L; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A; Gu, Li; Nash, Landon D; Maitland, Duncan J; Langer, Robert; Traverso, Giovanni

    2015-10-01

    Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

  11. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices

    Science.gov (United States)

    Zhang, Shiyi; Bellinger, Andrew M.; Glettig, Dean L.; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A.; Gu, Li; Nash, Landon D.; Maitland, Duncan J.; Langer, Robert; Traverso, Giovanni

    2015-10-01

    Devices resident in the stomach--used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery--typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

  12. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets.

    Science.gov (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J

    2017-10-04

    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  13. Mesoscopic superstructures of flexible porous coordination polymers synthesizedviacoordination replication.

    Science.gov (United States)

    Sumida, Kenji; Moitra, Nirmalya; Reboul, Julien; Fukumoto, Shotaro; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Furukawa, Shuhei; Kitagawa, Susumu

    2015-10-01

    The coordination replication technique is employed for the direct conversion of a macro- and mesoporous Cu(OH) 2 -polyacrylamide composite to three-dimensional superstructures consisting of the flexible porous coordination polymers, Cu 2 (bdc) 2 (MeOH) 2 and Cu 2 (bdc) 2 (bpy) (bdc 2- = 1,4-benzenedicarboxylate, bpy = 4,4'-bipyridine). Detailed characterization of the replicated systems reveals that the structuralization plays an important role in determining the adsorptive properties of the replicated systems, and that the immobilization of the crystals within a higher-order architecture also affects its structural and dynamic properties. The polyacrylamide polymer is also found to be crucial for maintaining the structuralization of the monolithic systems, and in providing the mechanical robustness required for manual handling. In all, the results discussed here demonstrate a significant expansion in the scope of the coordination replication strategy, and further confirms its utility as a highly versatile platform for the preparation of functional three-dimensional superstructures of porous coordination polymers.

  14. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    Science.gov (United States)

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen-Bonded Polymer-Porphyrin Assemblies in Water: Supramolecular Structures for Light Energy Conversion.

    Science.gov (United States)

    Kutz, Anne; Alex, Wiebke; Krieger, Anja; Gröhn, Franziska

    2017-09-01

    In this study, a new type of functional, self-assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar-energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self-assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selective high capacity adsorption of Congo red, luminescence and antibacterial assessment of two new cadmium(II) coordination polymers

    Science.gov (United States)

    Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein

    2018-02-01

    Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.

  17. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. New 4-carboxylphthalhydrazidate-bridged Mn2+/In3+ coordination polymers

    Science.gov (United States)

    Jin, Juan; Yan, Wen-Fu; Yu, Xiao-Yang; Yang, Qing-Feng; Liu, Bing; Xu, Ji-Qing; Gao, Shan-Min; Li, Chuan-Zhao; Lin, Chen

    2017-04-01

    Based on the hydrothermal in situ acylation reaction of benzene-1,2,4-tricarboxylic acid (btca) with N2H4·H2O, two containing-4-carboxylphthalhydrazidate Mn2+/In3+ coordination polymers, [Mn(cpth)(phen)] 1 and [In(cpth)(ox)0.5(phen)]·H2O 2 (cpth = 4-carboxylphthalhydrazidate, phen = 1,10-phenanthroline, ox = oxalate), were obtained and characterized by elemental analysis, IR spectroscopy, X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. In compound 1, the cpth ligands exhibit a μ4-bridging mode, which link Mn(II) centers into a 2-D layer structure with ancillary phen molecules. In compound 2, the cpth ligands exhibit a μ2-bridging mode, which link In(III) centers into a binuclear unit. Ox ligands act as the second linkers, extending binuclear unit into a 1-D chain with ancillary phen molecules. Via Nsbnd H⋯O interactions, compound 2 self-assembles into a 2-D supramolecular layer. The magnetic analysis indicates that there exists antiferromagnetic interactions between magnetic centers in compound 1. The photoluminescence properties of compounds 1 and 2 were also investigated in an aqueous solution.

  19. Weak cooperativity in selected iron(II) 1D coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dirtu, Marinela M.; Gillard, Damien; Naik, Anil D. [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium); Rotaru, Aurelian [' Stefan cel Mare' University, Department of Electrical Engineering and Computer Science (Romania); Garcia, Yann, E-mail: ann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium)

    2012-03-15

    The spin crossover behaviour of a new class of Fe{sup II} coordination polymers [Fe(phtptrz){sub 3}]I{sub 2} (1), [Fe(phtptrz){sub 3}](ReO{sub 4}){sub 2} Bullet CH{sub 3}OH (2) and [Fe(phtptrz){sub 3}]TaF{sub 7} Bullet 6H{sub 2}O (3) based on a novel ligand 4-(3{sup Prime} -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent {sup 57}Fe Moessbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T{sub 1/2} {approx} 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  20. Correlation between the structure and biological activity studies of supramolecular coordination azodye compounds

    Directory of Open Access Journals (Sweden)

    M.I. Abou-Dobara

    2017-02-01

    Full Text Available A series of novel bidentate azodye quinoline ligands were synthesized with various p-aromatic amines like p-(OCH3, CH3, H, Cl and NO2. Novel azodye (HLn and complexes [Cu(II/Ni(II] of these ligands have been characterized on the basis of elemental analysis, molar conductance and magnetic measurements, infrared and electronic spectral studies. Suitable structures have been proposed for these complexes. The synthesized ligands and their metal complexes were screened for their antimicrobial activity against four local bacterial species, two Gram positive bacteria (Bacillus cereus and Staphylococcus aureus and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae as well as against four local fungal species; namely Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The tested compounds have good antibacterial activity against B. cereus, E. coli and K. pneumoniae. Very low effect was detected against S. aureus and F. oxysporium. We found that the results of antifungal activity of HLn revealed that the complexes are more toxic than ligands against fungi due to the transition metal involved in the coordination. Also Cu2+ complexes are more active than Ni2+ complexes against B. cereus, E. coli and K. pneumoniae. The size of the clear zone was in the following order p-(OCH3 < CH3 < H < Cl < NO2 as expected from Hammett’s constants σR.

  1. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Pochorovski, Igor; Wang, Huiliang; Feldblyum, Jeremy I; Zhang, Xiaodong; Antaris, Alexander L; Bao, Zhenan

    2015-04-08

    Semiconducting, single-walled carbon nanotubes (SWNTs) are promising candidates for applications in thin-film transistors, solar cells, and biological imaging. To harness their full potential, however, it is necessary to separate the semiconducting from the metallic SWNTs present in the as-synthesized SWNT mixture. While various polymers are able to selectively disperse semiconducting SWNTs, the subsequent removal of the polymer is challenging. However, many applications require semiconducting SWNTs in their pure form. Toward this goal, we have designed a 2-ureido-6[1H]-pyrimidinone (UPy)-based H-bonded supramolecular polymer that can selectively disperse semiconducting SWNTs. The dispersion purity is inversely related to the dispersion yield. In contrast to conventional polymers, the polymer described herein was shown to disassemble into monomeric units upon addition of an H-bond-disrupting agent, enabling isolation of dispersant-free, semiconducting SWNTs.

  2. Tunable N-substitution in zwitterionic benzoquinonemonoimine derivatives: metal coordination, tandemlike synthesis of zwitterionic metal complexes, and supramolecular structures.

    Science.gov (United States)

    Yang, Qing-Zheng; Siri, Olivier; Braunstein, Pierre

    2005-12-09

    Full details on a very efficient transamination reaction for the synthesis of zwitterionic N,N-dialkyl-2-amino-5-alcoholate-1,4-benzoquinonemonoiminium derivatives [C6H2(=NHR)2(=O)2] 5-16 are reported. The molecular structures of zwitterions 5 (R=CH3) in 5.H2O, 13 (R=CH2CH2OMe), 15 (R=CH2CH2NMe2), and of the parent, unsubstituted system [C6H2(=NH2)2(=O)2] 4 in 4.H2O have been established by single-crystal X-ray diffraction. This one-pot preparation can be carried out in water, MeOH, or EtOH and allows access to new zwitterions with N-substituents bearing functionalities such as -OMe (13), -OH (9-12), NR1R2 with R1 = or not equal R2 (14-16) or an alkene (8), leading to a rich coordination chemistry and allowing fine-tuning of the supramolecular arrangements in the solid state. As previously described for 15, which reacted with Zn(acac)2 to afford the octahedral Zn(II) complex [Zn[C6H2(NCH2CH2NMe2)O(O)(NHCH2CH2NMe2)]2] (20), ligands 13 and 16 with coordinating "arms" afforded with Zn(acac)2 the 2:1 adducts [Zn[C6H2(NCH2CH2X)O(=O)(NHCH2CH2NX)]2] 19 (X=OMe) and 21 (X=NHEt), with N2O4 and N4O2 donor sets around the octahedral Zn(II) center, respectively. Furthermore, zwitterions 15 and 16 reacted with ZnCl2 to give the stable, crystallographically characterized Zn(II) zwitterionic complexes [ZnCl2[C6H2(NCH2CH2NR1R2)O(=O)(NHCH2CH2NHR1R2)

  3. 3d and 4d coordination complexes and coordination polymers involving electroactive tetrathiafulvalene containing ligands

    OpenAIRE

    Pointillart , Fabrice; Golhen , Stéphane; Cador , Olivier; Ouahab , Lahcène

    2013-01-01

    International audience; The "through bond" approach has been recently developed to increase the interaction between the mobile π and localized d electrons in multifunctional molecular materials involving tetrathiafulvalene-based ligands. This article reviews the 3d and 4d coordination complexes and polymers elaborated from a library of tetrathiafulvalene derivatives containing ligands obtained recently in our group. The different synthetic ways of the complexes are highlighted as well as thei...

  4. Syntheses, structures, luminescence, and magnetic properties of one-dimensional lanthanide coordination polymers with a rigid 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid ligand.

    Science.gov (United States)

    Ji, Baoming; Deng, Dongsheng; He, Xiao; Liu, Bin; Miao, Shaobin; Ma, Ning; Wang, Weizhou; Ji, Liguo; Liu, Peng; Li, Xianfei

    2012-02-20

    A series of novel one-dimensional (1-D) lanthanide coordination polymers (CPs), with the general formula {[Ln(bptcH)(H(2)O)(2)]·H(2)O}(n) (Ln = Nd(III) (1), Eu(III) (2), Gd(III) (3), Tb(III) (4), Dy(III) (5), Ho(III) (6), or Er(III) (7)) have been synthesized by the solvothermal reactions of the corresponding lanthanide(III) picrates and 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid (bptcH(4)). These polymers have been structurally characterized by single-crystal X-ray diffraction, IR, PXRD, thermogravimetric (TGA), and elemental analysis. Coordination polymers 1-7 are isostructural; they possess the same 3D supramolecular architectures and crystallize in triclinic space group P1̅. The frameworks constructed from dinuclear lanthanide building blocks exhibit one-dimensional double-stranded looplike chain architectures, in which the bptcH(3-) ions adopted hexadentate coordination modes. The Eu(III) (2) and Tb(III) (4) polymers exhibit characteristic photoluminescence in the visible region. The magnetic properties of polymers 2, 3, and 5 have been investigated through the measurement of their magnetic susceptibilities over the temperature range of 1.8-300 K.

  5. Syntheses, structures, and photoluminescence of three-dimensional lanthanide coordination polymers with 2,5-pyridinedicarboxylic acid

    International Nuclear Information System (INIS)

    Huang Yan; Song Yishan; Yan, Bing; Shao Min

    2008-01-01

    Four new open-framework coordination polymers of lanthanide 2,5-pyridinedicarboxylates, with the formulas Pr2(pydc) 3 (H 2 O) 2 (1), Ln(pydc)(Hpydc) (Ln=Tb (2), Er (3), Eu (5)), and Gd(pydc)(nic)(H 2 O) (4) (H 2 pydc=2,5-pyridinedicarboxylic acid, Hnic=nicotinic acid), have been hydrothermally synthesized and four of them (except Eu (5)) have been structurally characterized. Complex 1 consists of two types of ligand-binding modes contributing to link the PrO 7 N(H 2 O) polyhedral chains to three-dimensional (3D) open-framework architecture. Complexes 2 and 3 are isostructural and feature unique 3D cage-like supramolecular frameworks remarkably different from that of 1, owing to the different ligand-bridging pattern. Complex 4, however, has the distinct 3D open-framework architecture due to the presence of unexpected nicotinate ligands, which may be derived from pydc ligands via in-situ decarboxylation under the hydrothermal condition. - Graphical abstract: Four new lanthanide coordination polymers have been hydrothermally synthesized by the reaction of 2,5-pyridinedicarboxylic acid with the corresponding lanthanide nitrates, and they show three types of 3D open-framework architecture. Complexes 2 and 5 show strong characteristic green (or red) luminescence and long lifetimes

  6. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    Science.gov (United States)

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  7. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiong, Zhi-Qiang [Center for Analysis and Testing, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  9. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  10. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan, E-mail: xytang@cslg.edu.cn; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2016-03-15

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.

  11. De Novo Design of Supercharged, Unfolded Protein Polymers, and Their Assembly into Supramolecular Aggregates

    NARCIS (Netherlands)

    Kolbe, Anke; Mercato, Loretta L. del; Abbasi, Azhar Z.; Rivera Gil, Pilar; Gorzini, Sekineh J.; Huibers, Willem; Poolman, Bert; Parak, Wolfgang J.; Herrmann, Andreas

    2011-01-01

    Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide

  12. Synthesis, characterization and NLO properties of a new 3D coordination polymer assembled from p-aminobenzoic acid

    Science.gov (United States)

    Li, Li; Sun, Daofeng; Wang, Zhengping; Song, Xinyu; Sun, Sixiu

    2009-05-01

    Reaction of Zn(NO 3) 2·6H 2O with p-aminobenzoic acid in a 1:2 molar ratio under ethanol medium at room temperature affords a new three dimensional (3D) coordination polymer [Zn(PABA) 2]·H 2O ( 1) (PABA = p-aminobenzoic acid). Single-crystal X-ray diffraction reveals that 1 crystallizes in the orthorhombic system, space group P2 12 12 1, a = 7.614(2), b = 11.133(3), c = 16.869(4). 1 adopts a 3D open framework with H 2O molecules in the cavities. PABA, acting as bridging ligand as well as coordinating ligand, adopts a different coordination mode to bridge Zn atoms and form the 3D supramolecular structure which is further stabilized by N-H⋯O, O-H⋯O hydrogen bonding and π-π stacking interactions. Powder second-harmonic generation (SHG) efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the SHG efficiency of 1 is equivalent to KDP crystal. The present work also demonstrates that the framework of 1 is retained after removal of the guest H 2O molecules, and the H 2O molecules can be reintroduced into the framework, indicating that this complex may also be used to generate porous materials.

  13. Extended structures of two coordination polymers based on 1,10 ...

    Indian Academy of Sciences (India)

    quinoxaline) by hydrothermal processing and structural characterization by ele- mental analysis, thermogravimetric analysis and single-crystal X-ray diffraction. The coordination polymers 1 and 2 have 1D chains formed via coordination bonds ...

  14. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  15. Lanthanide Coordination Polymer Nanosheet Aggregates: Solvothermal Synthesis and Downconversion Luminescence

    Directory of Open Access Journals (Sweden)

    Rui-Rui Su

    2016-01-01

    Full Text Available A lanthanide coordination polymers (CPs nanostructure (1 has been synthesized via a facile template-free solvothermal strategy using DMF as solvent and 2-methyl benzoic acid (2-MeBAH as ligands. The products are characterized by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM, elemental analyses (EA, and downward luminescence. Product 1 built from Tb3+ and 2-MeBAH has one-dimensional structure which is connected by trinuclear second building units (SBUs. Downward luminescence shows that sample 1 exhibits characteristic transitions of the Tb3+ ion at 489, 544, 583, and 621 nm, and the strongest peak is at 544 nm ascribed to the transition of D45→F57 of Tb3+.

  16. Gas confinement in compartmentalized coordination polymers for highly selective sorption.

    Science.gov (United States)

    Giménez-Marqués, Mónica; Calvo Galve, Néstor; Palomino, Miguel; Valencia, Susana; Rey, Fernando; Sastre, Germán; Vitórica-Yrezábal, Iñigo J; Jiménez-Ruiz, Mónica; Rodríguez-Velamazán, J Alberto; González, Miguel A; Jordá, José L; Coronado, Eugenio; Espallargas, Guillermo Mínguez

    2017-04-01

    Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2 , which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO 2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations.

  17. Syntheses, crystal structures and luminescent properties of two new 1D d 1 coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    International Nuclear Information System (INIS)

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin

    2005-01-01

    Two novel interesting d 1 metal coordination polymers, [Zn(H 2 bibzim)(BDC)] n (1) and [Cd(H 2 bibzim)(BDC)] n (2) [H 2 bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The π-π interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d 1 coordination polymeric framework

  18. 1D Cu(II) coordination polymer derived from 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)benzenesulfonate chelator and pyrazine spacer

    Science.gov (United States)

    Mahmudov, Kamran T.; Haukka, Matti; Sutradhar, Manas; Mizar, Archana; Kopylovich, Maximilian N.; Pombeiro, Armando J. L.

    2013-02-01

    Reaction of 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)benzenesulfonic acid (H2L) with copper(II) nitrate hydrate in the presence of pyrazine (pz) in methanol affords the coordination polymer [Cu2(μ-L)2(H2O)2(μ-pz)]n (1), where the bidentate pz molecule links two Cu(II) centres of two different dimeric units, giving rise to a one-dimensional chain. The dimeric unit [Cu2(μ-L)2(H2O)2] consists of two distorted octahedral Cu(II) centres connected via oxygen atoms of the sulfo group of the bridging L2- ligand. The extensive hydrogen bonding between the coordinated water and pz molecules leads to the formation of a supramolecular 3D associate. Compound 1 has been characterized by elemental analysis, ESI-MS, IR spectroscopy and single-crystal X-ray diffraction analysis.

  19. Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties

    Science.gov (United States)

    Yuan, Fei; Yuan, Chun-Mei; Hu, Huai-Ming; Wang, Ting-Ting; Zhou, Chun-Sheng

    2018-02-01

    Eleven new coordination polymers, [Zn2(ctpy)2(HCOO)2]n·3nH2O (1), [Zn2(ctpy)2(HCOO)2(H2O)2]n·nH2O (2), [Zn2(ctpy)2(H2O)4]n·2n(CH3COO)·nH2O (3), [Zn2(ctpy)2(CH3COO)2]n·nH2O (4), [Zn(ctpy)2]n·nH2O (5), [Zn2(ctpy)2(Hidc)(H2O)2]n(6), [Cd2(ctpy)4]n(7), [Cd2(ctpy)2(Hidc)]n(8), [Co2(ctpy)2(HCOO)2(H2O)2]n·nH2O (9), [Co(ctpy)(DMF)(ox)0.5]n(10), [Co(ctpy)(ox)0.5]n(11) and the closely related compound [Zn(ctpy)(ox)0.5]n·0.5nH2O (12) (Hctpy = 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine, H2ox = oxalic acid and H3idc = imidazole-4,5-dicarboxylic acid) have been synthesized by hydro(solvo)thermal reaction of 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine with divalent metal salts and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction. Compounds 1 and 4 have similar structure which demonstrate a two-fold interpenetrating 3D framework with a 3-connected utp topological net, which contains the same number of left and right-handed 21 helical chains. Compounds 2 and 9 are isostructural 2D layer with a 3-connected hcb topological net. Similar to 2, compound 3 also displays a 3-connected 2D hcb topological net. Compounds 5 and 10 are a 2D layer with a 4-connected sql topological net. Compound 6 shows a chiral 2D layer based on a 1D left- or right-handed helical chains, which are further extended into an achiral 2D + 2D→3D supramolecular network by hydrogen bonds with alternately arrangement. Compound 7 features an unusual 2-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,5)-connected binodal topological net with the Schläfli symbol of (52·6)(53·63·73·8). Compound 8 shows a 2D→3D supramolecular structure based on (3,4)-connected 2D bilayers with the Schläfli symbol of (44·62). Compound 11 displays an unusual three-dimensional coordination network which exhibits an intriguing (3,8)-connected binodal new topological net with Schläfli symbol (42·62)2(42·623·83). Compound 12 features a two

  20. A novel Mn(II) oxalato-bridged 2D coordination polymer: synthesis ...

    Indian Academy of Sciences (India)

    Hiba Sehimi

    2018-02-28

    Feb 28, 2018 ... Keywords. 2D coordination polymer; manganese; oxalate; magnetism. 1. Introduction. Coordination polymers (CPs) are of rising interest because of their fascinating topologies and dimension- ality associated with both structural and functional ver- satility. Various attempts to build high-dimensional CPs.

  1. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  2. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xin-Xin; Luo, Yu-Hui [Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China (China); Lu, Chen [School of Pharmaceutical and Life Sciences,Changzhou University, Changzhou, Jiangsu 213164 (China); Chen, Xin, E-mail: xinchen@cczu.edu.cn [School of Pharmaceutical and Life Sciences,Changzhou University, Changzhou, Jiangsu 213164 (China); Zhang, Hong, E-mail: zhangh@nenu.edu.cn [Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China (China)

    2015-12-15

    Three new silver coordination polymers, namely, {Ag_3(bpy)_6[PW_1_2O_4_0]} (1), {Ag_5(H_2biim)_2(Hbiim-NO_2)_2[PW_1_2O_4_0]} (2), {Ag_7(pytz)_4[PW_1_2O_4_0]} (3) (bpy=2,2′-bipyridine, H{sub 2}biim=2,2′-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1–3 have better antibacterial property in gram negative bacteria than gram positive bacteria. In addition, compounds 1–3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants. - Highlights: • Three new silver coordination polymers have been synthesized under hydrothermal condition. • Due to different coordination modes of rigid N-donor ligands, structures of the title compounds vary from 0D to 3D frameworks. • It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. • In addition, these compounds exhibit efficiency of photocatalytic decomposition of dyes and antibacterial activities.

  3. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    International Nuclear Information System (INIS)

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-01-01

    A multifunctional homochiral coordination polymer, [Co(H 2 O)(BDC)(4,4′-BPY)]∙3H 2 O (1) (H 2 BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions

  4. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  5. Thermally bisignate supramolecular polymerization

    Science.gov (United States)

    Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo

    2017-11-01

    One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

  6. Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

    Science.gov (United States)

    Zhou, Xiaoyan; Guo, Yanling; Shi, Zhaohua; Song, Xueqin; Tang, Xiaoliang; Hu, Xiong; Zhu, Zhentong; Li, Pengxuan; Liu, Weisheng

    2012-02-14

    Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2 : 3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.

  7. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  8. Cu(II) coordination polymers constructed by tetrafluoroterephthalic acid and varied imidazole-containing ligands: Syntheses, structures and properties

    Science.gov (United States)

    Liu, Kang; Sun, Yayong; Deng, Liming; Cao, Fan; Han, Jishu; Wang, Lei

    2018-02-01

    Six new copper(II) coordination polymers combining 2,3,5,6-tetrafluoroterephthalatic acid (H2tfBDC) and diverse imidazole-containing ligands, {[Cu(tfBDC)(1,2-bix)2]·2(H2O)}n (1), {Cu(tfBDC)(Im)2}n (2), {[Cu(1,4-bmimb)2(H2O)]·(tfBDC)·2(H2O)}n (3), {Cu(1,4-bimb)2(H2O)2·(tfBDC)}n (4), {[Cu(1,3-bix)2(H2O)2]·(tfBDC)·6(H2O)}n (5) and {[Cu(1,4-bix)2(H2O)2]·(tfBDC)·(1,4-bix)·4(H2O)}n (6) (1,2-bix = 1,2-bis(imidazole-1-ylmethyl)-benzene, Im = imidazole, 1,4-bmimb = 1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-yl)-butane, 1,3-bix = 1,3-bis(imidazole-1-ylmethyl)-benzene, 1,4-bix = 1,4-bis(imidazole-1-ylmethyl)-benzene), have been obtained and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Single crystal X-ray diffraction analysis revealed that 1 is 2D 4-connected sql topology (point symbol: {44·62}) based on a single metal ion node. Compound 2 is characterized as an infinite 1D chain structure, which is further extended into a 2D layer through N-H···O hydrogen bonds and then a 3D supramolecular architecture via π···π stacking interactions. Note that 2 was prepared through an in situ ligand reaction in which N,N'-carbonyldiimidazole (cdi) broke up into imidazole ligand. Compound 3 possesses a 3D 4-fold interpenetrated architecture with 4-connected dia topology (Schläfli symbol: {66}) in which tfBDC2- is stabilized in the channel by hydrogen bonds. Compounds 4-6 are all linear 1D coordination polymers. In 4, the free tfBDC2- ligand acts as a μ4-bridge to link four coordinated water molecules from the chain to construct a 2D structure via hydrogen bonds. While in 5 and 6, the uncoordinated tfBDC2- ligands and multimeric water clusters is responsible for the conversion of these 1D coordination polymers into 3D supramolecular assemblies through O-H⋯O hydrogen bonding interactions. Moreover

  9. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  10. Solvothermal synthesis and structure of coordination polymers of Nd(III) and Dy(III) with rigid isophthalic acid derivatives and flexible adipic acid

    Science.gov (United States)

    Kariem, Mukaddus; Kumar, Manesh; Yawer, Mohd; Sheikh, Haq Nawaz

    2017-12-01

    Two new coordination polymers (CPs) with the formula [Nd(hip)(adip) 0.5(H2O)2]n.nH2O (1) and [Dy(aip)(adip)0.5(H2O)2]n.nH2O (2) were synthesized by self-assembly of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)], [5-aminoisophthalic acid (H2aip)] and flexible [adipic acid (H2adip)] linkers under solvothermal conditions. The CPs 1 &2 crystallize in monoclinic C2/c space group. Both the CPs have 1D linear ladder shaped extension with the linkages having the backbone of hip2-, aip2- and adip2- ligands. The 1D linear ladder chains generate three dimensional (3D) supramolecular frameworks via significant π-π and hydrogen bonding interactions. The CP 2 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CP 2 also exhibit weak ferromagnetic interactions at low temperatures.

  11. Synthesis, crystal structures, luminescence and catalytic properties of two d¹⁰ metal coordination polymers constructed from mixed ligands.

    Science.gov (United States)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-15

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb=1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph=homophthalic acid, H3btc=1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 6(6) topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    International Nuclear Information System (INIS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-01-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO 4 - (1), NO 3 -bar (2), BF 4 - (3) and CF 3 SO 3b ar (4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate (αGlytrz) which show hysteretic room temperature spin crossover, 1–4 remain in the high-spin state as revealed by 57 Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  13. Neutral and anionic duality of 1,2,4-triazole {alpha}-amino acid scaffold in 1D coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anil D.; Dirtu, Marinela M.; Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium)

    2012-03-15

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO{sub 4{sup -}} (1), NO{sub 3}-bar (2), BF{sub 4{sup -}} (3) and CF{sub 3}SO{sub 3b}ar (4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ({alpha}Glytrz) which show hysteretic room temperature spin crossover, 1-4 remain in the high-spin state as revealed by {sup 57}Moessbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  14. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  15. Rheology of Supramolecular Polymers

    OpenAIRE

    Shabbir, Aamir; Hassager, Ole; Skov, Anne Ladegaard

    2016-01-01

    Supramolekylære materialer er en bred klasse af materialer, som inkluderer polymerersom selvorganiserer via intermolekylære eller intramolekylære kræfter. Materialernebesidder en række egenskaber som gør dem til attraktive alternativer tilklassiske polymerer f.eks. til emballage til overfladebehandling eller til medicinskeanvendelser.For at designe og udvikle supramolekylære polymerer med ion-bindinger, hydrogenbindingereller metal-komplex-bindinger med ønskede egenskaber krævesen god forst°a...

  16. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination.

    Science.gov (United States)

    Ikeda, Masato; Tanaka, Yoshie; Hasegawa, Takashi; Furusho, Yoshio; Yashima, Eiji

    2006-05-31

    We describe the construction of the first double-stranded metallosupramolecular helical polymers. We designed and synthesized a supramolecular duplex comprised of complementary m-terphenyl-based strands bearing a chiral amidine or achiral carboxylic acid together with two pyridine groups at the four ends. Supramolecular polymerization of the duplex with cis-PtPh2(DMSO)2 in 1,1,2,2-tetrachloroethane produced the double-stranded metallosupramolecular polymer with a controlled helicity of which the two complementary metallostrands are intertwined through the amidinium-carboxylate salt bridges. The structures and hydrodynamic dimensions of the metallosupramolecular polymers were characterized by 1H NMR, diffusion-ordered NMR, dynamic light scattering, absorption, and CD measurements. The polymeric structure was also visualized by atomic force microscopy.

  17. Linking homogeneous and heterogeneous enantioselective catalysis through a self-assembled coordination polymer.

    Science.gov (United States)

    García, José I; López-Sánchez, Beatriz; Mayoral, José A

    2008-11-06

    Combining the advantages of homogeneous and heterogeneous enantioselective catalysis is possible through self-supported copper coordination polymers, based on a new kind of ditopic chiral ligand bearing two azabis(oxazoline) moieties. When the coordination polymer is used to catalyze a cyclopropanation reaction, it becomes soluble in reaction conditions but precipitates after reaction completion, allowing easy recovery and efficient reuse in the same reaction up to 14 times.

  18. m-Carboranylphosphinate as Versatile Building Blocks To Design all Inorganic Coordination Polymers.

    Science.gov (United States)

    Oleshkevich, Elena; Viñas, Clara; Romero, Isabel; Choquesillo-Lazarte, Duane; Haukka, Matti; Teixidor, Francesc

    2017-05-15

    The first examples of coordination polymers of manganese(II) and a nickel(II) complex with a purely inorganic carboranylphosphinate ligand are reported, together with its exhaustive characterization. X-ray analysis revealed 1D polymeric chains with carboranylphosphinate ligands bridging two manganese(II) centers. The reactivity of polymer 1 with water and Lewis bases has also been studied.

  19. Mesoscale Simulation of Polymer Reaction Equilibrium: Combining Dissipative Particle Dynamics with Reaction Ensemble Monte Carlo. II. Supramolecular Diblock Copolymers

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2009-01-01

    Roč. 130, č. 10 (2009), 104902-1-104902-15 ISSN 0021-9606 R&D Projects: GA ČR GA203/08/0094; GA AV ČR 1ET400720507; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : mesoscale simulation s * supramolecular diblock copolymers * reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.093, year: 2009

  20. Novel Inorganic Coordination Polymers Based on Cadmium Oxalates

    Science.gov (United States)

    Prasad, P. A.; Neeraj, S.; Vaidhyanathan, R.; Natarajan, Srinivasan

    2002-06-01

    Three new cadmium oxalate coordination polymers, I-III, with extended layered structures have been synthesized in the presence of imidazole. While I was prepared by the reaction between imidazolium oxalate and Cd, II and III were synthesized from their constituents using hydrothermal methods. [Cd(C2O4)(C3N2H4)]∞ (I): monoclinic, space group P21/c (no. 14), a=8.7093(1) Å, b=9.9477(3) Å, c=8.4352 Å, β=93.796(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (II): monoclinic, space group P21/c (no. 14), a=7.8614(2) Å, b=14.9332(3) Å, c=15.9153(4) Å β=94.587(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (III): monoclinic, space group P21/c (no. 14), a=11.844(2) Å, b=9.066(1) Å, c=18.583(2) Å, β=103.84(2)°, Z=4. While the structure of I is made from CdO5N distorted octahedra linked with oxalate, II and III are built-up from CdO6N, CdO5N2 distorted pentagonal bi-pyramids connected to oxalate units. The framework formulas of II and III are identical and their structures closely related. In all the cases, the networking between the Cd-O/N polyhedra and oxalates give rise to layered architectures with the amine molecules pointing in a direction perpendicular to the layers (in the inter-lamellar region). The difference in the linkages between the oxalates and the Cd atoms in I-III, produces unusual Cd-O-Cd one-dimensional chains, which have been observed for the first time.

  1. Fine-tuning optimal porous coordination polymers using functional alkyl groups for CH4 purification

    NARCIS (Netherlands)

    Cheng, F.; Li, Q.; Duan, J.; Hosono, N.; Noro, S.-I.; Krishna, R.; Lyu, H.; Kusaka, S.; Jin, W.; Kitagawa, S.

    2017-01-01

    Nano-porous coordination polymers (nano-PCPs), as a new class of crystalline material, have become a lucrative topic in coordination chemistry due to the facile tunability of their functional pore environments. However, elucidating the pathways for the rational design and preparation of nano-PCPs

  2. Extended structures of two coordination polymers based on 1,10 ...

    Indian Academy of Sciences (India)

    metal ions play a critical role in the framework construction of the two coordination polymers. Meanwhile, natural bond orbital (NBO) analysis was performed by the PBE0/LANL2DZ method in Gaussian 09 program. The calculated results show the obvious covalent interaction between the coordinated atoms and metal ions.

  3. A two-dimensional yttrium phthalate coordination polymer, [Y4(H2O ...

    Indian Academy of Sciences (India)

    Unknown

    - lic acid (1,2-BDC) and NaOH gives rise to a new yttrium phthalate coordination polymer, [Y4(H2O)2(C8H4O4)6]∞, I. The Y ions in I are present in four different coordination environments with respect to the oxygen atoms (CN6 = octahedral,.

  4. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  5. Studies on dielectric properties of ferrocenylhydrazone coordinated polymers irradiated by γ-rays

    International Nuclear Information System (INIS)

    Lin Yun; Chen Jie; Lin Zhanru

    2007-01-01

    The three ferrocenylhydrazone coordinated metal polymers were synthesized (PZM). The effect of the 60 Co γ irradiation on microwave dielectric properties and their temperature-dielectric properties were studies. It has been found that the dielectric parameters (ε', tgδ) of coordinated polymers increase along with the absorbed doses and coordinated metals in order Cu, Co, Ni, However, the dependent curves of dielectric parameters on arise-down temperature are universal. On the other hand, the small changes in chemical structure before and after irradiation were confirmed by IR differential spectrometry and SEM. It is possible to make such coordinated polymers as a multifunctional polymeric material with optical, electric and magnetic properties, which may be potentially used in microwave communication. (authors)

  6. Three d10 coordination polymers assembled from 3,5-bis(imidazole-1-yl)pyridine and different polycarboxylates: Syntheses, structures and luminescence properties

    Science.gov (United States)

    Pan, Jie; Zhang, Di; Xue, Zhen-Zhen; Wei, Li; Han, Song-De; Wang, Guo-Ming

    2017-11-01

    Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 1-3 in the solid state at room temperature have been investigated.

  7. Dicynamide bridged two new zig-zag 1-D Zn(II) coordination polymers of pyrimidine derived Schiff base ligands: Synthesis, crystal structures and fluorescence studies

    Science.gov (United States)

    Konar, Saugata

    2015-07-01

    Two new zigzag 1-D polymeric Zn(II) coordination polymers {[Zn(L1)(μ1,5-dca)](H2O)}n (1), {[Zn(L2)(μ1,5-dca)](ClO4)}n (2) of two potentially tridentate NNO-, NNN-, donor Schiff base ligands [2-(2-(4,6-dimethylpyrimidin-2-yl)hydrazono)methyl)phenol] (L1), [1-(4,6-dimethylpyrimidin-2-yl)-2-(dipyridin-2ylmethylene)hydrazine] (L2) have been synthesized and characterized by elemental analyses, IR and 1H NMR, fluorescence spectroscopy and single crystal X-ray crystallography. The dicyanamide ions act as linkers (μ1,5 mode) in the formation of these coordination polymers. Both the complexes 1 and 2 have same distorted square pyramidal geometry around the Zn(II) centres. The weak forces like π⋯π, Csbnd H⋯π, anion⋯π interactions lead to various supramolecular architectures. Complex 1 shows high chelation enhanced fluorescence compared to that of 2. The fluorescence spectral changes observed high selectivity towards Zn(II) over other metal ions such as Mn(II), Co(II), Ni(II), Cu(II).

  8. Design of non-molecular coordination solids from aqueous solution ...

    Indian Academy of Sciences (India)

    4(NO3)2]4 and [Cu(glu)Cl(H2O)]5. Use of glutamic acid resulted in two chiral coordination polymers 5 and [Cu(glu)(H2O)]. H2O 6 depending on the copper source. The paper provides chemical insights to the supramolecular aggregation of a ...

  9. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiu-Hua, E-mail: xhli.univ@gmail.com [College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, 350117 Fujian (China); Zhang, Qi [School of Life Science, Changchun Normal University, Changchun, 130032 Jilin (China); Hu, Ping [Southampton Management School, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  10. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  11. Synthesis, structural characterization and photoluminescent properties of 2D multilayer Cu+ coordination polymers via Csbnd H⋯π and π⋯π interactions

    Science.gov (United States)

    Huang, Ting-Hong; Zhu, Sheng-Lan; Xiong, Xian-Lian; Li, Jia-Dong; Yang, Hu; Huang, Xin; Huang, Xue-Ren; Zhang, Kunming

    2017-09-01

    Two Cu(I) coordination polymers, {[Cu(pmbb)0.5(4,4'-bipy)0.5(PPh3)](BF4) (H2O)2}n (1) and {[Cu(pmbb)0.5(bpe)0.5(PPh3)](BF4)(DMF)}n (2) (pmbb = N, N'-bis(pyridin-2-ylmethylene)biphenyl -4,4'-diamine, 4,4'-bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene), PPh3 = triphenyl phosphine), have been synthesized and characterized by IR, 1H NMR, 13C NMR, 31P NMR, 19F NMR, 11B-NMR, TG and X-ray crystal structure analysis. The structural analysis shows that complexes 1 and 2 contain diverse and interesting 2D supramolecular networks based on inter-chain interactions. Complex 1 displays a 1D zig-zag chain and a 1D+1D→2D supramolecular network formed by intermolecular Csbnd H···π interaction. For 2, each 1D zig-zag chain interacts with neighboring ones via intermolecular Csbnd H···π and π···π stacking interactions, leading to the formation of a 2D-stacking network. Furthermore, solid-state UV-Vis absorption spectra of complexes 1 and 2 indicate the existence of MLCT absorption. Complexes 1 and 2 show efficient luminescent emission peaks at 435 and 452 nm assigned to MLCT excited states, and the emission decay lifetimes are 20.82 μs for 1 and 20.72 μs for 2, displaying strong room-temperature solid-state photoluminescence. Moreover, thermogravimetric analysis shows that the heat stability of polymers is 1>2.

  12. Cationic zinc (II) dimers and one dimensional coordination polymer ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5 ... Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1409-1415 ... These new molecules, dimers and polymer, were characterized by FT-IR, NMR, UV-vis, fluorescent and single crystal X-ray diffraction techniques.

  13. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  14. End group functionalization of poly(ethylene glycol with phenolphthalein: towards star-shaped polymers based on supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Carolin Fleischmann

    2014-09-01

    Full Text Available The synthesis of a new phenolphthalein azide derivative, which can be easily utilized in polymer analogous reactions, is presented. The subsequent cycloaddition reaction with propargyl-functionalized methoxypoly(ethylene glycol yielded polymers bearing phenolphthalein as the covalently attached end group. In presence of per-β-cyclodextrin-dipentaerythritol, the formation of stable inclusion complexes was observed, representing an interesting approach towards the formation of star shaped polymers. The decolorization of a basic polymer solution caused by the complexation was of great advantage since this behavior enabled following the complex formation by UV–vis spectroscopy and even the naked eye.

  15. End group functionalization of poly(ethylene glycol) with phenolphthalein: towards star-shaped polymers based on supramolecular interactions.

    Science.gov (United States)

    Fleischmann, Carolin; Wöhlk, Hendrik; Ritter, Helmut

    2014-01-01

    The synthesis of a new phenolphthalein azide derivative, which can be easily utilized in polymer analogous reactions, is presented. The subsequent cycloaddition reaction with propargyl-functionalized methoxypoly(ethylene glycol) yielded polymers bearing phenolphthalein as the covalently attached end group. In presence of per-β-cyclodextrin-dipentaerythritol, the formation of stable inclusion complexes was observed, representing an interesting approach towards the formation of star shaped polymers. The decolorization of a basic polymer solution caused by the complexation was of great advantage since this behavior enabled following the complex formation by UV-vis spectroscopy and even the naked eye.

  16. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    Science.gov (United States)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  17. Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

    International Nuclear Information System (INIS)

    Choi, Eun Young; Gao, Chunji; Lee, Suck Hyun; Kwon, O Pil

    2012-01-01

    We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short -O(CH 2 ) 6 CH 3 or long -O(CH 2 ) 9 CH 3 side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, -(OCH 2 CH 2 ) 2 CH 3 and -(OCH 2 CH 2 ) 3 CH 3 , form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains

  18. A one-dimensional barium (II) coordination polymer with a ...

    Indian Academy of Sciences (India)

    The polymeric structure is based on a dimeric unit and consists of three water molecules coordinated to a central Ba(II) and two unique 2-nitrobenzoate (2-nba) anions, one of which (2-2-nba-O,O,O-NO2) functions as a tridentate ligand and is linked to a Ba(II) through the oxygen atom of the -NO2 group and forms a ...

  19. Construction of a 2D Co(II) Coordination Polymer with (4,4)-Connected Topology: Synthesis, Crystal Structure, and Surface Photo-electric Property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiaming [Qinzhou Univ., Qinzhou (China)

    2014-04-15

    A 2D grid-like (4, 4)-connected topology coordination polymer, [Co(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n}, where HBTA = 2-(1H-benzotriazol-1-yl)acetic acid, has been synthesized by hydrothermal method and characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and surface photovoltage spectroscopy (SPS). X-ray diffraction analyses indicated that displays octahedral metal centers with secondary building units (SBUs) [Co(BTA){sub 2}(H{sub 2}O){sub 2}] bridged by the BTA. ligands. In the crystal, the 2D supramolecular architecture is further supported by O-H···O, O-H···N, C-H···O hydrogen bonds and π··π stacking interactions. The SPS of polymer 1 indicates that there are positive response bands in the range of 300.600 nm showing photo-electric conversion properties. There are good relationships between SPS and UV-Vis spectra.

  20. Building-up novel coordination polymer with Zn(II) porphyrin dimer ...

    Indian Academy of Sciences (India)

    Building-up novel coordination polymer with Zn(II) porphyrin dimer: Synthesis, structures, surface morphology and effect of axial ligands. SK ASIF IKBAL, SANFAORI BRAHMA, AVINASH DHAMIJA and SANKAR PRASAD RATH. ∗. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.

  1. coordination polymers derived from two different bis-pyridyl-bis-am

    Indian Academy of Sciences (India)

    Self-assembly, structures and properties of three new Ni(II) coordination polymers derived from two different bis-pyridyl-bis-amide ligands and two aromatic polycarboxylates. HONGYAN LIN. ∗. , JUNJUN SUN, GUOCHENG LIU. ∗. , XIANG WANG and PANWEN CHEN. Department of Chemistry, Bohai University, Jinzhou ...

  2. A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.

    Science.gov (United States)

    Boeckmann, Jan; Näther, Christian

    2011-07-07

    Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour. This journal is © The Royal Society of Chemistry 2011

  3. Building-up novel coordination polymer with Zn (II) porphyrin dimer ...

    Indian Academy of Sciences (India)

    ... to the best of our knowledge, the first structural report of 1D-coordination polymer with porphyrin dimer. Solution structures of the complexes along with binding studies in solution between 1 and L have also been investigated. The morphology of the polymeric complex 1·L2 on silicon wafer surface was examined by Atomic ...

  4. coordination polymers derived from two different bis-pyridyl-bis-am

    Indian Academy of Sciences (India)

    Sci. Vol. 129, No. 1, January 2017, pp. 9–20. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1213-y. REGULAR ARTICLE. Self-assembly, structures and properties of three new Ni(II) coordination polymers derived from two different bis-pyridyl-bis-amide ligands and two aromatic polycarboxylates. HONGYAN LIN.

  5. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    Science.gov (United States)

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  7. Synthesis, structure, and electrochemistry and magnetic properties of a novel 1D homochiral MnIII(5-Brsalen) coordination polymer with left-handed helical character

    Science.gov (United States)

    Dong, Dapeng; Yu, Naisen; Zhao, Haiyan; Liu, Dedi; Liu, Jia; Li, Zhenghua; Liu, Dongping

    2016-01-01

    A novel homochiral manganese (III) Mn(5-Brsalen) coordination polymer with left-handed helical character by spontaneous resolution on crystallization by using Mn(5-Brsalen) and 4,4-bipyridine, [MnIII(5-Brsalen)(4,4-bipy)]·ClO4·CH3OH (1) (4,4-bipy = 4,4-bipyridine) has been synthesized and structurally characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectroscopy. In compound 1, each manganese(III) anion is six-coordinate octahedral being bonded to four atoms of 5-Brsalen ligand in an equatorial plane and two nitrogen atoms from a 4,4-bipyridine ligand in axial positions. The structure of compound 1 can be described a supramolecular 2D-like structure which was formed by the intermolecular π-stacking interactions between the neighboring chains of the aromatic rings of 4,4-bipyridine and 5-Brsalen molecules. UV-vis absorption spectrum, electrochemistry and magnetic properties of the compound 1 have also been studied.

  8. Crystal structures of coordination polymers from CaI2 and proline

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2015-06-01

    Full Text Available Completing our reports concerning the reaction products from calcium halides and the amino acid proline, two different solids were found for the reaction of l- and dl-proline with CaI2. The enantiopure amino acid yields the one-dimensional coordination polymer catena-poly[[aqua-μ3-l-proline-tetra-μ2-l-proline-dicalcium] tetraiodide 1.7-hydrate], {[Ca2(C5H9NO25(H2O]I4·1.7H2O}n, (1, with two independent Ca2+ cations in characteristic seven- and eightfold coordination. Five symmetry-independent zwitterionic l-proline molecules bridge the metal sites into a cationic polymer. Racemic proline forms with Ca2+ cations heterochiral chains of the one-dimensional polymer catena-poly[[diaquadi-μ2-dl-proline-calcium] diiodide], {[Ca(C5H9NO22(H2O2]I2}n, (2. The centrosymmetric structure is built by one Ca2+ cation that is bridged towards its symmetry equivalents by two zwitterionic proline molecules. In both structures, the iodide ions remain non-coordinating and hydrogen bonds are formed between these counter-anions, the amino groups, coordinating and co-crystallized water molecules. While the overall composition of (1 and (2 is in line with other structures from calcium halides and amino acids, the diversity of the carboxylate coordination geometry is quite surprising.

  9. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  10. Coordination polymers from a highly flexible alkyldiamine-derived ligand: structure, magnetism and gas adsorption studies.

    Science.gov (United States)

    Hawes, Chris S; Chilton, Nicholas F; Moubaraki, Boujemaa; Knowles, Gregory P; Chaffee, Alan L; Murray, Keith S; Batten, Stuart R; Turner, David R

    2015-10-28

    The synthesis and structural, magnetic and gas adsorption properties of a series of coordination polymer materials prepared from a new, highly flexible and internally functional tetrakis-carboxybenzyl ligand H4L derived from 1,2-diaminoethane have been examined. The compound poly-[Ni3(HL)2(OH2)4]·2DMF·2H2O 1, a two-dimensional coordination polymer, contains aqua- and carboxylato-bridged trinuclear Ni(II) clusters, the magnetic behaviour of which can be well described through experimental fitting and ab initio modelling to a ferromagnetically coupled trimer with a positive axial zero-field splitting parameter D. Compound poly-[Zn2L]·2DMF·3H2O 2, a three-dimensional coordination polymer displaying frl topology, contains large and well-defined solvent channels, which are shown to collapse on solvent exchange or drying. Compound poly-[Zn2(L)(DMSO)4]·3DMSO·3H2O 3, a highly solvated two-dimensional coordination polymer, displayed poor stability characteristics, however a structurally related material poly-[Zn2(L)(bpe)(DMSO)2]·DMSO·3H2O 4 was prepared under similar synthetic conditions by including the 1,2-bis(4-pyridyl)ethylene bpe co-ligand. Compound 4, containing small one-dimensional solvent channels, shows excellent structural resilience to solvent exchange and evacuation, and the evacuated material displays selective adsorption of CO2 over N2 at 273 K in the pressure range 0-1 atm. Each of the coordination polymers displays subtle differences in the conformation and binding mode of the ligand species, with switching between two distinct conformers (X-shaped and H-shaped), as well as a variable protonation state of the central core, with significant effects on the resulting network structures and physical properties of the materials.

  11. Two novel alkaline earth coordination polymers constructed from cinnamic acid and 1,10-phenanthroline: synthesis and structural and thermal properties.

    Science.gov (United States)

    Bendjellal, Nassima; Trifa, Chahrazed; Bouacida, Sofiane; Boudaren, Chaouki; Boudraa, Mhamed; Merazig, Hocine

    2018-02-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N-donor ligands have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10-phenanthroline-κ 2 N,N')bis(μ-3-phenylprop-2-enoato-κ 3 O,O':O)calcium(II)], [Ca(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (1), and poly[(1,10-phenanthroline-κ 2 N,N')(μ 3 -3-phenylprop-2-enoato-κ 4 O:O,O':O')(μ-3-phenylprop-2-enoato-κ 3 O,O':O)barium(II)], [Ba(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (2), and characterized them by FT-IR and UV-Vis spectroscopies, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction analysis, as well as by powder X-ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine-coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C-H...O hydrogen bonds and π-π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three-dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297-1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.

  12. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  13. Seven new Zn(II)/Cd(II) coordination polymers with 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng

    2017-08-01

    Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR

  14. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.

  15. The first bis-cyanoxime: synthesis and properties of a new versatile and accessible polydentate bifunctional building block for coordination and supramolecular chemistry.

    Science.gov (United States)

    Cheadle, Carl; Gerasimchuk, Nikolay; Barnes, Charles L; Tyukhtenko, Sergiy I; Silchenko, Svitlana

    2013-04-14

    , >2.89 Å, mostly electrostatic Tl···O contacts, involving oxygen atoms of the amide-group and the oxime-group of neighboring units. Among several possible binding modes, the coordination of the bis-cyanoxime dianion of 2 adopted in complex 4 is unusual, and evidenced its great potential as a versatile building block for coordination and supramolecular chemistry.

  16. Porous coordination polymer with flexibility imparted by coordinatively changeable lithium ions on the pore surface.

    Science.gov (United States)

    Xie, Lin-Hua; Lin, Jian-Bin; Liu, Xiao-Min; Wang, Yu; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2010-02-01

    Solvothermal reactions of equimolar zinc acetate, lithium acetate, and 1,3,5-benzenetricarboxylic acid (H(3)btc) in different mixed solvents yielded isostructural three-dimensional frameworks [LiZn(btc)(cG)].lG [cG and lG denote coordinated and lattice guests, respectively; cG = (nmp)(0.5)(H(2)O)(0.5), lG = (EtOH)(0.5) (1a); cG = H(2)O, lG = EtOH (1b); nmp = N-methyl-2-pyrrolidone] with one-dimensional channels occupied by guest molecules and solvent-coordinated, extrusive Li(+) ions. Thermogravimetry analyses and powder X-ray diffraction measurements revealed that both 1a and 1b can lose all lattice and coordinated guests to form a desolvated phase [LiZn(btc)] (MCF-27, 1) and almost retains the original framework structure. Gas adsorption measurements on 1 confirmed its permanent porosity but suggested a structural transformation from 1a/1b to 1. It is noteworthy that only 1a can undergo a single-crystal to single-crystal (SCSC) transformation into 1 upon desolvation. The crystal structure of 1 revealed that the Li(+) ions were retracted into the channel walls via complementary coordination to the carboxylate oxygen atoms in the framework rather than being exposed on the pore surface. Single-crystal X-ray diffraction analyses were also performed for N(2)- and CO(2)-loaded samples of 1, revealing that the framework remained unchanged when the gases were adsorbed. Although the gas molecules could not be modeled, the residue electrons inside the channels demonstrated that the retracted Li(+) ions still behave as the primary interacting site for CO(2) molecules. Nevertheless, solvent molecules such as H(2)O can readily compete with the framework oxygen atom to retrieve the extrusive Li(+) ions, accompanying the reverse structural transformation, i.e., from 1 to 1a/1b.

  17. Post-synthetic transformation of a Zn( ii ) polyhedral coordination network into a new supramolecular isomer of HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao [State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071; P. R. China; College of Pharmacy; Wojtas, Lukasz [Department of Chemistry; University of South Florida; 4202 East Fowler Avenue; Tampa; USA; Ma, Shengqian [Department of Chemistry; University of South Florida; 4202 East Fowler Avenue; Tampa; USA; Zaworotko, Michael J. [Department of Chemistry & Environmental Sciences, Bernal Institute, University of Limerick; Limerick; Republic of Ireland; Zhang, Zhenjie [College of Chemistry, Nankai University; Tianjin; P. R. China; State Key Laboratory of Medicinal Chemical Biology; Nankai University

    2017-01-01

    A Zn-based porphyrin containing metal–organic material (porphMOM-1) was post-synthetically transformed into a Cu-based porphyrin-encapsulating metal–organic material (porph@HKUST-1-β).HKUST-1-βis a new supramolecular isomer ofHKUST-1.

  18. Singlet fission in thin films of metallo-supramolecular polymers with ditopic thiophene-bridged terpyridine ligands

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Pfleger, Jiří; Menšík, Miroslav; Zhigunov, Alexander; Štenclová, P.; Svoboda, Jan; Vohlídal, J.

    2017-01-01

    Roč. 5, č. 32 (2017), s. 8041-8051 ISSN 2050-7526 R&D Projects: GA ČR(CZ) GAP108/12/1143; GA MŠk(CZ) LD14011; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : triplet exciton * excimer * zinc Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.256, year: 2016

  19. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  20. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    International Nuclear Information System (INIS)

    Jin Jing; Han Xiao; Meng Qin; Li Dan; Chi Yuxian; Niu Shuyun

    2013-01-01

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz) 2 (H 2 O)] n (1), [Cd1Cd2(btec)(H 2 O) 6 ] n (2), [Cd(3,4-pdc) (H 2 O)] n (3), [Zn(2,5-pdc)(H 2 O) 4 ]·2H 2 O (4) and { [Zn(2,5-pdc)(H 2 O) 2 ]·H 2 O} n (5) (H 2 bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H 4 btec=1,2,4,5-benzenetetracarboxylic acid, H 2 pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV–vis spectra and elemental analysis. Structural analyses show that complexes 1–3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300–600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: ► Five Cd/Zn complexes have been synthesized and characterized. ► The SPS results indicate they possess obvious photoelectric conversion property. ► The species and coordination environment of central metal ion affect SPS. ► The species and property of ligands affect SPS. ► By the energy-band theory and the crystal filed theory, the SPS are analyzed and assigned.

  1. Incidental Polymorphism, Non-Isomorphic and Isomorphic Substitution in Calcium-Valine Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2015-05-01

    Full Text Available Five coordination polymers with the stoichiometry CaX2(valine2(H2O2 (X = Cl, Br were obtained from the corresponding calcium halides and either racemic and enantiopure valine. In all cases the zwitterionic amino acid is exclusively O coordinated and the halides act as counteranions for the resulting one-dimensional cationic chains. The enantiopure chloride shows dimorphism; both forms differ in connectivity from the bromide. In contrast to this structural variability for L-valine, the derivatives of the racemic amino acid are isomorphous.

  2. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG–DTG and DTA techniques

    Directory of Open Access Journals (Sweden)

    Ratiram Gomaji Chaudhary

    2015-07-01

    Full Text Available The four chelate polymer complexes commonly called as coordination polymers of Mn(II, Co(II, Ni(II and Cu(II ions with fbpmpc (fbpmpc = fumaroyl bis (paramethoxyphenylcarbamide were synthesized and characterised by elemental analyses, infrared spectroscopy, diffuse reflectance, magnetic moment susceptibility, thermal analysis, X-ray diffraction, electrical conductivity and scanning electron microscopy technique (SEM. SEM investigations of coordination polymers were found in different shapes and sizes, though they are synthesized from a single ligand. Each metal ion is coordinated by a bis (bidentate manner through oxygen atom of the carboxylato group and the nitrogen atom of an amide group of ligand and two aqua ligands by coordinated bond which formed 6-member heterocyclic ring. In the present article, the main aim of research study is to find out the comparative studies of coordination polymers such as thermogravimetry (TG, derivative thermogravimetry (DTG, differential thermal analysis (DTA, electrical conductivity and morphology behaviour. Furthermore, the electrical conductivities of chelating ligand and coordination polymers were determined in the solid state powder form. The electrical conductivities measurements of undoped and doped ligand, coordination polymers were carried out at room temperature by the four probe technique using an electrometer. Thermal degradation studies of the coordination polymers have been carried out from a non-isothermal condition under nitrogen atmosphere at a heating rate of 10 °C min−1. The decomposition steps and thermal stabilities of these complexes were confirmed by thermal analysis techniques (TG/DTG/DTA. The thermal studies inferred the presence of crystallized water in all coordination polymers, whereas coordinated water was found in Ni(II and Cu(II ions.

  3. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    Science.gov (United States)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  4. Synthesis of late transition nickel(II) coordination polymer and their catalysis for olefinic polymerization

    Science.gov (United States)

    Chenfei, Xu; Zhang, Danfeng

    2017-09-01

    It was illustrated in this paper the successful synthesization of one α-diimine ligand and one new polycondensate ligand. The structure of the ligand was characterized by 1H NMR spectrum, and the structure of the polycondensate ligand was characterized by Thermogravimetric Analysis (TGA) and Element Analysis. Then these two ligands reacted with (DME)NiBr2 for the purpose of preparing α-diimine nickel complex and nickel coordination polymer characterized by Element Analysis and X-ray Photoelectron Spectroscopy (XPS). Then these two catalysts were adopted to facilitate ethylene polymerization and to compare the difference between them. It was found that the activities from nickel coordination polymer/MAO reached 106(g/molNi·h) and the molecule weights were about 105.

  5. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    International Nuclear Information System (INIS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-01-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg 2+ , Ca 2+ and Ba 2+ ) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO) 4 , which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4 4 ·6 2 ) 3 (4 9 ·6 6 ) 2 . The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies. - Graphical abstract: Three alkaline

  7. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing, E-mail: heyabing@zjnu.cn

    2016-10-15

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO){sub 4}, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4{sup 4}·6{sup 2}){sub 3}(4{sup 9}·6{sup 6}){sub 2}. The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural

  8. New twists and turns for actinide chemistry: organometallic infinite coordination polymers of thorium diazide

    International Nuclear Information System (INIS)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L.

    2016-01-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. New Cu(II) coordination polymer by chiral tridentate Schiff base ligand

    Science.gov (United States)

    Messai, Amel; Bilge, Duygu; Bilge, Metin; Parlak, Cemal

    2017-06-01

    The present research reports the synthesis, X-ray, magnetic and electronic properties for novel coordination polymer based upon copper (II) with chiral tridentate Schiff base ligand synthesized at condensation of acetylacetone and L-leucine amino acid. The investigation was also conducted by quantum mechanical calculations. The large energy gap indicates a high kinetic stability. Magnetic measurement gives predominant antiferromagnetic interactions within the chain. Results reveals further insight into copper(II) chiral tridentate Schiff base complexes.

  10. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60: Synthesis, Supramolecular Formation and Excited-State Processes.

    Science.gov (United States)

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis

    2017-09-18

    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H 2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 10 4  m -1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H 2 P, and electron transfer to the coordinated ImC 60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×10 9  s -1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex

  11. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Ma, Yu-Lu [School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Lv, Guo-ling [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China)

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomeric lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.

  12. Role of N-Donor Sterics on the Coordination Environment and Dimensionality of Uranyl Thiophenedicarboxylate Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Thangavelu, Sonia G. [Department; Butcher, Ray J. [Department; Cahill, Christopher L. [Department

    2015-06-09

    Thiophene 2,5-dicarboxylic acid (TDC) was reacted with uranyl acetate dihydrate and one (or none) of six N-donor chelating ligands (2,2'-bipyridine (BPY), 4,4'-dimethyl-2,2'-bipyridine (4-MeBPY), 5,5'-dimethyl-2,2'-bipyridine (5-MeBPY), 6,6'-dimethyl-2,2'-bipyridine (6-MeBPY), 4,4',6,6'-tetramethyl-2,2'-bipyridine (4,6-MeBPY), and tetrakis(2-pyridyl)pyrazine (TPPZ) to result in the crystallization of seven uranyl coordination polymers, which were characterized by their crystal structures and luminescence properties. The seven coordination polymers, Na2[(UO2)2(C6H2O4S)3]·4H2O (1), [(UO2)4(C6H2O4S)5(C10H8N2)2]·C10H10N2·3H2O (2), [(UO2)(C6H2O4S)(C12H12N3)] (3), [(UO2)(C6H2O4S)(C12H12N3)]·H2O (4), [(UO2)2(C6H2O4S)3]·(C12H14N2)·5H2O (5), [(UO2)3(CH3CO2)(C6H2O4S)4](C14H17N2)3·(C14H16N2)·H2O (6), and [(UO2)2(C6H2O4S)3](C24H18N6) (7), consist of either uranyl hexagonal bipyramidal or pentagonal bipyramidal coordination geometries. In all structures, structural variations in the local and global structures of 1–7 are influenced by the positions (or number) of methyl groups or pyridyl rings on the N-donor species, thus resulting in a wide diversity of structures ranging from single chains, double chains, or 2-D sheets. Direct coordination of N-donor ligands to uranyl centers is observed in the chain structures of 2–4 using BPY, 4-MeBPY, and 5-MeBPY, whereas the N-donor species participate as guests (as either neutral or charge balancing species) in the chain and sheet structures of 5–7 using 6-MeBPY, 4,6-MeBPY, and TPPZ, respectively. Compound 1 is the only structure that does not contain any N-donor ligands and thus crystallizes as a 2-D interpenetrating sheet. The luminescent properties of 1–7 are influenced by the direct coordination or noncoordination of N-donor species to uranyl centers. Compounds 2–4 exhibit typical UO22+ emission upon direct coordination of N-donors, but its absence is observed in 1

  13. Data Mining as a Guide for the Construction of Crosslinked Nanoparticles with Low Immunotoxicity via Controlling Polymer Chemistry and Supramolecular Assembly

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L.

    2015-01-01

    CONSPECTUS The potential immunotoxicity of nanoparticles that are currently being approved or in different phases of clinical trials or under rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger the various components of the immune system, unintentionally, and lead to serious adverse reactions. Cytokines are one of the useful biomarkers to predict the effect of biotherapeutics on modulating the immune system and for screening the immunotoxicity of nanoparticles, both in vitro and in vivo, and were found recently to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse and experiments are usually conducted using different assays and under specific conditions, making direct comparisons nearly impossible and, thus, tailoring properties of nanomaterials based on the available data is challenging. In this account, the effects of chemical structure, crosslinking, degradability, morphology, concentration and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with focus being given on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized, uniquely, to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple and easy way to compare the immunotoxicity of various nanomaterials, and the values were found to correlate-well with published data. Based on the investigated polymeric systems in this study, valuable information has been collected that aids in the

  14. Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2015-06-16

    The potential immunotoxicity of nanoparticles that are currently being approved, in different phases of clinical trials, or undergoing rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger various components of the immune system unintentionally and lead to serious adverse reactions. Cytokines are one of the useful biomarkers for predicting the effect of biotherapeutics on modulation of the immune system and for screening the immunotoxicity of nanoparticles both in vitro and in vivo, and they were recently found to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for the construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse, and experiments are usually conducted using different assays under specific conditions. As a result, making direct comparisons nearly impossible, and thus, tailoring the properties of nanomaterials on the basis of the available data is challenging. In this Account, the effects of chemical structure, cross-linking, degradability, morphology, concentration, and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with a focus on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized uniquely to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple way to compare the immunotoxicities of various nanomaterials, and the values were found to correlate well with published data. On the basis of the polymeric systems investigated in this study, valuable information has been collected that

  15. A new 1D manganese(II) coordination polymer with end-to-end azide bridge and isonicotinoylhydrazone Schiff base ligand: Crystal structure, Hirshfeld surface, NBO and thermal analyses

    Science.gov (United States)

    Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2018-02-01

    A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.

  16. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    Science.gov (United States)

    Cheng, Hong-Jian; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2015-12-01

    Solvothermal reactions of Zn(NO3)2·6H2O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H2bdc), p-phenylenediacetic acid (p-H2pda), benzophenone-4,4-dicarboxylic acid (H2bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]n (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H2O}n (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H2O}n (3). Complexes 1-3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1-3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored.

  17. Highly efficient electrochemiluminescence based on 4-amino-1,2,4-triazole Schiff base two-dimensional Zn/Cd coordination polymers.

    Science.gov (United States)

    Zhang, Shu-Hua; Wang, Ji-Ming; Zhang, Hai-Yang; Fan, Yi-Peng; Xiao, Yu

    2017-01-03

    Four coordination polymers, formulated as [Zn(L 1 ) 2 ] n (1), [Cd(L 1 ) 2 ] n (2), [Zn(L 2 ) 2 ] n (3) and [Cd(L 2 ) 2 ] n (4) (HL1 is (E)-2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-4,6-dibromophenol; HL2 is (E)-2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-4,6-dichlorophenol) have been synthesized through vial reactions. The four compounds were structurally characterized by single crystal X-ray diffraction, elemental analysis, PXRD, and fluorescence spectroscopy. For 1-4, a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are crucial in building different supramolecular architectures. C-HX (X = Br, Cl) interactions play a crucial role in stabilizing the self-assembly process among adjacent 2-D networks for both complexes. Above all, complexes 1-4 showed highly intense electrochemical luminescence (ECL) in DMF solution and high thermal stability.

  18. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  19. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    Science.gov (United States)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  20. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Bráulio Silva, E-mail: brauliobarros@ect.ufrn.br [School of Science and Technology, Federal University of Rio Grande do Norte (UFRN), Campus Universitário Lagoa Nova, 59078-970 Natal, RN (Brazil); Chojnacki, Jaroslaw [Department of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk (Poland); Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves [Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 – Cidade Universitária, 50670-901 Recife, PE (Brazil)

    2015-07-15

    The reaction between Zn(NO{sub 3}){sub 2}·6H{sub 2}O or Zn(CH{sub 3}COO){sub 2}·2H{sub 2}O and isophthalic acid (1,3-H{sub 2}bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H{sub 2}O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn{sub 2}(1,3-bdc){sub 2}(Hbzim){sub 2}] (1) and [Zn{sub 2}(1,3-bdc)(bzim){sub 2}] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc{sub 2}.2H{sub 2}O and 1,3-H{sub 2}bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO){sub 3}(Me{sub 2}NH{sub 2}{sup +}). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure.

  1. Novel 1D coordination polymer {Tm(Piv)3}n: Synthesis, structure, magnetic properties and thermal behavior

    International Nuclear Information System (INIS)

    Fomina, Irina; Dobrokhotova, Zhanna; Aleksandrov, Grygory; Emelina, Anna; Bykov, Mikhail; Malkerova, Irina; Bogomyakov, Artem; Puntus, Lada; Novotortsev, Vladimir; Eremenko, Igor

    2012-01-01

    The new 1D coordination polymer {Tm(Piv) 3 } n (1), where Piv=OOCBu t− , was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 °S. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it’s the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of −50…+50 °S were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570–680 K. - Graphical Abstract: Novel 1D coordination polymer {Tm(Piv) 3 } n was synthesized and studied by X-ray diffraction. The magnetic, luminescence properties, the thermal behavior and the volatility for the compound {Tm(Piv) 3 } n were investigated.▪ Highlights: ► We synthesized the coordination polymer {Tm(Piv) 3 } n . ► Tm atoms in polymer have the coordination number 6. ► Polymer exhibits blue-color emission at room temperature. ► Polymer shows high thermal stability and volatility. ► Polymer has no phase transitions in the range of −50…+50 °S.

  2. Synergy in supramolecular chemistry

    CERN Document Server

    Nabeshima, Tatsuya

    2014-01-01

    Synergy and Cooperativity in Multi-metal Supramolecular Systems, T. NabeshimaHierarchically Assembled Titanium Helicates, Markus AlbrechtSupramolecular Hosts and Catalysts Formed by Self-assembly of Multinuclear Zinc Complexes in Aqueous Solution, Shin AokiSupramolecular Assemblies Based on Interionic Interactions, H. MaedaSupramolecular Synergy in the Formation and Function of Guanosine Quadruplexes, Jeffery T. DavisOn-Surface Chirality in Porous Self-Assembled Monolayers at Liquid-Solid Interface, Kazukuni Tahar

  3. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  4. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    International Nuclear Information System (INIS)

    He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe

    2010-01-01

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (1), [Co(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (2), [Ni(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (3), and [Co(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (4), where tsgluO 2- =(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2 1 , forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co 2 O 6 N 2 ] n 4- units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through π-π stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.

  5. Bispentafluorophenyl-Containing Additive: Enhancing Efficiency and Morphological Stability of Polymer Solar Cells via Hand-Grabbing-Like Supramolecular Pentafluorophenyl-Fullerene Interactions.

    Science.gov (United States)

    Hung, Kai-En; Tsai, Che-En; Chang, Shao-Ling; Lai, Yu-Ying; Jeng, U-Ser; Cao, Fong-Yi; Hsu, Chain-Shu; Su, Chun-Jen; Cheng, Yen-Ju

    2017-12-20

    A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C 6 F 5 ) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C 6 F 5 groups and the surface of fullerene, the P3HT:PC 61 BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C 6 F 5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerene's movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C 6 F 5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C 6 F 5 -C 60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C 6 F 5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC 71 BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC 71 BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully

  6. Two new coordination polymers based on tartaric acid ligand: Syntheses, crystal structure and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan; Lan, You-Zhao, E-mail: sky37@zjnu.cn; Han, Min-Min; Feng, Yun-Long, E-mail: lyzhao@zjnu.cn [Zhejiang Normal University, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry (China)

    2016-09-15

    Two new coordination polymers [Cd{sub 3}(D-Tar){sub 3}]{sub n} (1) and [Pb(meso-Tar)]{sub n} (2) (H{sub 2}Tar = tartaric acid) have been synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction analysis and IR spectra. 1 crystallizes in the C222{sub 1} chiral space group and shows a 3D (4,4)-connected net with the (4.6.8{sup 4}){sub 4}(4.6{sup 2}.8{sup 2}.10)(4.6{sup 2}.8{sup 3})(4.6{sup 3}.8{sup 2})(4.6{sup 3}.8{sup 2}){sub 4}(4.8{sup 5}){sub 2} topology. 2 possesses a 3D (4,4)-connected net with the (4{sup 3}.6{sup 2}.8) topology. In addition, the thermogravimetric analyses (TGA) results for polymers are discussed.

  7. Two multi-dimensional frameworks constructed from zinc coordination polymers with pyridine carboxylic acids

    International Nuclear Information System (INIS)

    Guo Yuanyuan; Ma Pengtao; Wang Jingping; Niu Jingyang

    2011-01-01

    Two novel zinc coordination polymers [Zn 2 (H 2 O)L(MoO 4 )] n (1) and [Zn 4 (PO 4 ) 2 L'(H 2 O)] n (2) (H 2 L=2,2'-bipyridine-6.6'-dicarboxylic acid, H 2 L'=2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV spectra, single-crystal X-ray diffraction and thermogravimetric analyses. Structural analyses indicate that 1 represents a 2-D sheet structure built by dimeric [Zn 2 L(H 2 O)] 2+ units and MoO 4 2- groups whereas 2 displays an interesting 3-D framework constructed by tetranuclear zinc clusters, L' 2- ligands and PO 4 3- groups. Examination of UV spectra suggests that both 1 and 2 can stably exist in the pH range of 2.45-5.45 and 3.01-8.55 in aqueous solution, respectively. The room-temperature solid-state photoluminescence of 1 and 2 are derived from the intra-ligands π-π* transitions of H 2 L and H 2 L' ligands and the ligand-to-metal-charge-transfer transitions. - Graphical Abstract: Two new transition metal coordination polymers, namely, [Zn 2 (H 2 O)L 1 (MoO 4 )] n (1), [Zn 4 (PO 4 ) 2 L 2 (H 2 O)] n (2) (H 2 L 1 =2,2'-bipyridine-6,6'-dicarboxylic acid, H 2 L 2 =2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized. 1 represents a 2-D sheet structure while 2 represents 3-D network. Highlights: →Two new transition metal coordination polymers have been hydrothermally synthesized. → The two compounds have been characterized by elemental analyses, IR, UV spectra, single-crystal X-ray diffraction, thermogravimetric analyses and photoluminescence. → Compound 1 represents a 2-D sheet structure while 2 represents 3-D network.

  8. Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjie [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Li, Guoting [Department of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Lv, Lulu; Zhao, Hong [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Wu, Benlai, E-mail: wbl@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-05-15

    Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{sub 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.

  9. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  10. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    Energy Technology Data Exchange (ETDEWEB)

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D.

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  11. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hong-Yan [Department of Chemistry, Bohai University, Jinzhou 121000 (China); Lu, Huizhe [Department of Applied Chemistry, China Agricultural University, Beijing, 100193 (China); Le, Mao; Luan, Jian [Department of Chemistry, Bohai University, Jinzhou 121000 (China); Wang, Xiu-Li, E-mail: wangxiuli@bhu.edu.cn [Department of Chemistry, Bohai University, Jinzhou 121000 (China); Liu, Guocheng; Zhang, Juwen [Department of Chemistry, Bohai University, Jinzhou 121000 (China)

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  12. Homo- and heterodinuclear coordination polymers based on a tritopic cyclam bis-terpyridine unit: Structure and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Li; Fan, Jiangxia; Ren, Yong; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Yan, Minhao, E-mail: yanminhao@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Tuo, Xianguo, E-mail: tuoxg@swust.edu.cn [Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China); Terech, Pierre [SPrAM, UMR CEA/CNRS/UJF-Grenoble 1, INAC, Grenoble F-38054 (France); Royal, Guy [Université Joseph Fourier Grenoble I, Département de Chimie Moléculaire, UMR CNRS-5250, Institut de Chimie Moléculaire de Grenoble, FR CNRS-2607, BP 53, 38041 Grenoble Cedex 9 (France)

    2015-03-01

    An innovative coordination polymer based on a tritopic ligand having the bis-terpyridine cyclam (CHTT) unit is explored. Homo- or heteronuclear 1D coordination polymers can be formed with bivalent metal ions such as Co(II) and Ni(II) in solvent DMF. Creep-recovery curves of the (Co{sup II}){sub 2}CHTT gels formed from 1D coordination polymers were analyzed with the Burgers model and demonstrated an original self-healing property, unusual in the class of molecular gels. The influence of the metal type was studied through the structural features using small-angle neutron scattering (SANS) experiments. In gels, the corresponding network involves genuine fibers (R ≈ 35 Å), bundles of these fibers and also a fraction of finite size aggregates (rods with aspect ratio f ≈ 3–5). We found that the distribution of these latter structural components is sensitive to the metal ions type. Such tritopic 1D coordination polymers exhibit a range of original structural features and a facile control of the developed structures in solutions and gels by tuning their thermodynamic parameters. The versatility associated to the intrinsic dynamic ability of the systems should pave the way to original properties for molecular devices. - Graphical abstract: A tritopic ligand with a bis-terpyridine cyclam (CHTT) unit can form homo- and heterobinuclear coordination polymers with bivalent metal ions in DMF. Gels exhibit a remarkable self-healing property while structures of solutions and gels are studied by small-angle neutron scattering. - Highlights: • Homo- and heteronuclear coordination polymers based on innovative tritopic ligand. • The gels formed from the coordination polymers demonstrated self-healing property. • Influence of the metal type was studied through the structural properties by SANS. • Versatility of the singular system present original properties for molecular device.

  13. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jingjing, E-mail: jjdeng@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Shi, Guoyue [Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhou, Tianshu, E-mail: tszhou@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu{sup 3+}; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu{sup 3+}, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu

  14. Self-assembly of coordination polymers of Pr(III), Nd(III), Tb(III), Dy(III) and Ho(III) with 5-hydroxyisophthalic acid and adipic acid: Syntheses, structures, porosity, luminescence and magnetic properties

    Science.gov (United States)

    Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.

    2017-11-01

    Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.

  15. Lanthanide coordination polymers with tetrafluoroterephthalate as a bridging ligand: thermal and optical properties.

    Science.gov (United States)

    Seidel, Christiane; Lorbeer, Chantal; Cybińska, Joanna; Mudring, Anja-Verena; Ruschewitz, Uwe

    2012-04-16

    By slow diffusion of triethylamine into a solution of 2,3,5,6-tetrafluoroterephthalic acid (H2tfBDC) and the respective lanthanide salt in EtOH/DMF single crystals of seven nonporous coordination polymers, (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF (Ln(3+) = Ce, Pr, Nd, Sm, Dy, Er, Yb; C2/c, Z = 8) have been obtained. In the crystal structures, two-dimensional square grids are found, which are composed of binuclear lanthanide nodes connected by tfBDC(2-) as a linking ligand. The coordination sphere of each lanthanide cation is completed by a nitrate anion and two DMF molecules (CN = 9). This crystal structure is unprecedented in the crystal chemistry of coordination polymers based on nonfluorinated terephthalate (BDC(2-)) as a bridging ligand; as for tfBDC(2-), a nonplanar conformation of the ligand is energetically more favorable, whereas for BDC(2-), a planar conformation is preferred. Differential thermal analysis/thermogravimetric analysis (DTA/TGA) investigations reveal that the noncoordinating DMF molecule is released first at temperatures of 100-200 °C. Subsequent endothermal weight losses correspond to the release of the coordinating DMF molecules. Between 350 and 400 °C, a strong exothermal weight loss is found, which is probably due to a decomposition of the tfBDC(2-) ligand. The residues could not be identified. The emission spectra of the (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF compounds reveal intense emission in the visible region of light for Pr, Sm, and Dy with colors from orange, orange-red, to warm white. © 2012 American Chemical Society

  16. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  17. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg 2+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb 3+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg 2+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg 2+ . As a kind of Hg 2+ nanosensor, the probe exhibited excellent selectivity for Hg 2+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg 2+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg 2+ was achieved based on time-resolved spectroscopy.

  18. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  19. Log-gamma directed polymer with one free end via coordinate Bethe Ansatz

    Science.gov (United States)

    Grange, Pascal

    2017-07-01

    The discrete polymer model with random Boltzmann weights with homogeneous inverse gamma distribution, introduced by Seppäläinen, is studied in the case of a polymer with one fixed and one free end. The model with two fixed ends has been integrated by Thiery and Le Doussal, using coordinate Bethe Ansatz techniques and an analytic-continuation prescription. The probability distribution of the free energy has been obtained through the replica method, even though the moments of the partition sum do not exist at all orders due to the fat tail in the distribution of Boltzmann weights. To extend this approach to the polymer with one free end, we argue that the contribution to the partition sums in the thermodynamic limit is localised on parity-invariant string states. This situation is analogous to the case of the continuum polymer with one free end, related to the Kardar-Parisi-Zhang equation with flat boundary conditions and solved by Le Doussal and Calabrese. The expansion of the generating function of the partition sum in terms of numbers of strings can also be transposed to the log-gamma polymer model, with the induced Fredholm determinant structure. We derive the large-time limit of the rescaled cumulative distribution function, and relate it to the GOE Tracy-Widom distribution. The derivation is conjectural in the sense that it assumes completeness of a family of string states, and expressions of their norms, already useful in the fixed-end problem, and extends heuristically the order of moments of the partition sum to the complex plane.

  20. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  1. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  2. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meundaeng, Natthaya; Rujiwatra, Apinpus [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prior, Timothy J., E-mail: t.prior@hull.ac.uk [Chemistry, University of Hull, Kingston upon Hull HU6 7RX (United Kingdom)

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.

  3. Enantiopure Chiral Coordination Polymers Based on Polynuclear Paddlewheel Helices and Arsenyl Tartrate

    Directory of Open Access Journals (Sweden)

    Ángela Valentín-Pérez

    2018-03-01

    Full Text Available Herein, we report the preparation of chiral, one-dimensional coordination polymers based on trinuclear paddlewheel helices [M3(dpa4]2+ (M = Co(II and Ni(II; dpa = the anion of 2,2′-dipyridylamine. Enantiomeric resolution of a racemic mixture of [M3(dpa4]2+ complexes was achieved by chiral recognition of the respective enantiomer by [Δ-As2(tartrate2]2− or [Λ-As2(tartrate2]2− in N,N-dimethylformamide (DMF, affording crystalline coordination polymers formed from [(Δ-Co3(dpa4(Λ-As2(tartrate2]·3DMF (Δ-1, [(Λ-Co3(dpa4(Δ-As2(tartrate2]·3DMF (Λ-1, [(Δ-Ni3(dpa4(Λ-As2(tartrate2]·(4 − nDMF∙nEt2O (Δ-2 or [(Λ-Ni3(dpa4(Δ-As2(tartrate2]·(4 − nDMF∙nEt2O (Λ-2 repeating units. UV-visible circular dichroism spectra of the complexes in DMF solutions demonstrate the efficient isolation of optically active species. The helicoidal [M3(dpa4]2+ units that were obtained display high stability towards racemization as shown by the absence of an evolution of the dichroic signals after several days at room temperature and only a small decrease of the signal after 3 h at 80 °C.

  4. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Demars, Thomas

    2012-01-01

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author) [fr

  5. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  6. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  7. Multifunctional Aromatic Carboxylic Acids as Versatile Building Blocks for Hydrothermal Design of Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jinzhong Gu

    2018-02-01

    Full Text Available Selected recent examples of coordination polymers (CPs or metal-organic frameworks (MOFs constructed from different multifunctional carboxylic acids with phenyl-pyridine or biphenyl cores have been discussed. Despite being still little explored in crystal engineering research, such types of semi-rigid, thermally stable, multifunctional and versatile carboxylic acid building blocks have become very promising toward the hydrothermal synthesis of metal-organic architectures possessing distinct structural features, topologies, and functional properties. Thus, the main aim of this mini-review has been to motivate further research toward the synthesis and application of coordination polymers assembled from polycarboxylic acids with phenyl-pyridine or biphenyl cores. The importance of different reaction parameters and hydrothermal conditions on the generation and structural types of CPs or MOFs has also been highlighted. The influence of the type of main di- or tricarboxylate ligand, nature of metal node, stoichiometry and molar ratio of reagents, temperature, and presence of auxiliary ligands or templates has been showcased. Selected examples of highly porous or luminescent CPs, compounds with unusual magnetic properties, and frameworks for selective sensing applications have been described.

  8. Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers

    Directory of Open Access Journals (Sweden)

    Yann Garcia

    2011-10-01

    Full Text Available The perceptible appearance of biomolecules as prospective building blocks in the architecture of coordination polymers (CPs and metal-organic frameworks (MOFs are redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, for the first time a synthetic strategy has been established for amine derivatization in amino acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral helicates and 3D metal-organic frameworks. Applications associated with these compounds are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, zinc-b-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric networks; and thus led to a foundation of a new family of functional CPs and MOFs that are reviewed in this invited contribution.

  9. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    Science.gov (United States)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  10. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. Deepak Gupta Palanisamy Rajakannu Bhaskaran Shankar Firasat Hussain Malaichamy Sathiyendiran. Special issue on Chemical Crystallography Volume 126 ...

  11. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    International Nuclear Information System (INIS)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin; Xiang Shengchang; Fu Ruibiao; Zhu Qilong; Wu Xintao

    2012-01-01

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H 2 O) 2 ] n (3), [Cu(cbop) 2 (4,4′-bipy)(H 2 O)] n (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4′-bipy=4,4′-bipyridine), {[Cu(nbop) 2 (4,4′-bipy)]·4H 2 O} n (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {[Cd(nbop) 2 (4,4′-bipy)]·2H 2 O} n (6), and [Ni(nbop) 2 (4,4′-bipy)(H 2 O) 2 ] n (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensional infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4–7, which may be due to the competition of 4,4′-bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: ► Two new chiral aminocarboxylate derivates were firstly synthesized. ► Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. ► Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. ► In situ amidation may be due to the impact of 4,4′-bipyridine. ► The homochiral complexes are nonlinear optical active.

  12. Flexible Porous Coordination Polymers from Divergent Photoluminescent 4-Oxo-1,8-naphthalimide Ligands.

    Science.gov (United States)

    Hawes, Chris S; Byrne, Kevin; Schmitt, Wolfgang; Gunnlaugsson, Thorfinnur

    2016-11-07

    Two new luminescent ditopic naphthalimide-derived ligands, N-(4-cyanophenylmethylene)-4-(4-cyanophenoxy)-1,8-naphthalimide (L3) and N-(4-carboxyphenylmethylene)-4-(4-carboxyphenoxy)-1,8-naphthalimide (H 2 L4), have been prepared, and their coordination chemistry has been explored in the synthesis of three new coordination polymer materials. Complex poly-[Ag(L3) 2 ]BF 4 ·4.5H 2 O·0.5THF (1) is a 3-fold 2D → 2D parallel interpenetrated coordination polymer in which three interwoven sheets define inter- and intralayer channels containing anions and solvent molecules. Molecules of L3 interact in 1 through dominant head-to-head π-π stacking interactions, in an opposite aggregation mode to that observed in the free ligand in the crystalline phase. Complexes poly-[Cu(L4)(OH 2 )]·2DMF·0.5H 2 O (2) and poly-[Cd 2 (L4) 2 (OH 2 ) 2 ]·1.5DMF·3H 2 O (3) are related noninterpenetrated two-dimensional coordination polymers defined by one-dimensional metal-carboxylate chains, forming layers that interdigitate with adjacent networks through naphthalimide π-π interactions. Both materials undergo structural rearrangements on solvent exchange with acetonitrile; in the case of 3, this transformation can be followed by single-crystal X-ray diffraction, revealing the structure of the acetonitrile solvate poly-[Cd 2 (OH 2 ) 2 (L4) 2 ]·2MeCN (4), which shows a significant compression of the primary channels to accommodate the solvent guest molecules. Both materials display modest CO 2 adsorption after complete evacuation, and the original expanded phases can be regenerated by reimmersion in DMF. The photophysical properties of each ligand and complex were also explored, which revealed variations in emission wavelength, based on solid-state interactions, including a notable shift in the fluorescence emission band of 3 upon structural rearrangement to 4.

  13. A Novel Coordination Polymer Based on 4,4'-(Hexauoroisopropylidene)diphthalic Acid: Synthesis, Structure and Physical Properties

    International Nuclear Information System (INIS)

    Wang, Jun; Tao, Jianqing; Xu, Xiaojuan; Tan, Chunyun

    2012-01-01

    The design and synthesis of coordination polymers is an attractive area of research, not only owing to their diverse topology and intriguing structures but also due to their potential applications in many fields, such as ion-exchange, catalysis, luminescence, magnets, and gas storage. The mainstream method of constructing such coordination polymers is to utilize organic ligands with aromatic polycarboxylate groups, because of their excellent coordination capability and flexible coordination patterns. Among them, aromatic polycarboxylic derivatives, such as 1,2,4,5-benzenetetracarboxylic acid, 4,4'-oxydiphthalic acid, 4,4'-(hexauoroisopropylidene) diphthalic acid (H 4 FA), and so on, have been extensively used to prepare coordination polymers. Meanwhile, the flexible 1,4-bis(1,2,4-triazol-1-ylmethyl)-benzene (BTX) as an excellent derivative of triazole not only possesses the merits of triazole, but also can adopt different conformations compared with the corresponding 1,2,4-triazole ligand on the basis of the relative orientations of its CH 2 groups.10 Taking these into consideration, we explored the self-assembly of Cd(II) ion, H 4 FA, and BTX under hydrothermal conditions, and obtained a novel 3D coordination polymer: [Cd 3 (BTX) 2 (HFA) 2 · 2 H 2 O] n . Herein, we report the synthesis, crystal structure, and physical properties

  14. Three-Dimensional Cadmium(II Cyanide Coordination Polymers with Ethoxy-, Butoxy- and Hexyloxy-ethanol

    Directory of Open Access Journals (Sweden)

    Takeshi Kawasaki

    2016-08-01

    Full Text Available The three novel cadmium(II cyanide coordination polymers with alkoxyethanols, [Cd(CN2(C2H5OCH2CH2OH]n (I, [{Cd(CN2(C4H9OCH2CH2OH}3{Cd(CN2}]n (II and [{Cd(CN2(H2O2}{Cd(CN2}3·2(C6H13OCH2CH2OH]n (III, were synthesized and charcterized by structural determination. Three complexes have three-dimensional Cd(CN2 frameworks; I has distorted tridymite-like structure, and, II and III have zeolite-like structures. The cavities of Cd(CN2 frameworks of the complexes are occupied by the alkoxyethanol molecules. In I and II, hydroxyl oxygen atoms of alkoxyethanol molecules coordinate to the Cd(II ions, and the Cd(II ions exhibit slightly distort trigonal-bipyramidal coordination geometry. In II, there is also tetrahedral Cd(II ion which is coordinated by only the four cyanides. The hydroxyl oxygen atoms of alkoxyethanol connects etheric oxygen atoms of the neighboring alkoxyethanol by hydrogen bond in I and II. In III, hexyloxyethanol molecules do not coordinate to the Cd(II ions, and two water molecules coordnate to the octahedral Cd(II ions. The framework in III contains octahedral Cd(II and tetrahedral Cd(II in a 1:3 ratio. The Cd(CN2 framework structures depended on the difference of alkyl chain for alkoxyethanol molecules.

  15. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.

    Science.gov (United States)

    Huang, Yuanbiao; Liu, Tianfu; Lin, Jingxiang; Lü, Jian; Lin, Zujin; Cao, Rong

    2011-03-21

    One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.

  16. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    Science.gov (United States)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  17. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    Science.gov (United States)

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate

    KAUST Repository

    Mugnaini, Verónica

    2013-01-01

    The step-by-step method is here presented as suitable to anchor on appropriately functionalized gold surfaces a metal-organic coordination polymer based on a non-planar trigonal tri-para-carboxy-polychlorotriphenylmethyl radical derivative and copper acetate. The structural characteristics of the grafted coordination polymer are derived during the step-wise growth from the real time changes in refractive index and oscillation frequency. The film thickness, as measured by scanning force microscopy, combined with the mass uptake value from the quartz crystal microbalance, are used to estimate an average density of the grafted metal-organic coordination polymer that suggests the formation of a dense and rather rigid thin film. This journal is © 2013 The Royal Society of Chemistry.

  19. A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Karamahmut, Bingül [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Semerci, Fatih [Department of Energy Systems Engineering, Faculty of Technology, Kırklareli University, 39000 Kırklareli (Turkey); Darcan, Cihan [Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Bilecik Şeyh Edebali University, Gülümbe-Bilecik (Turkey); Yılmaz, Filiz [Department of Chemistry, Faculty of Sciences, Anadolu University, Eskişehir (Turkey)

    2017-05-15

    /DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.

  20. Cyclodextrin-grafted polymers functionalized with phosphanes: a new tool for aqueous organometallic catalysis

    Directory of Open Access Journals (Sweden)

    Jonathan Potier

    2014-11-01

    Full Text Available New cyclodextrin (CD-grafted polymers functionalized with water-soluble phosphanes were synthesized in three steps starting from polyNAS. Once characterized by NMR spectroscopy and size-exclusion chromatography, they were used as additives in Rh-catalyzed hydroformylation of 1-hexadecene. The combined supramolecular and coordinating properties of these polymers allowed increasing the catalytic activity of the reaction without affecting the selectivities.

  1. Construction of diverse supramolecular assemblies of dimetal ...

    Indian Academy of Sciences (India)

    Construction of diverse supramolecular assemblies of dimetal subunits differing in coordinated water molecules via strong hydrogen bonding interactions: Synthesis, crystal structures and spectroscopic properties. Sadhika Khullar Sanjay K Mandal. Special issue on Chemical Crystallography Volume 126 Issue 5 September ...

  2. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    International Nuclear Information System (INIS)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-01-01

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu 4 (fph) 2 (bpe) 3 (H 2 O) 2 ]·2H 2 O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co 2 (fph)(bpa) 2 (H 2 O) 2 ]·3H 2 O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H 2 O)(H 2 oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu 2+ ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co 2+ ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated

  3. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China); Yu, Jie-Hui, E-mail: jhyu@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China); Zhang, Ping, E-mail: zhangping@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); Xu, Ji-Qing [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China)

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  4. Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur Batteries

    KAUST Repository

    Wan, Yi

    2017-11-19

    The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability

  5. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  6. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  7. A series of coordination polymers constructed from R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong-Hong, E-mail: zhou21921@sina.com [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China); Zhou, Xu-Wan; Zhou, Su-Rong [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China); Tian, Yu-Peng; Wu, Jie-Ying [Department of Chemistry and Chemical Technology, Anhui University, Hefei 230039 (China)

    2017-01-15

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn{sub 2}Na(sip){sub 2}(bpp){sub 3}(Hbpp)(H{sub 2}O){sub 2}]·8H{sub 2}O (1), [Cd{sub 3}(sip){sub 2}(nbi){sub 6}(H{sub 2}O){sub 2}]·7H{sub 2}O (2), [Zn(sip)(nbi){sub 2}(H{sub 2}O)]·Hnbi·3H{sub 2}O (3), [Cd(hip)(nbi){sub 2}(H{sub 2}O)]·nbi·5H{sub 2}O (4), [Cd{sub 2}(nip){sub 2}(nbi){sub 2}(H{sub 2}O){sub 2}]·DMF (5), and [Cu(nip)(nbi)(H{sub 2}O){sub 2}]·H{sub 2}O (6) (H{sub 3}sip=5-sulfoisophthalic acid, H{sub 2}hip=5-hydroxylisophthalic acid, H{sub 2}nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through O atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip{sup 3−} anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3–5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip{sup 2−} ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied. - Graphical abstract: A series of Cd(II)/Zn(II)/ Cu(II) coordination polymers based on R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands have been synthesized under hydrothermal conditions and structurally characterized. Photoluminescent properties

  8. Three two-dimensional coordination polymers constructed from transition metals and 2,3-norbornanedicarboxylic acid: Hydrothermal synthesis, crystal structures and photocatalytic properties

    Science.gov (United States)

    Zhang, Jia; Wang, Chong-Chen

    2017-02-01

    Three novel coordination polymers based on transition metals like Co(II), Cu(II) and Mn(II), namely [Co2(bpy)2(nbda)2(H2O)2]·2H2O (denoted as BUC-1), [Cu2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-2), [Mn2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-3), (where bpy = 4,4‧-bipyridine, H2nbda = 2,3-norbornanedicarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture), were synthesized under hydrothermal conditions, and characterized by CNH elemental analyses (EA), Fourier Transform infrared spectroscopy (FTIR), and single crystal X-ray diffraction (SCXRD). BUC 1-3 were isostructural and crystallized in the monoclinic space group C2/c, in which the corresponding metal atoms were linked by typical bidentate bpy ligands into two adjacent 1D [M1(bpy)]n2n+ and [M2(bpy)]n2n+ (M = Co(II), Cu(II), Mn(II)), further joined by versatile nbda2- ligands into 2D [M2(bpy)2(nbda)2]n sheets. Finally, three-dimensional supramolecular frameworks were constructed with the aid of the intermolecular hydrogen bonding interactions. BUC 1-3 exhibited different photocatalytic degradation ability to decompose methylene blue (MB) and methyl orange (MO) under UV light irradiation. Additionally, a possible photocatalytic mechanism HOMO-LUMO was proposed and discussed, which was further confirmed by radicals trapping experiments using isopropanol as radical scavenger.

  9. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands

    International Nuclear Information System (INIS)

    Ye Junwei; Zhang Ping; Ye Kaiqi; Zhang Hongyu; Jiang Shimei; Ye Ling; Yang Guangdi; Wang Yue

    2006-01-01

    Four coordination polymers [Zn(bqdc)(phen)] n (1), [Zn(bqdc)(bpy)(H 2 O)] n (2), [Mn(bqdc)(bpy)(H 2 O) 2 ] n (3) and [Mn(bqdc)(phen)(H 2 O) 2 ] n (4) (H 2 bqdc=2,2'-biquinoline-4,4'-dicarboxylic acid, phen=1,10-phenanthroline and bpy=2,2'-bipyridyl) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. Crystal data for 1: monoclinic system, C2/c, a=14.141(3)A, b=10.021(2)A, c=18.511(4)A, β=103.78(3) o , V=2547.6(9)A 3 , Z=4. Crystal data for 2: monoclinic system, p2 1 /n, a=13.656(3)A, b=10.015(2)A, c=19.127(4)A, β=107.13(7) o , V=2500.1(9)A 3 , Z=4. Crystal data for 3: monoclinic system, C2/c, a=14.5050(8)A, b=15.1932(8)A, c=12.7549(6)A, β=116.8010(11) o , V=2508.9(2)A 3 , Z=4. Crystal data for 4: monoclinic system, C2/c, a=14.1732(17)A, b=16.115(3)A, c=12.809(3)A, β=117.04(3) o , V=2605.7(8)A 3 , Z=4. Single helix-like chains exist in 1. The supramolecular structure of 1 exhibits extended two-dimensional network while 2-4 display extended three-dimensional architectures based on interchain hydrogen bonding and π-π interactions. Compounds 1 and 2 show blue photoluminescence under UV light suggesting that they may be employed to develop luminescent materials. Compounds 3 and 4 show interesting magnetic behaviors

  10. A 1D coordination polymer of UF{sub 5} with HCN as a ligand

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Benjamin; Rudel, Stefan S.; Buchner, Magnus R.; Kraus, Florian [Fachbereich Chemie, Philipps-Universitaet Marburg (Germany); Karttunen, Antti J. [Department of Chemistry, Aalto University (Finland)

    2017-01-05

    β-Uranium(V) fluoride was reacted with liquid anhydrous hydrogen cyanide to obtain a 1D coordination polymer with the composition {sup 1}{sub ∞}[UF{sub 5}(HCN){sub 2}], {sup 1}{sub ∞}[UF{sub 4/1}F{sub 2/2}-(HCN){sub 2/1}], revealed by single-crystal X-ray structure determination. The reaction system was furthermore studied by means of vibrational and NMR spectroscopy, as well as by quantum chemical calculations. The compound presents the first described polymeric HCN Lewis adduct and the first HCN adduct of a uranium fluoride. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Two new coordination polymers based on a flexible bib ligand: Structures and magnetic properties

    Science.gov (United States)

    Liu, Yong-Liang; Liu, Ping; Li, Ke-Bin; Zhou, Chun-Sheng; Yue, Ke-Fen

    2017-11-01

    Two new coordination polymers, {[Co(bib)0.5(bdc-Br2)]·CH3OH}n (1) and {[Co(bib)(1,4-ndc)]·0.5H2O}n (2) have been synthesized. The results of X-ray crystallographic analysis show that compound 1 exhibits a 6-connected three-dimensional (3D) 2-fold interpenetrated architectures with the point symbol of 412.63, 2 displays a 4-connected 3D 4-fold [2 + 2] interpenetrated structures with the point symbol of 66. The formulas of 1 and 2 were determined by X-ray crystallography, elemental analysis, and thermogravimetric analysis (TGA). In addition, the compounds 1 and 2 reveal antiferromagnetic interactions.

  12. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    Directory of Open Access Journals (Sweden)

    Cătălin M. Jureschi

    2015-01-01

    Full Text Available We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2’-hydroxyethyl-1,2,4-triazole3]I2∙H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P-temperature (T phase diagram calculated for this compound has been used to obtain the P-T bistability region.

  13. Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions

    Directory of Open Access Journals (Sweden)

    Hiroshi Kajiro

    2010-09-01

    Full Text Available Coordination polymers (CPs or metal-organic frameworks (MOFs have attracted considerable attention because of the tunable diversity of structures and functions. A 4,4'-bipyridine molecule, which is a simple, linear, exobidentate, and rigid ligand molecule, can construct two-dimensional (2D square grid type CPs. Only the 2D-CPs with appropriate metal cations and counter anions exhibit flexibility and adsorb gas with a gate mechanism and these 2D-CPs are called elastic layer-structured metal-organic frameworks (ELMs. Such a unique property can make it possible to overcome the dilemma of strong adsorption and easy desorption, which is one of the ideal properties for practical adsorbents.

  14. Coordination Nature of 4-Mercaptoaniline to Sn(II Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV Complex

    Directory of Open Access Journals (Sweden)

    Eon S. Burkett

    2014-12-01

    Full Text Available The coordination of the bifunctional ligand 4-mercaptoaniline with aqueo us tin(II metal ion was studied. A coordination polymer was synthesized when an aqueous solution of SnCl2 was treated with 4-MA. The crystalline material is stable under atmospheric conditions retaining its oxidation state. However, when submerged in a solution saturated with oxygen, the compound oxidizes to a mononuclear tin(IV complex. Both the compounds were characterized by single crystal X-ray diffraction studies. Although the structure of the tin(IV complex was previously reported, crystal structure of this compound was redetermined.

  15. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    International Nuclear Information System (INIS)

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing; Wang Tiegang

    2008-01-01

    A series of lanthanide coordination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4), H 2 ip=isophthalic acid, im=imidazole] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted

  16. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    Science.gov (United States)

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  17. Developing multifunctional nanoparticles in a 1-D coordination polymer of Cd(II)

    Science.gov (United States)

    Agarwal, Rashmi A.; Gupta, Neeraj K.

    2017-11-01

    A simple synthesis for the integration of different nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed (Cu/Fe), has been demonstrated within the nanopores of a non-activated one dimensional porous coordination polymer (PCP) of Cd(II) due to its high flexible structure. There are two different mechanisms (acid formation (HCl/HNO3) and redox activity of the framework) elucidated by electron paramagnetic resonance (EPR). Presence of -NO2 groups of the ligand act as anchoring sites for metal ions of metal precursors leading to NPs growth within the PCP explained by FTIR. High resolution transmission electron microscopy (HRTEM) images provided insight of the chemical and physical characteristics of the NPs within the framework. Ag/AgO NPs exhibit excellent antibacterial properties at extremely low concentrations. The polymer shows potential for sequestration and reduction of hexavalent Cr (highly toxic) to elemental, trivalent and tetravalent Cr (non toxic). This framework is also an excellent template for fabrication and dry storage of nanoparticles synthesized by mixed metal precursors. Ferromagnetic properties have been shown by Ag and Au NPs integrated frameworks while Cu/Fe@Cd-PCP behaves as a paramagnet material at room temperature.

  18. Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers.

    Science.gov (United States)

    Wang, Lihuan; Tranca, Diana C; Zhang, Jian; Qi, Yanpeng; Sfaelou, Stavroula; Zhang, Tao; Dong, Renhao; Zhuang, Xiaodong; Zheng, Zhikun; Seifert, Gotthard

    2017-10-01

    The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MS x N y (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H 2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MS x N y catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS 2 N 2 , the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H 2 is favored on the MN active sites after a heterocoupling step involving a N-bound proton and a metal-bound hydride. Moreover, the tuning of the metal centers in MS 2 N 2 leads to the HER performance in the order of FeS 2 N 2 > CoS 2 N 2 > NiS 2 N 2 . Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. One-dimensional coordination polymers of whole row rare earth tris-pivalates

    Science.gov (United States)

    Tsymbarenko, Dmitry; Martynova, Irina; Grebenyuk, Dimitry; Shegolev, Vsevolod; Kuzmina, Natalia

    2018-02-01

    Fourteen 1D coordination polymers of rare earth pivalates [Ln(Piv)3]∞ (Ln = Y, La, Pr, Nd, Sm-Lu) were synthesized and characterized by powder X-ray diffraction, IR spectroscopy, TGA, and conventional elemental analysis. Crystal structures of [La(Piv)3]∞, [Yb(Piv)3]∞, [Lu(Piv)3]∞ were determined by means of single crystal X-ray analysis at 120 K, those of [Y(Piv)3]∞ and [Ho(Piv)3]∞ - from powder XRD data at 293 K. Transformation of [Ln(Piv)3]∞ structure and Piv- anions coordination mode along the whole row has been derived from powder XRD and IR spectroscopy results, and shown to crucially affect the relative location of 1D chains in the crystal structure, as well as the Ln···Ln distance within the single chain. Negative thermal expansion along 1D [Ln(Piv)3]∞ chain was revealed for Ln = Tm, Yb, Lu. Enforcement of 1D polymeric structure with the decrease of Ln ionic radius has been established from solid-state DFT calculations.

  20. Two coordination polymers based on semicarbazone Schiff base and azide: synthesis, crystal structure, electrochemistry, magnetic properties and biological activity

    Czech Academy of Sciences Publication Activity Database

    Shaabani, B.; Khandar, A.A.; Dušek, Michal; Pojarová, Michaela; Mahmoudi, F.; Feher, A.; Kajňaková, M.

    2013-01-01

    Roč. 66, č. 5 (2013), s. 748-762 ISSN 0095-8972 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : Schiff bases * semicarbazone * coordination polymer * structure analyses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.224, year: 2013

  1. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    KAUST Repository

    Chen, Xia

    2012-05-02

    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.

  2. Copper-based coordination polymers from thiophene and furan dicarboxylates with high isosteric heats of hydrogen adsorption

    NARCIS (Netherlands)

    Yang, Jie; Lutz, Martin; Grzech, Anna; Mulder, Fokko M.; Dingemans, Theo J.

    2014-01-01

    Self-assembled Cu-based coordination polymers derived from thiophene-2,5-dicarboxylic acid (Cu-TDC) and furan-2,5-dicarboxylic acid (Cu-FDC) were synthesized via a solvothermal method and their H2 adsorption behaviour was investigated and contrasted with isophthalic acid (Cu-m-BDC) and terephthalic

  3. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Hyvrard, François; Borrini, Julien [SARPI VEOLIA, Direction Technique et Innovations, Zone portuaire de Limay-Porcheville, 427 route du Hazay, 78520 Limay (France); Carboni, Michaël, E-mail: michael.carboni@cea.fr [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Meyer, Daniel [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-11-05

    Highlights: • Original waste disposal strategies for battery. • Precipitation of metals as coordination polymers. • Organo-phosphonate coordination polymers. • Selective extraction of manganese or co-precipitation of manganese/cobalt. • The recycling process give a promising application on any waste solution. - Abstract: An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  4. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: from stereo-random to stereo-perfect polymers.

    Science.gov (United States)

    Chen, Xia; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2012-05-02

    Coordination polymerization of renewable α-methylene-γ-(methyl)butyrolactones by chiral C(2)-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society

  5. Hexafluoridophosphate partial hydrolysis leading to the one-dimensional coordination polymer [{Cu(xantphos)(µ-PO2F2)}n

    OpenAIRE

    Keller, S.; Brunner, F.; Prescimone, A.; Constable, E. C.; Housecroft, C. E.

    2015-01-01

    The one-dimensional coordination polymer [{Cu(xantphos)(μ-PO2F2)}n] (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) is reported, the first extended structure in which copper(I) centres are linked by μ-PO2F2 units.

  6. Two-dimensional copper(I) coordination polymer materials as photocatalysts for the degradation of organic dyes.

    Science.gov (United States)

    Wen, Tian; Zhang, De-Xiang; Zhang, Jian

    2013-01-07

    Two isomeric two-dimensional copper(I) coordination polymer materials based on an in situ generated 5-(3-pyridyl)tetrazole ligand show similar layer structures but distinct photoluminescent and photocatalytic properties, which present an interesting comparative study on the structure-property correlation between isomeric materials.

  7. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique [Laboratório de Terras Raras, Departamento de Química Fundamental, Universidade Federal de Pernambuco (DQF-UFPE), 50590-470 Recife, PE (Brazil); Gatto, Claudia Cristina [Laboratório de Síntese Inorgânica e Cristalografia, Instituto de Química, Universidade de Brasília (IQ-UnB), 70904-970 Brasilia, DF (Brazil); Bezerra da Costa, Nivan; Oliveira Freire, Ricardo [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Chojnacki, Jarosław [Department of Inorganic Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Alves Júnior, Severino, E-mail: salvesjr@ufpe.br [Laboratório de Terras Raras, Departamento de Química Fundamental, Universidade Federal de Pernambuco (DQF-UFPE), 50590-470 Recife, PE (Brazil)

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  8. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  9. New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses

    Science.gov (United States)

    Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2017-03-01

    In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.

  10. [Synthesis and structure of silver(I) coordination polymers with bis(pyridyl) ligands linked by an aromatic sulfonamide].

    Science.gov (United States)

    Katagiri, Kosuke

    2014-01-01

    Aromatic sulfonamides exist in a synclinal conformation with the twisted structure arising from rotation around the S-N bond in both the solid state and in solution. Simple bidentate ligands containing the sulfonamide moiety can be extended to form elongated ligands, and optically active components can be added to form a versatile building block for the construction of coordination polymers with many structures. Mixing the simple ligands 1 and 2 and the elongated ligands 3 and 4 with different Ag(I) salts yielded the corresponding complexes [Ag(1)OTf]n (1a), [Ag(2)]n•nOTf(2a), [Ag(3)OTf]n (3a), [Ag(3)]n•nBF₄ (3b), [Ag(4)CH₃CN]n•nBF₄•nCHCl₃ (4b), and [Ag(4)]n•nSbF₆•nCH₄O (4c). Straight chains and racemic helical polymers were observed in the crystal structure of complexes 1a and 2a, respectively. In the crystal structures of complexes 3a and 4b, infinite 1D straight chains containing a T-shaped coordination geometry about the Ag(I) centers were formed by the reaction of ligands 3 or 4 with Ag(I) salts in CH₃CN/CHCl₃. A continuous 1D coordination polymer containing a racemic mixture of left- and right-handed helices formed in the crystal structure of complex 3b. Furthermore, a layered coordination polymer consisting of a racemic mixture of left- and right-handed polymers was observed from the crystal structure of complex 4c. The construction of optically pure left- or right-handed 1D helical polymers via the introduction of chiral functional groups on the nitrogen atom of the sulfonamide ligand is currently under investigation in our laboratory.

  11. Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers

    Directory of Open Access Journals (Sweden)

    James S. Wright

    2015-03-01

    Full Text Available A family of one-dimensional coordination polymers, [Ag4(O2C(CF22CF34(phenazine2(arenen]·m(arene, 1 (arene = toluene or xylene, have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF22CF34(phenazine2], 2a and/or 2b, with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b, not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF22CF34(phenazine2(toluene]·2(toluene, a phase containing toluene coordinated to Ag(I in an unusual μ:η1,η1 manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.

  12. Surface relief gratings in azobenzene supramolecular systems based on polyimides

    Science.gov (United States)

    Schab-Balcerzak, Ewa; Sobolewska, Anna; Stumpe, Joachim; Hamryszak, Lukasz; Bujak, Piotr

    2012-12-01

    The paper describes formation of new supramolecular azopolymers based on hydrogen bonds as perspective materials for laser induced surface relief gratings (SRGs) and for polarization gratings. Supramolecular films were built on the basis of hydrogen bonds between the functional groups of polymer and azobenzene derivatives, that is 4-[4-(3-hydroxypropyloxy)phenylazo]-pyridine and 4-[4-(6-hydroxyhexyloxy)phenylazo]pyridine. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for polymer-dye supramolecular systems. They revealed glass transition temperatures (Tg) in the range of 170-260 °C, whereas supramolecular systems exhibited lower Tg (88-187 °C). The polymers were easily soluble in aprotic polar solvents and exhibited remarkable good film forming properties. Moreover, new chromophore 4-[4-(3-hydroxypropyloxy)phenylazo]pyridine was synthesized and characterized. The light induced SRGs formation and simultaneous formation of the polarization gratings were explored in prepared polymer-chromophore assembles films using a holographic grating recording technique. First time to the best of our knowledge SRGs were formed in hydrogen-bonded supramolecular systems based on polyimides. The highest SRG amplitude and thus the highest diffraction efficiency were obtained in poly(esterimide)s with the hydroxyl functional group. Additionally, the thermal stability of the photoinduced surface gratings and polarization gratings were tested revealing in the case of the SRGs partial stability and almost complete erasure of the polarization gratings.

  13. The influence of different coordination environments on one-dimensional Cu(ii) coordination polymers for the photo-degradation of organic dyes.

    Science.gov (United States)

    Hussain, Navid; Bhardwaj, Vimal K

    2016-05-04

    Three new Cu(ii) coordination polymers, namely, {[Cu3(L(1))(NO3)2(DMF)(H2O)]·3(DMF)}n (), [Cu3(L(1))(Cl)2(DMF)2]n () and [Cu3(L(2))(NO3)4(H2O)4]n (), were synthesized from pyridine-2,6-dicarbohydrazide based imine linked tritopic ligands. All the complexes were characterized using elemental analysis, IR, UV-vis spectroscopy and ESI-MS. The solid state structures of complexes were determined using single crystal X-ray crystallography. The complexes contain trinuclear copper units connected through different anions that lead to the formation of one dimensional (ID) chain structures. Depending upon the anion of the copper salt and donor atoms of the ligands used in complexation, a small variation in the structures was observed. In complex , the trinuclear copper units are connected by phenoxo-bridging (μ2-O(-)) along with one coordinated water molecule, whereas complex is connected through chloride bridging (μ2-Cl) and complex is connected through nitrate ions (μ-[O-N-O]) along with four water molecules. Photo-catalytic activities of the synthesized complexes () were investigated. All the complexes were found to be photo-catalytically active; however, the distinct coordination environment of the metal ions (i.e. difference in the coordinated water molecules and donor sites of ligands) played a significant role in the catalytic activities. Therefore, this study presents comparative photo-catalytic studies of different coordination environments of metal ions in one-dimensional Cu(ii) coordination polymers. The results provide a potential pathway for the rational design of more efficient photo-catalysts.

  14. A Molecular Antenna Coordination Polymer from Cadmium(II and 4,4’-Bipyridine Featuring Three Distinct Polymer Strands in the Crystal

    Directory of Open Access Journals (Sweden)

    Iris M. Oppel

    2011-09-01

    Full Text Available Reaction of cadmium perchlorate and the prototypical linear bridging ligand 4,4’-bipyridine (4,4’-bipy in an ethanol/water mixture affords the one-dimensional coordination polymer, [{Cd(m-4,4’-bipy(4,4’-bipy2(H2O2}(ClO42 × 2 4,4’-bipy × 4.5 H2O]n (1. The Cd2+ ions adopt an octahedral coordination sphere and are joined into linear chains by 4,4’-bipy via two trans coordination sites. The remaining two trans sites in the equatorial plane carry terminally monodentate-bound 4,4’-bipy ligands, resulting in a molecular antenna arrangement. The two axial sites of each Cd2+ ion are occupied by aqua ligands. Compound 1 crystallizes in the non-centrosymmetric, monoclinic space group C2 with three similar, crystallographically independent, cationic coordination polymer strands in the unit cell, which essentially differ only in the conformations of the 4,4’-bipyridyl ligands. Consistent with the similarity of the local coordination environments of the three independent Cd atoms in the structure, 113Cd MAS NMR spectroscopy reveals a single resonance line at 89 ppm.

  15. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  16. An initial demonstration of hierarchically porous niobium alkylphosphonates coordination polymers as potent radioanalytical separation materials.

    Science.gov (United States)

    Lv, Kai; Yang, Chu-Ting; Han, Jun; Hu, Sheng; Wang, Xiao-Lin

    2017-06-30

    Combining the merits of soft-templating and perchlorate oxidation methods, the first-case investigation of niobium alkylphosphonates has uncovered their unique morphology, backbone composition, thermal behavior and huge potentiality as radioanalytical separation materials. These hierarchically porous solids are random aggregates of densely stacked nanolayers perforated with worm-like holes or vesicular voids, manifesting the massif-, tower-like "polymer brush" elevated up to ∼150nm driven by the minimal surface free energy principle. These coordination polymers consist of distorted niobium (V) ions strongly linked with tetrahedral alkylphosphonate building units, exposing uncoordinated phosphonate moieties and defective metal sites. Despite the amorphous features, they demonstrate multimodal porosity covering continuous micropores, segregated mesopores and fractional macropores, beneficial for the sequestration by active Lewis acid-base center. Evidenced by the maximum distribution coefficients of thorium, lanthanides reaching 9.0×10 4 , 9.5×10 4 mLg -1 and large separation factor at pH≤1 20-element cocktail, this category of niobium alkylphosphonates are capable of harvesting thorium, lanthanides directly from the radionuclide surrogate, comparable to or even surpass the performance of the metal (IV) arylphosphonates counterparts. They also display appreciable SF Eu/Sm ∼20 in 1molL -1 HNO 3 , shedding light on dual approaches to achieve the isolation of americium from curium. A combinatorial radioanalytical separation protocol has been proposed to enrich thorium and europium, revealing facile utilization of these highly stable, phosphonated hybrids in sustainable development of radioanalytical separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Syntheses, crystal structures and thermal properties of six coordination polymers based on 2-(p-methylphenyl)-imidazole dicarboxylate.

    Science.gov (United States)

    Zhang, Yu; Yuan, Pengfei; Zhu, Yanyan; Li, Gang

    2013-10-01

    Through solvothermal reactions of 2-(p-methylphenyl)-1H-imidazole-4,5-dicarboxylic acid (p-MePhH3IDC) with transition-metal ions, six coordination polymers [Pb2(p-MePhHIDC)(p-MePhH2IDC)2(phen)2]n (phen = 1,10-phenanthroline) (), [Pb(p-MePhH2IDC)2]n (), [Cd3(p-MePhHIDC)2(p-MePhH2IDC)2(H2O)2]n (), {[Cd(p-MePhHIDC)(H2O)]4·H2O}n (), {[Cd2(p-MePhHIDC)2(4,4'-bipy)]·4H2O}n (4,4'-bipy = 4,4'-bipyridine) () and [Mn3(p-MePhHIDC)2(p-MePhH2IDC)2(4,4'-bipy)]n () have been synthesized successfully. X-ray single-crystal analyses show that polymers have rich structural chemistry ranging from one-dimensional (), two-dimensional () to three-dimensional polymers (, , and ). In these polymers, the p-MePhH3IDC ligand shows flexible coordination modes tuned by different synthetical conditions, including the addition of coligands, temperature, pH value and so on. Furthermore, the polymers have been investigated by solid-state ultraviolet spectra and thermogravimetric analyses.

  18. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong-Cheng [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063 (China); Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jia-Cheng, E-mail: jcliu8@nwnu.edu.cn [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2016-09-15

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.

  19. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    Science.gov (United States)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  20. Synthesis and characterization of the mixed ligand coordination polymer CPO-5

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; FjellvAg, Helmer

    2003-01-01

    The synthesis and crystal structures of a novel coordination polymer and its high-temperature variant are described. The as-synthesized material (CPO-5-as), of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate)·3H 2 O, crystallizes in the triclinic space group P-1 (No. 2) with a=11.0197(2), b=14.2975(3), c=7.6586(1) A, α=95.9760(9) deg. , β=108.026(1) deg. , γ=91.373(1) deg. and V=1139.16(4) A 3 . CPO-5-as is composed of tetrahedral zinc centers that are connected by the organic linkers to give five independent, interpenetrating diamond networks. In the structure, there is additional space for channels that are filled with three water molecules. These water molecules can be removed, leading to an anhydrous variant at 130 o C. CPO-5-130, of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate), crystallizes in the triclinic space group P-1 (No. 2) with a=11.1844(6), b=14.0497(7), c=7.7198(3) A, α=96.917(2) deg. , β=109.527(2) deg. , γ=89.115(3) deg. and V=1134.6(1) A 3 . The structure of the five interpenetrating networks is virtually unchanged after the dehydration resulting in CPO-5-130 being a porous structure with an estimated free volume of 19.8%

  1. A new zinc coordination polymer in (10, 3)-d framework with unusual redox property

    Science.gov (United States)

    Huo, Jianqiang; Yan, Shuai; Arulsamy, Navamoney

    2017-11-01

    A new coordination polymer, [Zn(H1dimb)(Cl)]n (1) (H1dimb = 2,5-di (1H-imidazol-1-yl)benzoate), is obtained by hydrothermal synthesis and characterized by single crystal X-ray diffraction data and elemental analysis. Compound 1 crystallizes in the orthorhombic space group Pccn, and its structure exhibits a rarely observed ultimate racemic 3D network with 2-fold interpenetrating (10, 3)-d (or utp) topology due to the presence of alternating arrays of left- and right-handed helices. Thermo-gravimetric analysis (TGA) data for 1 reveals that the metal-organic framework (MOF) is thermally stable up to 350 °C under a N2 atmosphere. Compound 1 also possesses interesting photoluminescent properties as expected for Zn2+ complexes of aromatic ligands. Photoemission spectra measured in the solid state reveal a very strong emission band centered at 417 nm. Cyclic voltammetric data reveal that the compound exhibits quasi reversible two-electron redox process in acidic aqueous solution and the surprising electrochemical behavior is attributed to the Zn/Zn2+ process.

  2. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    Science.gov (United States)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  3. Preparation and characterization of organotin-oxomolybdate coordination polymers and their use in sulfoxidation catalysis.

    Science.gov (United States)

    Abrantes, Marta; Valente, Anabela A; Pillinger, Martyn; Gonçalves, Isabel S; Rocha, João; Romão, Carlos C

    2003-06-16

    The organotin-oxomolybdates [(R(3)Sn)(2)MoO(4)].n H(2)O (R=methyl, n-butyl, cyclohexyl, phenyl, benzyl) have been prepared and tested as catalysts for the oxidation of benzothiophene with aqueous hydrogen peroxide, at 35 degrees C and atmospheric pressure. In all cases, the 1,1-dioxide was the only observed product. The kinetic profiles depend on the nature of the tin-bound R group and also on the addition of a co-solvent. For the tribenzyltin derivative, the apparent activation energies for sulfoxidation as a function of the co-solvent are in the order 1,2-dichloroethane (5 kcal mol(-1))ethanolpolymers also have different structures, as evidenced by Xray powder diffraction. Mo K-edge and Sn K-edge EXAFS spectroscopy confirmed that the structures arise from the self-assembly of tetrahedral [MoO(4)](2-) subunits and [R(3)Sn](+) spacers. The Mo...Sn separation in the trimethyltin derivative is a uniform 3.84 A. By contrast, the EXAFS results revealed the coexistence of short (3.67-3.79 A) and long (3.93-4.07 A) Mo.Sn separations in the other coordination polymers. The catalyst precursors were also characterized in the solid state by thermogravimetric analysis, FTIR, and Raman spectroscopy, and MAS NMR ((13)C, (119)Sn) spectroscopy.

  4. One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties.

    Science.gov (United States)

    Wen, He-Rui; Tang, Yun-Zhi; Liu, Cai-Ming; Chen, Jing-Lin; Yu, Chang-Lin

    2009-11-02

    Two couples of enantiomerically pure chiral cyano-bridged heterobimetallic chain coordination polymers, [Mn((R,R)-Salcy)Fe(Tp)(CN)(3) x H(2)O x 1/2 CH(3)CN](n) (1), [Mn((S,S)-Salcy)Fe(Tp)(CN)(3) x H(2)O x 1/2 CH(3)CN](n) (2), [Mn((R,R)-Salcy)Fe(bpca)(CN)(3) x H(2)O](n) (3), and [Mn((S,S)-Salcy)Fe(bpca)(CN)(3) x H(2)O](n) (4) [(R,R)-Salcy or (S,S)-Salcy = (R,R)- or (S,S)-N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion, Tp = tris(pyrazolyl)hydroborate, bpca = bis(2-pyridylcarbonyl)amidate anion], were synthesized using the modified cyanometalate building blocks [Fe(L)(CN)(3)](-) (L = Tp, bpca) and the chiral polydentate Schiff base manganese(III) complex fragments. The circular dichroism measurements showed Cotton effects of the opposite sign at the same wavelength for each pair of enantiomers. Magnetic property studies indicated that complexes 1 and 2 show not only intrachain but also interchain field-induced metamagnetic transitions from an antiferromagnetic to a ferromagnetic state and exhibit an antiferromagnetic long-range ordering with a T(N) of 3.2 K, while enantiomers 3 and 4 are typical antiferromagnetic coupling compounds. Furthermore, complex 3 exhibits a ferroelectric behavior that relates to the polar point group C(2), in which it crystallizes.

  5. Synthesis, crystal structure and adsorption properties of a novel Mn(II) coordination polymer

    Science.gov (United States)

    Cui, Lian-Sheng; Gan, Yong-Le; Li, Yuan-Cheng; Meng, Jun-Rong

    2017-11-01

    A novel Mn(II) coordination polymer based on a "V"-shaped 1,3-di(4‧-carboxyl-phenyl)benzene acid (H2dpb, dpb = 1,3-di(4‧-carboxyl-phenyl)benzene), namely {[Mn(dpb)(4,4‧-bibp)]·H2O}n (4,4‧-bibp = 4,4‧-bis(imidazol-1-yl)biphenyl) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction and further characterized by elemental analysis, IR spectra, and thermogravimetric analysis (TGA). Furthermore, CO2 and SO2 adsorption properties of the complex were tested by high-pressure adsorption instrument under different pressure. The results show that the adsorption performance of CO2 is far superior to SO2 on the same conditions. The adsorption capacity increases with temperature rising. Very interestingly, the saturated adsorption amount (5.5 mmol/g) at 100 °C is less than the one at 80 °C (7.20 mmol/g). This phenomenon is caused by the escape of water vapor.

  6. Reversible and Topotactic Solvent Removal in a Magnetic Ni(NCS)2 Coordination Polymer.

    Science.gov (United States)

    Suckert, Stefan; Rams, Michał; Rams, Marek M; Näther, Christian

    2017-07-17

    Reaction of Ni(NCS) 2 with 4-(Boc-amino)pyridine in acetonitrile leads to the formation of a new coordination polymer with the composition Ni(NCS) 2 (4-(Boc-amino)pyridine) 2 ·MeCN (1-MeCN). In the crystal structure the Ni(II) cations are linked by the anionic ligands into chains that are further connected into layers by intermolecular N-H···O hydrogen bonding. These layers are stacked and channels are formed, in which acetonitrile molecules are located. Solvent removal leads to the ansolvate 1, which shows microporosity as proven by sorption measurements. Single crystal X-ray investigations reveal that the solvent removal leads to a change in symmetry from primitive to C-centered, which is reversible and which proceeds via a topotactic reaction leaving the network intact. The magnetic properties of 1-MeCN and 1 are governed by the ferromagnetic exchange between spins of Ni(II) forming chains. The susceptibility and specific heat for such a quantum Heisenberg chain of S = 1 spins with zero-field splitting are calculated using the DMRG method and compared with the experimental results.

  7. Synthesis, Crystal Structure and Thermal Stability of 1D Linear Silver(I Coordination Polymers with 1,1,2,2-Tetra(pyrazol-1-ylethane

    Directory of Open Access Journals (Sweden)

    Evgeny Semitut

    2016-10-01

    Full Text Available Two new linear silver(I nitrate coordination polymers with bitopic ligand 1,1,2,2-tetra(pyrazol-1-ylethane were synthesized. Synthesized compounds were characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and thermal analysis. Silver coordination polymers demonstrated a yellow emission near 500 nm upon excitation at 360 nm. Crystal structures of coordination polymers were determined and structural peculiarities are discussed. In both of the structures, silver ions are connected via bridging ligand molecules to form polymeric chains with a five-atomic environment. The coordination environment of the central atom corresponds to a distorted trigonal bipyramid with two N atoms of different ligands in apical positions. The Ag–N bond distances vary in a wide range of 2.31–2.62 Å, giving strongly distorted metallacycles. Thermolysis of coordination polymers in reductive atmosphere (H2/He leads to the formation of silver nanoparticles with a narrow size distribution.

  8. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2017-02-15

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.

  9. Assembly of Zn(II) and Cd(II) coordination polymers based on a flexible multicarboxylate ligand and nitrogen-containing auxiliary ligands through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties.

    Science.gov (United States)

    Lu, Ji Tao; Meng, Dan Dan; Meng, Qing-Guo

    2016-02-01

    The structures of coordination polymers are strongly influenced by the organic ligands and metal ions used for their construction, so it is important to choose suitable ligands and metal ions and appropriate synthetic processes. Two novel d(10) coordination polymers, namely poly[[diaquabis(2,2'-bipyridine)[μ4-4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylato)]dizinc(II)] dihydrate], {[Zn2(C22H10O10)(C10H8N2)2(H2O)2]·2H2O}n, (1), and poly[[diaquabis(1,10-phenanthroline)[μ4-4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylato)]dicadmium(II)] dimethylformamide disolvate], {[Cd2(C22H10O10)(C12H8N2)2(H2O)2]·2C3H7NO}n, (2), have been synthesized from 4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylic acid) (H4L) and two different N-containing auxiliary ligands through a mixed-ligand synthetic strategy under a solvothermal environment. The structures were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectroscopy. Compounds (1) and (2) both present one-dimensional chain structures and two-dimensional supramolecular layer structures constructed by weak hydrogen bonds. It is interesting to note that the carboxylate ligands reveal stable trans configurations in both compounds. The fluorescence properties of (1) and (2) in the solid state were also investigated.

  10. Supramolecular Photodimerization of Coumarins

    Directory of Open Access Journals (Sweden)

    Koichi Tanaka

    2012-02-01

    Full Text Available Stereoselective photodimerization of coumarin and its derivatives in supra-molecular systems is reviewed. The enantioselective photodimerization of coumarin and thiocoumarin in inclusion crystals with optically active host compounds is also described.

  11. Supramolecular catalysis: Refocusing catalysis

    NARCIS (Netherlands)

    van Leeuwen, P.W.N.M.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2008-01-01

    This chapter contains sections titled: * Introduction: A Brief Personal History * Secondary Phosphines or Phosphites as Supramolecular Ligands * Host-Guest Catalysis * Ionic Interactions as a Means to Form Heterobidentate Assembly Ligands * Ditopic Ligands for the Construction of Bidentate Phosphine

  12. Coordination polymers of La(III) acetate with terephthalaldehyde bis isonicotinic acid hydrazone (Paper No. AL-12)

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Shukla, B.K.; Shukla, R.K.

    1990-02-01

    Polymerization reactions involving the formation of schiff base metal complexes by condensation have been described. Metal complexes of schiff bases of hyrazides with aldehydes and ketones have been of special interest in recent years, particularly in the context of therapeutic value of hydrazide and hydrazone. The coordination occurs both in keto as well as in enolic form of ligands with metal ions. Coordination polymers of 3-d series have been extensively studied but less attention has been paid on rare earths polymeric complexes. The synthesis and characterization of lanthanide (La, Pr, Nd, Sr and Gd) acetate complexes with a schiff base derived from terephthalaldehyde and isonicotinic acidhydrazide are reported. (author)

  13. Crystal Structure and Band-Gap Engineering of a Semiconducting Coordination Polymer Consisting of Copper(I) Bromide and a Bridging Acceptor Ligand.

    Science.gov (United States)

    Okubo, Takashi; Himoto, Kento; Tanishima, Koki; Fukuda, Sanshiro; Noda, Yusuke; Nakayama, Masanobu; Sugimoto, Kunihisa; Maekawa, Masahiko; Kuroda-Sowa, Takayoshi

    2018-03-05

    A new semiconducting 3D coordination polymer, [Cu 2 Br 2 (ttz)] n (1), with an acceptor bridging ligand, 1,2,4,5-tetrazine (ttz), was synthesized. The complex shows large absorption bands extending to the near-IR region, indicating a small band gap in the coordination polymer. This complex shows higher conductivity than those of [CuBr(pyz)] n (2), including pyrazine (pyz) with a higher lowest unoccupied molecular orbital level. We performed density functional theory band calculations using the VASP program to understand the electronic states and conducting paths of the coordination polymer.

  14. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian; Zhou, Lin-Xia

    2017-02-15

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cycle reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.

  15. Reversible Guest Binding in a Non-Porous FeII Coordination Polymer Host Toggles Spin Crossover

    DEFF Research Database (Denmark)

    Lennartson, Anders; Southon, Peter; Sciortino, Natasha F.

    2015-01-01

    Formation of either a dimetallic compound or a 1 D coordination polymer of adiponitrile adducts of [Fe(bpte)]2+ (bpte=[1,2-bis(pyridin-2-ylmethyl)thio]ethane) can be controlled by the choice of counteranion. The iron(II) atoms of the bis(adiponitrile)-bridged dimeric complex [Fe2(bpte)2(μ2-(NC(CH2...

  16. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin-Hua [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Tang, Gui-Mei, E-mail: meiguit@163.com [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Qin, Ting-Xiao; Yan, Shi-Chen [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Wang, Yong-Tao, E-mail: ceswyt@sohu.com [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Cui, Yue-Zhi [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Weng Ng, Seik [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  17. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable

    Science.gov (United States)

    Zhang, Xiaoxing; Tan, Jipeng; Xu, Xinxin; Shi, Fanian; Li, Guanglu; Yang, Yiqiao

    2017-09-01

    A composite material has been obtained successfully through the loading of nanoscale coordination polymer on magnetic Fe3O4@SiO2 core-shell particle. In this composite material, coordination polymer nanoparticles distribute uniformly on Fe3O4@SiO2 and these two components are "tied" together firmly with chemical bonds. Adsorption experiments suggest this composite material exhibits very excellent selectivity to hemoglobin. But under the same condition, its adsorption to bovine serum albumin can almost be ignored. This selectivity can be attributed to the existence of hydrophobic interactions between coordination polymer nanoparticle and hemoglobin. For composite material, the hemoglobin adsorption process follows Langmuir model perfectly with high speed. The adsorbed hemoglobin can be eluted easily by sodium dodecyl sulfate stripping reagent with structure and biological activity of hemoglobin keeps well. The composite material was also employed to separate hemoglobin from human whole blood, which receives a very satisfactory result. Furthermore, magnetic measurement reveals ferromagnetic character of this composite material with magnetization saturation 3.56 emu g-1 and this guarantees its excellent magnetic separation performance from the treated solution.

  18. "Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes.

    Science.gov (United States)

    Nie, Zhihong; Fava, Daniele; Rubinstein, Michael; Kumacheva, Eugenia

    2008-03-19

    We report a predefined self-organization of gold nanorods (NRs) end-terminated with multiple polymer arms ("pom-poms") in higher-order structures. The assembly of polymer-tethered NRs was controlled by changing the structure of the polymer pom-poms. We show that the variation in the molecular weight of the polymer molecules and their relative location with respect to the long side of the NRs resulted in two competing association modes of the nanorods, that is, their side-by-side and end-to-end assembly, and produced bundles, chains, rings, and bundled chains of the NRs. The superposition of the two variables controlling the organization of NRs allowed us to create a map showing the variation in the longitudinal plasmonic bands of the NRs achieved by their self-assembly.

  19. Zirconium(IV)-Benzene Phosphonate Coordination Polymers: Lanthanide and Actinide Extraction and Thermal Properties.

    Science.gov (United States)

    Luca, Vittorio; Tejada, Juan J; Vega, Daniel; Arrachart, Guilhem; Rey, Cyrielle

    2016-08-15

    Coordination polymers with different P/(Zr + P) molar ratios were prepared by combining aqueous solutions of Zr(IV) and benzenephosphonate derivatives. 1,3,5-Benzenetrisphosphonic acid (BTP) as well as phosphonocarboxylate derivatives in which carboxylate substitutes one or two of the phosphonate groups were chosen as the building blocks. The precipitates obtained on combining the two solutions were not X-ray amorphous but rather were indicative of poorly ordered materials. Hydrothermal treatment did not alter the structure of the materials produced but did result in improved crystalline order. The use of HF as a mineralizing agent during hydrothermal synthesis resulted in the crystallization of at least three relatively crystalline phases whose structure could not be determined owing to the complexity of the diffraction patterns. Gauging from the similarity of the diffraction patterns of all the phases, the poorly ordered precipitates and crystalline materials appeared to have similar underlying structures. The BTP-based zirconium phosphonates all showed a higher selectivity for lanthanides and thorium compared with cations such as Cs(+), Sr(2+), and Co(2+). Substitution of phosphonate groups by carboxylate groups did little to alter the pattern of selectivity implying that selectivity in the system was entirely determined by the -POH group with little influence from the -COOH groups. Samples with the highest phosphorus content showed the highest extraction efficiencies for lanthanide elements, especially the heavy lanthanides such as Dy(3+) and Ho(3+) with separation factors of around four with respect to La(3+). In highly acid solutions (4 M HNO3) there was a pronounced variation in extraction efficiency across the lanthanide series. In situ, nonambient diffraction was performed on ZrBTP-0.8 loaded with Th, Ce, and a complex mixture of lanthanides. In all cases the crystalline Zr2P2O7 pyrophosphate phase was formed at ∼800 °C demonstrating the versatility of

  20. SYNTHESIS, CHARACTERIZATION AND ANTITUMOR ACTIVITY OF A Ca (II COORDINATION POLYMER BASED ON 3-AMINO-2-PYRAZINECARBOXYLIC ACID

    Directory of Open Access Journals (Sweden)

    XI-SHI TAI

    2015-10-01

    Full Text Available A new Ca(II coordination polymer has been obtained by reaction of Ca(ClO42·H2O with 3-amino-2-pyrazinecarboxylic acid in CH3CH2OH/H2O. It was characterized by IR, 1HNMR, thermal analysis and X-ray single crystal diffraction analysis. X-ray analysis reveals that each Ca(II center is seven-coordination with a N2O5 distorted pentagonal bipyramidal coordination environment. The Ca(II ions are linked through the O atoms of 3-amino-2-pyrazinecarboxylic acid ligands to form 1D chain structure. And then a 3D network structure is constructed by hydrogen bonds and π-π stacking. The antitumor activity of 3-amino-2-pyrazinecarboxylic acid ligand and its Ca(II coordination polymer against human intestinal adenocarcinoma HCT-8 cells, lung adenocarcinoma HCT-116 cells and human lung adenocarcinoma A549 cells line have been investigated.

  1. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  2. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite.

    Science.gov (United States)

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S

    2010-10-01

    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  3. A new cadmium(II coordination polymer constructed by 2-(2-chloro-6-fluorophenyl-1H-imidazo[4,5-f][1,10]-phenanthroline and 1,3-benzenecarboxylate: Synthesis, crystal structure, thermal behavior and luminescent property

    Directory of Open Access Journals (Sweden)

    Kong Zhi-Guo

    2014-01-01

    Full Text Available A new Cd(II coordination polymer, namely, [Cd2(Cl(1,3-BDC1.5(L2]•1.25H2O (1 (L = 2-(2-chloro-6-fluorophenyl-1H-imidazo[4,5-f][1,10]phenanthroline and 1,3-BDC = 1,3-benzenedicarboxylate, has been synthesized under hydrothermal condition. The crystal of 1 belongs to orthorhombic, space group P bcn with a = 31.3116(19 Å, b = 13.5485(8 Å, c = 22.9850(15 Å, α = 90º, β = 90º, γ = 90°, C50H28.5Cd2Cl3F2N8O7.25, Mr = 1226.46, V = 9750.8(10 Å3, Z = 8, Dc = 1.671 g/cm3, S = 1.038, μ(MoKα = 1.106 mm-1, F(000 = 4860, R = 0.0585 and wR = 0.1485. Compound 1 shows a 1D ladder structure. Further, neighboring 1D ladders are joined together by π•••π interactions to result in a 2D supramolecular layer. The thermal behavior of 1 has been characterized. In addition, its luminescent property has been studied in solid state at room temperature.

  4. Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine

    Directory of Open Access Journals (Sweden)

    Amah Colette Benedicta Yuoh

    2015-01-01

    Full Text Available A novel one-dimensional coordination polymer bis(2-aminopyridine-μ-bis(dicyanamido cobaltate(II has been synthesized and characterized by elemental analyses and infrared and ultraviolet visible spectroscopies and the structure has been determined by single crystal X-ray diffraction. Co(II ion in the complex is coordinated to two axial 2-aminopyridine ligands through the pyridine N-atom and four equatorial dicyanamide ligands to give a CoN6 slightly distorted octahedral coordination environment around the metal ion. The amino N-atom forms intrachain hydrogen bonds. Antimicrobial screening of the complex against eight pathogenic microorganisms (four bacteria and four fungi isolated from humans, indicates that the complex is moderately active.

  5. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  6. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  7. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    Science.gov (United States)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  8. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.

    1996-01-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  9. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  10. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  11. Design and construction of diverse structures of coordination polymers: Photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu, E-mail: wuyuhlj@163.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Feng, Jianshen [Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Li, Yulong; Sun, Yanchun [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China)

    2017-01-15

    The reaction of Cu(NO{sub 3}){sub 2}·3H{sub 2}O/Ni(NO{sub 3}){sub 2}·6H{sub 2}O with 4′-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2′:6′,4′′-terpyridine (H{sub 2}dbp) gave [Cu{sub 0.5}(Hdbp)]{sub n} (1) and [Ni(dbp)(H{sub 2}O)]{sub n} (2), while the reactions of Co(NO{sub 3}){sub 2}·6H{sub 2}O with H{sub 2}dbp in the presence of 4,4′-bipy and 2,2′-bpy generated [Co(dbp)(4,4′-bipy)]{sub n} (3) and ([Co(dbp)(2,2′-bipy)]{sub n}·H{sub 2}O) (4), respectively (4,4′-bipy=4.4′-pyridine and 2,2′-bipy=2,2′-bipyridine). X-Ray single-crystal analyses reveal that 1 contains a 1D double chain. 2 possesses a 3D architecture with (4.6{sup 2}0.8{sup 3}){sub 2} topology that is interpenetrated with each other to form a 2-fold network. In 3, the 2D [Co(dbp)]n sheets are pillared by 4,4′-bpy to form a 3D framework with 1D open channel. Compound 4 consists of a 1D ladder-like chain. The results showed that the structural diversity of the coordination polymers resulted from the different geometries of metal ions and effect of assistant ligands. Furthermore, the photocatalytic properties of 1–4 for degradation of the methyl violet (MV) have been examined. - Graphical abstract: The photocatalytic activity and selectivity of complexes 1–4 prove that they may be good and stable photocatalysts for degradation of organic dyes.

  12. Vapochromic Behaviour of M[Au(CN2]2-Based Coordination Polymers (M = Co, Ni

    Directory of Open Access Journals (Sweden)

    Daniel B. Leznoff

    2012-03-01

    Full Text Available A series of M[Au(CN2]2(analytex coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO, N,N-dimethylformamide (DMF, pyridine; x = 2 or 4 was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2[Au(CN2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN2]2(DMSO2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II salt and K[Au(CN2] in DMSO yielded the isostructural Ni[Au(CN2]2(DMSO2 product. Co[Au(CN2]2(DMSO2 and M[Au(CN2]2(DMF2 (M = Co, Ni complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2[Au(CN2]2 and from DMSO or DMF solution synthesis. Co[Au(CN2]2(pyridine4 is generated via vapour absorption by Co(μ-OH2[Au(CN2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2[Au(CN2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2[Au(CN2]2 yielded Co[Au(CN2]2(pyridine2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2[Au(CN2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN2]2 was prepared by dehydration of Co(μ-OH2[Au(CN2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

  13. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    International Nuclear Information System (INIS)

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-01-01

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H 2 O} n (1), {[Zn(bib)(atbip)]·H 2 O} n (2), [Zn(bib)(2,2′-tda)]} n (3) and {[Zn(bib)(5-tbipa)]·EtOH} n (4), (H 2 atibdc=5-amino-2,4,6-triiodoisophthalic acid, H 2 atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H 2 tad=2,2′-thiodiacetic acid, 5-H 2 tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E 1 =209.658 kJ·mol −1 , E 2 =250.037 kJ mol −1 , E 3 =225.300 kJ mol −1 , E 4 =186.529 kJ·mol −1 ) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH ‡ , ΔG ‡ and ΔS ‡ ) at the peak temperatures of the DTG curves were also calculated. ΔG ‡ >0 indicates that the skeleton collapse is not spontaneous. ΔH d >0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and

  14. Base-induced self-assembly for one-dimensional coordination polymers via chiral pendant-armed Schiff base mononuclear Pb(II) macrocycles.

    Science.gov (United States)

    Zhang, Kun; Jin, Chao; Sun, Yuchen; Chang, Feifan; Huang, Wei

    2014-08-04

    A pair of 18-membered [1 + 1] chiral pendant-armed Schiff base macrocyclic mononuclear Pb(II) complexes with an unusual N1O2 coordination mode, synthesized from two chiral isomeric dialdehyde components, can be further self-assembled to one-dimensional ribbon coordination polymers by adding NaOH as a base to remove two phenolic protons.

  15. Mössbauer Spectroscopic Study on Hofmann-like Coordination Polymer Fe(4-Clpy2[Ni(CN4

    Directory of Open Access Journals (Sweden)

    Takafumi Kitazawa

    2016-06-01

    Full Text Available 57Fe Mössbauer spectroscopic results on the 2D Hofmann-like coordination polymer Fe(4-Clpy2Ni(CN4 (sample 1 indicate that iron(II ions are in a high spin state both at R.T. and T = 80 K, showing that the compound exhibits no spin crossover (SCO behavior. Mössbauer spectra at R.T. and T = 80 K show one major doublet which corresponds to the HS1 is due to high spin iron(II sites coordinated by four N atoms of cyano groups and two N atoms of 4-Clpy ligand in the sample 1. Two minor doublets coexisted in sample 1. One minor doublet with a large quadrupole splitting can be explained by the presence of defects in the coordination polymer frameworks. Another minor doublet is with a small quadrupole splitting, indicating the presence of iron(III high spin species or iron(II low spin species. This work is licensed under a Creative Commons Attribution 4.0 International License.

  16. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  17. Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(Isopropyl)acrylamide copolymers and β-cyclodextrin complexation.

    Science.gov (United States)

    Fleischmann, Carolin; Ritter, Helmut

    2013-07-12

    The copolymerization parameters of N-(isopropyl)acrylamide (1) and N-(2-hydroxy-5-(1-(4-hydroxyphenyl)-3-oxo-1,3-dihydroisobenzofuran-1-yl)benzyl)acrylamide (2) are determined. For both monomers, the homoaddition proceeds slightly faster than the heteroaddition step; however, the polymer formation occurs in a statistic fashion. Copolymers of different compositions are prepared and the cloud points are determined. Thereby, a significant influence of the concentration of monomer 2 and the pH value is found. For the first time, the complexation of polymer attached phenolphthalein by β-cyclodextrins is shown. Furthermore, it is possible to achieve a decomplexation by the addition of suitable guest molecules. Both procedures can be followed with the naked eye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Bimetallic coordination polymers [[ML][FeIIFeIII(ox)3].1.5H2O] infinity with layer structure syntheses, spectra characterization].

    Science.gov (United States)

    Chen, You-cun; Liu, Guang-xiang; Zhou, Hong; Ren, Xiao-ming

    2002-10-01

    Two new schiff base complexes, NiL(ClO4).3H2O (1) and CuL(ClO4).4H2O (2) [L was condensed from equation molar salicylaldehyde and diethylenetriamine] have been synthesized and characterized. Further, two new bimetallic coordination polymers, [[ML][FeIIFeIII(ox)3].1.5H2O] infinity were synthesized and characterized, where ox2- = oxalate, M = Ni2+ (3) or Cu2+ (4). The tested results of elementary analysis of coordination polymers (3) and (4) were according with the theoretical value, and the results of the IR indicated that the coordination of oxalate were bridgetype in compound (3) and (4). 2-D layer coordination polymers were synthesized by oxalate and Fe3+, Fe2+. The result of Mössbauer spectra of (3) and (4) in room temperature revealed that two different postural ferric ions were found in coordination polymer (3) and (4), and anions layer was formed by [FeIIFeIII(ox)3]- unit. The compounds of (3) and (4) were bimetallic coordination polymers.

  19. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  20. Dynamic porous coordination polymer based on 2D stacked layers exhibiting high sorption selectivity for CO2.

    Science.gov (United States)

    Liu, Bo; Hou, Lei; Wang, Yao-Yu; Miao, Hui; Bao, Li; Shi, Qi-Zhen

    2012-03-21

    A new dynamic porous coordination polymer (PCP) [Ni(dcpy)(bipy)(0.5)(H(2)O)]·1.5H(2)O (1) was synthesized by assembly of 3-(2',5'-dicarboxylphenyl)pyridine (dcpy), 4,4'-bipyridine (bipy) and NiSO(4)via solvothermal, hydrothermal and microwave methods, displaying a wavelike 2D stacked layer framework. Gas adsorption studies for 1 shows a high selective adsorption of CO(2) over other gases (N(2), CH(4) and CO). The adsorption capacity for N(2) can be moderately altered by different activation temperatures demonstrating the framework flexibility of 1.

  1. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  2. Synthesis, structure, and luminescence property of a series of Ag–Ln coordination polymers with the N-heterocyclic carboxylato ligand

    International Nuclear Information System (INIS)

    Jin, Jing; Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-01-01

    Six Ln–Ag coordination polymers {[LnAg 2 (IN) 4 (H 2 O) 5 ]·NO 3 ·2H 2 O} n (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg 2 (IN) 4 (H 2 O) 2 ]·NO 3 ·H 2 O} n (3), [LnAg(pdc) 2 ] n (Ln=Eu(4) and Pr (5), H 2 pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc) 2 (H 2 O) 4 ] n (6) (H 2 bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.

  3. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    International Nuclear Information System (INIS)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2014-01-01

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H 2 O)]) n (1), ([Co(4-Nbdc)(bpp) (H 2 O)]) n (2), ([Ni(4-Nbdc)(bpp)(H 2 O)]·H 2 O) n (3), and ([Mn 2 (3-Nbdc) 2 (bib) 3 ]·2H 2 O) n (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6 6 ) dia topology and (4 4 .6 10 .8)(4 4 .6 2 ) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm −1 ) and Ni(II)–carboxylate chain in 3 (J=1.44 cm −1 ), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm −1 ). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling

  4. Self-assembly of metal-organic coordination polymers constructed from a bent dicarboxylate ligand: diversity of coordination modes, structures, and gas adsorption.

    Science.gov (United States)

    Yang, Wenbin; Lin, Xiang; Blake, Alexander J; Wilson, Claire; Hubberstey, Peter; Champness, Neil R; Schröder, Martin

    2009-12-07

    We have synthesized five new metal-organic coordination polymers incorporating the bent ligand H(2)hfipbb [4,4'-(hexafluoroisopropylidene)bis(benzoic acid)] with different transition metal ions and co-ligands via solvothermal reactions to give [Zn(2)(hfipbb)(2)(py)(2)] x DMF (1), [Zn(2)(hfipbb)(2)(4,4'-bipy)(H(2)O)] (2), [Zn(2)(hfipbb)(2)(bpdab)].2DMF (3), [Cd(2)(hfipbb)(2)(DMF)(2)] x 2 DMF (4), and [Co(hfipbb)(dpp)] x MeOH (5) (py = pyridine, 4,4'-bipy = 4,4'-bipyridine, bpdab = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, dpp = 1,3-di(4-pyridyl)propane). Compound 1 displays a 2-fold 2D-->2D parallel interpenetrated layer network with one-dimensional (1D) helical channels, while 3 exhibits a three-dimensional pillared helical-layer open framework of alpha-Po topology based upon binuclear paddlewheel units. In compounds 2 and 5, binuclear motifs with double carboxylate bridges are linked by hfipbb(2-) ligands into a 1D ribbon, which are further assembled into two-dimensional non-interpenetrated (4,4) layers via bipyridyl co-ligands. However, the different bridging modes of hfipbb(2-) ligands and the different disposition of the coordinated co-ligands around metal ions result in subtle differences in the final architecture. Thus, 2 is based on a binuclear cluster node, double-stranded hfipbb(2-) linkers, and single-stranded 4,4'-bipy linkers, while 5 is based on a binuclear cluster node and hfipbb(2-) and dpp linkers which are both double-stranded. Among these compounds, the Cd(II) complex 4 is possibly the most interesting because it represents a rare example in which metal centers are linked by carboxylate groups into infinite chains further joined together by hfipbb(2-) spacers to form a 2D network with tubular helical channels. All these coordination polymers exhibit low solvent-accessible volumes. Both 3 and 4 retain structural integrity and permanent microporosity upon evacuation of guest molecules, with hydrogen uptakes of 0.57 and 0.78 wt %, respectively, at

  5. Rare configuration of tautomeric benzimidazolecarboxylate ligands in cadmium(II) and copper(II) coordination polymers

    International Nuclear Information System (INIS)

    Wu, Jing-Yun; Yang, Ciao-Wei; Chen, Hui-Fang; Jao, Yu-Chen; Huang, Sheng-Ming; Tsai, Chiitang; Tseng, Tien-Wen; Lee, Gene-Hsiang; Peng, Shie-Ming; Lu, Kuang-Lieh

    2011-01-01

    Two Cd(HBimc)-based isomers, [Cd(HBimc N )(HBimc T )(H 2 O)].3.5H 2 O.EtOH (1a.3.5H 2 O.EtOH, H 2 Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimc N )(HBimc T )(H 2 O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimc N ) 2 (H 2 O)].1/2H 2 O (2.1/2H 2 O, H 2 MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimc T ) 2 ].2THF.H 2 O (3.2THF.H 2 O), were self-assembled from Cd(ClO 4 ) 2 .6H 2 O/H 2 Bimc and Cu(ClO 4 ) 2 .6H 2 O/H 2 MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd 2 (HBimc N ) 2 -metallocyclic stair and a 1D straight -(Cd-HBimc T ) n - edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimc N ) n - chains and -(Cd-HBimc T ) n - chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimc N ) n - chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimc T ) n - chains. Interestingly, a pair of tautomeric HBimc building blocks-normal (N or HBimc N ) and tautomer (T or HBimc T )-is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time. - Graphical abstract: A pair of tautomeric HBimc building blocks (normal (N) and tautomer (T)) is found simultaneously in two Cd(II) networks, whereas, the normal and tautomer modes of HMBimc are present as separate entities in two Cu(II) frameworks. The isolation of a Cu(II) network with only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand is achieved for the first time. Highlights: →Benzimidazolecarboxylates could exhibit normal (N) and tautomer (T) configurations. → A pair of N- and T

  6. A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity.

    Science.gov (United States)

    Mon, Marta; Vallejo, Julia; Pasán, Jorge; Fabelo, Oscar; Train, Cyrille; Verdaguer, Michel; Ohkoshi, Shin-Ichi; Tokoro, Hiroko; Nakagawa, Kosuke; Pardo, Emilio

    2017-11-07

    A novel three-dimensional (3D) coordination polymer with the formula (C 3 N 2 H 5 ) 4 [MnCr 2 (ox) 6 ]·5H 2 O (2), where ox = oxalate and C 3 N 2 H 5 = imidazolium cation, is reported. Single crystal X-ray diffraction reveals that this porous coordination polymer adopts a chiral three-dimensional quartz-like architecture, with the guest imidazolium cations and water molecules being hosted in its pores. This novel multifunctional material exhibits both a ferromagnetic ordering at T C = 3.0 K, related to the host MnCr 2 network, and high proton conductivity [1.86 × 10 -3 S cm -1 at 295 K and 88% relative humidity (RH)] due to the presence of the acidic imidazolium cations and free water molecules. The similarity of the structure of compound 2 to that of the previously reported analogous compound (NH 4 ) 4 [MnCr 2 (ox) 6 ]·4H 2 O, (1), also allows us to analyse, to a certain extent, the effect of the acidity of the proton donating guest molecules on proton conduction properties. 2 hosts, in one-dimensional (1D) channels, imidazolium cations, which are more acidic than the ammonium ones in 1 and, as a consequence, 2 shows higher proton conduction than 1, highlighting the effect of the pK a of the proton donating guest molecules on proton conductivity.

  7. A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection.

    Science.gov (United States)

    Zeng, Hui-Hui; Zhang, Li; Rong, Lian-Qing; Liang, Ru-Ping; Qiu, Jian-Ding

    2017-03-15

    A bimetal lanthanide coordination polymer nanoparticle (ATP-Ce/Tb-Tris CPNs) with good biocompatibility was synthesized in Tris-HCl buffer using adenosine triphosphate (ATP) molecules as the bridge ligands. The large absorption cross section and suitable emission energy of Ce 3+ matching to the adsorption energy of Tb 3+ ( 4 f n ) results in the efficient energy transfer from Ce 3+ to Tb 3+ , thus the synthesized ATP-Ce/Tb-Tris CPNs exhibit the characteristic green emission of Tb 3+ . Such energy transfer from metal to metal in fluorescent lanthanide coordination polymer nanoparticles (Ln-CPNs) has been demonstrated. It is found that the oxidation of Ce 3+ in ATP-Ce/Tb-Tris CNPs to Ce 4+ would interrupt the energy transfer from Ce 3+ to Tb 3+ , leading to fluorescence quenching of Tb 3+ . On the basis of this quenching mechanism, ATP-Ce/Tb-Tris CPNs has been successfully used to detect reactive oxygen H 2 O 2 with detection limit as low as 2nM. If glucose oxidase is present in the system, glucose can be determined using the ATP-Ce/Tb-Tris CNPs nanosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of ligand spacer and counter-anion in selected 1D iron(II) spin crossover coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dirtu, Marinela M.; Schmit, France; Naik, Anil D. [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences (Belgium); Rotaru, Aurelian [' Stefan cel Mare' University, Department of Electrical Engineering and Computer Science (Romania); Marchand-Brynaert, Jacqueline; Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences (Belgium)

    2012-03-15

    A new 1D coordination polymer [Fe({beta}Alatrz){sub 3}](ClO{sub 4}){sub 2} Bullet-Operator H{sub 2}O (1) with a neutral bidentate ligand, {beta}Alatrz = 4H-1,2,4-triazol-4-yl-propionate, was prepared and its magnetic behavior was investigated by temperature dependent magnetic susceptibility measurements and {sup 57}Fe Moessbauer spectroscopy. The temperature dependence of the high-spin molar fraction derived from {sup 57}Fe Moessbauer spectroscopy recorded on cooling below room temperature reveals a gradual single step transition with T{sub 1/2} = 173 K between high-spin and low-spin states in agreement with magnetic susceptibility measurements. 1 presents striking reversible thermochromism from white, at room temperature, to pink on quench cooling to liquid nitrogen. The phase transition is of first order as deduced from differential scanning calorimetry, with T{sub 1/2} matching the one determined by both SQUID and {sup 57}Fe Moessbauer spectroscopy. A brief assessment has been made among closely related 1D coordination polymers to perceive the effect of ligand spacer length and anion effect on the spin crossover behavior of these new materials.

  9. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  10. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. DEEPAK GUPTA, PALANISAMY RAJAKANNU, BHASKARAN SHANKAR,. FIRASAT HUSSAIN and MALAICHAMY SATHIYENDIRAN. ∗. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: mvdiran@yahoo.com; ...

  11. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  12. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    Science.gov (United States)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  13. Synthesis, Crystal Structure, Luminescence and Magnetism of Three Novel Coordination Polymers Based on Flexible Multicarboxylate Zwitterionic Ligand

    Directory of Open Access Journals (Sweden)

    Yulu Ma

    2017-01-01

    Full Text Available Three novel zwitterionic coordination polymers, namely, {[Zn(HCbdcp2]·H2O} (1, {[Mn(Cbdcp]·3H2O} (2 and {[Cu2(Cbdcp(HCbdcpCl·H2O]·2H2O} (3, Cbdcp = 3,5-dicarboxy-1-(4-carboxybenzylpyridin-1-ium, have been prepared by a hydrothermal method and characterized by X-ray single crystal diffraction analysis, powder X-ray diffraction analysis, IR spectroscopy, and thermogravimetric analysis. With the changing of metal centers, these complexes show distinct structures: a mononuclear 2D 44-sql network for 1, a 3D 6,6-connected-type topology for 2 and a novel dinuclear 2D layer for 3. These diverse architectures prove that coordination geometry of metal ions, coordination modes of carboxylate groups and the rotationally flexible CH2 linker played significant roles in the construction of CPs; moreover, they also indicated that H3CbdcpCl is an ideal organic candidate for the building of novel structures. The solid-state luminescent properties of complexes 1–3 were investigated, respectively. In addition, the magnetic properties of 2 and 3 were studied and both of them exhibit antiferromagnetic behaviors.

  14. Tellurium rings as electron pair donors in cluster compounds and coordination polymers; Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anja

    2011-11-08

    In this dissertation novel and already known molecular tellurium rings are presented in cluster compounds and quasi-one-dimensional coordination polymers. The cyclic, homonuclear units are always stabilized by coordination to electron-rich transition metal atoms, with the coordinating tellurium atoms acting as two-electron donors. As a synthesis route, the solid-state reaction in quartz glass vials was used uniformly. In addition to structural determination, the focus was on the characterization of the resulting compounds. For this purpose, resistance measurements were carried out on selected compounds, the magnetic behavior and the thermal degradation reactions were investigated and accompanying quantum chemical calculations were carried out. [German] In dieser Dissertation werden neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren vorgestellt. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Uebergangsmetallatome, wobei die koordinierenden Telluratome gegenueber diesen als Zwei-Elektronendonoren fungieren. Als Syntheseroute wurde dabei einheitlich auf die Festkoerperreaktion in Quarzglasampullen zurueckgegriffen. Neben der Strukturaufklaerung stand die Charakterisierung der erhaltenden Verbindungen im Fokus der Arbeit. Dazu wurden an ausgewaehlten Verbindungen Widerstandsmessungen durchgefuehrt, das magnetische Verhalten sowie die thermischen Abbaureaktionen untersucht und begleitende quantenchemische Rechnungen durchgefuehrt.

  15. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  16. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-01-01

    Five new metal–organic coordination polymers ([Cu 3 (μ 2 -OH) 2 (atrz) 2 (nph) 2 (H 2 O) 2 ]·2H 2 O) n (1), ([Cu 2 (μ 3 -OH)(atrz)(1,2,4-btc)]·2H 2 O) n (2), ([Cu 2 (μ 3 -OH)(atrz)(1,2,4-btc)(H 2 O)]·H 2 O) n (3), [Cu(dth) 0.5 (nph)(H 2 O)] n (4) and [Cu(dth)(Hnip) 2 ] n (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H 2 nph=3-nitrophthalic acid, 1,2,4-H 3 btc=1,2,4-benzenetricarboxylic acid and H 2 nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu II 4 cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4 12 ·6 3 -pcu topology. Polymer 5 displays a 3D framework with a 4 4 ·6 10 ·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated

  17. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  18. Polyacetylene-Type Networks Prepared by Coordination Polymerization of Diethynylarenes: New Type of Microporous Organic Polymers

    Czech Academy of Sciences Publication Activity Database

    Hanková, V.; Slováková, E.; Zednik, J.; Vohlídal, J.; Sivková, R.; Balcar, Hynek; Zukal, Arnošt; Brus, Jiří; Sedláček, J.

    2012-01-01

    Roč. 33, č. 2 (2012), s. 158-163 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GAP108/11/1661; GA ČR GA203/08/0604; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : adsorption * conjugated polymers * hydrogen storage Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.929, year: 2012

  19. Construction of copper-based coordination polymers with 1D chain ...

    Indian Academy of Sciences (India)

    bChina-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material. Engineering, Jiangnan ..... grids and are packed in parallel fashion in the crystal lattice (figure 3d). Owing to the position of pyridyl-N and N-coordinated distance of 3,3'-bptz and 4,4'-bptz ligands, the 2D pattern and ...

  20. coordination polymers based on semi-rigid/flexible bis-pyridyl-bis ...

    Indian Academy of Sciences (India)

    pounds with intriguing structures and desired proper- ties have been successfully prepared by hydrothermal method.4–6 Although many factors can affect the ulti- mate structures of coordination compounds, the selec- tion of suitable organic ligands plays a crucial role.7–9. Among the diverse organic ligands, the analogs of.

  1. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  2. A novel Mn(II) oxalato-bridged 2D coordination polymer: synthesis ...

    Indian Academy of Sciences (India)

    Hiba Sehimi

    2018-02-28

    Feb 28, 2018 ... o-phthalic acid5 and carboxylic acid,6 due to their excel- lent coordinating ability. And among this wide variety of ligands, the oxalate ion was proven to be ..... ganic Crystal Structure Database Acta Crystallogr., Sect. B 41 244. 30. Lethbridge Z A D, Congreve A F, Esslemont E, Slawin. A M Z and Lightfoot P ...

  3. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    Science.gov (United States)

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, Structural Characterization, and Antitumor Activity of a Ca(II Coordination Polymer Based on 1,6-Naphthalenedisulfonate and 4,4′-Bipyridyl

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2013-08-01

    Full Text Available A novel Ca(II coordination polymer, [CaL(4,4′-bipyridyl(H2O4]n (L = 1,6-naphthalenedisulfonate, was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.

  5. Ultrasonic effect on RuO2 nanostructures prepared by direct calcination of two new Ru(II)-organic supramolecular polymers.

    Science.gov (United States)

    Jin, Chang; Bigdeli, Fahime; Jin, Zhi-Min; Xie, Yong-Rong; Hu, Mao-Lin; Morsali, Ali

    2017-11-01

    Two novel Ru(II) complexes [(η 6 -p-cymene)RuCl(L1)]PF 6 (R1) and [(η 6 -C 6 H 6 )RuCl(L1)]PF 6 (R3) with ligand (E)-4-(methylthio)-N-((quinolin-2-yl)methylene)benzenamine (L1), were synthesized and investigated using elemental analysis, IR, 1 H NMR, 13 C NMR spectroscopy and X-ray crystallography. Complexes R1 and R3 have coordination environments with formulated (η 6 -p-cymene)Ru(N 2 Cl) and (η 6 -C 6 H 6 )Ru(N 2 Cl) respectively. The thermal stabilities of compounds R1 and R3 were studied by thermal gravimetric (TG) and differential scanning calorimetry (DSC). The binding of the complexes R1 and R3 to calf thymus DNA (CT DNA) was investigated by using electronic absorption spectra, fluorescence and redox behavior studies. Such experimental data showed that there are interactions between complexes and CT-DNA and the nature of this binding is electrostatic interaction type. Calcination of ultrasonic treated R1 and R3 results in the formation of nanoparticles of RuO 2 . The nanoparticles were characterized by IR spectroscopy and X-ray diffraction (XRD). Also size and morphology of nanoparticles were investigated by scanning electron microscopy (SEM). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host–guest systems, cocrys- tals, and polymorphs. Understanding ...

  7. Tunable white-light emission PMMA-supported film materials containing lanthanide coordination polymers: preparation, characterization, and properties.

    Science.gov (United States)

    Chen, Wei; Fan, Ruiqing; Zhang, Huijie; Dong, Yuwei; Wang, Ping; Yang, Yulin

    2017-03-27

    A series of lanthanide coordination polymers(LnCPs) containing both light and heavy rare-earth elements, namely {[Eu 2 (pydc) 3 (H 2 O)]·2H 2 O} n (1-Eu, H 2 pydc = pyridine-2,3-dicarboxylic acid), [Ln(pyc) 2 (Hpyc)(NO 3 )] n (Ln = Nd (2-Nd), Sm (3-Sm), Eu (4-Eu), Gd (5-Gd), Tb (6-Tb), Ho (7-Ho), and Er (8-Er), Hpyc = pyridine-3-carboxylic acid), has been synthesized under hydro(solvo)thermal conditions and fully characterized. The crystal structure analysis indicates that in situ decarboxylation of H 2 pydc occurred in the synthesis process of 2-Nd-8-Er. Coordination polymer 1-Eu displays a 3-D pcu network with central-symmetric quad-core structural units [Eu 4 (COO) 6 ] linked by 1-D chains. 2-Nd-8-Er are of triple helical chain enantiomeric pair 6 1 /6 5 axis, and can be further linked through two separate kinds of Hbonding interaction to form a mirror symmetrical 3-D framework; the final topological symbol of the jointly connected network is rare {4 7 ·6 8 }. Solid-state luminescence studies show that the emission spectra of these LnCPs cover both the visible and near-infrared luminescence region. 2-Nd exhibits characteristic 4 F 3/2 → 4 I J/2 (J = 9, 11, 13) transition NIR emission. 1-Eu and 4-Eu provide characteristic 5 D 0 → 7 F J intense and bright red luminescence, while 4-Eu exhibits better luminescence performance because of the presence of the O-H oscillators within 1-Eu. 6-Tb exhibits characteristic 5 D 4 → 7 F J intense and bright green luminescence. Furthermore, through doping with PMMA polymer, the luminescence properties of 4-Eu and 6-Tb are all improved. The results show the best doping concentration is 4%. The thermal stabilities of 4-Eu-PMMA and 6-Tb-PMMA increased from 270 to 315 °C when compared with single coordination polymers 4-Eu and 6-Tb. The co-doping of 4-Eu, 5-Gd, and 6-Tb (0.92/0.04/0.04) with PMMA at a total concentration of 4% resulted in a tunable luminescence material W ( 4-Eu , 5-Gd , 6-Tb ) -PMMA film. When excited at

  8. Effects of different factors on the formation of nanorods and nanosheets of silver(I) coordination polymer

    Science.gov (United States)

    Shahangi Shirazi, Fatemeh; Akhbari, Kamran; Kawata, Satoshi; Ishikawa, Ryuta

    2016-11-01

    In order to evaluation the effects of solvent, concentration of initial reagents and ultrasonic irradiations on formation different morphologies of [Ag2(pta)(H2O)]n (1), [H2pta = phthalic acid], nanostructures, we design some experiments and synthesized six sample of 1 under different conditions. nanorods and nanosheets of a silver(I) coordination polymer, were synthesized under these conditions. These nanostructures were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. If we arrange the order of these three factors upon their importance in formation compound 1 nanostructures, first we can select the type of solvent as the effective factor, then the concentration of initial reagents and finally the existence of ultrasonic irradiation which can change the morphology of 1 in low concentration of initial reagents. Thermal stability of these six samples was also studied by thermo gravimetric (TG) and differential thermal analyses (DTA).

  9. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu

    2017-10-01

    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  10. Highly Polarizable Triiodide Anions (I3(-)) as Cross-Linkers for Coordination Polymers: Closing the Semiconductive Band Gap.

    Science.gov (United States)

    He, Jun; Cao, Peng; Wu, Chao; Huang, Jiahong; Huang, Jian; He, Yonghe; Yu, Lin; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2015-07-06

    From a hydrothermal reaction using CuI, KI, and 3,3'5,5'-tetramethyl-4,4'-bipyrazole (TMBP), the triiodide anion I3(-) has been integrated into the water-stable 2D coordination polymer Cu(TMBP)I3 (1). In contrast with other metal triiodide complexes, 1 features remarkably small distortions in the bond distances associated with the I3(-) units (i.e., the Cu-I and I-I bonds), which effectively link up the copper(I) centers into infinite CuI3 chains. The electronic band gaps and electrical conductivity data are also found to be consistent with the I3(-) ion acting as an effective linker across the copper(I) centers.

  11. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    Science.gov (United States)

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  12. Hydrothermal synthesis and crystal structure of a new lanthanum(III coordination polymer with fumaric acid

    Directory of Open Access Journals (Sweden)

    Hayet Anana

    2015-05-01

    Full Text Available The title compound, poly[diaquatris(μ4-but-2-enedioato(μ2-but-2-enedioic aciddilanthanum(III], [La2(C4H2O43(C4H4O4(H2O2]n, was synthesized by the reaction of lanthanum chloride pentahydrate with fumaric acid under hydrothermal conditions. The asymmetric unit comprises an LaIII cation, one and a half fumarate dianions (L2−, one a half-molecule of fumaric acid (H2L and one coordinated water molecule. Each LaIII cation has the same nine-coordinate environment and is surrounded by eight O atoms from seven distinct fumarate moieties, including one protonated fumarate unit and one water molecule in a distorted tricapped trigonal–prismatic environment. The LaO8(H2O polyhedra centres are edge-shared through three carboxylate bridges of the fumarate ligand, forming chains in three dimensions to construct the MOF. The crystal structure is stabilized by O—H...O hydrogen-bond interactions between the coordinated water molecule and the carboxylate O atoms, and also between oxygen atoms of fumaric acid

  13. BSA-assisted synthesis of ultrasmall gallic acid–Fe(III) coordination polymer nanoparticles for cancer theranostics

    Science.gov (United States)

    Mu, Xueling; Yan, Chenglin; Tian, Qiwei; Lin, Jiaomin; Yang, Shiping

    2017-01-01

    Protein-related nanotheranostic agents hold great promise as tools to serve many clinical applications. Proteins such as BSA are used to regulate the synthesis of nondegradable inorganic nanoparticles (NPs). To fully employ the potential of such proteins, a new type of biosafe nanotheranostic agent must be designed to optimize BSA as a biomineralization agent. Here, a straightforward BSA-assisted biomineralization method was developed to prepare gallic acid (GA)–Fe(III) coordination polymer NPs. BSA-coated GA-Fe (GA-Fe@BSA) NPs were ultrasmall (3.5 nm) and showed good biocompatibility, a lower r2:r1 ratio (1.06), and strong absorption in the visible near-infrared region. T1-weighted magnetic resonance imaging of tumor-bearing mice before and after intratumoral injection with GA-Fe@BSA NPs definitively demonstrated positive change. In a subsequent in vivo study, antitumor activity was precipitated by intratumoral injection of GA-Fe@BSA NPs combined with laser treatment, suggesting excellent outcomes with this treatment method. These results describe a successful protocol in which BSA regulated the synthesis of benign organic polymer NPs. GA-Fe@BSA NPs have the potential to be ideal agents to be used in clinical theranostic nanoplatforms. PMID:29042770

  14. BSA-assisted synthesis of ultrasmall gallic acid-Fe(III) coordination polymer nanoparticles for cancer theranostics.

    Science.gov (United States)

    Mu, Xueling; Yan, Chenglin; Tian, Qiwei; Lin, Jiaomin; Yang, Shiping

    2017-01-01

    Protein-related nanotheranostic agents hold great promise as tools to serve many clinical applications. Proteins such as BSA are used to regulate the synthesis of nondegradable inorganic nanoparticles (NPs). To fully employ the potential of such proteins, a new type of biosafe nanotheranostic agent must be designed to optimize BSA as a biomineralization agent. Here, a straightforward BSA-assisted biomineralization method was developed to prepare gallic acid (GA)-Fe(III) coordination polymer NPs. BSA-coated GA-Fe (GA-Fe@BSA) NPs were ultrasmall (3.5 nm) and showed good biocompatibility, a lower r 2 : r 1 ratio (1.06), and strong absorption in the visible near-infrared region. T 1 -weighted magnetic resonance imaging of tumor-bearing mice before and after intratumoral injection with GA-Fe@BSA NPs definitively demonstrated positive change. In a subsequent in vivo study, antitumor activity was precipitated by intratumoral injection of GA-Fe@BSA NPs combined with laser treatment, suggesting excellent outcomes with this treatment method. These results describe a successful protocol in which BSA regulated the synthesis of benign organic polymer NPs. GA-Fe@BSA NPs have the potential to be ideal agents to be used in clinical theranostic nanoplatforms.

  15. Flexible porous coordination polymer of Ni(II) for developing nanoparticles through acid formation and redox activity of the framework

    Science.gov (United States)

    Agarwal, Rashmi A.

    2017-10-01

    Immobilization of the nanoparticles (NPs) in a two dimensional porous coordination polymer (PCP) is currently an emerging field for a number of applications. But still it is a great challenge to fabricate any specified metal NPs in a single network. Herein the synthesis of Au, Pd, Mn, Fe, Cu, Zn, Mg, Li, Fe/Cu, Zn/Mg etc, NPs in a highly flexible PCP of Ni(II); {[Ni3(TBIB)2(BTC)2(H2O)6]·5C2H5OH·9H2O}n [TBIB = 1,3,5-tri(1H-benzo[d]imidazol-1-yl)benzene, H3BTC = 1,3,5-benzenetricarboxylic acid] have been reported. This universal host is able to grow mixed metal NPs from mixed metal precursors. Monodentate carboxylate groups of BTC linker act as anchoring sites for the metal ions of the metal precursors. This is the main driving force to grow NPs within the cavities along with the high flexibility of this polymer at room temperature. Mechanism involves acid formation followed by redox reaction to synthesize metal NPs explained by EPR and FTIR. Paramagnetic properties have been shown by as-synthesized Fe NPs integrated framework at room temperature under applied magnetic field up to 17,500 Oe.

  16. Linear Viscoelastic and Dielectric Relaxation Response of Unentangled UPy-Based Supramolecular Networks

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Javakhishvili, Irakli; Cerveny, Silvina

    2016-01-01

    Supramolecular polymers possess versatile mechanical properties and a unique ability to respond to external stimuli. Understanding the rich dynamics of such associative polymers is essential for tailoring user-defined properties in many products. Linear copolymers of 2-methoxyethyl acrylate (MEA)...

  17. Intelligent chiral sensing based on supramolecular and interfacial concepts.

    Science.gov (United States)

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  18. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  19. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Motamedi, Hossein [Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mayer, Peter [LMU München Department Chemie, Butenandtstr 5-13, D-81377 München (Germany); Bruno, Giuseppe [Dipartimento di Chimica Inorganica, Università di Messina, Vill. S. Agata, Salita Sperone 31, 98166 Messina (Italy); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2017-05-15

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers

  20. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.

    Science.gov (United States)

    Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun

    2016-06-22

    We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.

  1. Application of a novel red-emitting cationic iridium(III) coordination polymer in warm white light-emitting diodes

    Science.gov (United States)

    Chen, Mingxian; Sun, Riyong; Ye, Yanchun; Tang, Huaijun; Dong, Xueyan; Yan, Jialun; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang

    2018-02-01

    A novel red-emitting cationic iridium(III) coordination polymer using 2-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo[d]thiazole as main ligands, 4,4‧-bipyridine as bridging auxiliary ligands and Clˉ as anions was synthesized. It had high thermal stability with a thermal decomposition temperature (Td) of 345 °C and low thermal quenching with an activation energy (Ea) of 0.2760 eV, with the temperature increasing from 20 °C to 100 °C, its photoluminescent intensity decreased to 76.7%. It can be efficiently excited by blue light of GaN chips, the cold white light of GaN-based LEDs using only Y3Al5O12:Ce3+ (YAG:Ce, 7.0 wt% in silicone) as phosphors can become warmer when it was blended in. When blending concentrations were 0.1 wt% and 0.2 wt%, the cold white light became neutral white light, the correlated color temperature (CCT) decreased from 6157 K to 5240 K, then to 4043 K, the color rendering index (CRI) changed from 72.7 to 81.3, then to 78.6, the luminous efficiency (ηL) changed from 134.1 lm·w-1 to 61.9 lm·w-1, then to 46.3 lm·w-1, the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates changed from (0.32, 0.33) to (0.34, 0.33), then to (0.38, 0.36). At 0.3 wt%, the light became warm white light, the corresponding CCT was 3475 K, CRI was 75.6, ηL was 36.9 lm·w-1, and CIE value was (0.41, 0.40). The results suggest the coordination polymer is a promising red-emitting phosphor candidate for neutral and warm white LEDs, especially for warm white LEDs.

  2. COORDINATION COMPOUNDS OF OXOVANADIUM(IV BASED ON S-METHYLISOTHIOSEMICARBAZIDE AS DYES FOR THERMOPLASTIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Maria Cocu

    2015-12-01

    Full Text Available We have investigated the properties as dyes of coordination compounds synthesized by us previously (8-(1',2'-naphthyl-1-R-3-methyl-6-thiomethyl-4,5,7-triazanona-1,3,5,7-tetraenato-1,1'-diolato(--O1, O1', N4, N7-vanadil, where R=CH3 (1 , C6H5 (2, which can be used for colouring thermoplastic masses. The compounds have a high photostability (7 points, thermostability (>250° and an intensity of colour that give a low consumption (0.006-0.010g.

  3. A triaxial supramolecular weave

    Science.gov (United States)

    Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma

    2017-11-01

    Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

  4. Supramolecular analytical chemistry.

    Science.gov (United States)

    Anslyn, Eric V

    2007-02-02

    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  5. A series of M-M' heterometallic coordination polymers: syntheses, structures and surface photoelectric properties (M=Ni/Co, M'=Cd/Zn)

    International Nuclear Information System (INIS)

    Li, Lei; Niu, Shu-Yun; Jin, Jing; Meng, Qin; Chi, Yu-Xian; Xing, Yong-Heng; Zhang, Guang-Ning

    2011-01-01

    Four new heterometallic polymers, [NiCd(mal) 2 (H 2 O) 2 ]n.2nH 2 O 1, [NiZn 2 (Hcit) 2 (H 2 O) 2 ]n 2, [CoCd 2 (Hcit) 2 (H 2 O) 2 ]n 3, [CoZn 2 (Hcit) 2 (H 2 O) 2 ]n 4 (H 2 mal=malonic acid, H 4 cit=citric acid) were synthesized and characterized. The photoelectric properties of the polymers were discussed by the surface photovoltage spectroscopy (SPS). The structural analyses indicate 1 is a Ni-Cd heterometallic polymer with 3D structure bridged by the mal 2- group. 2-4 are all heterometallic polymers with 2D structures bridged by the Hcit 3- group. The results of SPS for the four polymers reveal that there are wide photovoltage response bands in the range of 300-800 nm, which indicates that they all possess photoelectric conversion properties. By the introduction of the other metals, the SPS of heterometallic polymers are broadened obviously than the SPS of monometallic complexes. Moreover, the relationships between SPS and UV-Vis absorption spectra have been discussed. -- Graphical Abstract: Four heterometallic polymers, Ni-Cd, Ni-Zn, Co-Cd, Co-Zn, were synthesized and characterized. The photoelectric properties of heterometallic polymers were discussed by SPS. The introduction of heterometallic ions will broaden the SPS of corresponded monometallic complexes. Display Omitted Highlights: → Four new heterometallic coordination polymers were reported. → The surface photoelectric properties of heterometallic polymers were studied by SPS. → They all possess photoelectric conversion properties. → The SPS of heterometallic polymers are broadened than that of monometallic complexes.

  6. Synthesis, crystal structure, thermal and luminescence properties of CuX(2,3-dimethylpyrazine) (X=Cl, Br, I) coordination polymers.

    Science.gov (United States)

    Jess, Inke; Taborsky, Petr; Pospísil, Jirí; Näther, Christian

    2007-06-14

    Three new coordination polymers based on CuI and 2,3-dimethylpyrazine (2,3-dmpyz) were prepared, structurally characterized and investigated for their thermal and luminescence properties. In the ligand rich 2:3 compound [(CuI)2(2,3-dmpyz)3] (CuI)2 dimers are found, which are connected by the N-donor ligands into chains, whereas in the structure of the 1:1 intermediate [(CuI)(2,3-dmpyz)] (CuI)4 tetramers are found, which are also connected into chains. The crystal structure of the ligand deficient 2:1 compound [(CuI)2(2,3-dmpyz)] is built up of CuI double chains, which are connected by the 2,3-dmpyz ligands into layers. Thermal decomposition of results in its direct transformation into the ligand deficient compound , without the formation of the 1:1 compound as an intermediate. A similar thermal reactivity is found for compound , which transforms into on heating. Stirring of a crystalline suspension of pure or in acetonitrile, always leads to a transformation into the ligand deficient compound indicating that compound is the most stable of all the coordination polymers, whereas compounds and are metastable. The luminescence properties of the CuCl and CuI coordination polymers were investigated at 298 and 77K. It was observed that the emission maxima strongly depends on the nature of the halide atom and the composition and structure of the coordination polymers. In addition, several of these compounds show luminescence thermochromism. These results are compared with those obtained for the previously reported CuCl and CuBr(2,3-dimethylpyrazine) coordination polymers.

  7. Two novel zinc(II) coordination polymers constructed from in situ amidation ligands

    Science.gov (United States)

    Yu, Xiao-Yang; Fu, Yao; Fu, Jian-Tao; Xu, Jia-Ning; Luo, Ya-Nan; Yang, Yan-Yan; Qu, Xiao-Shu; Zhang, Jing; Lu, Shu-Lai

    2018-04-01

    Two novel coordination compounds, [Zn(Hbimh) (H2O)]·H2O (1) and [Zn(Hbimh)]·(4,4ʹ-bpy)0.5 (2) (H3bimh = benzimidazole-5,6-hydrazide, 4,4ʹ-bpy = 4,4ʹ-bipyridine), have been prepared from the hydrothermal in situ amidation cyclization reactions of H3bimdc (H3bimdc = benzimidazole-5,6-dicarboxylic acid) and hydrazine hydrate (N2H4·H2O). Compound 1 exhibits a one-dimensional (1D) hexagon channel structure. Compound 2 is a three-dimensional (3D) framework structure, with 4,4ʹ-bpy fill the channels. We also obtained the ligand H3bimh. The compounds were characterized by IR, PXRD, TGA and elemental analysis. The fluorescence properties in the solid state at room temperature were also investigated.

  8. Structural characterization, electrochemical, photoluminescence and thermal properties of potassium ion-mediated coordination polymer.

    Science.gov (United States)

    Ceyhan, Gökhan; Köse, Muhammet; Tümer, Mehmet; Dal, Hakan

    2015-05-05

    A polymeric potassium complex of p-nitrophenol was synthesized and characterized by analytical and spectroscopic techniques. Molecular structure of the complex was determined by single crystal X-ray diffraction study. X-ray structural data show that crystals contain polymeric K(+) complex of p-nitrophenol. Asymmetric unit consists of one p-nitrophenolate, one K(+) ion and one water molecule. All bond lengths and angles in the phenyl rings have normal Csp2-Csp2 values and are in the expected ranges. The p-nitrophenolate is close to planar with small distortions by some atoms. Each potassium ion in the polymeric structure is identical and eight-coordinate, bonded to four nitro, two phenolate oxygen atoms from five p-nitrophenolate ligands and two oxygen atoms from two water molecules. Electronic, electrochemical, photoluminescence and thermal properties of the complex were also investigated. Copyright © 2015. Published by Elsevier B.V.

  9. Building inorganic supramolecular architectures using principles adopted from the organic solid state

    Directory of Open Access Journals (Sweden)

    Marijana Đaković

    2018-01-01

    Full Text Available In order to develop transferable and practical avenues for the assembly of coordination complexes into architectures with specific dimensionality, a strategy utilizing ligands capable of simultaneous metal coordination and self-complementary hydrogen bonding is presented. The three ligands used, 2(1H-pyrazinone, 4(3H-pyrimidinone and 4(3H-quinazolinone, consistently deliver the required synthetic vectors in a series of CdII coordination polymers, allowing for reproducible supramolecular synthesis that is insensitive to the different steric and geometric demands from potentially disruptive counterions. In all nine crystallographically characterized compounds presented here, directional intermolecular N—H...O hydrogen bonds between ligands on adjacent complex building blocks drive the assembly and orientation of discrete building blocks into largely predictable topologies. Furthermore, whether the solids are prepared from solution or through liquid-assisted grinding, the structural outcome is the same, thus emphasizing the robustness of the synthetic protocol. The details of the molecular recognition events that take place in this series of compounds have been clearly delineated and rationalized in the context of calculated molecular electrostatic potential surfaces.

  10. Structural and electronic modulation of magnetic properties in a family of chiral iron coordination polymers.

    Science.gov (United States)

    Li, Lihong; Becker, Jan M; Allan, Laura E N; Clarkson, Guy J; Turner, Scott S; Scott, Peter

    2011-07-04

    The complexes FeL(2) [L = bidentate Schiff base ligands obtained from (R)-(+)-α-phenylethanamine and 4-substituted salicylaldehydes, substituent R = H, (t)Bu, NO(2), OMe, CN, OH] react with ditopic proligands 1,4-pyrazine (pz) or 4,4'-bipyridine (bpy), to give a family of optically pure Fe(II) polymeric chain complexes of formula {FeL(2)(μ-pz)}(∞) and {FeL(2)(μ-bpy)}(∞). Crystallographic studies show that a range of structures are formed including unidirectional and bidirectional linear polymers and canted zigzag chains. Interchain interactions via π-contacts and hydrogen bonding are also observed. SQuID magnetometry studies on all of the complexes reveal antiferromagnetic interactions, the magnitudes of which are rationalized on the basis of substituent electronic properties and bridging ligand identity. For complexes with bridging pz, the antiferromangnetic interaction is enhanced by electron-releasing substituents on the Fe units, and this is accompanied by a contraction in the intrachain distance. For complexes bridged with the longer bpy the intrachain antiferromagnetic couplings are much weaker as a result of the longer intrachain distance. The magnetic data for this series of chain complexes follow a Bonner-Fisher 1D chain model, alongside a zero field splitting (ZFS) model for Fe(II) (S = 2) as appropriate. The intrachain antiferromagnetic coupling J values, g-factors, and the axial ZFS parameter D were obtained. © 2011 American Chemical Society

  11. Self-assembly of boron-based supramolecular structures

    OpenAIRE

    Christinat, Nicolas

    2008-01-01

    This work describes the synthesis and characterization of boronic acid-based supramolecular structures. Macrocycles, dendritic structures, polymers, rotaxanes, and cages were assembled using four types of reversible reactions. The key point of the strategy is the parallel utilization of two –or more– of these reactions. Initially, aryl and alkylboronic acids were condensed with dihydroxypyridine ligands to give tetrameric or pentameric macrocycles, in which four or five boronate esters are co...

  12. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  13. Programming supramolecular biohybrids as precision therapeutics.

    Science.gov (United States)

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  14. Three 3D metal coordination polymers based on triazol-functionalized rigid ligand: Synthesis, topological structure and properties

    Science.gov (United States)

    Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2018-02-01

    By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.

  15. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  16. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    Science.gov (United States)

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2018-02-01

    A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  17. Syntheses, crystal structures, and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitro moieties

    Science.gov (United States)

    Uemura, Kazuhiro; Onishi, Fumiaki; Yamasaki, Yukari; Kita, Hidetoshi

    2009-10-01

    NO 2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO 2) and 2,5-dinitroterephthalate (bdc-(NO 2) 2), afford porous coordination polymers, {[Zn 2(bdc-NO 2) 2(dabco)]· solvents} n ( 2⊃ solvents) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]· solvents} n ( 3⊃ solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn 2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2⊃ solvents and 3⊃ solvents, a rectangle pore surrounded by eight Zn 2 corners contains two and four NO 2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me 2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H 2O molecules to be {[Zn 2(bdc-NO 2) 2(dabco)]·4H 2O} n ( 2⊃4H 2O) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]·6H 2O} n ( 3⊃6H 2O), showing the pore hydrophilicity enhancement caused by NO 2 group introduction.

  18. Two New Preyssler-Type Polyoxometalate-Based Coordination Polymers and Their Application in Horseradish Peroxidase Immobilization.

    Science.gov (United States)

    Du, Jing; Cao, Mei-Da; Feng, Shu-Li; Su, Fang; Sang, Xiao-Jing; Zhang, Lan-Cui; You, Wan-Sheng; Yang, Mei; Zhu, Zai-Ming

    2017-10-17

    Enzyme immobilization is of increasing importance for biocatalysis, for which good supports are critical. Herein, two new Preyssler-type polyoxometalate (POM)-based coordination polymers, namely, {[Cu(H 2 biim) 2 ][{Cu(H 2 biim) 2 (μ-H 2 O)} 2 Cu(H 2 biim)(H 2 O) 2 ]H[({Cu(H 2 biim)(H 2 O) 2 } 0.5 ) 2 ((μ-C 3 HN 2 Cl 2 ){Cu(H 2 biim)} 2 ){Z(H 2 O)P 5 W 30 O 110 }]⋅x H 2 O} n (1: Z=Na, x=9; 2: Z=Ag, x=10; H 2 biim=2,2'-biimidazole) were designed and synthesized. Compounds 1 and 2 exhibit the same skeletons, which contain multiple Cu II complex fragments and penta-supported {ZP 5 W 30 } (Z=Na, Ag) clusters. They were first employed to immobilize horseradish peroxidase (HRP). Results show that compounds 1 and 2 are good supports for HRP immobilization, and exhibit higher enzyme loading, lower loading times, and excellent reusability. The immobilized HRP (HRP/1 or HRP/2) was further applied to detect H 2 O 2 , and good sensitivity, wide linear range, low detection limit, and fast response were achieved. This work shows that POM-based hybrid materials are a new kind of promising support for enzyme immobilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mixed Cu(i)/Au(i) coordination polymers as reversible turn-on vapoluminescent sensors for volatile thioethers.

    Science.gov (United States)

    Varju, Bryton R; Ovens, Jeffrey S; Leznoff, Daniel B

    2017-06-13

    Vapour-phase thioethers play an important role in a wide number of fields, including plant biology, chemical weapon disposal, and brewing but few sensor materials are known. The emissive coordination polymer Cu 1/2 Au 1/2 CN does not react with vapour phase dimethyl sulphide (DMS) or diethyl sulphide (DES) despite the independent synthesis of emissive [Cu 1/2 Au 1/2 CN] 2 (DMS) and [Cu 1/2 Au 1/2 CN] 2 (DES) from their constituent components in solution. However, the doped Cu 2/3 Au 1/3 CN rapidly reacts in the solid state with both of these vapour phase thioethers reversibly, with a change in emission from 380/560 nm to 460 nm (DMS) or 420 nm (DES), illustrating that doping the inactive parent Cu 1/2 Au 1/2 CN with Cu(i) generates an active sensor material. This response can be thermally cycled with little to no loss in functionality. [Cu 1/2 Au 1/2 CN] 2 (DMS), [Cu 2/3 Au 1/3 CN] 2 (DMS), and [Cu 2/3 Au 1/3 CN] 2 (DES) were structurally characterized as 3-D network structures supported by aurophilic interactions.

  20. Sonochemical synthesis of two nanostructured silver(I) coordination polymers based on semi-rigid bis(benzimidazole) ligands.

    Science.gov (United States)

    Hao, Shao Yun; Li, Yue Hua; Hao, Zeng Chuan; Cui, Guang Hua

    2017-11-01

    Nanoparticles of two silver(I) coordination polymers (CPs), [Ag 2 (L1) 2 (DCTP)] n (1) and [Ag 2 (L2)(DCTP)] n (2) (L1=1,3-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, L2=1,4-bis(benzimidazol-1-yl)-2-butene, H 2 DCTP=2,5-dichloroterephthalic acid), were synthesized by the sonochemical approach and hydrothermal method. Both CPs were characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction, scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). CP 1 exhibits a 2D 4-connected sql net with the point symbol {4 4 .6 2 }. While CP 2 displays a 2D 3,4-connected 3,4L13 net with the point symbol {4.6 2 } 2 {4 2 .6 2 .8 2 }. The structural diversity indicates that semi-rigid bis(benzimidazole) co-ligands play important roles in tuning the structures of the mixed Ag(I) CPs. The ultrasound irradiation time, temperature, and power showed significant effects on the morphology and growth process of the nanoparticles of two silver(I) CPs. The luminescence and photocatalytic properties of the nanoparticles of CPs 1-2 on the degradation of methyl blue (MB) were also investigated in detail. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide

    Science.gov (United States)

    Li, Xin; Han, Jing; Zhang, Sheng; Zhai, Lianjie; Wang, Bozhou; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-09-01

    High-energy coordination polymers (CPs) not only exhibit good energetic performances but also have a good catalytic effect on the thermal decomposition of energetic materials. In this contribution, two high-energy CPs Cu2(DNBT)2(CH3OH)(H2O)3·3H2O (1) and [Cu3(DDT)2(H2O)2]n (2) (H2DNBT = 3,3‧-dinitro-5,5‧-bis(1H-1,2,4-triazole and H3DDT = 4,5-bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole) were synthesized and structurally characterized. Furthermore, 1 was thermos-dehydrated to produce Cu2(DNBT)2(CH3OH)(H2O)3 (1a). The thermal decomposition kinetics of 1, 1a and 2 were studied by Kissinger's method and Ozawa's method. Thermal analyses and sensitivity tests show that all compounds exhibit high thermal stability and low sensitivity for external stimuli. Meanwhile, all compounds have large positive enthalpy of formation, which are calculated as being (1067.67 ± 2.62) kJ mol-1 (1), (1464.12 ± 3.12) kJ mol-1 (1a) and (3877.82 ± 2.75) kJ mol-1 (2), respectively. The catalytic effects of 1a and 2 on the thermal decomposition of ammonium dinitramide (ADN) were also investigated.

  2. Self-assembled Nanoscale Coordination Polymers Carrying siRNAs and Cisplatin for Effective Treatment of Resistant Ovarian Cancer

    Science.gov (United States)

    He, Chunbai; Liu, Demin; Lin, Wenbin

    2014-01-01

    Resistance to the chemotherapeutic agent cisplatin is a major limitation for the successful treatment of many cancers. Development of novel strategies to overcome intrinsic and acquired resistance to chemotherapy is of critical importance to effective treatment of ovarian cancer and other types of cancers. We have sought to re-sensitize resistant ovarian cancer cells to chemotherapy by co-delivering chemotherapeutics and pooled siRNAs targeting multi-drug resistance (MDR) genes using self-assembled nanoscale coordination polymers (NCPs). In this work, NCP-1 particles with trigger release properties were first constructed by linking cisplatin prodrug-based bisphosphonate bridging ligands with Zn2+ metal-connecting points and then coated with a cationic lipid layer, followed by the adsorption of pooled siRNAs targeting three MDR genes including survivin, Bcl-2, and P-glycoprotein via electrostatic interactions. The resulting NCP-1/siRNA particles promoted cellular uptake of cisplatin and siRNA and enabled efficient endosomal escape in cisplatin-resistant ovarian cancer cells. By down-regulating the expression of MDR genes, NCP-1/siRNAs enhanced the chemotherapeutic efficacy as indicated by cell viability assay, DNA ladder, and flow cytometry. Local administration of NCP-1/siRNAs effectively reduced tumor sizes of cisplatin-resistant SKOV-3 subcutaneous xenografts. This work shows that the NCP-1/siRNA platform holds great promise in enhancing chemotherapeutic efficacy for the effective treatment of drug-resistant cancers. PMID:25315138

  3. X-ray Structure and Magnetic Properties of two new iron(II) 1D Coordination Polymers with Bis(imidazolyle)methane as bridging ligand

    OpenAIRE

    Weber , Birgit

    2009-01-01

    Abstract The reaction of iron(II) acetate with the tetradentate Schiff base like ligands H2L1 ((E,E)-[{diethyl 2,2'-[1,2-phenylenebis-(iminomethyl-idyne)]bis[3-oxobutanato]}]) and H2L2 ([([3,3']-[1,2-phenylene-bis(iminomethylidyne)]bis(2,4-pentane-dionato)(2-)-N,N',O2,O2']) leads to the formation of the octahedral N2O4 coordinated iron complexes [FeL1(MeOH)2] and [FeL2(MeOH)2], respectively. Conversion of both with bimm (bis(1-imidazolyle)methane) leads to the 1D coordination polym...

  4. Synthesis and Molecular Structures of Two [1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene]-dichloro-Zn(II) Coordination Polymers

    OpenAIRE

    Lee, Gene-Hsiang; Wang, Hsin-Ta

    2006-01-01

    Two novel coordination polymers with 3D metal-organic frameworks (MOFs) have been synthesized by reacting 1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene (L) with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II) center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wa...

  5. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  6. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    Science.gov (United States)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  7. Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I–Cu(II Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand

    Directory of Open Access Journals (Sweden)

    Kenji Nakatani

    2015-04-01

    Full Text Available A new mixed-valence Cu(I–Cu(II 1D coordination polymer, [CuI4CuIIBr4(Cy2dtc2]n, with an infinite chain structure is synthesized by the reaction of Cu(Cy2dtc2 (Cy2dtc− = dicyclohexyl dithiocarbamate, C13H22NS2 with CuBr·S(CH32. The as-synthesized polymer consists of mononuclear copper(II units of CuII(Cy2dtc2 and tetranuclear copper(I cluster units, CuI4Br4. In the cluster unit, all the CuI ions have distorted trigonal pyramidal coordination geometries, and the CuI–CuI or CuI–CuII distances between the nearest copper ions are shorter than the sum of van der Waals radii for Cu–Cu.

  8. [Study on the Eu-containing coordination polymer. I. Structural characterization of Eu (III)-thienyltrifluroacetone-poly (styrene-acrylic acid)].

    Science.gov (United States)

    Xiao, Li-ren; Gao, Feng; Tang, Jie-yuan; Zhang, Wen-gong

    2004-06-01

    Three samples (a), (b) and (c) of luminescent Eu-containing copolymer (NaEu(III)-TTA-PSAA) were synthesized through the reaction of copolymer of acrylic acid and styrene (Mw = 3000) with metalorganic complex (NaEu(TTA)4) obtained from Eu and thienyltrifluroacetone. These samples of coordination polymers were characterized by FTIR, UV and XPS, and their composition and structures were determined. The results of electrical conductivity methods and elemental analysis indicated that there were different compositions and structures of these coordination polymers in different pH. The results of elemental analysis also showed that the content of Eu3+ in sample (a), (b) and (c) was 11.89%, 12.55% and 13.41%, respectively.

  9. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  10. Two-dimensional lanthanide coordination polymers with bis(diphenylphosphino)hexane dioxide. The determination of the polymeric structure from twinned crystals

    Czech Academy of Sciences Publication Activity Database

    Spichal, Z.; Petříček, Václav; Pinkas, J.; Nečas, M.

    2008-01-01

    Roč. 27, č. 1 (2008), s. 283-288 ISSN 0277-5387 R&D Projects: GA ČR GA202/06/0757 Institutional research plan: CEZ:AV0Z10100521 Keywords : bis(diphenylphosphino) hexane dioxide * coordination polymers * X-ray crystallography * twinning * lanthanides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.801, year: 2008

  11. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Jing [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Li, Jin; Ma, Lu-Fang [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia); Qin, Guo-Zhan [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China)

    2015-10-15

    Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities in solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.

  12. Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis.

    Science.gov (United States)

    Paul, Mithun; Sarkar, Koushik; Dastidar, Parthasarathi

    2015-01-02

    By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5-tris(nicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(nicotinamidomethyl)-2,4,6-trimethylbenzene, and 1,3,5-tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene, which contain potential hydrogen-bonding sites, were designed and synthesized for generating Ag(I) coordination polymers and coordination-polymer-based gels. The coordination polymers thus obtained were characterized by single-crystal X-ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4-nitrophenolate to 4-aminophenolate without the use of any exogenous reducing agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vapochromic luminescence and flexibility control of porous coordination polymers by substitution of luminescent multinuclear Cu(I) cluster nodes.

    Science.gov (United States)

    Hayashi, Takahiro; Kobayashi, Atsushi; Ohara, Hiroki; Yoshida, Masaki; Matsumoto, Takeshi; Chang, Ho-Chol; Kato, Masako

    2015-09-21

    Two luminescent porous coordination polymers (PCPs), i.e., [Cu2(μ2-I)2ctpyz]n and [Cu4(μ3-I)4ctpyz]n (Cu2 and Cu4, respectively; ctpyz = cis-1,3,5-cyclohexanetriyl-2,2',2″-tripyrazine), were successfully synthesized and characterized by single-crystal X-ray diffraction and luminescence spectroscopic measurements. Cu2 consists of rhombus-type dinuclear {Cu2I2} cores bridged by ctpyz ligands, while Cu4 is constructed of cubane-type tetranuclear {Cu4I4} cores bridged by ctpyz ligands. The void fraction of Cu4 is estimated to be 48.0%, which is significantly larger than that of Cu2 (19.9%). Under UV irradiation, both PCPs exhibit red luminescence at room temperature in the solid state (λem values of 660 and 614 nm for Cu2 and Cu4, respectively). Although the phosphorescence of Cu2 does not change upon removal and/or adsorption of EtOH solvent molecules in the porous channels, the solid-state emission maximum of Cu4 red-shifts by 36 nm (λem = 650 nm) upon the removal of the adsorbed benzonitrile (PhCN) molecules from the porous channels (and vice versa). This large difference in the vapochromic behavior of Cu2 and Cu4 is closely related to the framework flexibility. The framework of Cu2 is sufficiently rigid to retain the porous structure without solvated EtOH molecules, whereas the porous structure of Cu4 collapses easily after removal of the adsorbed PhCN molecules to form a nonporous amorphous phase. The original vapor-adsorbed porous structure of Cu4 is regenerated by exposure of the amorphous solid to not only PhCN vapor but also tetrahydrofuran, acetone, ethyl acetate, and N,N-dimethylformamide vapors. The Cu4 structures with the various adsorbed solvents showed almost the same emission maxima as the original PhCN-adsorbed Cu4, except for DMF-adsorbed Cu4, which showed no luminescence probably because of weak coordination of the DMF vapor molecules to the Cu(I) centers of the tetranuclear {Cu4I4} core.

  14. Supramolecular photochemistry of drugs in biomolecular environments.

    Science.gov (United States)

    Monti, Sandra; Manet, Ilse

    2014-06-21

    In this tutorial review we illustrate how the interaction of photoactive drugs/potential drugs with proteins or DNA in supramolecular complexes can determine the course of the reactions initiated by the drug absorbed photons, evidencing the mechanistic differences with respect to the solution conditions. We focus on photoprocesses, independent of oxygen, that lead to chemical modification of the biomolecules, with formation of new covalent bonds or cleavage of existing bonds. Representative systems are mainly selected from the literature of the last decade. The photoreactivity of some aryl propionic acids, (fluoro)quinolones, furocoumarins, metal coordination complexes, quinine-like compounds, naphthaleneimides and pyrenyl-peptides with proteins or DNA is discussed. The use of light for biomolecule photomodification, historically relevant to biological photosensitization processes and some forms of photochemotherapy, is nowadays becoming more and more important in the development of innovative methods in nanomedicine and biotechnology.

  15. Stability and stabilization of polymers under irradiation. Final report of a co-ordinated research project, 1994-1997

    International Nuclear Information System (INIS)

    1999-01-01

    The contributions presented in this technical publication describe progress in understanding and controlling the degradation of polymeric materials induced by exposure to ionizing radiation. This subject area is of widespread importance to industrial use of radiation for two classes of applications: (1) the processing and production of polymeric materials by means of irradiation facilities, and (2) the use of polymeric materials in applications for which they must withstand irradiation throughout the course of their useful lifetimes. Due to extensive and still-growing use of polymeric materials for technological applications of immense variety, and the fact that radiation-processing has the potential to play an expanding role in polymer manufacturing (current uses include crosslinking, curing, sterilization, surface modification, lithography, etc.), the ability to inhibit unwanted material property changes which often occur when materials are irradiated, and to predict useful lifetimes, remains a limiting factor in a number of existing radiation technologies. Additionally, the ability to control unwanted degradation will be necessary for successful implementation of future, more advanced, radiation processing schemes. This co-ordinated research project (CRP) was established for the purpose of focusing the attention of appropriate technical experts on the complex task of establishing a better fundamental basis for understanding and attacking problems or radiation degradation of materials. The group dynamics have been designed to achieve a synergistic interaction among worldwide research facilities for the purposes of identifying degradation problems, exchanging ideas and results on the solution of these problems, and making the emerging information available in an organized and accessible format. From this meeting, it is clear that much remains to be learnt in terms of understanding degradation mechanisms and phenomena. It also appears that important new

  16. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    International Nuclear Information System (INIS)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min

    2014-01-01

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H 2 O) 2 ]·2H 2 O) n (La-TTTA) and [Nd(TTTA)(H 2 O) 2 ]·2H 2 O) n (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La 3+ and Nd 3+ ) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H 3 TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe 3+ , Cu 2+ , Mg 2+ , Cr 3+ and Co 2+ ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H 3 TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe 3+ , Cu 2+ , Mg 2+ , Cr 3+ and Co 2+ ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields

  17. Synchrotron X-Ray Charge-Density Study of Coordination Polymer (Mn(HCOO)2(H2O)2)∞

    International Nuclear Information System (INIS)

    Poulsen, Rasmus D.; Jorgensen, Mads R.V.; Overgaard, Jacob; Larsen, Finn K.; Morgenroth, Wolfgang; Graber, Timothy; Chen, Yu-Sheng; Iversen, Bo B.

    2007-01-01

    Three high-quality single-crystal X-ray diffraction data sets have been measured under very different conditions on a structurally simple, but magnetically complex, coordination polymer, (Mn(HCOO) 2 (H 2 O) 2 )∞ (1). The first data set is a conventional 100(2) K Mo Kα data set, the second is a very high resolution 100(2) K data set measured on a second-generation synchrotron source, while the third data set was measured with a tiny crystal on a high brilliance third-generation synchrotron source at 16(2) K. Furthermore, the magnetic susceptibility (χ) and the heat capacity (C p ) have been measured from 2 to 300 K on pressed powder. The charge density of 1 was determined from multipole modeling of the experimental structure factors, and overall there is good agreement between the densities obtained separately from the three data sets. When considering the fine density features, the two 100 K data sets agree well with each other, but show small differences to the 16 K data set. Comparison with ab initio theory suggests that the 16 K APS data set provides the most accurate density. Topological analysis of the metal-ligand bonding, experimental 3d orbital populations on the Mn atoms, and Bader atomic charges indicate quite ionic, high-spin metal atoms. This picture is supported by the effective moment estimated from the magnetization measurements (5.840(2)μ B ), but it is at variance with earlier spin density measurements from polarized neutron diffraction. The magnetic ordering originates from superexchange involving covalent interactions with the ligands, and non-ionic effects are observed in the static deformation density maps as well as in plots of the valence shell charge concentrations. Overall, the present study provides a benchmark charge density that can be used in comparison with future metal formate dihydrate charge densities.

  18. Synchrotron X-ray charge-density study of coordination polymer [Mn(HCOO)2(H2O)2]infinity.

    Science.gov (United States)

    Poulsen, Rasmus D; Jørgensen, Mads R V; Overgaard, Jacob; Larsen, Finn K; Morgenroth, Wolfgang; Graber, Timothy; Chen, Yu-Sheng; Iversen, Bo B

    2007-01-01

    Three high-quality single-crystal X-ray diffraction data sets have been measured under very different conditions on a structurally simple, but magnetically complex, coordination polymer, [Mn(HCOO)(2)(H(2)O)(2)](infinity) (1). The first data set is a conventional 100(2) K Mo(Kalpha) data set, the second is a very high resolution 100(2) K data set measured on a second-generation synchrotron source, while the third data set was measured with a tiny crystal on a high brilliance third-generation synchrotron source at 16(2) K. Furthermore, the magnetic susceptibility (chi) and the heat capacity (C(p)) have been measured from 2 to 300 K on pressed powder. The charge density of 1 was determined from multipole modeling of the experimental structure factors, and overall there is good agreement between the densities obtained separately from the three data sets. When considering the fine density features, the two 100 K data sets agree well with each other, but show small differences to the 16 K data set. Comparison with ab initio theory suggests that the 16 K APS data set provides the most accurate density. Topological analysis of the metal-ligand bonding, experimental 3d orbital populations on the Mn atoms, and Bader atomic charges indicate quite ionic, high-spin metal atoms. This picture is supported by the effective moment estimated from the magnetization measurements (5.840(2) mu(B)), but it is at variance with earlier spin density measurements from polarized neutron diffraction. The magnetic ordering originates from superexchange involving covalent interactions with the ligands, and non-ionic effects are observed in the static deformation density maps as well as in plots of the valence shell charge concentrations. Overall, the present study provides a benchmark charge density that can be used in comparison with future metal formate dihydrate charge densities.

  19. Syntheses, crystal structures, and properties of four coordination polymers based on mixed multi-N donor and polycarboxylate ligands

    Science.gov (United States)

    Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong

    2018-02-01

    Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.

  20. Chelating Schiff base assisted azide-bridged Mn(II), Ni(II) and Cu(II) magnetic coordination polymers.

    Science.gov (United States)

    Bai, Shi-Qiang; Fang, Chen-Jie; He, Zheng; Gao, En-Qing; Yan, Chun-Hua; Hor, T S Andy

    2012-11-21

    Four new Mn(II), Ni(II) and Cu(II) coordination polymers [Mn2(L1)(μ(1,1)-N3)2(μ(1,3)-N3)2]n (1), [Ni(L2)2(μ(1,3)-N3)]n(ClO4)n (2), [Cu(L3)(μ(1,1)-N3)(N3)]n (3) and [Cu(L4)(μ(1,1)-N3)2]n (4) (L1 = N,N′-bis(2-pyridylmethylene)ethane-1,2-diamine, L2 = N-(2-pyridylmethylene)methylamine, L3 = N-(2-pyridylmethylene)-3-pyridylamine, L4 = N-(2-pyridylmethylene)-tbutylamine) have been synthesized and characterized by single-crystal X-ray analysis and magnetic measurements. Complex 1 indicates a stoichiometry-dependent structural change (based on Mn:L1:N3 = 2:1:4 molar ratio) and consists of two-dimensional (2-D) (4,4) net layers, in which Mn(II) centers are co-bridged by single end-to-end (EE), double end-on (EO) azide and chelate-bridging L1 ligands. Complex 2 shows a single EE azide-bridged one-dimensional (1-D) Ni(II) chain. Complexes 3 and 4 indicate single EO and double EO azide-bridged 1-D Cu(II) chains, respectively. Complex 1 exhibits weak ferromagnetism due to its intra-layer spin-canting with T(c) = 20 K. Complex 2 shows an unusual intra-chain ferromagnetic coupling and spin-canting behaviour. Both complexes 3 and 4 exhibit intra-chain antiferromagnetic interactions. Magneto-structural parameters for these related complexes were also discussed.

  1. Cyanide-Assembled d10Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    Science.gov (United States)

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mixed sulfoisophthalate and 1,2,4-triazole directed d10 metal coordination polymers: Synthesis, property and structural diversity

    Science.gov (United States)

    Liu, Bing; Guo, Kai; Feng, Hui-Jun; Miao, Wei-Ni; He, Ting-Ting; Xu, Ling

    2017-10-01

    This work presents six d10-metal coordination polymers based on mixed ligands of 5-sulfoisophthalate (H2SIP-) and 1,2,4-triazoles (1H-1,2,4-triazole (Htr), 3-amino-1H-1,2,4-triazole (Hatr)), 3D [Zn7(SIP)2(tr)8(H2O)4]·4H2O (1), 3D [Zn4(SIP)(atr)5(H2O)2]·3H2O (2), 2D [Zn2(SIP)(atr)(H2O)3]·2H2O (3), 2D [Ag(H2SIP)(Hatr)] (4 and 5), and 3D [Cd3(SIP)(tr)2(OH)]·H2O (6) under hydrothermal conditions. The structural analysis indicates a ligand directed structural diversity in the metal-(H)SIP-triazole system. The characterizations of 1-6 indicate that the bulk samples are pure phases, the thermal decomposition temperatures are beyond 300 °C, and the fluorescence are blue. The maximum emissions of 1-3 and 6 at around 410 nm are related with the intraligand π→π* transitions of 1,2,4-triazole moieties, and those at ca. 350 nm in 4 and 5 are assigned to intraligand transitions of (H)SIP ligands. The temperature-dependent fluorescence of 1-6 show thermal quenchings with fluorescence quenching rates ranging 22.9-74.2%, and the fluorescence cannot recover fully when it is back to ambient temperature.

  3. SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF A Zn(II COORDINATION POLYMER BASED ON 4,4’-BIPYRIDINE AND ACETATO

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-05-01

    Full Text Available A novel Zn(II coordination polymer, [Zn(bpy(acetato2]n (bpy = 4,4’-bipyridine, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn(II coordination polymer is triclinic, space group P-1 with a = 8.046(3 Å, b = 9.161(3 Å, c = 10.663(3 Å, α = 109.769(4º, β = 99.966(5º, γ = 101.666(5º, V= 699.1(4 Å3, Z = 2, Dc = 1.614 mg·m-3, μ = 1.774 mm-1, F(000 = 348, and final R1 = 0.0541, ωR2 = 0.1605. X-ray diffraction analysis reveals that the Zn(II center is six-coordination with a N2O4 distorted octahedral coordination environment. The Zn(II complex forms 1D chain structure by the bridge of 4,4’-bipyridine and acetato.

  4. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations

    Science.gov (United States)

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur

    2017-09-01

    A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.

  5. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, Javier [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Brito, Iván, E-mail: ivanbritob@yahoo.com [Departamento de Quimica, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Cárdenas, Alejandro [Departamento de Física, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Llanos, Jaime [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Bolte, Michael [Institut für Anorganische Chemie der Goethe—Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main (Germany); López-Rodríguez, Matías [Instituto de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez N° 2, La Laguna, Tenerife (Spain)

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.

  6. Syntheses, structures, and magnetic properties of cobalt(II) and nickel(II) coordination polymers based on a V-shaped ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shuang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yi, Fei-Yan [The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Guanghua [State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu, Yang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Wang, Jing-yuan, E-mail: jywang@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190 (China); Liu, Dan, E-mail: liudan2007@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Song, Shu-Yan [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2017-06-15

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing feature is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.

  7. DFT study and crystal structure analysis of a new nano-structure five coordinated Hg(II) complex involving C-H⋯O, N⋯O and π⋯π interactions in a supra-molecular structure.

    Science.gov (United States)

    Montazerozohori, M; Musavi, S A; Masoudiasl, A; Hojjati, A; Assoud, A

    2015-08-05

    In this research, template synthesis and crystal structure of a new HgLI₂ complex are presented (L=N(1)-(4-nitrobenzylidene)-N(2)-(2-((E)-(4-nitrobenzylidene)amino)ethyl)ethane-1,2-diamine). The mercury complex crystallizes in the triclinic system with space group of P1¯. The crystal structure of the complex shows a distorted trigonal bipyramidal geometry around the mercury(II) center; including two I and an N atoms of Schiff base ligand in equatorial plane and two iminic N atoms in axial positions. Two five membered mercury containing rings [Hg(-N-C-C-N-)] are found in the structure. Some C-H⋯O, N⋯O and π⋯π intermolecular interactions causes a supra-molecular network in the solid-state. In addition to crystal structure analysis, density functional theory (DFT) study at the B3LYP/LanL2DZ level of theory has been also performed on the structure. Thereafter some theoretical structural and spectral data were compared with experimental results. Furthermore, total energy levels of HOMO and LUMO orbitals, molecular electrostatic potential, Mullikan atomic charges, thermodynamic and polarizability properties of the complex were calculated. Finally the mercury complex was prepared in nano-structure size confirmed by SEM and XRD analyses. The particles size of the titled complex was evaluated under 40 nm based on Sherrer's formula. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Construction of new 1D and 2D coordination polymers generated from rigid N,N′-bis(4-pyridylmethylene)-1,5-naphthalenediamine ligand : Syntheses, crystal structures and luminescence properties

    NARCIS (Netherlands)

    Shaabani, Behrouz; Rad-Yousefnia, Negar; Zahedi, Mansoureh; Ertan, Şahin; Blake, Graeme R.; Zakerhamidi, Mohammad Sadegh

    2017-01-01

    Treatment of N,N′-bis(4-pyridylmethylene)-1,5-naphthalenediamine (L) with Pb(OAc)2/KBr, Cu(acac)2, and Cu(OAc)2 afforded three new coordination polymers [Pb(μ-L)(μ-Br)2]n (1), [Cu(μ-L)(acac)2]n (2), and [Cu2(μ-L)(μ-OAc)4]n (3). These coordination polymers have been structurally characterized by

  9. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  10. 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid as linker for Co(II)/Ni(II)/Cu(II) coordination polymers: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Duo-Zhi; Wang, Xin-Fang; Du, Jia-Qiang; Dong, Jun-Liang; Xie, Fei

    2018-02-01

    We report the synthesis and characterization of five transition metal coordination polymers (CPs) based on M(II) (M: Co, Ni and Cu), 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L) ligand. They are formulated as {[Co2(HL)2(H2O)3(SO4)]·H2O}n (1), {[Co2(HL)2(H2O)2]·SiF6}n (2), {[Ni2(HL)2(H2O)3(SO4)]·2H2O}n (3), {[Ni2(HL)2(H2O)4]·H2O·SiF6}n (4), {[Cu2(HL)2(H2O)2]·SiF6}n (5). The complexes 1-5 structure were characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complexes 1-5 are two-dimensional (2D) network type coordination polymers that 1-3, 5 crystallize in monoclinic system within the centrosymmetric space group P2(1)/c, and 4 in triclinic system P-1 space group, they show the same coordination modes (κ1-κ1)-(κ1)-(κ1)-μ3 in coordination polymers. Complexes 1 and 3 expand to three-dimensional framework by means of hydrogen bond interactions, and can be rationalized to be three-connected {63} topological network, while 2, 4, 5 exhibit the topological network with a four-connected {44·62} topological sql network. The luminescent properties (for complexes 1, 2) and UV diffuse reflectance (for complexes 1-5) in the solid state at room temperature were also investigated and discussed. Complexes 1-5 act as effective heterogeneous catalysts, under mild conditions, for the homocoupling reaction of 4-substituted aryl iodides bearing electron-donating groups (-CH3, -OCH3).

  11. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles.

    Science.gov (United States)

    Zhang, Peng; Yuan, Kangjun; Li, Cheng; Zhang, Xiaoke; Wu, Wei; Jiang, Xiqun

    2017-12-01

    Cisplatin-rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)-terminated poly(aspartic acid) (Ad-P(Asp)) and the β-cyclodextrin (β-CD)-terminated poly(2-methyl-2-oxazoline). In the formation of the nanoparticles, the β-CD/admantane inclusion complex integrates poly(2-methyl-2-oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin-rich supramolecular nanoparticles have 53% cisplatin-loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near-infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin-rich nanoparticles can target the tumor in vivo effectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoluminescence Spectra of Self-Assembling Helical Supramolecular Assemblies: A Theoretical Study

    NARCIS (Netherlands)

    van Dijk, Leon; Kersten, Sander P.; Jonkheijm, Pascal; van der Schoot, Paul; Bobbert, Peter A.

    2008-01-01

    The reversible assembly of helical supramolecular polymers of chiral molecular building blocks is known to be governed by the interplay between mass action and the competition between weakly and strongly bound states of these building blocks. The highly co-operative transition from free monomers at

  13. Synthesis, crystal structures, luminescence properties of two metal coordination polymers derived from 5-substituted isophthalate and flexible bis (triazole) ligands.

    Science.gov (United States)

    Ming, Chun-lun; Wang, Li-na; Van Hecke, Kristof; Cui, Guang-hua

    2014-08-14

    Two new metal complexes, [Ni(btx)(nip)(H2O)]n (1), {[Cd(btx)(mip)(H2O)]·H2O}n (2) (btx=1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, H2nip=5-nitroisophthalic acid, H2mip=5-methyisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. Complex 1 features a 3D metal-organic framework with three-fold interpenetrating CdSO4-type topology. Complex 2 exhibits a 2D network with square grid units, which is further extended into a rare 3,5T1 three-dimensional supramolecular network via three modes of classical OH⋯O hydrogen bonds. In addition, luminescence properties of 1 and 2 have also been investigated in the solid state. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    recognition and binding, ice structures, and supramolecular chemistry. The traditional view is .... pair-wise leads to synthon control and crystal design in multifunctional molecules. ..... Crystal structure of Na(sac)•1.875H2O (Na pink, O red, N blue, S yellow, C gray, H cream). The regular region on the left side has 10 sac. −.

  15. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    Science.gov (United States)

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  16. Hydrothermal synthesis and crystal structure of a europium(III) coordination polymer with 5-sulfoisophthalate trivalent anions and free 4, 4'-bipyridine molecules

    International Nuclear Information System (INIS)

    Lin Humao; Qing Caixiao; Qian Miao; Ping Xiaohong

    2005-01-01

    A novel europium(III) coordination polymer [Eu(Sip)(H 2 O) 5 ] n · nH 2 O · 1.5 n(Bipy) (I) (Sip is 5-sulfoisophthalate trivalent anion and Bipy is 4,4'-bipyridine) is hydrothermally synthesized and determined by the single crystal X-ray diffraction method. Polymer I crystallizes in the monoclinic system, space group C2/c with a = 30.7515(6), b = 10.9577(2), c = 17.5545(4) A, β = 112.040(1) deg, Z = 4. In I, each Eu 3+ ion is coordinated by four oxygen atoms from two carboxylate groups of two different Sip anions and five oxygen atoms from five coordinated water molecules to complete a deformed mono-cap square antiprism. Moreover, each Sip anion acts as a tetradentate ligand to connect two adjacent Eu 3+ ions through its two chelating carboxylate groups, resulting in one-dimensional linear chains. In addition, fifteen different kinds of hydrogen-bonding interactions link the chains, lattice water molecules, and free Bipy molecules to engender a complicated hydrogen-bonding network [ru

  17. Synthesis and Molecular Structures of Two [1,4-bis(3-pyridyl-2,3-diazo-1,3-butadiene]-dichloro-Zn(II Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2006-08-01

    Full Text Available Two novel coordination polymers with 3D metal-organic frameworks (MOFs have been synthesized by reacting 1,4-bis(3-pyridyl-2,3-diazo-1,3-butadiene (L with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wave chain. The intermolecular C−H···Cl hydrogen bonds in 1 and 2 play important roles in the formation of three-dimensional coordination polymers. Compound 1 crystallized in an orthorhombic space group Pna21 with a = 7.9652(3, b = 21.4716(7, c = 8.2491(3Å, V = 1410.81(9 Å 3 and Z = 4. Compound 2 crystallized in a monoclinic space group P21/n with a = 9.1752(3, b = 14.5976(4, c = 10.3666(3 Å , β = 98.231(2°, V = 1374.16(7 Å 3 and Z = 4.

  18. One novel 1D coordination polymer with parallel dinuclear copper(II) macrocyclic platforms bridged by trans dimeric half-water molecules and two dinuclear copper(II) macrocyclic complexes with different coordination geometry obtained from different solvents

    Science.gov (United States)

    Chu, Zhaolian; You, Wei; Huang, Wei

    2009-02-01

    Three dinuclear copper(II) macrocyclic complexes, formulated as [Cu 2L(N 3) 2(0.5H 2O) 2] n ( 1), [Cu 2L(ClO 4) 2(CH 3CH 2OH)] ( 2) and [Cu 2L(CH 3OH) 2](ClO 4) 2 ( 3) (LH 2 = [2+2] Schiff base macrocyclic ligand condensed from 4-chloro-2,6-diformylphenol and 1,3-diaminopropane), have been prepared and determined by X-ray single-crystal diffraction. Complex 1 shows two six-coordinate Cu(II) centers in which two monodentate N3- anions and two half-water molecules are bonded at the apical positions in the trans configuration. Furthermore, the dimeric half-water molecules serve as a μ2-bridge linking adjacent macrocyclic units together with the multiple O sbnd H…N hydrogen bonds with azide anions, forming a novel 1D chain-like coordination polymer. Complexes 2 and 3 are obtained from different solvents (ethanol and methanol) and they can be converted into each other. The molecular structures and packing mode of 2 and 3 are different where six-coordinate and five-coordinate copper(II) centers are present, respectively.

  19. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN)4]2-: Synthesis, crystal structure, magnetic properties and ESR studies

    International Nuclear Information System (INIS)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-01-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4 Ni(Im) 3 ] ∞ 1, [Hg(SCN) 4 Mn(Im) 2 ] ∞ 2, and [Hg(SCN) 4 Cu(Me-Im) 2 Hg(SCN) 4 Cu(Me-Im) 4 ] ∞ 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4 ] 2- anion connects three [Ni(Im) 3 ] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4 ] 2- and [Mn(Im) 2 ] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4 Ni(Im) 3 ] ∞ 1, [Hg(SCN) 4 Mn(Im) 2 ] ∞ 2, and [Hg(SCN) 4 Cu(Me-Im) 2 Hg(SCN) 4 Cu(Me-Im) 4 ] ∞ 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN -1 anions. Their structural difference is mainly caused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure

  20. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  1. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server

    2002-01-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...

  2. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    Science.gov (United States)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  3. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ahadiat, G.; Tabatabaee, M.; Gholivand, K.; Zare, K.; Dušek, Michal; Kučeráková, Monika

    2017-01-01

    Roč. 16, č. 1 (2017), s. 7-16 ISSN 1024-1221 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : bismuth coordination polymer * tartrate ligand * thermal decomposition * alpha-Bi 2 O 3 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.565, year: 2016

  4. 1-D linear coordination polymers of Cu(II) with N4-substituted 1,2,4-triazoles and 4,4‧-bipyridine

    Science.gov (United States)

    Białońska, Agata; Ciunik, Zbigniew; Drabent, Krzysztof

    2010-04-01

    The reaction of N-[( E)-(4-chlorophenyl)methylidene]-4 H-1,2,4-triazol-4-amine (ClPhtrz), 4,4'-bipyridine (4,4'-bipy) and Cu(An) 2·6H 2O (An = ClO 4- or BF 4-) in MeCN/H 2O yields two 1-D coordination polymers, namely ∞1{[Cu(4,4'-bipy)(ClPhtrz)2(HO)2](An)2·2CHCN}, (An = ClO 4- ( 1), BF 4- ( 2). In both compounds triazole ligands are monodently coordinated to metal center. Similar reaction with Cu(NO 3) 2·3H 2O affords ∞1{[Cu(4,4'-bipy)(CHCN)(HO)(NO)](NO)} ( 3). Unexpectedly the triazole ligand is not observed in the final product.

  5. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    Science.gov (United States)

    2008-01-20

    difluoroalkoxyborane compounds were applied as additives to solid polymeric electrolytes comprising PEO as polymer matrix and 10 mol. % of lithium salt. In all...compounds and on composite electrolytes with supramolecular anion receptors. 15. SUBJECT TERMS EOARD, Power, Electrochemistry...BF3 33 II. COMPOSITE ELECTROLYTES WITH SUPRAMOLECULAR ANION RECEPTORS 43 II.1. Introduction 39 II.2 Experimental 44 II.3 Results and discussion

  6. Hydrothermal syntheses and structures of first examples of lanthanide 7,8,4‧-tricarboxymethoxyisoflavone coordination polymers

    Science.gov (United States)

    Wang, Yibo; Gao, Lihua; Han, Lijun; Zhang, Suojiang; Feng, Lujia

    2009-12-01

    Two novel isostructure open frameworks of Ln(III), [Ln(L)(H 2O)·1.5H 2O] n, [Ln = Pr( 1), Eu( 2)], have been successfully synthesized using multifunctional organic compound 7,8,4'-tricarboxymethoxyisoflavone (L) as a linker through hydrothermal technique. Compounds 1 and 2 consist of 2D networks, which are further assembled into 3D architecture with 1D channels constructed by coordination bonds and the lattice water molecules array in lines occupying these voids via hydrogen bonds. In these compounds, L only exhibit one coordination mode coordinating to Ln(III), and four oxygen atoms from two carboxylate groups and two carboxymethoxy groups of one L coordinate to one Ln(III), simultaneously. The thermogravimetric analyses of these compounds show that the coordinated water and lattice water are lost in two steps, and the final residues are lanthanide oxides.

  7. Supramolecular Complexes of DNA

    Science.gov (United States)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the

  8. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2016-05-01

    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  9. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    Science.gov (United States)

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  10. A new set of Cd(ii)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO2and cationic dyes.

    Science.gov (United States)

    Chand, Santanu; Elahi, Syed Meheboob; Pal, Arun; Das, Madhab C

    2017-08-01

    On the basis of a mixed ligand system of L(NH 2 ) 2 (6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine) and dicarboxylic acids, three new Cd(ii) coordination polymers viz. {[Cd 0.5 (tdc) 0.5 (L(NH 2 ) 2 ) 0.5 (H 2 O)]·DMF·H 2 O} n (1), {[Cd 0.5 (bdc) 0.5 (L(NH 2 ) 2 )(H 2 O)]·DMF·H 2 O} n (2), and {[Cd(ipa)(L(NH 2 ) 2 )(DMF)]·H 2 O} n (3) (tdcH 2 = thiophene-2,5-dicarboxylic acid, bdcH 2 = benzene-1,4-dicarboxylic acid, ipaH 2 = benzene-1,3-dicarboxylic acid) were synthesized under diverse reaction conditions and characterized by single crystal X-ray diffraction, PXRD, elemental analysis, IR spectroscopy and TGA. While 1 and 2 revealed 1D chain structures, 3 acquired a 2D square net structural arrangement. Gas adsorption measurements of the desolvated framework 3 showed a moderate uptake of CO 2 under ambient conditions with good selectivity over N 2 and CH 4 . The solid state luminescence properties were studied for all three coordination polymers. Moreover, a dye adsorption study on 3 exhibited selective adsorption towards a cationic dye.

  11. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    Science.gov (United States)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  12. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  13. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  14. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    Science.gov (United States)

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  16. 2-Chlorovinyl tellurium dihalides, (p-tol)Te[C(H)=C(Cl)Ph]X{sub 2} for X = Cl, Br and I: variable coordination environments, supramolecular structures and docking studies in cathepsin B

    Energy Technology Data Exchange (ETDEWEB)

    Caracelli, Ignez, E-mail: ignez@ufscar.b [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Fisica; Zukerman-Schpector, Julio; Maganhi, Stella H., E-mail: julio@power.ufscar.b [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica. Lab. de Cristalografia, Estereodinamica e Modelagem Molecular; Stefani, Helio A. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Farmacia; Guadagnin, Rafael [Universidade Federal de Sao Paulo (Unifesp/EPM), Sao Paulo, SP (Brazil). Dept. de Quimica; Tiekink, Edward R.T., E-mail: edward.tiekink@gmail.co [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Chemistry

    2010-07-01

    Crystallography shows that the Te atom in each of (p-tol)Te[C(H)=C(Cl)Ph]X{sub 2}, for X = Cl (1), Br (2) and I (3), is within a distorted {Psi}-pentagonal bipyramidal geometry. An E configuration for the vinyl group in (1) precludes the formation of an intramolecular Te...Cl interaction so that an intramolecular Te{pi} interaction is found instead. The coordination environment features a linear Cl-Te-Cl arrangement with the pentagonal plane defined by the two C atoms of the organic substituents, an intermolecular TeCl contact, a Te{pi} interaction and a stereochemically active lone pair of electrons. In the X = Br (2) and I (3) structures, similar coordination geometries are found but the Te{pi} contact is replaced by an intramolecular TeCl contact owing to the adoption of a Z configuration about the vinyl bond. The differences in structure are readily explained in terms of electronic effects. Docking studies of cathepsin B with (1')-(3'), i.e. 1-3 less one Te-bound halide, show efficient binding through the agency of covalent Te-S{sub Cys29} bonds with stabilization afforded by a combination of N-H{pi}, C-H{pi} and Cl{sub vinyl} H interactions. These results comparable favorably with known inhibitors of cathepsin B suggesting the title compounds have potential biological activity. (author)

  17. Preorganized AgI Bimetallic Precursor with Labile Diphosphorus Ligands for a Programmed Synthesis of Organometallic–Organic Hybrid Polymers

    Science.gov (United States)

    Moussa, Mehdi Elsayed; Seidl, Michael; Balázs, Gábor; Zabel, Manfred; Virovets, Alexander V.; Attenberger, Bianca; Schreiner, Andrea

    2017-01-01

    Abstract An AgI dimer capped with labile organometallic diphosphorus ligands [Cp2Mo2(CO)4(η2‐P2)] (Cp=C5H5) acts as a highly pre‐organized molecular precursor to direct the construction of 1D or 2D, and 3D organometallic–organic hybrid coordination polymers upon reaction with ditopic pyridine‐based linkers. The formation of the supramolecular aggregates can be controlled by the stoichiometry of the organic molecules, and the mechanism is supported by DFT calculations. PMID:28960509

  18. Preorganized AgIBimetallic Precursor with Labile Diphosphorus Ligands for a Programmed Synthesis of Organometallic-Organic Hybrid Polymers.

    Science.gov (United States)

    Moussa, Mehdi Elsayed; Seidl, Michael; Balázs, Gábor; Zabel, Manfred; Virovets, Alexander V; Attenberger, Bianca; Schreiner, Andrea; Scheer, Manfred

    2017-11-16

    An Ag I dimer capped with labile organometallic diphosphorus ligands [Cp 2 Mo 2 (CO) 4 (η 2 -P 2 )] (Cp=C 5 H 5 ) acts as a highly pre-organized molecular precursor to direct the construction of 1D or 2D, and 3D organometallic-organic hybrid coordination polymers upon reaction with ditopic pyridine-based linkers. The formation of the supramolecular aggregates can be controlled by the stoichiometry of the organic molecules, and the mechanism is supported by DFT calculations. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter

  20. TOPICAL REVIEW: Metallo-supramolecular modules as a paradigm for materials science

    Directory of Open Access Journals (Sweden)

    Dirk G Kurth

    2008-01-01

    Full Text Available Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science.

  1. Syntheses, crystal structures and characterizations of three new copper(II) azide coordination polymers with 1,2,4-triazole ligands

    Science.gov (United States)

    Liu, Jing-Jing; He, Xiang; Shao, Min; Li, Ming-Xing

    2009-02-01

    Three new copper(II) azide coordination polymers with derivatives of 1,2,4-triazole as bridging coligands, namely [Cu 2(admtrz) 2(N 3) 4] n ( 1) (admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole), [Cu(4-abpt)(N 3) 2] n·2 nH 2O ( 2) (4-abpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole) and [Cu 3(2-ptrz) 2(N 3) 6] n ( 3) (2-ptrz = 4-(2-pyridyl)-1,2,4-triazole), were prepared and characterized by elemental analyses, IR spectra and X-ray structural analyses. Compound 1 has a 1D chain structure in which Cu(II) ions are bridged by end-on (EO) azides and admtrz ligands. This compound contains three kinds of coordination modes for Cu(II) ions, including tetrahedral, square pyramidal and octahedral geometries. Compound 2 displays an interesting 3D framework structure, in which the azide ligands link Cu(II) ions in end-to-end (EE) mode affording a 2D square layer. This 2D layers are further bridged by bent 4-abpt ligands to form an interesting 3D framework. Furthermore, this structure also exhibits an alpha-Po net topology. Compound 3 displays a 1D rectangle-like chain structure linked by azides adopting end-on (EO) and end-to-end (EE) modes and 2-ptrz ligands. The IR and thermal stabilities of these coordination polymers 1-3 have also been studied.

  2. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  3. Sonochemical Synthesis of a New Nano Lead(II Coordination Polymer with 2,5-bis(2-pyridyl-3,4-diaza-2,4- hexadiene ligand: A Precursor to Produce Pure Phase Nano- sized Lead(II Oxide

    Directory of Open Access Journals (Sweden)

    A. Morsali

    2011-04-01

    Full Text Available A new nano-sized lead(II coordination polymer, [Pb(2-bpdh(NO32]n (1; (2-bpdh = 2,5-bis(2-pyridyl-3,4-diaza-2,4-hexadiene}, was synthesized by a sonochemical method. The structure of 1 may be considered coordination polymer of lead(II consist of metallocyclicchains formed by bridging NO3- and 2-bpdh ligands. The thermal stability of compound was studied by thermal gravimetric and differential thermal analyses. The new nano-structure coordination polymer was characterized by scanning electron microscopy, powder X-ray diffraction, elemental analyses and IR spectroscopy. The size of the samples was about 50 nm. Nano-particles of PbO were obtained by thermolysis of compound 1in oleic acid as a surfactant at 180 °C under air atmosphere and the size of this PbO particles were about 50 nm.

  4. Ultrasonic synthesis of two new zinc(II) bipyridine coordination polymers: New precursors for preparation of zinc(II) oxide nano-particles.

    Science.gov (United States)

    Fard, Mohammad Jaafar Soltanian; Hayati, Payam; Firoozadeh, Azita; Janczak, Jan

    2017-03-01

    Nanoparticles of two zinc(II) coordination polymers (CPs), [Zn(μ-4,4'-bipy)Cl 2 ] n (1) and [Zn(μ-4,4'-bipy)Br 2 ] n (2) L=bpy=4,4'-bipyridine ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn +2 ions are four coordinated. Topological analysis shows that 1D coordination networks of 1 and 2 can be classified as underlying nets of topological types 2C1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc (II) CPs at 450°C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  6. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment.

    Science.gov (United States)

    Li, Feng; Li, Tianyu; Cao, Wei; Wang, Lu; Xu, Huaping

    2017-07-01

    Cisplatin (CDDP) has received worldwide approval for clinical use in the past decades. However, its development in cancer chemotherapy was overshadowed by severe side effects and drug resistance. Herein, we developed a CDDP drug delivery system with high encapsulation efficiency and near-infrared light stimuli-responsive drug release properties based on the coordination of novel tellurium-containing block polymer (PEG-PUTe-PEG) and CDDP. The nanocarriers made from PEG-PUTe-PEG were loaded with CDDP and indocyanine green (ICG) simultaneously. The coordination chemistry between CDDP and tellurium guaranteed the nanocarrier a high stability in plasma and prolonged circulation time in vivo by reducing possible penetration of water molecule into the nanoparticles. Under the stimuli of a near-infrared laser, an amount of ROS can be generated by irradiation of ICG. The tellurium is easily oxidized by ROS because of the low electronegativity of tellurium. The CDDP could be rapidly released from the nanocarriers along with the oxidation of the tellurium at the tumor sites as the oxidized tellurium will weaken the coordination interaction with CDDP. In addition, the encapsulated ICG played a synergistic antitumor effect through photothermal effect with mild laser irradiation. The integrated strategy achieved higher antitumor efficacy and showed minimal side effects compared with the CDDP alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Crystal structure of a heterometallic coordination polymer: poly[diaquabis(μ7-benzene-1,3,5-tricarboxylatodicalcium(IIcopper(II

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2017-06-01

    Full Text Available In the title complex, [Ca2Cu(C9H3O62(H2O2]n, the CaII and CuII cations are bridged by the benzene-1,3,5-tricarboxylate anions (BTC3− to form the coordination polymer, in which each BTC3− anion bridges two CuII and five CaII cations with a μ7 coordination mode. The CuII cation, located at an inversion centre, is in a nearly square-planar geometry defined by four O atoms from four bridging BTC3− anions, while the CaII cation is in a distorted octahedral geometry defined by five O atoms from bridging BTC3− anions and one water molecule. O—H...O hydrogen bonds between coordinating water molecules and carboxyl groups further stabilize the structure; π–π stacking is also observed between parallel benzene rings, the centroid-to-centroid distance being 3.357 (2 Å.

  8. Multivalency in supramolecular chemistry and nanofabrication

    NARCIS (Netherlands)

    Mulder, A.; Huskens, Jurriaan; Reinhoudt, David

    2004-01-01

    Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general

  9. Regenerative electronic biosensors using supramolecular approaches

    NARCIS (Netherlands)

    Duan, X.; Rajan, N.; Routenberg, D.; Huskens, Jurriaan; Reed, M.

    2013-01-01

    A supramolecular interface for Si nanowire FETs has been developed with the aim of creating regenerative electronic biosensors. The key to the approach is Si-NWs functionalized with β-cyclodextrin (β-CD), to which receptor moieties can be attached with an orthogonal supramolecular linker. Here we

  10. Synthesis and photoluminescence properties of Eu3+-doped silica@coordination polymer core-shell structures and their calcinated silica@Gd2O3:Eu and hollow Gd2O3:Eu microsphere products.

    Science.gov (United States)

    Lee, Hee Jung; Park, Ju-Un; Choi, Sora; Son, Juhee; Oh, Moonhyun

    2013-02-25

    The conjugation of Eu(3+)-doped coordination polymers constructed from Gd(3+) and isophthalic acid (H(2)IPA) with silica particles is investigated for the production of luminescent microspheres. A series of doping ratio-controlled silica@coordination polymer core-shell spheres is easily synthesized by altering the amounts of metal nodes used in the reactions, where the ratios of Gd(3+) and Eu(3+) are 10:0 (1a), 9:1 (1b), 8:2 (1c), 7:3 (1d), 5:5 (1e), and 0:10 (1f). The formation of monodisperse uniform core-shell structures is achieved throughout the entirety of a series. Investigations of the photoluminescence property of the resulting series of silica@coordination polymer core-shell spheres reveal that 20% Eu(3+)-doped product (1c) has the strongest emission intensity. The subsequent calcination process on the silica@coordination polymer core-shell structures (1a-f) results in the formation of a series of doping ratio-controlled silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) with uniform shell thickness. During the calcination step, the coordination polymers within silica@coordination polymer core-shells are transformed into metal oxides, resulting in silica@Gd(2)O(3):Eu core-shell structures. The final etching process on the silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) produces a series of hollow Gd(2)O(3):Eu microspheres (3a-f) as a result of the elimination of silica cores. The luminescence intensities of silica@Gd(2)O(3):Eu core-shell (2a-f) and hollow Gd(2) O(3):Eu microspheres (3a-f) also vary depending upon the doping ratio of Eu(3+) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  12. Recent Advances in Supramolecular Gels and Catalysis.

    Science.gov (United States)

    Fang, Weiwei; Zhang, Yang; Wu, Jiajie; Liu, Cong; Zhu, Haibo; Tu, Tao

    2018-04-04

    Over the past two decades, supramolecular gels have attracted significant attention from scientists in diverse research fields and have been extensively developed. This review mainly focuses on the significant achievements in supramolecular gels and catalysis. First, by incorporating diverse catalytic sites and active organic functional groups into gelator molecules, supramolecular gels have been considered as a novel matrix for catalysis. In addition, these rationally designed supramolecular gels also provide a variety of templates to access metal nanocomposites, which may function as catalysts and exhibit high activity in diverse catalytic transformations. Finally, as a new kind of biomaterial, supramolecular gels formed in situ by self-assembly triggered by catalytic transformations are also covered herein. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  14. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhi-Hang [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Han, Min-Le [College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022 (China); Wu, Ya-Pan; Dong, Wen-Wen [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Lu, Jack Y., E-mail: lu@uhcl.edu [Department of Chemistry, University of Houstons-Clear Lake, Houston, TX 77058 (United States)

    2016-10-15

    Two new Co(II) coordination polymers(CPs), namely [Co{sub 2}(bpe){sub 2}(Hbppc)]{sub n} (1) and [Co{sub 3}(μ{sub 3}-OH)(bppc)(bpm)(H{sub 2}O)]·3H{sub 2}O (2) (H{sub 5}bppc=biphenyl-2,4,6,3′,5′-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co{sub 3}(μ{sub 3}-OH)]{sup 5+} units with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system. - Graphical abstract: Two new Co(II) coordination polymers with bi- and trinuclear units have been obtained. 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology and antiferromagnetic interactions between the adjacent Co(II) ions, while 2 is a binodal (5,7)-connected 3D network with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology and a ferromagnetic system. - Highlights: • Two Co(II) coordination polymers with different multimetallic clusters as building units. • A (4,6)-connected fsc net and a (5,7)-connected 3D network. • A antiferromagnetic coupling for 1 and A ferromagnetic coupling for 2.

  15. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng; Li, Qiao-Min; Lin, Hong-Yan; Wang, Xiang

    2017-05-15

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.

  16. A one-dimensional ladder-like coordination polymer: poly[[hexa-aqua-bis(μ-5-nitro-benzene-1,3-dicarboxyl-ato-κO,O',O'')(μ-oxalato-κO,O':O'',O''')diyttrium(III)] trihydrate].

    Science.gov (United States)

    Fu, Zhong; Lin, Ying; Zhou, Yun-You; Zhang, Hong-Tao

    2007-12-06

    In the crystal structure of the title one-dimensional coordination polymer, [Y(2)(C(8)H(3)NO(6))(2)(C(2)O(4))(H(2)O)(6)]·3H(2)O, each Y(III) ion is bridged to its neighbours by two 5-nitro-benzene-1,3-dicarboxyl-ate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water mol-ecules coordinate to the Y(III) ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π-π stacking [centrio-centriod distance = 3.819 (9) Å] in the crystal structure.

  17. Stabilization of reactive species by supramolecular encapsulation.

    Science.gov (United States)

    Galan, Albano; Ballester, Pablo

    2016-03-21

    Molecular containers have attracted the interest of supramolecular chemists since the early beginnings of the field. Cavitands' inner cavities were quickly exploited by Cram and Warmuth to construct covalent containers able to stabilize and assist the characterization of short-lived reactive species such as cyclobutadiene or o-benzyne. Since then, more complex molecular architectures have been prepared able to store and isolate a myriad of fleeting species (i.e. organometallic compounds, cationic species, radical initiators…). In this review we cover selected examples of the stabilization of reactive species by encapsulation in molecular containers from the first reports of covalent containers described by Cram et al. to the most recent examples of containers with self-assembled structure (metal coordination cages and hydrogen bonded capsules). Finally, we briefly review examples reported by Rebek et al. in which elusive reaction intermediates could be detected in the inner cavities of self-folding resorcin[4]arene cavitands by the formation of covalent host-guest complexes. The utilization of encapsulated reactive species in catalysis or synthesis is not covered.

  18. Supramolecular Structure and Function 9

    CERN Document Server

    Pifat-Mrzljak, Greta

    2007-01-01

    The book is based on International Summer Schools on Biophysics held in Croatia which, contrary to other workshops centered mainly on one topic or technique, has very broad scope providing advanced training in areas related to biophysics. This volume is presenting papers in the field of biophysics for studying biological phenomena by using physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.) and/or concepts (predictions of protein-protein interactions, virtual ligand screening etc.). The interrelationship of supramolecular structures and there functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.

  19. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit.

    Science.gov (United States)

    Rao, Koya Prabhakara; Higuchi, Masakazu; Sumida, Kenji; Furukawa, Shuhei; Duan, Jingui; Kitagawa, Susumu

    2014-07-28

    We demonstrate a new approach to superhydrophobic porous coordination polymers by incorporating an anisotropic crystal morphology featuring a predominant surface that is highly corrugated and terminated by aromatic hydrocarbon moieties. The resulting low-energy surface provides particularly promising hydrophobic properties without the need for postsynthetic modifications or surface processing that would block the porosity of the framework. Consequently, hydrophobic organic molecules and water vapor are able to penetrate the surface and be densely accommodated within the pores, whereas bulk water is repelled as a result of the exterior surface corrugation derived from the aromatic surface groups. This study provides a new strategy for the design and development of superhydrophobic porous materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n

    Science.gov (United States)

    Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan

    2017-12-01

    A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.

  1. A multifunctional three-fold interpenetrated coordination polymer showing excellent luminescent sensing for Cr(VI)/ Fe(III) and photocatalytic properties

    Science.gov (United States)

    Zhu, Zheng; Wang, Mei; Xu, Cun-gang; Zong, Zi-ao; Zhang, Dong-mei; Bi, Shuang-yu; Fan, Yu-hua

    2017-12-01

    A three-fold interpenetrated coordination polymer [Cd2(L)(bibp)3]n (1) (H4L = 5,5‧-(1,4-phenylenebis(methoxy))diisophthalic acid, bibp = 4,4'-bis(imidazolyl)biphenyl) has been rationally constructed, successfully solvothermally synthesized and fully characterized. Complex 1 shows a 3D three-fold interpenetrated novel topological framework with the point symbol (4. 69)2(42. 62. 7. 8), and represents a variety of potential applications. Luminescence studies demonstrate that 1 has high selectivity and sensitivity for pollutant Cr(VI) (CrO42- and Cr2O72-) anion and Fe(III) cation; Photocatalytic studies show that 1 exhibits great degradation activity of three organic dyes (methylene blue (MB), Rhodamine B (RhB) and MalachiteGreen oxalate (MGO)). Furthermore, the possible mechanisms of the luminescent quench and photocatalytic properties have been deduced.

  2. Synthesis, crystal structures and properties of three coordination polymers based on semi-rigid bis(benzimidazole-1-ylmethyl)biphenyl ligand

    Science.gov (United States)

    Liang, Lili; Xue, Hongbao; Chen, Feijian; Zhang, Manli; Zhang, Bingyuan; Tao, Zhaolin

    2017-11-01

    Solvothermal reactions of three metal salts with a linear semi-rigid ligand 4,4‧-bis(benzimidazol-1-ylmethy1)biphenyl) (bbmb) and terephthalic acid (H2TA), lead to three metal-organic coordination polymers, namely, {[Co(bbmb)(TA)] 4H2O} 1, [Zn2(bbmb)2(TA)(NO2)2] 2 and [Cd(bbmb)(TA)(H2O)] 3. Single-crystal X-ray diffraction analyses reveal that compound 1 exhibits a zigzag-shaped 1-D chain, which extended into a three-dimensional supermolecular framework through π-π interactions, compound 2 exhibits a thick two-dimensional sheet, while compound 3 exhibits a unique 3D two-fold interpenetrated network of irl topology. Moreover, IR spectroscopy, powder X-ray diffraction, thermogravimetric analyses, and the properties of the three compounds were studied.

  3. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    Science.gov (United States)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  4. Mixed-valence copper(I,II) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers.

    Science.gov (United States)

    Vinogradova, Katerina A; Krivopalov, Viktor P; Nikolaenkova, Elena B; Pervukhina, Natalia V; Naumov, Dmitrii Yu; Boguslavsky, Evgenii G; Bushuev, Mark B

    2016-01-14

    Two pyrimidine-based ligands, 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(morpholino)pyrimidine () and 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-phenoxypyrimidine (), and a series of mixed-valence copper(i,ii) halide complexes, [Cu(L(2))2Br]2[Cu2Br4] (), [Cu(L(2))2Cl][CuCl2] (), and [Cu2L(3)Br3]n (), have been synthesized. The complex [Cu(L(2))2Br]2[Cu2Br4] was prepared by the reaction of with CuBr2 in a 1 : 1 molar ratio in MeCN. Its chlorido-analogue, the complex [Cu(L(2))2Cl][CuCl2], was synthesized by the reaction between , CuCl2 and CuCl in a 2 : 1 : 1 molar ratio in MeCN. The ligand acts as a chelating one. In the structures of the complexes [Cu(L(2))2Br]2[Cu2Br4] and [Cu(L(2))2Cl][CuCl2] the Cu(2+) ion is in the cationic part of the complex whereas the Cu(+) ion is located in the anionic part. The best way to synthesize the mixed-valence 1D coordination polymer [Cu2L(3)Br3]n is to react CuBr2 with in a 2 : 1 molar ratio in the MeCN/CHCl3 mixture on heating. In the structure of [Cu2L(3)Br3]n the ligand shows chelating/bridging tridentate coordination. This is the first example of the tridentate coordination of 4-(1H-pyrazol-1-yl)-6-R-pyrimidines. The striking difference between the coordination behavior of and (chelating bidentate vs. chelating/bridging coordination) is related with the possibility of rotation of the 6-phenoxy group around the C-O bond which makes the N(1) pyrimidine atom less sterically hindered, enabling it to participate in metal ion binding. Importantly, all copper ions in [Cu2L(3)Br3]n show similar tetrahedral environments, CuNBr3 and CuN2Br2, which is extremely rare for mixed-valence copper(i,ii) compounds. The ligands and show blue emission which is quenched upon their coordination to copper ions. The 1D coordination polymer [Cu2L(3)Br3]n shows high thermal stability and unusual solvent-occlusion properties. The role of the substituents favoring the formation of the mixed-valence copper(i,ii) complexes with 4-(1H-pyrazol-1-yl)-6-R

  5. Synthesis, structural analyses and antimicrobial activity of the water soluble 1D coordination polymer [Ag(3-aminopyridine)]ClO4

    Science.gov (United States)

    Soliman, Saied M.; Elsilk, Sobhy E.

    2017-12-01

    The synthesis, characterization and molecular structure aspects of the [Ag(3-aminopyridine)]ClO4 coordination polymer have been presented. Single crystal X-ray diffraction (SC-XRD) analysis showed that the asymmetric unit consists of two Ag, one 3-aminopyridine (3APy) and one ionic perchlorate anion. The 3-aminpyridine (3APy) acts as a bridged ligand connecting the Ag-atoms via the amine and pyridine ring N-atoms leading to the formation of 1D coordination polymer. The perchlorate anion connects the 1D chains via a complicated set of Nsbnd H⋯O and Csbnd H⋯O hydrogen bonding interactions. Strong FTIR spectral bands at 1143.1, 1116.7 and 1085.6 cm-1 and a weak band at 932.9 cm-1 revealed the ionic character of the complex. Single point DFT calculations combined with atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicated stronger Agsbnd N(py) than Agsbnd N(NH2) interaction. The former has more covalent character according to the AIM topological parameters. The Ag⋯O interactions are weak and are mainly affected by dispersion interactions. Of the six DFT methods used for geometry optimizations, the TPSSTPSS then PBEPBE are the most powerful DFT methods to predict the Agsbnd N distances. Effect of methods on the frontier molecular orbitals energies and shapes are also presented. Preliminary antimicrobial studies showed that the [Ag(3APy)]ClO4 complex has more activity against all the studied microorganisms than the free 3APy.

  6. Heteronuclear, mixed-metal Ag(I)-Mn(II) coordination polymers with bridging N-pyridinylisonicotinohydrazide ligands: synthesis, crystal structures, magnetic and photoluminescence properties.

    Science.gov (United States)

    Bikas, Rahman; Hosseini-Monfared, Hassan; Vasylyeva, Vera; Sanchiz, Joaquín; Alonso, Javier; Barandiaran, Jose Manuel; Janiak, Christoph

    2014-08-21

    Mixed-metal dicyanoargentate-bridged coordination polymers of Ag(i)-Mn(ii) have been prepared and their structure and magnetic properties were determined. Reaction of manganese(ii) chloride and potassium dicyanoargentate(i) with (X)(pyridin-2-ylmethylene)isonicotinohydrazide ligands (HL(1) X = Ph, HL(2) X = Me, HL(3) X = H) produced the coordination polymer 2D-[Mn(μ-L(1))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n (), 1D-{[Mn(L(2))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]CH3OH}n () and [Mn(L(3))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n () in good yields. Trinuclear {Mn(μ-L(1))Mn(μ-L(1))Mn} and [Ag(CN)2](-) building units form a two-dimensional slab in and 1D strands in . Variable temperature magnetic susceptibility measurements showed that despite the long distance among the high spin Mn(ii) ions [10.4676(12) Å and 10.522(1) Å, for and , respectively], weak antiferromagnetic coupling takes place through the long NC-Ag-CN bridge. The best fit parameters to the model led to the magnetic coupling constant of J = -0.1 and J = -0.47 cm(-1) for and , respectively. The photoluminescence behaviour of compounds and was studied. The spectrum of compound shows a broad emission centered at about 450 nm and two excitation maxima at 270 and 310 nm.

  7. Syntheses, crystal structures and properties of series of 4d–4f ln(III)–Ag(I) heterometallic coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Xing-Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Ning [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xie, Wei-Ping; Xiong, Yan-Ju; Cheng, Qian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Long, Yi [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yue, Shan-Tang, E-mail: yuesht@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou (China); Liu, Ying-Liang [College of Science, South China Agricultural University, Guangzhou 510642 (China)

    2015-05-15

    By control of the experimental parameters such as ligands, pH value and reacting temperature, series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction, namely, ([Ln{sup III}Ag{sup I}(na)(ina)(ox)]·2(H{sub 2}O)){sub n} [Ln=Sm(1), Eu(2), Gd(3), Tb(4), Dy(5), Ho(6), Y(7), Yb(8)], have been successfully synthesized under hydrothermal conditions and structurally characterized. All the complexes are characterized by elemental analyses, FT-IR spectroscopy, Powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Furthermore, the luminescence properties of compounds 2 and 4 and the magsnetic properties of complexes 3 and 5 were also investigated in detail. - Graphical abstract: Series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction which are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. - Highlights: • Complexes 1–8 are first built by three kinds of organic ligands based on nicotinic acid and isonicotinic acid. • PCPs 1–8 are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. • The total solvent-accessible volume of PCP 2 comprises 11.6% of the crystal volume after dislodging the free water molecules. • Complexes 2 and 4 exhibit characteristic lanthanide-centered luminescence, while compounds 3 and 5 show antiferromagnetic behaviors.

  8. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  9. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand.

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-05

    A series of novel coordination polyurethanes [HTPU-M, where M=Mn(II) 'd 5 ', Ni(II) 'd 8 ', and Zn(II) 'd 10 '] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1 H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II)>HTPU-Mn(II)>HTPU-Zn(II)>HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  11. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    International Nuclear Information System (INIS)

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately

  12. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II)

    Science.gov (United States)

    Agarwal, Rashmi A.

    2018-03-01

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  13. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior.

    Science.gov (United States)

    Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J

    2017-11-10

    The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.

  14. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-ylmethanone Ligand: Synthesis and ε-Caprolactone Polymerization Behavior

    Directory of Open Access Journals (Sweden)

    Nestor J. Bello-Vieda

    2017-11-01

    Full Text Available The reaction of isophthaloyl dichloride with 1H-1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-ylmethanone (1. A series of Co(II, Cu(II, Zn(II and Ni(II complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs. The cobalt and copper CPs and zinc(II complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL under solvent-free conditions. 1H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.

  15. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these

  16. Luminescent coordination polymers for the VIS and NIR range constituting LnCl₃ and 1,2-bis(4-pyridyl)ethane.

    Science.gov (United States)

    Dannenbauer, N; Matthes, P R; Müller-Buschbaum, K

    2016-04-21

    A series of 14 lanthanide containing coordination polymers LnCl3 with 1,2-bis(4-pyridyl)ethane (bpe) was synthesized from either thiazole or pyridine. Depending on the ligand content, a structural diversity from 3D-frameworks [LnCl3(bpe)2]·thz, Ln = Ce-Lu, to 1D-strands [La2Cl6(bpe)2(thz)6] and [LnCl3(bpe)(py)2]·(bpe/py), Ln = Gd, Er, was obtained and characterized by X-ray single crystal diffraction, powder diffraction, differential thermal analysis and thermogravimetry (DTA/TG), IR-spectroscopy and photoluminescence spectroscopy. The compounds exhibit a variety of luminescence properties and different phenomena. This includes ligand centred fluorescence, metal-centred 5d-4f/4f-4f emission in the visible and the NIR range, antenna effects via Dexter and Förster energy transfer mechanisms, excitation dependent emission with a correlating shift of the chromaticity coordinates and inner filter effects by combined re-absorption/emission.

  17. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  18. Mössbauer spectroscopic study on spin crossover coordination polymer Fe(3-Clpy){sub 2}[Pd(CN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Takafumi, E-mail: kitazawa@chem.sci.toho-u.ac.jp; Sekiya, Madoka; Kawasaki, Takeshi; Takahashi, Masashi [Toho University, Department of Chemistry, Faculty of Science (Japan)

    2016-12-15

    {sup 57}Fe Mössbauer spectroscopic results on the alternatively prepared spin crossover coordination polymer Fe(3-Clpy){sub 2}Pd(CN){sub 4} sample I agree with those of SQUID data. Mössbauer specrum at RT shows two diffrent doublets which correspond to the HS1(inner doublet) and HS2(outer doublet). The intensity of the HS1 doublet decreases on cooling to 78 K at the expense of a new one featuring the LS singlet. Almost 100 % of HS1 change to LS singlet due to iron(II) ions coordinated by four N atoms of cyano groups and two N atoms of 3-Clpy ligand in the sample I. The SQUID data of the sample I prepared by a new direct contact method are different from those of the already reported Fe(3-Clpy){sub 2}Pd(CN){sub 4} sample. The differences of the SQUID data are associated with particle size effects in molecule spin crossover samples.

  19. 2D l-Di-toluoyl-tartaric acid Lanthanide Coordination Polymers: Toward Single-component White-Light and NIR Luminescent Materials.

    Science.gov (United States)

    Niu, Wan-Ying; Sun, Jing-Wen; Yan, Peng-Fei; Li, Yu-Xin; An, Guang-Hui; Li, Guang-Ming

    2016-02-18

    A series of five l-di-p-toluoyl-tartaric acid (l-DTTA) lanthanide coordination polymers, namely {[Ln4 K(4)  L6 (H2O)x ]⋅yH2 O}n , [Ln=Dy (1), x=24, y=12; Ln=Ho (2), x=23, y=12; Ln=Er (3), x=24, y=12; Ln=Yb (4), x=24, y=11; Ln=Lu (5), x=24, y=12] have been isolated by simple reactions of H2L (H2 L= L-DTTA) with LnCl3 ⋅6 H2O at ambient temperature. X-ray crystallographic analysis reveals that complexes 1-5 feature two-dimensional (2D) network structures in which the Ln(3+) ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single-component white-light emission, while complexes 2-4 exhibit a characteristic near-infrared (NIR) luminescence in the solid state at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and Characterization of Novel Copper(II 2D Coordination Polymers from a Fluorinated Flexible Ligand with Remarkable Clathration Ability

    Directory of Open Access Journals (Sweden)

    Kayoko Kasai

    2011-11-01

    Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.

  1. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.

    Science.gov (United States)

    Rossow, Torsten; Bayer, Sebastian; Albrecht, Ralf; Tzschucke, C Christoph; Seiffert, Sebastian

    2013-09-01

    Supramolecular microgel capsules based on polyethylene glycol (PEG) are a promising class of soft particulate scaffolds with tailored properties. An approach to fabricate such particles with exquisite control by droplet-based microfluidics is presented. Linear PEG precursor polymers that carry bipyridine moieties on both chain termini are gelled by complexation to iron(II) ions. To investigate the biocompatibility of the microgels, living mammalian cells are encapsulated within them. The microgel elasticity is controlled by using PEG precursors of different molecular weights at different concentrations and the influence of these parameters on the cell viabilities, which can be optimized to exceed 90% is studied. Reversion of the supramolecular polymer cross-linking allows the microcapsules to be degraded at mild conditions with no effect on the viability of the encapsulated and released cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multivalent supramolecular dendrimer-based drugs.

    Science.gov (United States)

    Galeazzi, Simone; Hermans, Thomas M; Paolino, Marco; Anzini, Maurizio; Mennuni, Laura; Giordani, Antonio; Caselli, Gianfranco; Makovec, Francesco; Meijer, E W; Vomero, Salvatore; Cappelli, Andrea

    2010-01-11

    Supramolecular complexes consisting of a hydrophobic dendrimer host [DAB-dendr-(NHCONH-Ad)(64)] as well as solubilizing and bioactive guest molecules have been synthesized using a noncovalent approach. The guest-host supramolecular assembly is first preassembled in chloroform and transferred via the neat phase to aqueous solution. The bioactive guest molecules can bind to a natural (serotonin 5-HT(3)) receptor with nanomolar affinity as well as to the synthetic dendrimer receptor in aqueous solution, going toward a dynamic multivalent supramolecular construct capable of adapting itself to a multimeric receptor motif.

  3. Dielectric properties of barium titanate supramolecular nanocomposites.

    Science.gov (United States)

    Lee, Keun Hyung; Kao, Joseph; Parizi, Saman Salemizadeh; Caruntu, Gabriel; Xu, Ting

    2014-04-07

    Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

  4. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  5. One-dimensional mercury(II) coordination polymers with a flexible bidentate schiff base ligand (Me.sub.2./sub.N-Ba).sub.2./sub.Bn: Synthesis, characterization, and crystal structures

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Bahramian, B.; Jafari, K.; Fejfarová, Karla; Dušek, Michal

    2013-01-01

    Roč. 39, č. 12 (2013), s. 877-884 ISSN 1070-3284 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : mercury * structure analysis * coordination polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.629, year: 2013

  6. Synthesis and characterization of new coordination polymer with l-proline amino acid ligand, new precursor for preparation of pure phase lead(II) oxide nanoparticles via thermal decomposition

    Czech Academy of Sciences Publication Activity Database

    Varzdar, S.; Hashemi, L.; Morsali, A.; Dušek, Michal

    2017-01-01

    Roč. 14, č. 11 (2017), s. 2255-2261 ISSN 1735-207X Institutional support: RVO:68378271 Keywords : coordination polymer * nanoparticle * lead(II) oxide * proline amino acid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.407, year: 2016

  7. pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy.

    Science.gov (United States)

    Yao, Xuemei; Chen, Li; Chen, Xiaofei; Xie, Zhigang; Ding, Jianxun; He, Chaoliang; Zhang, Jingping; Chen, Xuesi

    2015-10-01

    Benefited from the high orientation of coordinated interaction, metallo-supramolecular materials have attracted enormous interest in many fields. Herein, a novel metallo-supramolecular nanogel (SNG)-based drug delivery system for synergistic chemo-photodynamic therapy is explored to enhance anticancer efficacy. It is fabricated by the metallo-supramolecular-coordinated interaction between tetraphenylporphyrin zinc (Zn-Por) and histidine. It can respond to tumor acid microenvironment to release the co-delivered anticancer drug and photosensitizer to kill the lesion cells. Zn-Por moieties in SNG keep the photosensitivity in the range of visible wavelength and possess the ability of generating active oxygen species for photodynamic therapy. The drug-loaded SNG provides a di-functional platform for chemotherapy and photodynamic therapy. Compared with the single chemotherapy of free doxorubicine (DOX) or photodynamic therapy of Zn-Por in SNG, DOX-loaded SNG with irradiation shows higher in vitro cytotoxicity and in vivo anticancer therapeutic activity, endowing the SNG with great potential in cancer treatments. A combination of multiple non-cross-resistant anticancer agents has been widely applied clinically. Applying multiple drugs with different molecular targets can raise the genetic barriers and delay the cancer adaption process. Multiple drugs targeting different cellular pathways can function synergistically, giving higher therapeutic efficacy and target selectivity. Overall, developing a combination therapeutic approach might even be the key to enhance anticancer efficacy and overcome chemo-resistance. Herein, a novel metallo-supramolecular nanogel (SNG) is fabricated by the metallo-supramolecular-coordinated interaction between tetraphenylporphyrin zinc (Zn-Por) and histidine. The DOX-loaded SNG provides a di-functional platform for chemotherapy and photodynamic therapy because it can respond to tumor acid microenvironment to release the co-delivered anticancer

  8. Coordination Chemistry inside Polymeric Nanoreactors: Metal Migration and Cross-Exchange in Amphiphilic Core-Shell Polymer Latexes

    Directory of Open Access Journals (Sweden)

    Si Chen

    2016-01-01

    Full Text Available A well-defined amphiphilic core-shell polymer functionalized with bis(p-methoxy-phenylphosphinophenylphosphine (BMOPPP in the nanogel (NG core has been obtained by a convergent RAFT polymerization in emulsion. This BMOPPP@NG and the previously-reported TPP@NG (TPP = triphenylphosphine and core cross-linked micelles (L@CCM; L = TPP, BMOPPP having a slightly different architecture were loaded with [Rh(acac(CO2] or [RhCl(COD]2 to yield [Rh(acac(CO(L@Pol] or [RhCl(COD(L@Pol] (Pol = CCM, NG. The interparticle metal migration from [Rh(acac(CO(TPP@NG] to TPP@NG is fast at natural pH and much slower at high pH, the rate not depending significantly on the polymer architecture (CCM vs. NG. The cross-exchange using [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(TPP@Pol] (Pol = CCM or NG as reagents at natural pH is also rapid (ca. 1 h, although slower than the equivalent homogeneous reaction on the molecular species (<5 min. On the other hand, the subsequent rearrangement of [Rh(acac(CO(TPP@Pol] and [RhCl(COD(TPP@Pol] within the TPP@Pol core and of [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(BMOPPP@Pol] within the BMOPPP@Pol core, leading respectively to [RhCl(CO(TPP@Pol2] and [RhCl(CO(BMOPPP@Pol2], is much more rapid (<30 min than on the corresponding homogeneous process with the molecular species (>24 h.

  9. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    International Nuclear Information System (INIS)

    Guan, Lei; Wang, Ying

    2015-01-01

    A novel cobalt phosphonate, [Co(HL)(H 2 O) 3 ] n (1) (L=N(CH 2 PO 3 H) 3 3− ) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO 6 octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis

  10. Mechanochemical Synthesis of 3d Transition-Metal-1,2,4-Triazole Complexes as Precursors for Microwave-Assisted and Thermal Conversion to Coordination Polymers with a High Influence on the Dielectric Properties.

    Science.gov (United States)

    Brede, Franziska A; Heine, Johanna; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-02-18

    The complexes [MCl2 (TzH)4] (M=Mn (1), Fe (2); TzH=1,2,4-1H-triazole) and [ZnCl2 (TzH)2] (3) have been obtained by mechanochemical reactions of the corresponding divalent metal chloride and 1,2,4-1H-triazole. They were successfully used as precursors for the formation of coordination polymers either by a microwave-assisted reaction or by thermal conversion. For manganese, the conversion directly yielded 1∞ [MnCl2 TzH] (4), whereas for the iron-containing precursor, 1∞ [FeCl2 TzH] (6), was formed via the intermediate coordination polymer 1∞ [FeCl(TzH)2]Cl (5). For cobalt, the isotypic polymer 1∞ [CoCl(TzH)2]Cl (7) was obtained, but exclusively by a microwave-induced reaction directly from CoCl2 . The crystal structures were resolved from single crystals and powders. The dielectric properties were determined and revealed large differences in permittivity between the precursor complexes and the rigid chain-like coordination polymers. Whereas the monomeric complexes exhibit very different dielectric behaviour, depending on the transition metal, from "low-k" to "high-k" with the permittivity ranging from 4.3 to >100 for frequencies of up to 1000 Hz, the coordination polymers and complexes with strong intermolecular interactions are all close to "low-k" materials with very low dielectric constants up to 50 °C. Therefore, the conversion procedures can be used to deliberately influence the dielectric properties from complex to polymer and for different 3d transition-metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties.

    Science.gov (United States)

    Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi

    2016-11-22

    Three novel 2D coordination polymers [Tb 2 (μ 4 -L) 2 (μ-HL)(μ-HCOO)(DEF)] n (Tb-L), [Eu(μ 4 -L)(L)(H 2 O) 2 ] n (Eu-L), and [Nd(μ 4 -L)(L)(H 2 O) 2 ] n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H 2 L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H 2 O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH 2 or MCM-41-NH 2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.

  12. Meso-porphyrinylphosphine oxides: mono- and bidentate ligands for supramolecular chemistry and the crystal structures of monomeric {[10,20-diphenylporphyrinatonickel(II)-5,15-diyl]-bis-[P(O)Ph(2)] and polymeric self-coordinated {[10,20-diphenylporphyrinatozinc(II)-5,15-diyl]-bis-[P(O)Ph(2)]}.

    Science.gov (United States)

    Atefi, Farzad; McMurtrie, John C; Turner, Peter; Duriska, Martin; Arnold, Dennis P

    2006-08-07

    A series of porphyrins substituted in one or two meso positions by diphenylphosphine oxide groups has been prepared by the palladium-catalyzed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination, and reductive elimination steps, as the stoichiometric reaction of eta(1)-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable-temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron-withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterized by multinuclear NMR and UV-visible spectroscopy, as well as mass spectrometry. Single-crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighboring zinc porphyrin through an almost linear P=O...Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.

  13. Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials.

    Science.gov (United States)

    Seco, Jose M; Oyarzabal, Itziar; Pérez-Yáñez, Sonia; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2016-11-07

    Detailed structural, magnetic, and photoluminescence characterization of a family of new compounds based on 5-cyanoisophthalate (CNip) ligand and several transition metal or lanthanide ions, namely, [Cu 3 (μ 3 -CNip) 2 (μ-H 2 O) 2 (μ 3 -OH) 2 ] n (1), {[Co 3 (μ 4 -CNip) 3 (DMF) 4 ]·∼2DMF} n (2), [Cd(μ 4 -CNip) (DMF)] n (3), {[Ln 2 (μ 4 -CNip)(μ 3 -CNip) 2 (DMF) 4 ]·∼DMF·H 2 O} n (4-Ln) (with Ln III = Tb, Dy, and Er), {[Gd 6 (μ 3 -CNip) 5 (μ 4 -CNip) 3 (μ-form) 2 (H 2 O) (DMF) 10 ]·∼3DMF·3H 2 O} n (5), {[Zn 32 (μ 4 -CNip) 12 (μ-CNip) 12 (μ 4 -O) 8 (H 2 O) 24 ]·∼12DMF} n (6) (where DMF = dimethylformamide, form = formate), is reported. The large structural diversity found in the system may be explained mainly in terms of the coordination characteristics that are inherent to the employed metal ions, the coordination versatility of the dicarboxylic ligand and the synthetic conditions. Interestingly, some crystal structures (three-dimensional (3D) frameworks of 4-Ln and 5 and 3D network of 6) exhibit open architectures containing large solvent-occupied void systems, among which 5 reveals permanent porosity as confirmed by N 2 adsorption measurements at 77 K. Magnetic direct current (dc) susceptibility data on compounds 1, 2, and 5 were measured. Moreover, compounds 2, 4-Dy, 4-Er, and 5 show slow magnetic relaxation, from which it is worth highlighting the effective energy barrier of 44 K at zero dc field for the dysprosium counterpart. Compound 5 also deserves to be mentioned given the few 3D Gd-organic frameworks reported examples. Photophysical properties were also accomplished at different temperatures, confirming both the fluorescent emission of 5-cyanoisophthalate ligands when coordinated to cadmium ions in 3 and their capacity to sensitize the long-lived fluorescence of the selected lanthanide ions in 4-Ln. Broken symmetry and time-dependent density functional theory computational calculations support the experimental luminescence and

  14. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  15. On some problems of inorganic supramolecular chemistry.

    Science.gov (United States)

    Pervov, Vladislav S; Zotova, Anna E

    2013-12-02

    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Supramolecular chemistry - interdisciplinary branch of science

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1997-01-01

    The scientific problems connected with supramolecular chemistry have been reviewed. The basic concepts have been defined as well as rules governed of macromolecules formation. The special emphasize has been put on present and possible in future application of such systems

  17. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  18. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  19. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  20. Synthesis, structure and magnetic properties of cobalt(II) and copper(II) coordination polymers assembled by phthalate and 4-methylimidazole

    International Nuclear Information System (INIS)

    Baca, S.G.; Malinovskii, S.T.; Franz, Patrick; Ambrus, Christina; Stoeckli-Evans, Helen; Gerbeleu, Nicolae; Decurtins, Silvio

    2004-01-01

    New coordination polymers [M(Pht)(4-MeIm) 2 (H 2 O)] n (M=Co (1), Cu (2); Pht 2- =dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm) 2 (H 2 O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N 2 O 4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N 2 O 3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O-H↑··O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20-300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner-Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, vertical bar D vertical bar=62 cm -1 . Calculations using the Bonner-Fisher approximation gave the following result for compound 2: g=2.18, J=-0.4 cm -1