WorldWideScience

Sample records for suppressor p53 plays

  1. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  2. Clinical applications of detecting dysfunctional p53 tumor suppressor protein

    NARCIS (Netherlands)

    Baas, I. O.; Hruban, R. H.; Offerhaus, G. J.

    1999-01-01

    The p53 gene encodes for a protein, p53, which plays a critical role in controlling the cell cycle, in DNA repair and in programmed cell death (apoptosis). p53 is one of the most frequently mutated genes in human neoplasms and a variety of techniques have been developed to detect these mutations.

  3. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  4. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  5. The role of the tumor suppressor p53 in spermatogenesis

    NARCIS (Netherlands)

    Beumer, T. L.; Roepers-Gajadien, H. L.; Gademan, I. S.; van Buul, P. P.; Gil-Gomez, G.; Rutgers, D. H.; de rooij, D. G.

    1998-01-01

    The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in

  6. Structure of the Tetrameric p53 Tumor Suppressor Bound to DNA

    National Research Council Canada - National Science Library

    Marmorstein, Ronen

    2002-01-01

    The p53 tumor suppressor binds DNA as a tetramer to regulate the transcription of genes involved in cell cycle arrest and apoptosis, and alterations in the DNA-binding core domain of p53 are the most...

  7. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  8. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  9. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order ... from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 gene by. PCR-SSCP ... function of p53 is critical to the efficiency of many cancer treatment ...

  10. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order to study the significance of the p53 gene in the genesis and development of human glioma from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 ...

  11. Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein

    National Research Council Canada - National Science Library

    Murphy, Maureen

    2003-01-01

    The goal of the work proposed in this application, which has just completed Year 1, was to analyze the ability of the p53 tumor suppressor protein to repress the anti-apoptotic genes survivin and cIAP-2...

  12. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  13. The p53 tumour suppressor gene and the tobacco industry: research, debate, and conflict of interest

    OpenAIRE

    Bitton, A; Neuman, M D; Barnoya, J; Glantz, Stanton A. Ph.D.

    2005-01-01

    Mutations in the p53 tumour suppressor gene lead to uncontrolled cell division and are found in over 50% of all human tumours, including 60% of lung cancers. Research published in 1996 by Denissenko and colleagues demonstrated patterned in-vitro mutagenic effects on p53 of benzo[a]pyrene, a carcinogen present in tobacco smoke. We investigated the tobacco industry's response to p53 research linking smoking to cancer. We searched online tobacco document archives, including the Legacy Tobacco Do...

  14. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer

    Directory of Open Access Journals (Sweden)

    Alicja Sznarkowska

    2010-08-01

    Full Text Available A powerful tumor suppressorp53 protein is a transcription factor which plays a critical role in eliciting cellular responses to a variety of stress signals, including DNA damage, hypoxia and aberrant proliferative signals, such as oncogene activation. Since its discovery thirty one years ago, p53 has been connected to tumorigenesis as it accumulates in the transformed tumor cells. Cellular stress induces stabilization of p53 and promotes, depending on the stress level, cell cycle arrest or apoptosis in the irreversibly damaged cells. The p53 protein is found inactive in more than 50�0of human tumors either by enhanced proteasomal degradation or due to the inactivating point mutations in its gene. Numerous data indicate that low molecular weight compounds, identified by molecular modeling or in the functional, cell-based assays, efficiently activate non-mutated p53 in cancer cells which in consequence leads to their elimination due to p53-dependent apoptosis. In this work we describe the structure and cellular function of p53 as well as the latest discoveries on the compounds with high anti-tumor activities aiming at reactivation of the tumor suppressor function of p53.

  15. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor

    Science.gov (United States)

    Bates, Gaynor J; Nicol, Samantha M; Wilson, Brian J; Jacobs, Anne-Marie F; Bourdon, Jean-Christophe; Wardrop, Julie; Gregory, David J; Lane, David P; Perkins, Neil D; Fuller-Pace, Frances V

    2005-01-01

    The DEAD box RNA helicase, p68, has been implicated in various cellular processes and has been shown to possess transcriptional coactivator function. Here, we show that p68 potently synergises with the p53 tumour suppressor protein to stimulate transcription from p53-dependent promoters and that endogenous p68 and p53 co-immunoprecipitate from nuclear extracts. Strikingly, RNAi suppression of p68 inhibits p53 target gene expression in response to DNA damage, as well as p53-dependent apoptosis, but does not influence p53 stabilisation or expression of non-p53-responsive genes. We also show, by chromatin immunoprecipitation, that p68 is recruited to the p21 promoter in a p53-dependent manner, consistent with a role in promoting transcriptional initiation. Interestingly, p68 knock-down does not significantly affect NF-κB activation, suggesting that the stimulation of p53 transcriptional activity is not due to a general transcription effect. This study represents the first report of the involvement of an RNA helicase in the p53 response, and highlights a novel mechanism by which p68 may act as a tumour cosuppressor in governing p53 transcriptional activity. PMID:15660129

  16. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego

    2004-01-01

    Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo...

  17. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD

    Science.gov (United States)

    Wu, Rui; Liang, Yingjian; Lin, Meihua; Liu, Jia; Chan, Chang S.; Hu, Wenwei; Feng, Zhaohui

    2014-01-01

    Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression. PMID:25114038

  18. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    Science.gov (United States)

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    [Phatak P, Selvi S K, Divya T, Hegde A S, Hegde S and Somasundaram K 2002 Alterations in tumour suppressor gene p53 in human gliomas from Indian patients; J. Biosci. 27 673–678]. 1. Introduction. Glioma, a neoplasm of neuroglial cells, is the most common type of brain tumour, constituting more than 50% of all.

  20. Influence of anticancer drugs on interactions of tumor suppressor protein p53 with DNA

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Němcová, Kateřina; Brázdová, Marie; Kašpárková, Jana; Brabec, Viktor; Fojta, Miroslav

    2005-01-01

    Roč. 272, Suppl. 1 (2005), s. 562 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA MZd(CZ) NC7574 Institutional research plan: CEZ:AV0Z50040507 Keywords : tumour suppressor protein p53 * anticancer drugs * interaction with DNA Subject RIV: BO - Biophysics

  1. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions.

    Directory of Open Access Journals (Sweden)

    Katharina Schlereth

    Full Text Available p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context- and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell

  2. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions

    Science.gov (United States)

    Eldar, Amir; Rozenberg, Haim; Diskin-Posner, Yael; Rohs, Remo; Shakked, Zippora

    2013-01-01

    A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53. PMID:23863845

  3. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53.

    Science.gov (United States)

    Rajagopalan, Sridharan; Huang, Fang; Fersht, Alan R

    2011-03-01

    The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric forms are so low that they are at the limits of measurement by conventional methods in vitro. Here, we have used the high sensitivity of single-molecule methods to measure the equilibria and kinetics of oligomerization of full-length p53 and its isolated tetramerization domain, p53tet, at physiological temperature, pH and ionic strength using fluorescence correlation spectroscopy (FCS) in vitro. The dissociation constant at 37 °C for tetramers dissociating into dimers for full-length p53 was 50 ± 7 nM, and the corresponding value for dimers into monomers was 0.55 ± 0.08 nM. The half-lives for the two processes were 20 and 50 min, respectively. The equivalent quantities for p53tet were 150 ± 10 nM, 1.0 ± 0.14 nM, 2.5 ± 0.4 min and 13 ± 2 min. The data suggest that unligated p53 in unstressed cells should be predominantly dimeric. Single-molecule FCS is a useful procedure for measuring dissociation equilibria, kinetics and aggregation at extreme sensitivity.

  4. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  5. Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Černocká, Hana; Ostatná, Veronika; Navrátilová, Lucie; Brázdová, Marie

    2014-01-01

    Roč. 828, MAY2014 (2014), s. 1-8 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA13-00956S; GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : Deoxyribonucleic acid-protein binding * Tumor suppressor protein p53 * Electrochemical sensing Subject RIV: BO - Biophysics Impact factor: 4.513, year: 2014

  6. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Madsen, Lise

    2009-01-01

    BACKGROUND: The retinoblastoma protein (pRB) and p53 are crucial members of regulatory networks controlling the cell cycle and apoptosis, and a hallmark of virtually all cancers is dysregulation of expression or function of pRB or p53. Although they are best known for their role in cancer...... development, it is now evident that both are implicated in metabolism and cellular development. OBJECTIVE/METHODS: To review the role of pRB and p53 in adipocyte differentiation and function emphasizing that pRB and p53, via their effects on adipocyte development and function, play a role in the regulation...... of energy metabolism and homeostasis. RESULTS/CONCLUSIONS: pRB is required for adipose conversion and also involved in determining its mitochondrial capacity. p53 inhibits adipogenesis and results suggest that it is involved in maintaining function of adipose tissue....

  7. Tumor suppressor gene P53 in fish species as a target for genotoxic effects monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kusser, W.C.; Brand, D.; Glickman, B.W. [Univ. of Victoria, British Columbia (Canada); Cretney, W.

    1995-12-31

    Analysis of environmentally induced molecular changes in DNA from fish was initiated with a study of tumor suppressor gene p53. This gene was chosen because of the high number of documented mutations in p53 from humans and their relevance in tumorigenesis. Bottom-feeding flatfish (e.g. English sole, Pleuronectes vetulus) and members of the salmonid family (e.g. rainbow trout, Oncorhynchus mykiss and chinook salmon, O. tschaaytsha) were chosen, because they are widespread and of commercial and recreational importance. The studies include the use of histopathological, biochemical, and molecular genetic tools in aquatic systems. The authors are currently examining the deposition of DNA damage and mutation in the p53 gene in fish. Parallel histopathology of liver showed idiopathic liver lesions that were strongly dependent on location of capture (0.01 < p(X{sup 2} 0.05, 2 > 6.89) < 0.025) with a prevalence of 30% for fish collected from the vicinity of pulp mills. To assess DNA damage and mutation analysis, DNA was extracted from fish liver. Polymerase chain reaction (PCR) and DNA sequencing of the p53 gene was performed for rainbow trout, chinook and sockeye salmon, O. nerka. Southern blotting with a labeled p53 probe from rainbow trout was performed using genomic DNA from various teleost fish species. The presence of p53 could be shown in all fish species examined, including salmonids and sentinel species for environmental monitoring like English sole and white sucker (Catostomus commersom). To correlate histopathology with molecular analysis the authors initiated the determination of DNA damage, DNA adducts and mutations in the p53 gene (conserved exons 5 to 9).

  8. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2000-04-01

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  9. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  10. Tumor suppressor p53 biology, its role in radioresponse and the analysis of p53 mutation/expression among Filipino breast cancers

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2004-01-01

    Ionizing radiation remains one of the most effective tools for the treatment of breast cancer. It combines properties of a potent DNA-damaging agent and high degree of spatial specificity to the target tissue. Nonetheless, there remain considerable differences in the outcome for treatment of tumors of differing histological type treated by radiotherapy. The identification of predictive indicators of radiosensitivity is crucial for selecting patients suited for preoperative radiotherapy as well as those unwarranted for postoperative treatments. To improve prognostication, numerous genes involved in the breast carcinogenesis have been studied and thus far over the last decade several multi-center researches converge on the role of tumor suppressor p53 in tumor biology. The p53 gene is located on the short arm of chromosome 17 and encodes a 53-kd nuclear protein, p-53, also referred to as 'the guardian of the genome', it orchestrates multiple cellular processes such as cell growth control, DNA repair and programmed cell death. During radiotherapy, genotoxic damage induces p53 overexpression in order to control the rate of proliferating damaged cells, repair damage or induce the apoptotic pathway. Its molecular inactivation in a tumor cell, typically by a point mutation, leads to chemo/radio resistance due to the inability of the molecule to trigger p53-dependent programmed cell death

  11. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  12. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo

    International Nuclear Information System (INIS)

    Yasuda, Takako; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi; Kimori, Yoshitaka

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. (author)

  13. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    OpenAIRE

    Luković Ljiljana; Popović Branka; Atanacković Jasmina; Novaković Ivana; Perović Milica; Petrović Bojana; Petković Spasoje

    2006-01-01

    Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 ...

  14. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  15. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex.

    Directory of Open Access Journals (Sweden)

    Lakshmanane Boominathan

    2010-05-01

    Full Text Available The tumor suppressors p53, p73, and p63 are known to function as transcription factors. They promote either growth arrest or apoptosis, depending upon the DNA damage. A number of microRNAs (miRNAs have been shown to function as transcriptional targets of p53 and they appear to aid p53 in promoting growth arrest and apoptosis. However, the question of p53/p63/p73 regulating the miRNA processing complex has not been addressed in depth so far. Comparative/computational genomic analysis was performed using Target scan, Mami, and Diana software to identify miRNAs that regulate the miRNA processing complex. Here, I present evidence for the first time that the tumor suppressors p53, p63, and p73 function as both positive and negative regulators of the miRNA processing components. Curated p53-dependent miRNA expression data was used to identify p53-miRs that target the components of the miRNA-processing complex. This analysis suggests that most of the components (mRNAs' 3'UTR of the miRNA processing complex are targeted by p53-miRs. Remarkably, this data revealed the conserved nature of p53-miRs in targeting a number of components of the miRNA processing complex. p53/p73/p63 appears to regulate the major components of the miRNA processing, such as Drosha-DGCR8, Dicer-TRBP2, and Argonaute proteins. In particular, p53/p73/p63 appears to regulate the processing of miRNAs, such as let-7, miR-200c, miR-143, miR-107, miR-16, miR-145, miR-134, miR-449a, miR-503, and miR-21. Interestingly, there seems to be a phenotypic similarity between p63(-/- and dicer(-/- mice, suggesting that p63 and dicer could regulate each other. In addition, p63, p73, and the DGCR8 proteins contain a conserved interaction domain. Further, promoters of a number of components of the miRNA processing machinery, including dicer and P2P-R, contain p53-REs, suggesting that they could be direct transcriptional targets of p63/p73/p53. Together, this study provides mechanistic insights into

  16. The Tumor Suppressor, P53, Decreases the Metal Transporter, ZIP14

    Directory of Open Access Journals (Sweden)

    Ningning Zhao

    2017-12-01

    Full Text Available Loss of p53’s proper function accounts for over half of identified human cancers. We identified the metal transporter ZIP14 (Zinc-regulated transporter (ZRT and Iron-regulated transporter (IRT-like Protein 14 as a p53-regulated protein. ZIP14 protein levels were upregulated by lack of p53 and downregulated by increased p53 expression. This regulation did not fully depend on the changes in ZIP14’s mRNA expression. Co-precipitation studies indicated that p53 interacts with ZIP14 and increases its ubiquitination and degradation. Moreover, knockdown of p53 resulted in higher non-transferrin-bound iron uptake, which was mediated by increased ZIP14 levels. Our study highlights a role for p53 in regulating nutrient metabolism and provides insight into how iron and possibly other metals such as zinc and manganese could be regulated in p53-inactivated tumor cells.

  17. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53.

    Science.gov (United States)

    Levine, Arnold J

    2009-02-20

    The small DNA tumor viruses, Polyoma virus, Simian Vacuolating Virus 40, the Papilloma viruses and the human Adenoviruses, were first described during a period of intense virus discovery (1930-1960s) and shown to produce tumors in animals. In each of these cases the viral DNA was shown to persist (commonly integrated into a host chromosome) and only a selected portion of this DNA was expressed as m-RNA and proteins in these cancers. The viral encoded tumor antigens were identified and shown to be required to both establish the tumor and maintain the transformed cell phenotype. The functions of these viral tumor antigens were explored and shown to have common features and mechanisms even though they appear to have evolved from diverse genes. The SV40 large tumor antigen, the human Papilloma virus E7 protein and the Adenovirus E1A protein were shown to bind to and inactivate the functions of the Retinoblastoma proteins in transformed cells. This resulted in the activation of the E2F and DP transcription factors and the entry of cells into the S-phase of DNA synthesis which was required for viral DNA replication. These events triggered the activation of p53 which promotes apoptosis of these virus infected cells limiting virus replication and tumor formation. These viruses responded by evolving and producing the SV40 large tumor antigen, the human Papilloma virus E6 protein and the Adenovirus E1b-55Kd protein which binds to and inactivates the p53 functions in both the infected cells and transformed cells. Some of the human Papilloma viruses and one of the Polyoma viruses have been shown to cause selected cancers in humans. Both the p53 tumor suppressor gene, which was uncovered in the studies with these viruses, and the retinoblastoma protein, have been shown to play a central role in the origins of human cancers via both somatic and germ line mutations in those genes.

  18. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1997-01-01

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  19. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  20. Interferon-inducible protein 16: Insight into the interaction with tumor suppressor p53

    Czech Academy of Sciences Publication Activity Database

    Liao, J.C.C.; Lam, R.; Brázda, Václav; Duan, S.; Ravichandran, M.; Ma, J.; Xiao, T.; Tempel, W.; Zuo, X.; Wang, Y.-X.; Chirgadze, N.Y.; Arrowsmith, Ch.H.

    2011-01-01

    Roč. 19, č. 3 (2011), s. 418-424 ISSN 0969-2126 R&D Projects: GA ČR(CZ) GAP301/10/1211 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : p53 * HIN domain * p53 -DNA complex Subject RIV: BO - Biophysics Impact factor: 6.347, year: 2011

  1. Aberrations of the p53 tumor suppressor gene in human epithelial ovarian carcinoma.

    Science.gov (United States)

    Kim, J W; Cho, Y H; Kwon, D J; Kim, T E; Park, T C; Lee, J M; Namkoong, S E

    1995-05-01

    Aberrations of the p53 gene in 26 surgical specimens of human epithelial ovarian carcinomas were examined by single-strand conformation polymorphism (SSCP) analysis of polymerase chain reaction (PCR) products. Seven (27%) of the tumors demonstrated a SSCP band shift in exons 4 to 9 of the gene, including 5 in the region encompassing exons 5 and 6, 1 in exon 7, and 1 in the region encompassing exons 8 and 9. Mutations were clustered in exon 5 in highly conserved regions of the p53 gene. All of the abnormal DNA fragments have been further characterized by direct DNA sequencing. These include five missense mutations (five transitions), a one-base-pair deletion introducing, by frameshift, a stop codon further downstream, and a two-base-pair insertion introducing a stop codon downstream by frameshift. Most mutations were base substitutions, and were clustered in exon 5 (71%), especially codons 175 and 179. The aberrations of the p53 gene were only found in tumors of FIGO stages III and IV. Histologic grading was also reviewed with respect to p53 aberrations. The aberrations were absent in well-differentiated carcinomas. The more undifferentiated the primary tumor, the more frequent p53 mutation (P p53 gene were common in epithelial ovarian cancers and p53 aberration may occur late during ovarian cancer evolution.

  2. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo.

    Science.gov (United States)

    Yasuda, Takako; Kimori, Yoshitaka; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  4. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  5. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes.

    Science.gov (United States)

    Singer, Stephan; Zhao, Ruiying; Barsotti, Anthony M; Ouwehand, Anette; Fazollahi, Mina; Coutavas, Elias; Breuhahn, Kai; Neumann, Olaf; Longerich, Thomas; Pusterla, Tobias; Powers, Maureen A; Giles, Keith M; Leedman, Peter J; Hess, Jochen; Grunwald, David; Bussemaker, Harmen J; Singer, Robert H; Schirmacher, Peter; Prives, Carol

    2012-12-14

    The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The p53-induced Siva-1 plays a significant role in cisplatin-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Barkinge John

    2009-01-01

    Full Text Available Background: The pro-apoptotic protein Siva-1 functions in both extrinsic and intrinsic cell death signaling; however, the exact contribution of the endogenous Siva-1 to DNA damage-induced apoptosis is unclear. Using cisplatin, a chemotherapeutic drug, to induce DNA damage and cell death, we determined the role of Siva-1. Methods: Cisplatin treated HCT116 colorectal carcinoma cells (p53+/+ and -/- were used in the study. With the help of recombinant lentivirus that can express siSiva (siRNA that specifically targets Siva-1, we also generated Siva-1 knockdown HCT116 cells. Apoptosis was determined by tetramethyl rhodamine methyl ester (TMRM staining and propidium iodide (PI staining. Results: Treatment with cisplatin induced Siva-1 expression in a p53 dependent manner. In Siva-1 knockdown p53+/+ HCT116 colorectal carcinoma cells, loss of Siva-1 expression conferred significant resistance to cisplatin-induced apoptosis. Although Siva-1 levels were positively regulated by p53, Siva-1-induced apoptosis did not require p53. Despite the fact that Siva-1 lacks even a minimal BH3 domain, similar to other proapoptotic Bcl2 family members induced by p53, we showed that Siva-1 mediated apoptosis is characterized by Bax oligomerization and cytochrome c leakage from mitochondria. The putative amphipathic helical region in Siva-1 (SAH appeared to function analogously to a BH3 domain. Conclusion: The p53 induced Siva-1 is one of the effector molecules, which plays a significant role in DNA damage-induced cell death.

  7. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Zhan, Qian [The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Hongying [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili; Li, Chen [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Xiao, Qian; Xiang, Shili; Hui, Tianli [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xiang, Tingxiu, E-mail: larissaxiang@163.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rengs726@126.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2016-06-10

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  8. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    International Nuclear Information System (INIS)

    Fan, Yu; Zhan, Qian; Xu, Hongying; Li, Lili; Li, Chen; Xiao, Qian; Xiang, Shili; Hui, Tianli; Xiang, Tingxiu; Ren, Guosheng

    2016-01-01

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  9. Analysis of tumour suppressor p53 protein binding properties by new ELISA technique

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Jagelská, Eva; Pečinka, Petr; Karlovská, Lenka; Paleček, Emil

    2003-01-01

    Roč. 2, č. 9 (2003), s. 965 ISSN 1535-9484. [HUPO Annual /2./ and IUBMB World Congress /19./. 08.10.2003-11.10.2003, Montreal] R&D Projects: GA ČR GA301/00/D001; GA AV ČR IAB5004203 Institutional research plan: CEZ:AV0Z5004920 Keywords : p53 * ELISA * DNA binding Subject RIV: BO - Biophysics

  10. Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Šebest, Peter; Pečinka, P.; Tichá, Olga; Němcová, Kateřina; Brázdová, Marie; Brázdová Jagelská, Eva; Brázda, Václav; Fojta, Miroslav

    2010-01-01

    Roč. 393, č. 4 (2010), s. 894-899 ISSN 0006-291X R&D Projects: GA AV ČR(CZ) IAA500040701; GA ČR(CZ) GP204/07/P476; GA ČR(CZ) GP301/07/P160; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06035; GA ČR(CZ) GA204/08/1560 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : p53 -DNA binding * supercoiled DNA * DNA topology Subject RIV: BO - Biophysics Impact factor: 2.595, year: 2010

  11. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  12. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  13. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    Directory of Open Access Journals (Sweden)

    Luković Ljiljana

    2006-01-01

    Full Text Available Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. Methods. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Results. Both of the analyzed microsatellite markers were informative in 13/20 (65% cases. In the region of gene p53, LOH was established in 4/13 (30.7% tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5% tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO classification one was with stage Ib, one was with stage IIIb, while the three were with stage IIIc. LOH in both of the analyzed regions was detected in one tumor (7.7%, with histological gradus G3 and the FIGO IIIc stage. Conclusion. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the

  14. [Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas].

    Science.gov (United States)

    Petrović, Bojana; Perović, Milica; Novaković, Ivana; Atanacković, Jasmina; Popović, Branka; Luković, Ljiljana; Petković, Spasoje

    2006-09-01

    Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Both of the analyzed microsatellite markers were informative in 13/20 (65%) cases. In the region of gene p53, LOH was established in 4/13 (30.7%) tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO) IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5%) tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO) classification one was with stage Ib, one was with stage IIIb, while the three were with stage IlIc. LOH in both of the analyzed regions was detected in one tumor (7.70), with histological gradus G3 and the FIGO IIIc stage. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the association of this occurrence with a later phase of the disease.

  15. Doxycyclin induces p53 expression in SaOs (osteosarcoma) cell line ...

    African Journals Online (AJOL)

    The p53 tumour suppressor gene plays an important role in preventing cancer development. This study determined if p53 can be induced in osteosarcoma cell line upon treatment ... represent an important component of the p53 tumor suppressor pathway. Keywords: Tumor suppressor, oncogene, mdm2, cyclinE, apoptosis ...

  16. Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis.

    Science.gov (United States)

    Maqbool, Raihana; Lone, Saife Niaz; Ul Hussain, Mahboob

    2016-10-15

    The tumor suppressor protein p53 is intricately regulated by various signaling molecules, including non-coding small RNAs, called microRNAs (miRNAs). The in silico analysis and the inverse expression status in various cell lines raised the possibility of miR-27a being a new regulator of p53. Using luciferase reporter assay and various mutational and functional analysis, we identified two putative binding sites of miR-27a on the 3'-UTR of p53. The overexpression of miR-27a in the human colorectal cancer cell line HCT-116 +/+ resulted in the decreased expression of the endogenous p53 protein levels. During hypoxia of the HCT-116 +/+ cells, p53 showed increased accumulation after 3 h, and the levels were significantly up-regulated until 24 h of hypoxia. The p53 expression dynamics during hypoxia of the HCT-116 +/+ cells were found to be inversely regulated by miR-27a expression. Moreover, using a cell viability assay, we established that after 3 h of hypoxia, the accumulation of p53 results in a decreased number of the viable HCT-116 +/+ cells and the overexpression of miR-27a resulted in an increased number of viable HCT-116 +/+ cells with a concomitant decrease in p53 expression. Additionally, our data indicated that miR-27a and p53 depict inverse expression dynamics in 50% of the human colorectal cancer samples studied, when compared with that in the adjacent normal samples. Our data established that miR-27a and the tumor suppressor protein p53 are part of the same signaling network that has important implications during hypoxia and tumorigenesis. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. P53 and Rb tumor suppressor gene alterations in gastric cancer Alterações dos genes supressores tumorais p53 e Rb no câncer gástrico

    Directory of Open Access Journals (Sweden)

    Rejane Mattar

    2004-01-01

    Full Text Available Inactivation of tumor suppressor genes has been frequently observed in gastric carcinogenesis. Our purpose was to study the involvement of p53, APC, DCC, and Rb genes in gastric carcinoma. METHOD: Loss of heterozygosity of the p53, APC, DCC and Rb genes was studied in 22 gastric cancer tissues using polymerase chain reaction; single-strand conformation polymorphism of the p53 gene exons 5-6 and exons 7-8 was studied using 35S-dATP, and p53 expression was detected using a histological immunoperoxidase method with an anti-p53 clone. RESULTS AND DISCUSSION: No loss of heterozygosity was observed in any of these tumor suppressor genes; homozygous deletion was detected in the Rb gene in 23% (3/13 of the cases of intestinal-type gastric carcinoma. Eighteen (81.8% cases showed band mobility shifts in exons 5-6 and/or 7-8 of the p53 gene. The presence of the p53 protein was positive in gastric cancer cells in 14 cases (63.6%. Normal gastric mucosa showed negative staining for p53; thus, the immunoreactivity was likely to represent mutant forms. The correlation of band mobility shift and the immunoreactivity to anti-p53 was not significant (P = .90. There was no correlation of gene alterations with the disease severity. CONCLUSIONS: The inactivation of Rb and p53 genes is involved in gastric carcinogenesis in our environment. Loss of the Rb gene observed only in the intestinal-type gastric cancer should be further evaluated in association with Helicobacter pylori infection. The p53 gene was affected in both intestinal and diffuse histological types of gastric cancer.A inativação de genes supressores tumorais tem sido freqüentemente observada na carcinogênese gástrica. O nosso objetivo foi estudar o envolvimento dos genes p53, APC, DCC e Rb no câncer gástrico. MÉTODO: Vinte e dois casos de câncer gástrico foram estudados por PCR-LOH (reação de polimerase em cadeia- perda de alelo heterozigoto dos genes p53, APC, DCC e Rb; e por PCR-SSCP (rea

  18. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    International Nuclear Information System (INIS)

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins

  19. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    Energy Technology Data Exchange (ETDEWEB)

    Tommaso, Anne di [Pole Biologie Sante, UMR 6187 CNRS, Pathologies Moleculaire de l' Adressage et de la Signalisation, Universite de Poitiers, Poitiers (France); Hagen, Jussara; Tompkins, Van [Department of Pharmacology, The University of Iowa, College of Medicine, Iowa City, IA (United States); Muniz, Viviane [Molecular and Cellular Biology Program, The University of Iowa, College of Medicine, Iowa City, IA (United States); Dudakovic, Amel [Department of Pharmacology, The University of Iowa, College of Medicine, Iowa City, IA (United States); Kitzis, Alain [Pole Biologie Sante, UMR 6187 CNRS, Pathologies Moleculaire de l' Adressage et de la Signalisation, Universite de Poitiers, Poitiers (France); CHU de Poitiers, Poitiers (France); Ladeveze, Veronique [Pole Biologie Sante, UMR 6187 CNRS, Pathologies Moleculaire de l' Adressage et de la Signalisation, Universite de Poitiers, Poitiers (France); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa, College of Medicine, Iowa City, IA (United States); Molecular and Cellular Biology Program, The University of Iowa, College of Medicine, Iowa City, IA (United States)

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  20. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    International Nuclear Information System (INIS)

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-01-01

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala 14 and Thr 31 ) were found to destabilize the protein while two others (Val 24 and Ala 41 ) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val 24 was required for p53-independent growth suppression whereas multiple residues (Val 24 , Thr 31 , Ala 41 and His 60 ) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  1. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M

    2014-01-01

    proliferation in response to stress and represents the most commonly lost and mutated gene in human cancers. The function of p53 is inhibited by the MDM2 oncoprotein. Using a high-throughput screening approach, we identified miR-339-5p as a regulator of the p53 pathway. We demonstrate that this regulation...

  2. Correlation of transcription of MALAT-1, a novel noncoding RNA, with deregulated expression of tumor suppressor p53 in small DNA tumor virus models

    OpenAIRE

    Jeffers, Liesl K.; Duan, Kaiwen; Ellies, Lesley G.; Seaman, William T.; Burger-Calderon, Raquel A.; Diatchenko, Luda B.; Webster-Cyriaque, Jennifer

    2013-01-01

    Although metastasis-associated lung adenocarcinoma transcript (MALAT)-1 is known to be consistently upregulated in several epithelial malignancies, little is known about its function or regulation. We therefore examined the relationship between MALAT-1 expression and candidate modulators such as DNA tumor virus oncoproteins human papillomavirus (HPV)-16 E6 and E7, BK virus T antigen (BKVTAg), mouse polyoma virus middle T antigen (MPVmTAg) and tumor suppressor genes p53 and pRb. Using suppress...

  3. MTHFR variants reduce the risk of G:C->A:T transition mutations within the p53 tumor suppressor gene in colon tumors.

    Science.gov (United States)

    Ulrich, C M; Curtin, K; Samowitz, W; Bigler, J; Potter, J D; Caan, B; Slattery, M L

    2005-10-01

    5,10-Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in folate-mediated 1-carbon metabolism. Reduced MTHFR activity has been associated with genomic DNA hypomethylation. Methylated cytosines at CpG sites are easily mutated and have been implicated in G:C-->A:T transitions in the p53 tumor suppressor gene. We investigated 2 polymorphisms in the MTHFR gene (C677T and A1298C) and their associations with colon tumor characteristics, including acquired mutations in Ki-ras and p53 genes and microsatellite instability (MSI). The study population comprised 1248 colon cancer cases and 1972 controls, who participated in a population-based case-control study and had been analyzed previously for MSI, acquired mutations in Ki-ras, p53, and germline MTHFR polymorphisms. Multivariable-adjusted odds ratios are presented. Overall, MTHFR genotypes were not associated with MSI status or the presence of any p53 or Ki-ras mutation. Individuals with homozygous variant MTHFR genotypes had a significantly reduced risk of G:C-->A:T transition mutations within the p53 gene, yet, as hypothesized, only at CpG-associated sites [677TT vs. 677CC (referent group) OR = 0.4 (95% CI: 0.1-0.8) for CpG-associated sites; OR = 1.5 (0.7-3.6) for non-CpG associated sites]. Genotypes conferring reduced MTHFR activity were associated with a decreased risk of acquired G:C-->A:T mutations within the p53 gene occurring at CpG sites. Consistent with evidence on the phenotypic effect of the MTHFR C677T variant, we hypothesize that this relation may be explained by modestly reduced genomic DNA methylation, resulting in a lower probability of spontaneous deamination of methylated cytosine to thymidine. These results suggest a novel mechanism by which MTHFR polymorphisms can affect the risk of colon cancer.

  4. Immunohistochemical observations on tumor suppressor gene p53 status in mouse fibrosarcoma following in-vivo photodynamic therapy: the role of xanthine oxidase activity

    Science.gov (United States)

    Ziolkowski, Piotr P.; Symonowicz, Krzysztof; Milnerowicz, Artur; Osiecka, Beata J.

    1997-12-01

    Tumor suppressor gene p53 expression in a mouse fibrosarcoma following in-vivo photodynamic therapy has been studied using the immunohistochemical method. Photodynamic treatment involved injections of the well known sensitizer -- hematoporphyrin derivative at the doses 1.25 and 2.5 mg/kg of body weight and irradiations at the doses 25 and 50 J/sq cm. Glass slide preparations from PDT-treated tumors were obtained at different time points (15, 60 minutes, 2 and 24 hours) after therapy, subsequently stained for wild type/mutant p53, and assessed for positive reaction. High PDT doses (HpD -- 2.5 mg/kg; light dose -- 50 J/sq cm) correlated with decreased expression of p53 in tumor cells. The other part of the study was directed to measure the xanthine oxidase (XO) activity in the tumor cells. PDT included injections of HpD and light exposure at the same doses as for p53 study. We observed a complete inhibition of the enzyme activity. The slight increase in XO activity was found following treatment with either light or HpD alone.

  5. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses

    NARCIS (Netherlands)

    Samarakoon, Rohan; Helo, Sevann; Dobberfuhl, Amy D; Khakoo, Nidah S; Falke, Lucas; Overstreet, Jessica M; Goldschmeding, Roel; Higgins, Paul J

    Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in

  6. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads

    Czech Academy of Sciences Publication Activity Database

    Němcová, Kateřina; Havran, Luděk; Šebest, Peter; Brázdová, Marie; Pivoňková, Hana; Fojta, Miroslav

    2010-01-01

    Roč. 668, č. 2 (2010), s. 166-170 ISSN 0003-2670 R&D Projects: GA AV ČR(CZ) IAA500040701; GA ČR(CZ) GP204/07/P476; GA ČR(CZ) GA204/08/1560; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : electrochemical analysis * label-free detection * tumor suppressor protein p53 Subject RIV: BO - Biophysics Impact factor: 4.310, year: 2010

  7. OTUD5 regulates p53 stability by deubiquitinating p53.

    Directory of Open Access Journals (Sweden)

    Judong Luo

    Full Text Available The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by its negative regulators ubiquitin ligase MDM2.In this study, we have identified OTUD5 as a DUB that interacts with and deubiquitinates p53. OTUD5 forms a direct complex with p53 and controls level of ubiquitination. The function of OTUD5 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent apoptosis in response to DNA damage stress.As a novel deubiquitinating enzyme for p53, OTUD5 is required for the stabilization and the activation of a p53 response.

  8. Chemical Variations on the p53 Reactivation Theme

    Directory of Open Access Journals (Sweden)

    Carlos J. A. Ribeiro

    2016-05-01

    Full Text Available Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX. Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.

  9. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Zhang, Shanxiang; Li, Xin

    2016-01-01

    with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6...... was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize...

  10. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; Kang, Eun-Jin; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2011-08-19

    Highlights: {yields} The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. {yields} GSN interacts with transactivation- and DNA binding domains of p53. {yields} GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. {yields} GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.

  11. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.

  12. The role of the 5' terminal region of p53 mRNA in the p53 gene expression.

    Science.gov (United States)

    Swiatkowska, Agata; Zydowicz, Paulina; Sroka, Joanna; Ciesiołka, Jerzy

    2016-01-01

    The p53 tumour suppressor protein is one of the major factors responsible for cell cycle regulation and protection against cancer development. This is why it is often referred to as "the guardian of the genome". On the other hand, mutations in the p53 gene are connected with more than 50% of tumours of various types. The thirty-six years of extensive research on the p53 gene and its protein products have shown how sophisticated the p53-based cell system control is. An additional level of complexity of the p53 research is connected with at least twelve p53 isoforms which have been identified in the cell. Importantly, disturbance of the p53 isoforms' expression seems to play a key role in tumorigenesis, cell differentiation and cell response to pathogenic bacteria, and RNA and DNA viruses. Expression of various p53 isoforms results from the usage of different transcription promoters, alternative splicing events and translation initiation from alternative AUG codons. The importance of the 5'-terminal regions of different p53 mRNA transcripts in the multi-level regulation of the p53 gene has recently been documented. In this review we focus on the structural features of these regions and their specific role in the p53 translation initiation process.

  13. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    Science.gov (United States)

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-05-01

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16, and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22, and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  14. Targeting the p53 Pathway in Ewing Sarcoma

    Science.gov (United States)

    Neilsen, Paul M.; Pishas, Kathleen I.; Callen, David F.; Thomas, David M.

    2011-01-01

    The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53. PMID:21197471

  15. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  16. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Science.gov (United States)

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  17. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    Directory of Open Access Journals (Sweden)

    Kelly M Thayer

    Full Text Available The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field.

  18. Fatty acid degradation plays an essential role in proliferation of mouse female primordial germ cells via the p53-dependent cell cycle regulation.

    Science.gov (United States)

    Teng, Hui; Sui, Xuesong; Zhou, Cheng; Shen, Cong; Yang, Ye; Zhang, Pang; Guo, Xuejiang; Huo, Ran

    2016-01-01

    Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca(2+)/CamKII/5'-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation.

  19. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...... on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity...... of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response....

  20. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course-based undergraduate research experience in molecular and cell biology.

    Science.gov (United States)

    Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim

    2017-03-04

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  1. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence

    OpenAIRE

    Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E.; Yang, Xiaolu

    2013-01-01

    Cellular senescence both protects multicellular organisms from cancer and contributes to their aging 1 . The preeminent tumor suppressor p53 plays an important role in the induction and maintenance of senescence, but how p53 carries out this function remains poorly understood 1?3 . Additionally, while increasing evidence supports the notion that metabolic changes underlie many cell fate decisions and p53-mediated tumor suppression, few connections between metabolic enzymes and senescence have...

  2. "Super p53" mice display retinal astroglial changes.

    Directory of Open Access Journals (Sweden)

    Juan J Salazar

    Full Text Available Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS. The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS. We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old were distributed into two groups: 1 mice with two extra copies of p53 ("super p53"; n = 6 and 2 wild-type p53 age-matched control, as the control group (WT; n = 6. Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP. GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in "super p53" eyes was significantly higher (p<0.05; Student's t-test than in the WT. In addition, astroglial density was significantly higher in the "super p53" retinas than in the WT ones, both in the whole-retina (p<0,01 Student's t-test and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student's t-test. This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways.

  3. Expression of P53 protein after exposure to ionizing radiation

    Science.gov (United States)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  4. Effect of p53 genotype on gene expression profiles in murine liver

    International Nuclear Information System (INIS)

    Morris, Suzanne M.; Akerman, Gregory S.; Desai, Varsha G.; Tsai, Chen-an; Tolleson, William H.; Melchior, William B.; Lin, Chien-Ju; Fuscoe, James C.; Casciano, Daniel A.; Chen, James J.

    2008-01-01

    The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the 'guardian of the genome'. Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53 -/- and p53 +/- mice. Six male mice from each genotype (p53 +/+ , p53 +/- , and p53 -/- ) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53 +/+ and p53 +/- or between p53 +/+ and p53 -/- at the level of p ≤ 0.05. Both genes with increased expression and decreased expression were identified in p53 +/- and in p53 -/- mice. Most notable in the gene list derived from the p53 +/- mice was the significant reduction in p53 mRNA. In the p53 -/- mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs

  5. Functional interaction between DP-1 and p53.

    Science.gov (United States)

    Sørensen, T S; Girling, R; Lee, C W; Gannon, J; Bandara, L R; La Thangue, N B

    1996-10-01

    The cellular transcription factor DRTF1/E2F and the tumor suppressor protein p53 play important roles in controlling early cell cycle events. DRTF1/E2F is believed to coordinate and integrate the transcription of cell cycle-regulating genes, for example, those involved in DNA synthesis, with the activity of regulatory proteins, such as the retinoblastoma tumor suppressor gene product (pRb), which modulate its transcriptional activity. In contrast, p53 is thought to monitor the integrity of chromosomal DNA and when appropriate interfere with cell cycle progression, for example, in response to DNA damage. Generic DRTF1/E2F DNA binding activity and transcriptional activation arise when members of two distinct families of proteins, such as DP-1 and E2F-1, interact as DP/E2F heterodimers. In many cell types, DP-1 is a widespread component of DRTF1/E2F DNA binding activity which when expressed at high levels oncogenically transforms embryonic fibroblasts. Here, we document an association between DP-1 and p53 and demonstrate its presence in mammalian cell extracts. In vitro p53 interacts with an immunochemically distinct form of DP-1 and in vivo can regulate transcription driven by the DP-1/E2F-1 heterodimer. At the biochemical level, p53 competes with E2F-1 for DP-1, with a consequent reduction in DNA binding activity. Mutational analysis defines within DP-1 a C-terminal region required for the interaction with p53 and within p53 an N-terminal region distinct from that required to bind to MDM2. Our results establish DRTF1/E2F as a common cellular target in growth control mediated through the activities of pRb and p53 and suggest an alternative mechanism through which p53 may regulate cellular proliferation.

  6. Different pattern of allelic loss in Epstein-Barr virus-positive gastric cancer with emphasis on the p53 tumor suppressor pathway

    NARCIS (Netherlands)

    van Rees, Bastiaan P.; Caspers, Eric; zur Hausen, Axel; van den Brule, Adriaan; Drillenburg, Paul; Weterman, Marian A. J.; Offerhaus, G. Johan A.

    2002-01-01

    Both Helicobacter pylori (HP) and Epstein-Barr virus (EBV) have been implicated in carcinogenesis of the stomach. Fifty-seven gastric carcinomas were tested for microsatellite instability and allelic loss at several tumor suppressor loci using 21 polymorphic microsatellite markers. Furthermore,

  7. Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53

    Directory of Open Access Journals (Sweden)

    Chuong Nguyen

    2016-01-01

    Full Text Available Azurin from Pseudomonas aeruginosa is known anticancer bacteriocin, which can specifically penetrate human cancer cells and induce apoptosis. We hypothesized that pathogenic and commensal bacteria with long term residence in human body can produce azurin-like bacteriocins as a weapon against the invasion of cancers. In our previous work, putative bacteriocins have been screened from complete genomes of 66 dominant bacteria species in human gut microbiota and subsequently characterized by subjecting them as functional annotation algorithms with azurin as control. We have qualitatively predicted 14 putative bacteriocins that possessed functional properties very similar to those of azurin. In this work, we perform a number of quantitative and structure-based analyses including hydrophobic percentage calculation, structural modeling, and molecular docking study of bacteriocins of interest against protein p53, a cancer target. Finally, we have identified 8 putative bacteriocins that bind p53 in a same manner as p28-azurin and azurin, in which 3 peptides (p1seq16, p2seq20, and p3seq24 shared with our previous study and 5 novel ones (p1seq09, p2seq05, p2seq08, p3seq02, and p3seq17 discovered in the first time. These bacteriocins are suggested for further in vitro tests in different neoplastic line cells.

  8. A sight for sore eyes : assessing oncogenic functions of Hdmx and reactivation of p53 as a potential cancer treatment

    NARCIS (Netherlands)

    Lange, Job de

    2012-01-01

    The p53 tumor suppressor protein plays a key role in cancer and its direct or indirect inactivation is an almost universal feature of human tumors. P53 has a central position in the prevention of genomic instability and protection of tumorigenesis. This thesis presents novel studies regarding the

  9. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    Science.gov (United States)

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  10. Modeling the role of p53 pulses in DNA damage- induced cell death decision

    Directory of Open Access Journals (Sweden)

    Cui Jun

    2009-06-01

    Full Text Available Abstract Background The tumor suppressor p53 plays pivotal roles in tumorigenesis suppression. Although oscillations of p53 have been extensively studied, the mechanism of p53 pulses and their physiological roles in DNA damage response remain unclear. Results To address these questions we presented an integrated model in which Ataxia-Telangiectasia Mutated (ATM activation and p53 oscillation were incorporated with downstream apoptotic events, particularly the interplays between Bcl-2 family proteins. We first reproduced digital oscillation of p53 as the response of normal cells to DNA damage. Subsequent modeling in mutant cells showed that high basal DNA damage is a plausible cause for sustained p53 pulses observed in tumor cells. Further computational analyses indicated that p53-dependent PUMA accumulation and the PUMA-controlled Bax activation switch might play pivotal roles to count p53 pulses and thus decide the cell fate. Conclusion The high levels of basal DNA damage are responsible for generating sustained pulses of p53 in the tumor cells. Meanwhile, the Bax activation switch can count p53 pulses through PUMA accumulation and transfer it into death signal. Our modeling provides a plausible mechanism about how cells generate and orchestrate p53 pulses to tip the balance between survival and death.

  11. The p53 Transcriptional Network Influences Microglia Behavior and Neuroinflammation.

    Science.gov (United States)

    Aloi, Macarena S; Su, Wei; Garden, Gwenn A

    2015-01-01

    The tumor-suppressor protein p53 belongs to a family of proteins that play pivotal roles in multiple cellular functions including cell proliferation, cell death, genome stability, and regulation of inflammation. Neuroinflammation is a common feature of central nervous system (CNS) pathology, and microglia are the specialized resident population of CNS myeloid cells that initiate innate immune responses. Microglia maintain CNS homeostasis through pathogen containment, phagocytosis of debris, and initiation of tissue-repair cascades. However, an unregulated pro-inflammatory response can lead to tissue injury and dysfunction in both acute and chronic inflammatory states. Therefore, regulation of the molecular signals that control the induction, magnitude, and resolution of inflammation are necessary for optimal CNS health. We and others have described a novel mechanism by which p53 transcriptional activity modulates microglia behaviors in vitro and in vivo. Activation of p53 induces expression of microRNAs (miRNAs) that support microglia pro-inflammatory functions and suppress anti-inflammatory and tissue repair behaviors. In this review, we introduce the previously described roles of the p53 signaling network and discuss novel functions of p53 in the microglia-mediated inflammatory response in CNS health and disease. Ultimately, improved understanding of the molecular regulators modulated by p53 transcriptional activity in microglia will enhance the development of rational therapeutic strategies to harness the homeostatic and tissue repair functions of microglia.

  12. p53 gene analysis in childhood B non - Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Claudete Esteves Nogueira Pinto Klumb

    Full Text Available CONTEXT: Mutations or deletions in the tumor-suppressor gene p53 are among the commonest genetic changes found in human neoplasms including breast, lung and bowel cancers. In hematological malignancies, p53 is most often mutated in Burkitt's lymphoma, with p53 mutations present in 30 to 40% of tumor samples and in 70% of cell lines. OBJECTIVE: To analyze the p53 gene alterations in child patients with B non-Hodgkin's lymphoma. DESIGN: Descriptive study. SETTING: Tertiary oncology care center. PARTICIPANTS: The study investigated 12 patients with childhood B non-Hodgkin's lymphoma (Burkitt's lymphoma. Screening for p53 mutations was done by polymerase chain reaction - single strand conformational polymorphism (PCR-SSCP analysis of exon 5 to 8/9 of the gene. RESULTS: Abnormal polymerase chain reaction - single strand conformational polymorphism migration pattern was observed in 4 patients (33.3%, one on exon 6 and three on exon 7. Positive cases included 2 patients who died from disease. CONCLUSION: These preliminary results suggest that p53 mutations are quite frequent in children with Burkitt's lymphoma and may play a role in lymphoma genesis or disease progression.

  13. Corellation of p53 expressions and histopathological grading in oral cavity squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2016-09-01

    Full Text Available Background: Squamous cell carcinoma is a malignancy of oral cavity mostly occurred and can also metastasize. p53 gene is a tumor suppressor gene that plays an important role in carcinogenesis. The role of wild-type p53 is very important in suppressing the formation of a malignancy. p53 also has many other important functions. p53 is a suppressor of tumor/ cancer progression through the response of cell cycle to DNA damage and by giving time to repair DNA prior to replication of genes. p53 mutation, mostly occurs in a malignancy, so earlier histopathological transformation can be detected by observing p53 mutation. The prognosis of squamous cell carcinoma in oral cavity, therefore, depends on histopathological grading and clinical staging of the tumor. To enforce the histopathological grading, in addition based on histopathology differentiation, the earlier histopathological transformation can also be assessed. Purpose: This study aimed to determine the correlation of p53 expressions and histopathological grading in oral cavity squamous cell carcinoma. Method: This study was a retrospective study on 20 cases of oral cavity squamous cell carcinoma examined at Department of Pathology Anatomy in Hasan Sadikin Hospital in Bandung. Immunohistochemical examination was then performed using p53 antibodies to determine the correlation of p53 expression and histopathological grading in oral cavity squamous cell carcinoma to predict prognosis. Result: The overall results showed that there was no correlation between p53 expression and histopathological grading in oral cavity squamous cell carcinoma of the oral cavity although there was a very strong correlation between p53 expression and histopathological grading I (p<0.01. Conclusion: It can be concluded that there was no correlation between p53 expression and histopathological grading in oral cavity squamous cell carcinoma. Thus, p53 expression cannot be used to predict a prognosis.

  14. Glycerol restores the p53 function in human lingual cancer cells bearing mutant p53

    International Nuclear Information System (INIS)

    Ota, Ichiro; Yane, Katsunari; Yuki, Kazue; Kanata, Hirokazu; Hosoi, Hiroshi; Miyahara, Hiroshi

    2001-01-01

    Mutations in p53, tumor suppressor gene, have recently been shown to have an impact on the clinical course of several human tumors, including head and neck cancers. The genetic status of the p53 gene has been focused on as the most important candidate among various cancer-related genes for prognosis-predictive assays of cancer therapy. We examined the restoration of radiation- or cisplatin (CDDP)-induced p53-dependent apoptosis in human lingual cancer cells. The results suggest that glycerol is effective in inducing a conformational change of p53 and restoring normal function of mutant p53, leading to enhanced radiosensitivity or chemosensitivity through the induction of apoptosis. We have also represented the same results in vivo as in vitro. Thus, this novel tool for enhancement of radiosensitivity or chemosensitivity in cancer cells bearing m p53 may be applicable for p53-targeted cancer therapy. (author)

  15. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  16. Prospective therapeutic applications of p53 inhibitors

    International Nuclear Information System (INIS)

    Gudkov, Andrei V.; Komarova, Elena A.

    2005-01-01

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-α that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53

  17. Mutual interactions between P53 and growth factors in cancer

    NARCIS (Netherlands)

    Asschert, JGW; Vellenga, E; De Jong, S; De Vries, EGE

    1998-01-01

    The function of p53 armour suppressor protein is determined by various intrinsic properties of the protein. The effect of p53 DNA-binding, and platein-protein interactions are determined by the conformation of the protein. Thus p53 fulfils its role in cell cycle control and the onset of apoptotic

  18. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in

  19. p53 and cyclin G cooperate in mediating genome stability in somatic cells of Drosophila.

    Science.gov (United States)

    Bayer, Fabienne E; Zimmermann, Mirjam; Fischer, Patrick; Gromoll, Christian; Preiss, Anette; Nagel, Anja C

    2017-12-20

    One of the key players in genome surveillance is the tumour suppressor p53 mediating the adaptive response to a multitude of stress signals. Here we identify Cyclin G (CycG) as co-factor of p53-mediated genome stability. CycG has been shown before to be involved in double-strand break repair during meiosis. Moreover, it is also important for mediating DNA damage response in somatic tissue. Here we find it in protein complexes together with p53, and show that the two proteins interact physically in vitro and in vivo in response to ionizing irradiation. In contrast to mammals, Drosophila Cyclin G is no transcriptional target of p53. Genetic interaction data reveal that p53 activity during DNA damage response requires the presence of CycG. Morphological defects caused by overexpression of p53 are ameliorated in cycG null mutants. Moreover, using a p53 biosensor we show that p53 activity is impeded in cycG mutants. As both p53 and CycG are likewise required for DNA damage repair and longevity we propose that CycG plays a positive role in mediating p53 function in genome surveillance of Drosophila.

  20. Contribution to the investigation of the p53 in vivo and in vitro trans-activation activity

    International Nuclear Information System (INIS)

    Meiller, A.

    2004-03-01

    Among the body's defence mechanisms, the programmed cellular death or apoptosis is an important safeguard way which allows the body to get rid of the injured cells before they acquire steady genetic modifications leading to an anarchistic multiplication. As p53 tumor suppressor gene plays a predominant role within this process, this research report first presents the p53 protein, its structure, its activities as a transcription factor, its modifications and the implications on its functional activities, its biological activities, and describes the p53 intracellular rate regulation and the use of this protein in radiology, particularly in 'in vivo' investigations on irradiated mice. It also presents the p53 family. Then, the author reports experimental investigations on possible other genes which could be trans-activated by p53. A gene is identified as a new target gene. She also demonstrates a new p53 activation path induced by another member of the p53 family, the p73 alpha protein

  1. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    bioreducible polymer-coated adenovirus (CD- PEG-RGD) The delivery method that provides the highest expression of the gene and highest cell-killing activity...difficult, due to the genel transfection inhibition by paclitaxel. In order to overcome these issues, a mitochondrially targeted p53 (p53-MTS) was used, and...p53, modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery , polymer

  2. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element

    DEFF Research Database (Denmark)

    Vilborg, Anna; Glahder, Jacob-Andreas Harald; Wilhelm, Margareta T

    2009-01-01

    The p53 target gene Wig-1 encodes a double-stranded-RNA-binding zinc finger protein. We show here that Wig-1 binds to p53 mRNA and stabilizes it through an AU-rich element (ARE) in the 3' UTR of the p53 mRNA. This effect is mirrored by enhanced p53 protein levels in both unstressed cells and cells...... exposed to p53-activating stress agents. Thus, the p53 target Wig-1 is a previously undescribed ARE-regulating protein that acts as a positive feedback regulator of p53, with implications both for the steady-state levels of p53 and for the p53 stress response. Our data reveal a previously undescribed link...... between the tumor suppressor p53 and posttranscriptional gene regulation via AREs in mRNA....

  3. Differential Sensitivity of Cells to Radiation Mediated by p53 Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kang, Mi Young; Kawala, Remigius A.; Ryu, Tae Ho; Kim, Jin-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Exposure of cells to ionizing radiation activates protein genes related cell cycle arrest and cell death (apoptosis or autophagy). The tumor suppressor p53 participates not only in regulation of apoptosis, but also in autophagy mechanism. Apoptosis (type I cell death) is characterized by the activation of caspases and the formation of apoptotic bodies, and plays essential roles in all multicellular organisms. On the other hand, autophagy (type II cell death) is characterized by the presence of cytoplasmic engulfing vesicles, alias autophagosomes, and is a major intracellular pathway for degradation and recycling of proteins, ribosomes and entire organelles. The purpose of this study was to determine whether ionizing radiation treatment induces autophagy depending on the p53 expression levels. RKO (wild-type p53) and RKO E6 (null-type p53) cells were used to evaluate the effects of p53 on the sensitivity of cells to ionizing radiation. In the RKO E6 cells, the function of p53 was disabled with human papillomavirus E6 oncoprotein. These results indicated that p53 and p21 were required to block apoptosis and induce autophagy in RKO cells. The expression of p21 by a p53-dependent mechanism is required to develop autophagic properties after DNA damage. Results in this study suggest that the radioresistance of the RKO cells was associated with the increased p21 expression, resulting in autophagy induction. The tumor suppressor p53 could regulate radiosensitivity by inhibiting autophagy and activating apoptosis; the ionizing radiation-induced expression of p53 in the RKO cells regulated autophagy, suggesting the significance of the level of p53 in determining the radiosensitivity by regulating autophagy and apoptosis.

  4. Analysis of p53 Transactivation Domain Mutants Reveals Acad11 as a Metabolic Target Important for p53 Pro-Survival Function

    Directory of Open Access Journals (Sweden)

    Dadi Jiang

    2015-02-01

    Full Text Available The p53 tumor suppressor plays a key role in maintaining cellular integrity. In response to diverse stress signals, p53 can trigger apoptosis to eliminate damaged cells or cell-cycle arrest to enable cells to cope with stress and survive. However, the transcriptional networks underlying p53 pro-survival function are incompletely understood. Here, we show that in oncogenic-Ras-expressing cells, p53 promotes oxidative phosphorylation (OXPHOS and cell survival upon glucose starvation. Analysis of p53 transcriptional activation domain mutants reveals that these responses depend on p53 transactivation function. Using gene expression profiling and ChIP-seq analysis, we identify several p53-inducible fatty acid metabolism-related genes. One such gene, Acad11, encoding a protein involved in fatty acid oxidation, is required for efficient OXPHOS and cell survival upon glucose starvation. This study provides new mechanistic insight into the pro-survival function of p53 and suggests that targeting this pathway may provide a strategy for therapeutic intervention based on metabolic perturbation.

  5. Mutant, wild type, or overall p53 expression: freedom from clinical progression in tumours of astrocytic lineage.

    Science.gov (United States)

    Pardo, F S; Hsu, D W; Zeheb, R; Efird, J T; Okunieff, P G; Malkin, D M

    2004-11-01

    Abnormalities of the p53 tumor-suppressor gene are found in a significant proportion of astrocytic brain tumours. We studied tumour specimens from 74 patients evaluated over 20 years at the Massachusetts General Hospital, where clinical outcome could be determined and sufficient pathologic material was available for immunostaining. p53 expression studies employed an affinity-purified p53 monoclonal antibody, whose specificity was verified in absorption studies and, in a minority of cases, a second antibody recognising a different epitope of p53. Significant overexpression of p53 protein was found in 48% of the 74 tumours included in this series and high levels of expression were associated with higher mortality from astrocytic tumours (Pexpression of p53 plays an important role in the pathobiology of these tumours. In a subset of 36 cases, coding regions of the p53 gene were completely sequenced via SSCP and direct DNA sequencing, revealing that overexpression of p53 protein is not always associated with point mutations in conserved exons of the p53 gene. Finally, we confirmed p53 protein expression in early-passage human glioma cell lines of known p53 mutational status and immunostaining scores. Although grade continues to be the strongest prognostic variable, the use of p53 staining as a prognostic indicator, in contrast to mutational DNA analyses, may be a useful adjunct in identifying patients at higher risk of treatment failure.

  6. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  7. p53 in differentiation of thyroid cancer

    International Nuclear Information System (INIS)

    Seyama, Toshio; Ito, Takashi; Akiyama, Mitoshi; Hayashi, Yuzo; Dohi, Kiyohiko.

    1993-01-01

    P53 is a tumor suppressor gene with such a recessive nature and is inactivated in many carcinomas. DNA was extracted from 10 primary papillary adenocarcinomas and eight undifferentiated carcinomas of the thyroid, using three 5 μm sliced paraffin segments, and then amplified by PCR. The products were analyzed for mutations in the p53 gene exons 5 to 8 by the direct sequencing method and for allelic deletion by the RFLP method. In five human thyroid carcinomas, DNA was extracted from each tissue and analyzed. Mutations in the p53 gene exons 5 to 8 and p53 gene deletions were not detected in the 10 papillary adenocarcinomas, mutations were detected in seven of eight cases and allelic deletions was detected in three of the five cases examined. In each of the five cases which had both differentiated and undifferentiated tissues in the same tumor, p53 gene mutations were not detected in the differentiated tissues while mutations and gene deletions were detected in the undifferentiated sections. The p53 gene was analyzed using paraffin-embedded tissues by the combined use of the direct sequencing and PCR methods and by the RFLP method. It was found that the progression of human thyroid carcinoma is closely related to the p53 genetic changes. Furthermore, the analysis of differentiated and undifferentiated tissues in the same tumor showed that human undifferentiated thyroid carcinomas develop from differentiated carcinomas. (J.P.N.)

  8. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    Directory of Open Access Journals (Sweden)

    Jianzhong Chen

    2012-08-01

    Full Text Available As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.

  9. Abnormal P-53 suppressor gene expression predicts for a poorer outcome in patients with locally advanced adenocarcinoma of the prostate treated by external beam radiation therapy with or without pre-radiation androgen ablation: results based on RTOG study 86-10

    International Nuclear Information System (INIS)

    Lawton, Colleen A.; Grignon, David; Caplan, Richard; Sarkar, Fazlul; Forman, Jeffrey; Mesic, John; Fu, Karen K.; Abrams, Ross

    1995-01-01

    Purpose/Objective: The purpose of this study is to establish the effect of the abnormal expression of the P-53 suppressor gene on the results of locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation. Materials and Methods: Patients evaluated were part of a RTOG phase III multi-institutional trial. This trial assessed the value of pre-radiation therapy androgen ablation on patients with locally advanced disease (bulky stage B and stage C). Of the 471 patients registered, pre-treatment pathological material was available for 129 patients. P-53 status was determined immunohistochemically utilizing a commercially available antibody (D07). Clinical endpoints evaluated were overall survival and development of metastases. Results: Twenty-three of the 129 patients had abnormal expression of the P-53 suppressor gene. Presence of this abnormal expression significantly correlated with lower overall survival (p=0.03) and the development of distant metastases (p=0.03). Abnormal expression of the P-53 gene was an independent prognostic indicator when evaluated against clinical stage and Gleason score. Conclusion: This data from patients entered on a phase III multi-institutional, randomized clinical trial shows that abnormal P-53 suppressor gene expression as determined immunohistochemically is an independent predictor of poorer survival and the development of distant metastases in patients with locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation

  10. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Surget S

    2013-12-01

    Full Text Available Sylvanie Surget,1,2 Marie P Khoury,1,2 Jean-Christophe Bourdon1,21Dundee Cancer Centre, 2Jacqui Wood Cancer Centre, Ninewells Hospital, University of Dundee, Dundee, UKAbstract: Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets.Keywords: p53, isoforms, p63, p73, alternative splicing, cancer

  11. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    Science.gov (United States)

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  12. Analytical Validation of AmpliChip p53 Research Test for Archival Human Ovarian FFPE Sections.

    Directory of Open Access Journals (Sweden)

    Matthew J Marton

    Full Text Available The p53 tumor suppressor gene (TP53 is reported to be mutated in nearly half of all tumors and plays a central role in genome integrity. Detection of mutations in p53 can be accomplished by many assays, including the AmpliChip p53 Research Test. The AmpliChip p53 Research Test has been successfully used to determine p53 status in hematologic malignancies and fresh frozen solid tissues but there are few reports of using the assay with formalin fixed, paraffin-embedded (FFPE tissue. The objective of this study was to describe analytical performance characterization of the AmpliChip p53 Research Test to detect p53 mutations in genomic DNA isolated from archival FFPE human ovarian tumor tissues. Method correlation with sequencing showed 96% mutation-wise agreement and 99% chip-wise agreement. We furthermore observed 100% agreement (113/113 of the most prevalent TP53 mutations. Workflow reproducibility was 96.8% across 8 samples, with 2 operators, 2 reagent lots and 2 instruments. Section-to-section reproducibility was 100% for each sample across a 60 μm region of the FFPE block from ovarian tumors. These data indicate that the AmpliChip p53 Research Test is an accurate and reproducible method for detecting mutations in TP53 from archival FFPE human ovarian specimens.

  13. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  14. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  15. Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of ...

  16. Effects of chronic deoxynivalenol exposure on p53 heterozygous and p53 homozygous mice.

    Science.gov (United States)

    Bondy, G S; Coady, L; Curran, I; Caldwell, D; Armstrong, C; Aziz, S A; Nunnikhoven, A; Gannon, A M; Liston, V; Shenton, J; Mehta, R

    2016-10-01

    Deoxynivalenol (DON) is a secondary metabolite associated with Fusarium species pathogenic to important food crops. A two-year feeding study reported that DON was non-carcinogenic in B6C3F1 mice. The present study was conducted to further characterize the chronic effects of DON by exposing cancer-prone transgenic p53 heterozygous (p53+/-) male mice and p53 homozygous (p53+/+) male mice to 0, 1, 5, or 10 mg DON/kg in diet for 26 weeks. Gross and microscopic organ-specific neoplastic and non-neoplastic changes and expression profiles of key hepatic and renal genes were assessed. Few toxicologic differences between p53+/+ and p53+/- mice were observed, and no tumours were observed due to DON. The results indicated that DON was non-carcinogenic and that reduced expression of the p53 gene did not play a key role in responses to DON toxicity. The lack of inflammatory and proliferative lesions in mice may be attributed to the anorectic effects of DON, which resulted in dose-dependent reductions in body weight in p53+/+ and p53+/- mice. Hepatic and renal gene expression analyses confirmed that chronic exposure to DON was noninflammatory. The effects of 26-week DON exposure on p53+/+ and p53+/-mice were consistent with those previously seen in B6C3F1 mice exposed to DON for two years. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response

    NARCIS (Netherlands)

    Melo, C A; Léveillé, N; Rooijers, K; Wijchers, P J; Geeven, G; Tal, A; Melo, S A; de Laat, W; Agami, R

    2016-01-01

    Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of

  18. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    Directory of Open Access Journals (Sweden)

    Nikola Arsic

    2015-04-01

    Full Text Available Cancer stem cells (CSC are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform.

  19. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Palermo, Vanessa; Mangiapelo, Eleonora; Piloto, Cristina; Pieri, Luisa; Muscolini, Michela; Tuosto, Loretta; Mazzoni, Cristina

    2013-11-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutants involved in yeast apoptosis-like death suggests that the observed cell death is Yca1 independent and mainly mediated through Nuc1p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Mitofusin-2 is a novel direct target of p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng [Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, Key Lab of Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Fu, Guanghou [Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang [Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, Key Lab of Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, Key Lab of Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China)

    2010-10-01

    Research highlights: {yields} Mfn2 is a novel target gene of p53. {yields} Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. {yields} Mfn2 promoter activity can be elevated by the p53 protein. {yields} P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  1. Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction

    Science.gov (United States)

    Increased accumulation of p53 tumor suppressor protein is an early response to low-level stressors. To investigate the fate of mitochondrial-sequestered p53, mouse embryonic fibroblast cells (MEFs) on a p53-deficient genetic background were transfected with p53-EGFP fusion protei...

  2. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Blume, C. J.; Hotz-Wagenblatt, A.; Hüllein, J.; Sellner, L.; Jethwa, A.; Stolz, T.; Slabicki, M.; Lee, K.; Sharathchandra, A.; Benner, A.; Dietrich, S.; Oakes, C. C.; Dreger, P.; te Raa, D.; Kater, A. P.; Jauch, A.; Merkel, O.; Oren, M.; Hielscher, T.; Zenz, T.

    2015-01-01

    Mutations of the tumor suppressor p53 lead to chemotherapy resistance and a dismal prognosis in chronic lymphocytic leukemia (CLL). Whereas p53 targets are used to identify patient subgroups with impaired p53 function, a comprehensive assessment of non-coding RNA targets of p53 in CLL is missing. We

  3. Regulation of Mdmx and its role in the p53 pathway

    NARCIS (Netherlands)

    Meulmeester, Erik

    2006-01-01

    The p53 protein is an important tumor suppressor that acts as a key regulator of the integrity of the genome. Two essential regulators of the p53 protein are Mdm2 and its homologue Mdmx. Like Mdm2, Mdmx represses p53-induced transcription. However, Mdmx cannot ubiquitinate or degrade p53 opposed to

  4. UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells

    NARCIS (Netherlands)

    Riva, F.; Zuco, V.; Vink, A.A.; Supino, R.; Prosperi, E.

    2001-01-01

    The tumour suppressor gene TP53 plays an important role in the regulation of DNA repair, and particularly of nucleotide excision repair. The influence of p53 status on the efficiency of the principal steps of this repair pathway was investigated after UV-C irradiation in the human ovarian carcinoma

  5. p53 expression in sweat gland tumors.

    Science.gov (United States)

    Biernat, W; Woźniak, L

    1996-01-01

    We analyzed the expression of p53 in 74 cutaneous adnexal tumors, with enhancement of the detection by incubation of the slides in the microwave. The immunostaining in benign tumors was almost uniformly negative as we found p53-positivity only in one poroma, one nodular hidradenoma, and one case of syringocystadenoma papilliferum (amongst 13 spiradenomas, 9 cylindromas, 12 nodular hidradenomas, 7 poromas, 6 syringomas, 7 syringocystadenomas papilliferum, 2 papillary tubular adenomas and 4 chondroid syringomas). These results contrasted with the widespread p53 overexpression, which was revealed in the sweat gland carcinomas. All spiradenocarcinomas (3), malignant nodular hidradenoma (1), apocrine hidradenocarcinoma (1), and malignant syringoadenoma (1) showed a strong reaction to anti-p53 antibody. Two of three eccrine hidradenocarcinomas, and two of three porocarcinomas presented p53 overexpression, whereas in one case of malignant cylindroma and adenoid cystic carcinoma we did not find p53-positivity. The results of the study indicate an important role, that p53 protein plays in the malignant sweat gland tumors in comparison to their benign counterparts, but reveal that its overexpression may also occur in the reactive and benign neoplastic processes.

  6. Targeting p53 by small molecules in hematological malignancies

    OpenAIRE

    Saha, Manujendra N; Qiu, Lugui; Chang, Hong

    2013-01-01

    p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their ant...

  7. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response.

    Science.gov (United States)

    Melo, C A; Léveillé, N; Rooijers, K; Wijchers, P J; Geeven, G; Tal, A; Melo, S A; de Laat, W; Agami, R

    2016-08-18

    Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of protein-coding genes, p53 has the capacity to regulate long intergenic noncoding RNA molecules (lincRNAs); however, their importance to the p53 tumor suppressive function remains poorly characterized. Here, we identified and characterized a novel p53-bound intronic enhancer that controls the expression of its host, the lincRNA00475 (linc-475). We demonstrate the requirement of linc-475 for the proper induction of a p53-dependent cell cycle inhibitory response. We further confirm the functional importance of linc-475 in the maintenance of CDKN1A/p21 levels, a cell cycle inhibitor and a major p53 target gene, following p53 activation. Interestingly, loss of linc-475 reduced the binding of both p53 and RNA polymerase II (RNAPII) to the promoter of p21, attenuating its transcription rate following p53 activation. Altogether, our data suggest a direct role of p53-bound enhancer domains in the activation of lincRNAs required for an efficient p53 transcriptional response.

  8. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    International Nuclear Information System (INIS)

    Terry, Mary Beth; Neugut, Alfred I; Mansukhani, Mahesh; Waye, Jerome; Harpaz, Noam; Hibshoosh, Hanina

    2003-01-01

    The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS), and intramucosal carcinoma). We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG 2 a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508). p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years) was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9) but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6). Heavy beer consumption (8+ bottles per week) was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0) but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7). Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence

  9. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  10. p53-regulated autophagy is controlled by glycolysis and determines cell fate.

    Science.gov (United States)

    Duan, Lei; Perez, Ricardo E; Davaadelger, Batzaya; Dedkova, Elena N; Blatter, Lothar A; Maki, Carl G

    2015-09-15

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis.

  11. NuMA is required for the selective induction of p53 target genes.

    Science.gov (United States)

    Ohata, Hirokazu; Miyazaki, Makoto; Otomo, Ryo; Matsushima-Hibiya, Yuko; Otsubo, Chihiro; Nagase, Takahiro; Arakawa, Hirofumi; Yokota, Jun; Nakagama, Hitoshi; Taya, Yoichi; Enari, Masato

    2013-06-01

    The p53 tumor suppressor protein is a transcription factor controlling various outcomes, such as growth arrest and apoptosis, through the regulation of different sets of target genes. The nuclear mitotic apparatus protein (NuMA) plays important roles in spindle pole organization during mitosis and in chromatin regulation in the nucleus during interphase. Although NuMA has been shown to colocalize with several nuclear proteins, including high-mobility-group proteins I and Y and GAS41, the role of NuMA during interphase remains unclear. Here we report that NuMA binds to p53 to modulate p53-mediated transcription. Acute and partial ablation of NuMA attenuates the induction of the proarrested p21 gene following DNA damage, subsequently causing impaired cell cycle arrest. Interestingly, NuMA knockdown had little effect on the induction of the p53-dependent proapoptotic PUMA gene. Furthermore, NuMA is required for the recruitment of cyclin-dependent kinase 8 (Cdk8), a component of the Mediator complex and a promoter of p53-mediated p21 gene function. These data demonstrate that NuMA is critical for the target selectivity of p53-mediated transcription.

  12. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  13. Development of functionalized nanodiamond fluorescence detection platform: Analysis the specific promoter regulated by p53

    Science.gov (United States)

    Wu, Diansyue; Chu, Hsueh-Liang; Chuang, Hung; Lu, Yu-Ning; Ho, Li-Ping; Li, Hsing-Yuan; Hsu, Ming-Hua; Chang, Chia-Ching

    2014-03-01

    Nanodiamond (ND) is one of the biocompatible nanomaterials with large tunable surface for chemical modification. It possesses unique mechanical, spectroscopy, and thermal properties. It is an excellent molecular vehicle to deliver specific molecules in biological system. The green fluorescent protein (GFP) is a protein that emits strong green fluorescence when it is excited by ultra-violet to blue light. It makes GFP a good indicator. By combining ND-GFP, a visible biocompatible delivery system will be developed. p53 is a tumor suppressor protein encoded by the TP53 gene. P53 plays an important role in apoptosis, genomic stability, and inhibition of angiogenesis by interacting with specific DNA sequence of promoter of related genes. In this study, a p53 functionalized ND-GFP will be developed. This complex can recognize the specific DNA sequence of promoter and the intermolecular interactions can be monitored directly by fluorescence and Raman spectroscopy both in vivo and in vitro.

  14. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG under normal and pathological (tumor conditions.

  15. A Cohort Study of p53 Mutations and Protein Accumulation in Benign Breast Tissue and Subsequent Breast Cancer Risk

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Kabat

    2011-01-01

    Full Text Available Mutations in the p53 tumor suppressor gene and accumulation of its protein in breast tissue are thought to play a role in breast carcinogenesis. However, few studies have prospectively investigated the association of p53 immunopositivity and/or p53 alterations in women with benign breast disease in relation to the subsequent risk of invasive breast cancer. We carried out a case-control study nested within a large cohort of women biopsied for benign breast disease in order to address this question. After exclusions, 491 breast cancer cases and 471 controls were available for analysis. Unconditional logistic regression was used to estimate odds ratios (OR and 95% confidence intervals (95% CI. Neither p53 immunopositivity nor genetic alterations in p53 (either missense mutations or polymorphisms was associated with altered risk of subsequent breast cancer. However, the combination of both p53 immunopositivity and any p53 nucleotide change was associated with an approximate 5-fold nonsignificant increase in risk (adjusted OR 4.79, 95% CI 0.28–82.31 but the confidence intervals were extremely wide. Our findings raise the possibility that the combination of p53 protein accumulation and the presence of genetic alterations may identify a group at increased risk of breast cancer.

  16. Restoration of mp53 to wtp53 by chemical chaperones restores p53-dependent apoptosis after radiotherapy

    International Nuclear Information System (INIS)

    Ohnishi, T.; Asakawa, I.; Tamamoto, T.; Takahashi, A.; Ohnishi, K.

    2003-01-01

    The mutations of many kinds of cancer related genes have been investigated for the predictive assay against cancer therapy by the application of molecular biology. A tumor suppressor gene product of wtp53 plays important roles in cancer suppression through the induction of cell growth arrest, DNA repair or apoptosis. The p53 exerts its function by induction of downstream genes and/or interaction to various proteins. Mutations in the p53 gene (mp53) cause conformational alterations in the p53 protein, the majority of which can no longer induce expression of the downstream genes. The genetic status of p53 gene has been focused as the most important candidate among them for cancer therapy. The gene therapy of p53 has been already applied. We reported that the transfection of mp53 gene increased the radio-, thermo- and chemo-resistance, and depressed apoptosis introduced with them through bax-induction and proteolysis of PARP and caspase-3. From these results, we propose that the gene therapy of wtp53 to p53-deleted cancer cells may be very useful for cancer therapy by the combination with radiotherapy. Even in the case of mp53 cancer cells, we succeeded the restoration of mp53 to wtp53 by glycerol or C-terminal peptide of p53 as chemical chaperones. These experimental progresses might support effective cancer therapy against individual patients bearing with different p53 gene status by the use of the most suitable treatment to them in the near future

  17. Adenovirus type 12 E1B 55-kilodalton oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin.

    Science.gov (United States)

    Wang, Junnai; Gao, Qinglei; Li, Qiang

    2015-08-01

    The tumor suppressor p53-mediated apoptotic response plays an important role in cisplatin resistant in ovarian cancer. The adenovirus (Ad) type 12 E1B 55-kDa protein binds to p53 and inactivates its transcriptional transactivation function. In this study, we test the hypothesis that Ad12 E1B 55-kDa oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin. First, we observed the upregulation protein level of p53 target genes in cisplatin-resistant or cisplatin-sensitive ovarian cancer by Western blotting. Second, after transfection of Ad12 E1b 55-kDa expression plasmid, the expressions of p53 target genes in A2780 cells were further enhanced. Co-IP experiment demonstrated Ad12 E1b 55 kDa associated with p53. MTT assay confirmed that the cell proliferation was enhanced after transfection, as well as the enhanced cell inhibitory rate in the presence of cisplatin. Using flow cytometry, transfection of Ad12 E1B 55-kDa protein induced apoptosis and promoted S-phase transition in proliferation. Finally, results showed that all these changes promoted by Ad12 E1b 55 kDa were attenuated by the exposure of specific inhibitor of p53 signaling, pifithrin-α. Taken together, we concluded that Ad E1B 55-kDa oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin.

  18. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  19. Battle Against Cancer: An Everlasting Saga of p53

    Directory of Open Access Journals (Sweden)

    Qian Hao

    2014-12-01

    Full Text Available Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.

  20. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. p53 Protein overexpression in cholangiocarcinoma arising in primary sclerosing cholangitis.

    Science.gov (United States)

    Rizzi, P M; Ryder, S D; Portmann, B; Ramage, J K; Naoumov, N V; Williams, R

    1996-01-01

    The protein encoded by the p53 tumour suppressor gene plays an important part in the regulation of cell growth. Abnormalities of this gene represent one of the most common genetic changes in the development of human cancers. This study investigated the expression of p53 protein in cholangiocarcinoma arising in association with primary sclerosing cholangitis (PSC). Of the 14 patients with cholangiocarcinoma studied, 13 had underlying PSC. The expression of p53 protein was detected immunohistochemically in paraffin wax embedded liver specimens, after microwave pretreatment. The expression of p53 protein was shown in the cholangiocarcinoma tissue of 11 of 14 (78.5%) patients. In five of 10 patients, the accumulation of p53 protein highlighted the presence of neoplastic cells in biliary tissue separate from the main tumour. These cells were mainly located in the septal bile ducts or in the accessory glands, or both, but occasionally also in large portal areas at the periphery of nerves and lymphatics, and in one case in the mucosa of an extrahepatic bile duct. No p53 protein was detectable in liver tissue obtained at the time of transplantation in 15 patients with PSC but not cholangiocarcinoma. These results show that cholangiocarcinoma development in PSC is commonly associated with abnormalities of p53 and that these occur at a late stage in the development of the malignant process. Staining for p53 protein could represent an additional criterion for the diagnosis of cholangiocarcinoma development in patients with PSC. Images Figure 1 Figure 2 Figure 3 PMID:8801209

  2. Immunohistochemical detection of p53 protein in ameloblastoma types.

    Science.gov (United States)

    el-Sissy, N A

    1999-05-01

    Overexpression of p53 protein in unicystic ameloblastoma (uAB) is denser than in the conventional ameloblastoma (cAB) type, indicating increased wild type p53--suppressing the growth potential of uAB and denoting the early event of neoplastic transformation, probably of a previous odontogenic cyst. Overexpression of p53 in borderline cAB and malignant ameloblastoma (mAB) types might reflect a mutational p53 protein playing an oncogenic role, promoting tumour growth. Overexpression of p53 protein could be a valid screening method for predicting underlying malignant genetic changes in AB types, through increased frequency of immunoreactive cells or increased staining density.

  3. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  4. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  5. Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion.

    Science.gov (United States)

    Abdelmoula-Souissi, Salma; Delahodde, Agnès; Bolotin-Fukuhara, Monique; Gargouri, Ali; Mokdad-Gargouri, Raja

    2011-07-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In Saccharomyces cerevisiae, over-expression of the human wtp53 leads to growth inhibition and cell death on minimal medium. In the present work, we showed that deletion of the nuclear localization signal (NLSI) of p53 restores the yeast growth. In this heterologous context, the level of p53∆NLSI was low and the protein mainly located in the cytoplasm while the wtp53 was observed in both the cytoplasmic and nuclear compartments. Interestingly, the wtp53 protein was observed in the mitochondria, whereas the p53∆NLSI protein failed to localize in mitochondria. Moreover, mitochondrial morphology defect and release of cytochrome c in the cytosol were noticed only in the yeast strain expressing the wtp53. In conclusion, our results provide evidence that the human wtp53 is active in S. cerevisiae probably through dependent and independent transcriptional mechanisms leading to cell death. The deletion of the NLSI sequence decreases p53 nuclear translocation as well as its mitochondrial localization and consequently its effect on yeast growth.

  6. Immunohistochemical Expression of p53 in Pleomorphic Adenoma and Carcinoma Ex Pleomorphic Adenoma

    Directory of Open Access Journals (Sweden)

    Bassel Tarakji

    2010-01-01

    Full Text Available Context. Immunohistochemical stains for p53 are used as a diagnostic marker associated with malignancy in several histologic types of salivary gland tumors. This marker may be useful in differentiating pleomorphic adenoma (PA from carcinoma ex pleomorphic adenoma (CPA, as these tumors are often difficult to distinguish on the basis of morphology alone. Objective. to evaluate whatever inactivation of tumor suppressor gene (p53 increases with the tumor progression from normal salivary tissue to PA and eventually CPA. Design. Paraffin blocks of 29 cases of PA, which were surrounded by normal parotid gland, and 27 cases of carcinoma ex pleomorphic adenoma were retrieved and validated. In all cases of carcinoma ex pleomorphic adenoma, a PA “ghost” was identified, and the malignant element was either undifferentiated carcinoma or adenocarcinoma. Results. The results showed negative nuclear expression of P53 in normal parotid gland. Nuclear P53 was expressed strongly in 6/29 (20.7% pleomorphic salivary adenoma and 10/27 (37% carcinoma ex pleomorphic adenoma. Conclusion. Our data suggest that inactivation of p53 may play an important role in the evolution of pleomorphic salivary adenoma and carcinoma ex pleomorphic adenoma.

  7. Systematic and comprehensive analysis of mutant p53 proteins in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The gene p53 is a well-known tumour suppressor gene that prevents cancer formation. It is the most commonly mutated gene among individuals with a diagnosis of cancer. Through recent advances in DNA sequencing abilities, researchers are now in a position to take a patient's tumour and identify the exact mutation in ...

  8. HPV and p53 expression in epithelial ovarian carcinoma.

    Science.gov (United States)

    Kuscu, E; Ozdemir, B H; Erkanli, S; Haberal, A

    2005-01-01

    Human papillomavirus is the causal factor for cervical cancer. However, the role of HPV infection in ovarian cancer is unclear. This study aimed to determine the presence of human papillomavirus (HPV) in ovarian cancer tissues along with the expression of tumor suppressor gene p53. We also investigated any possible association of HPV with p53 gene mutations in ovarian carcinoma. Archived human ovarian cancer tissues (n = 40 cases of epithelial ovarian cancer) embedded in paraffin blocks were used. Controls were 32 non-malignant ovarian tumor tissue blocks. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect the presence of HPV and p53 expression, respectively. Of the total, 37.5% (n = 15) of malignant and 28.1% (n = 9) of benign ovarian tumors were positive for HPV (OR: 1.5 CI: 0.5-4.1, p = 0.4). The difference was not statistically significant. However, p53 was detected in 72.5% (n = 29) of malignant cases compared to 37.5% (n = 12) of benign cases (OR: 4.3 CI: 1.6-11.9, p = 0.003). Furthermore, a positive correlation between HPV and p53 expressions in ovarian cancer tissue samples was detected (r = 0.47, p = 0.001). HPV does not seem to be a major component in the development of ovarian carcinoma, nevertheless HPV positivity seems to contribute to the pathogenesis in at least some ovarian carcinoma cases by way of interaction with tumor suppressor p53.

  9. p53 and Ceramide as Collaborators in the Stress Response

    Directory of Open Access Journals (Sweden)

    Ghassan Dbaibo

    2013-03-01

    Full Text Available The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this “tumor suppressor lipid”, ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.

  10. p53 mutations in sweat gland carcinomas.

    Science.gov (United States)

    Biernat, W; Peraud, A; Wozniak, L; Ohgaki, H

    1998-05-04

    Sweat gland carcinomas are rare skin tumours and little is known about their etiology and molecular basis. In this study, we analyzed p53 mutations in 16 sweat gland carcinomas with different histologic types, including 2 spiradenocarcinomas, 1 composed adnexal carcinoma, 5 porocarcinomas, 2 eccrine hidradenocarcinomas, 2 syringocystadenocarcinomas, 1 sclerosing sweat gland carcinoma, 1 adenoid cystic carcinoma, 1 cylindrocarcinoma and 1 apocrine adenocarcinoma. Single-stranded conformation polymorphism (SSCP) analyses followed by direct DNA sequencing revealed that 5 carcinomas (31%) contained a p53 mutation, 4 of which were G:C-->A:T transition mutations and 1 of which was a deletion. Three G:C-->A:T mutations were located at dipyrimidine sequences on the antisense strand (2 spiradenocarcinomas, 1 eccrine hidradenocarcinoma), suggesting that UV light may play a role in the development of sweat gland carcinomas. In 2 spiradenocarcinomas, p53 mutations were present in the carcinoma but not in the adenoma portions, suggesting that p53 mutations may be associated with malignant progression in these rare adnexal tumours.

  11. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst

    Directory of Open Access Journals (Sweden)

    Thara Purath Sajeevan

    2014-01-01

    Full Text Available Introduction: p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. Aim: The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC and periapical cyst (PA. Materials and Methods: A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. Results: The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%, whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1 OKC showed p53 expression in 6 cases (60% whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2 The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. Conclusion: OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  12. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Čechová, Jana; Battistin, M.; Coufal, Jan; Jagelská, Eva; Raimondi, I.; Inga, A.

    2017-01-01

    Roč. 483, č. 1 (2017), s. 516-521 ISSN 0006-291X R&D Projects: GA ČR GA15-21855S Institutional support: RVO:68081707 Keywords : tumor-suppressor p53 * cruciform structures * dna-conformation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.466, year: 2016

  13. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Cappadone, C.; Stefanelli, C.; Malucelli, E.; Zini, M.; Onofrillo, C.; Locatelli, A.; Rambaldi, M.; Sargenti, A.; Merolle, L.; Farruggia, G.; Graziadio, A.; Montanaro, L.; Iotti, S.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  14. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Stefanelli, C. [Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini (Italy); Malucelli, E. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Zini, M. [Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy); Onofrillo, C. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Locatelli, A.; Rambaldi, M.; Sargenti, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Merolle, L. [ELETTRA–Sincrotrone Trieste S.C.p.A., Trieste (Italy); Farruggia, G. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy); Graziadio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Montanaro, L. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy)

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  15. p53 and disease: when the guardian angel fails.

    Science.gov (United States)

    Royds, J A; Iacopetta, B

    2006-06-01

    The p53 tumor suppressor gene (TP53) is mutated more often in human cancers than any other gene yet reported. Of importance, it is mutated frequently in the common human malignancies of the breast and colorectum and also, but less frequently, in other significant human cancers such as glioblastomas. There is also one inherited cancer predisposing syndrome called Li-Fraumeni that is caused by TP53 mutations. In this review, we discuss the significance of p53 mutations in some of the above tumors with a view to outlining how p53 contributes to malignant progression. We also discuss the usefulness of TP53 status as a prognostic marker and its role as a predictor of response to therapy. Finally, we outline some evidence that abnormalities in p53 function contribute to the etiology of other non-neoplastic diseases.

  16. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2003-11-01

    Full Text Available Abstract Background The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS, and intramucosal carcinoma. Methods We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG2a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508. Results p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9 but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6. Heavy beer consumption (8+ bottles per week was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0 but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7. Conclusion Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence.

  17. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  18. Loss of Maspin Expression in Bladder Cancer: Its Relationship with p53 and Clinico pathological Parameters

    International Nuclear Information System (INIS)

    Abd El-Maqsoud, N.M.R.; Tawfiek, E.R.

    2010-01-01

    Maspin (mammary serine protease inhibitor) is a member of the serpin super family of protease inhibitors and is known to have tumor-suppressor function in breast and prostate cancers, acting at the level of tumor invasion and metastasis. However, there have been no published data regarding the role of Maspin in squamous cell carcinoma (SCC) and transitional cell carcinoma (TCC) of urinary bladder. Patients and Methods: We have evaluated the immunohistochemical expression of Maspin and p53 in a series of 134 bladder cancer patients (56 SCC and 78 TCC) and the interrelationship between Clinico pathological features and Maspin and p53 expression. Results: There was positive Maspin expression in 53.7% in all cases. In TCC, expression was found in 48/78 cases (61.5%). High Maspin expression was found in low grade (p<0.001) and advanced stage (p=0.02). In SCC, expression was found in 24/56 (42.8%). There was a statistically significant association between lost Maspin expression and grading (p=0.001). No correlation was found between Maspin expression and other Clinico pathological parameters including gender, clinical stage and Bilharzial infestation. These results indicated that Maspin expression might predict a better prognosis for bladder carcinoma. Also Maspin probably could play a role in tumor progression. p53 was positive in 70 cases (52.2%) of all patients evaluated. In TCC, it was positive in 36/78 cases (46.1%) and correlated with high grade (p=0.01) and advanced stage (p=0.01). In SCC, it was positive in 34/56 cases (60.7%). There was a statistically significant association between p53 expression and high grade (p=0.01) and advanced stage (p=0.01). There was an inverse correlation between the Maspin and p53 expression in TCC and SCC of bladder cancer. We found no significant association between both Maspin and p53 expression and bilharziasis in TCC and SCC; this indicated that Maspin and p53 expression could be prognostic factors in both bilharzial and non

  19. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  20. COX-2 and p53 in human sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Cyr, Diane; Luce, Danièle

    2008-01-01

    to development of cancer. Many signals that activate COX-2 also induce tumor suppressor p53, a transcription factor central in cellular stress response. We investigated COX-2 and p53 expressions by immunohistochemistry in 50 SNCs (23 adenocarcinomas, and 27 squamous cell carcinomas (SCC); 48 analyzed for COX-2......The causal role of wood-dust exposure in sinonasal cancer (SNC) has been established in epidemiological studies, but the mechanisms of SNC carcinogenesis are still largely unknown. Increased amounts of COX-2 are found in both premalignant and malignant tissues, and experimental evidence link COX-2...

  1. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation.

    Directory of Open Access Journals (Sweden)

    Oliver Couture

    Full Text Available The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53's transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.

  2. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina

    Directory of Open Access Journals (Sweden)

    Kahn Tomas

    2005-11-01

    Full Text Available Abstract Background Infections with high-risk human papillomaviruses (HPVs, causatively linked to cervical cancer, might also play a role in the development of prostate cancer. Furthermore, the polymorphism at codon 72 (encoding either arginine or proline of the p53 tumor-suppressor gene is discussed as a possible determinant for cancer risk. The HPV E6 oncoprotein induces degradation of the p53 protein. The aim of this study was to analyse prostate carcinomas and hyperplasias of patients from Argentina for the presence of HPV DNA and the p53 codon 72 polymorphism genotype. Methods HPV DNA detection and typing were done by consensus L1 and type-specific PCR assays, respectively, and Southern blot hybridizations. Genotyping of p53 codon 72 polymorphism was performed both by allele specific primer PCRs and PCR-RFLP (Bsh1236I. Fischer's test with Woolf's approximation was used for statistical analysis. Results HPV DNA was detected in 17 out of 41 (41.5 % carcinoma samples, whereas all 30 hyperplasia samples were HPV-negative. Differences in p53 codon 72 allelic frequencies were not observed, neither between carcinomas and hyperplasias nor between HPV-positive and HPV-negative carcinomas. Conclusion These results indicate that the p53 genotype is probably not a risk factor for prostate cancer, and that HPV infections could be associated with at least a subset of prostate carcinomas.

  3. TAF6delta controls apoptosis and gene expression in the absence of p53.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Wilhelm

    Full Text Available BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.

  4. Profiling of oligosaccharides and p53 gene mutation in Filipino breast tumors

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Vera, Azucena C.; Magno, Jose Donato A.; Cruz, Michael Joseph B.; Prodigalidad, Abelardo-Alan T.; Jacinto, Sonia D.

    2010-01-01

    Majority of patients are diagnosed with benign tumors, however, such benign tumors can progress to an invasive disease. Since carbohydrate-mediated cell-cell adhesion and proliferative potential play crucial roles in tumorigenesis and tumor aggressive behavior, we analyzed the qualitative changes in oligosaccharide expression and analyzed for presence of mutation in the tumor suppressor p53 gene, the most mutated gene in all human cancers. Forty-three (43) breast tumors were screened for p53 mutation in exons 2-11 using polymerase chain reaction (PCR)-amplification coupled to temporal temperature gradient electrophoresis (TTGE). Paraffin-embedded tissues were stained with biotinylated-glycoproteins containing the following sugar groups: mannose (Man), lactose (Lac), fucoidan (Fuc), N-acetyl-glucosamine (GlcNac), N-acetyl-b-galactosamine (GalNAc) and hyaluronic acid (Hya). Expression of carbohydrate receptors was significantly elevated (p=0.003) in malignant compared with benign tumors, particularly at receptors for GalNAc, lac and Fuc. No change in overall glycan signatures using our panel of neoglycoconjugates was noted when grouped according to p53 mutation status in both benign and malignant cases. Although the prognostic value of carbohydrate-receptors in breast cancer has not been validated to date, our results indicate that benign and malignant tumors can be defined by their affinities to our battery of neoglyconjugates. However, result from our reverse lectin histochemistry failed to correlated glycan signature with presence of p53 mutations. (author)

  5. UHRF2, another E3 ubiquitin ligase for p53

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua [Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China); Duan, Changzhu, E-mail: duanchzhu@cqmu.edu.cn [Key Laboratory of Clinical Laboratory Diagnostics of Ministry of Education, Faculty of Laboratory Medicine, Chongqing Medical University, Chongqing (China); Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  6. P53 gene mutations in pituitary carcinomas.

    Science.gov (United States)

    Tanizaki, Yoshinori; Jin, Long; Scheithauer, Bernd W; Kovacs, Kalman; Roncaroli, Federico; Lloyd, Ricard V

    2007-01-01

    Although p53 overexpression detected by immunohistochemistry has been reported in pituitary adenomas and carcinomas, genetic mutations in the p53 gene have not been previously detected in these tumors. We analyzed a series of eight pituitary adenomas and six pituitary carcinomas by immunohistochemistry, polymerase chain reaction amplification, and sequencing of p53 exon 5 through exon 8 for genetic mutations. Three carcinomas showed more than 20% expression of p53 protein in the tumor cells. One of these tumors with 60% overexpression of p53 protein had a mutation in codon 248, a common "hot spot" for p53 mutation, while the other carcinoma with 90% overexpression of p53 protein had a mutation in codon 135. All adenomas were negative for p53 mutations and had 15% of the cells expressing the p53 protein. Analysis of control tumors including four lung carcinomas with proven p53 mutations also had greater than 85% of the tumor cells overexpressing p53 protein. Two breast carcinoma cell lines with known p53 mutations, MBA-MD 231 and MBA-MD-486, also showed greater than 85% of the tumor cells overexpressing p53. These results show that p53 mutations are present in a subset of pituitary carcinomas and are usually associated with a high percentage of tumor cells overexpressing the p53 protein.

  7. Correlation between promoter methylation of p14ARF, TMS1/ASC, and DAPK, and p53 mutation with prognosis in cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Xiaofang Liu

    2012-01-01

    Full Text Available Abstract Background To study the methylation status of genes that play a role in the p53-Bax mitochondrial apoptosis pathway and its clinical significance in cholangiocarcinoma. Patients and Methods Out of 36 cases cholangiocarcinoma patients from April 2000 to May 2005 were collected.Promoter hypermethylation of DAPK, p14ARF, and ASC were detected by methylation-specific PCR on cholangiocarcinoma and normal adjacent tissues samples. Mutation of the p53 gene was examined by automated sequencing. Correlation between methylation of these genes and/or p53 mutation status with clinical characteristics of patients was investigated by statistical analysis. Results We found 66.7% of 36 cholangiocarcinoma patients had methylation of at least one of the tumor suppressor genes analyzed. p53 gene mutation was found in 22 of 36 patients (61.1%. Combined p53 mutation and DAPK, p14ARF, and/or ASC methylation was detected in 14 cases (38.9%. There were statistically significant differences in the extent of pathologic biology, differentiation, and invasion between patients with combined p53 mutation and DAPK, p14ARF, and/or ASC methylation compared to those without (P DAPK, p14ARF, and ASC methylation and p53 mutation was poorer than other patients (P Conclusion Our study indicates that methylation of DAPK, p14ARF, and ASC in cholangiocarcinoma is a common event. Furthermore, p53 mutation combined with DAPK, p14ARF, and/or ASC methylation correlates with malignancy and poor prognosis.

  8. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl....... The results suggest that, although cigarette smoke exposure may not significantly alter the kinds of mutations sustained in the p53 gene, it may act to increase the extent of DNA damage per mutagenic event....

  9. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    Science.gov (United States)

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  10. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  11. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  12. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6-7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.

  13. eRNAs are required for p53-dependent enhancer activity and gene transcription

    NARCIS (Netherlands)

    Melo, C.A.; Drost, J.; Wijchers, P.J.; van de Werken, H.; de Wit, E.; Oude Vrielink, J.A.; Elkon, R.; Melo, S.A.; Leveille, N.; Kalluri, R.; de Laat, W.; Agami, R.

    2013-01-01

    Binding within or nearby target genes involved in cell proliferation and survival enables the p53 tumor suppressor gene to regulate their transcription and cell-cycle progression. Using genome-wide chromatin-binding profiles, we describe binding of p53 also to regions located distantly from any

  14. The Role of p53 Mutations in Metastasis of Prostate Cancer to Bone

    National Research Council Canada - National Science Library

    Russell, Pamela J; Blair, Julie M; Kingsley, Elizabeth A; Szymanska, Barbara; Perryman, Lara; Jackson, Paul

    2004-01-01

    .... To test if specific mutations of the tumor suppressor gene, p53, that occur in CaP cause disease progression, we generated cell lines from the human LNCaP cell line that stably express normal or mutant p53. Purpose...

  15. p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Fjære, Even; Liaset, Bjørn

    2016-01-01

    The tumor suppressor p53 (TRP53 in mice) is known for its involvement in carcinogenesis, but work during recent years has underscored the importance of p53 in the regulation of whole body metabolism. A general notion is that p53 is necessary for efficient oxidative metabolism. The importance of UCP...

  16. The critical role of catalase in prooxidant and antioxidant function of p53

    Science.gov (United States)

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  17. An adaptive molecular timer in p53-meidated cell fate decision

    Science.gov (United States)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  18. eRNAs are required for p53-dependent enhancer activity and gene transcription.

    Science.gov (United States)

    Melo, Carlos A; Drost, Jarno; Wijchers, Patrick J; van de Werken, Harmen; de Wit, Elzo; Oude Vrielink, Joachim A F; Elkon, Ran; Melo, Sónia A; Léveillé, Nicolas; Kalluri, Raghu; de Laat, Wouter; Agami, Reuven

    2013-02-07

    Binding within or nearby target genes involved in cell proliferation and survival enables the p53 tumor suppressor gene to regulate their transcription and cell-cycle progression. Using genome-wide chromatin-binding profiles, we describe binding of p53 also to regions located distantly from any known p53 target gene. Interestingly, many of these regions possess conserved p53-binding sites and all known hallmarks of enhancer regions. We demonstrate that these p53-bound enhancer regions (p53BERs) indeed contain enhancer activity and interact intrachromosomally with multiple neighboring genes to convey long-distance p53-dependent transcription regulation. Furthermore, p53BERs produce, in a p53-dependent manner, enhancer RNAs (eRNAs) that are required for efficient transcriptional enhancement of interacting target genes and induction of a p53-dependent cell-cycle arrest. Thus, our results ascribe transcription enhancement activity to p53 with the capacity to regulate multiple genes from a single genomic binding site. Moreover, eRNA production from p53BERs is required for efficient p53 transcription enhancement. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  20. Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Kaspersen, M.D.; Kofod-Olsen, Emil

    2006-01-01

    inhibitor, did not reverse the HHV-6B-induced cell cycle block. In support of this, HHV-6B infection of p53(-/-) cells induced a cell cycle block before S-phase with kinetics similar to or faster than that observed by infection in wt cells. CONCLUSIONS: HHV-6B infection inhibited host cell proliferation......BACKGROUND: Various forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53. OBJECTIVES: The aim of this study...... was to investigate the role of p53 accumulation in the HHV-6B-induced cell cycle arrest. STUDY DESIGN: The role of p53 was studied using the p53 inhibitor pifithrin-a, and cells genetically deficient in functional p53 by homologous recombination. RESULTS: In response to HHV-6B infection, epithelial cells were...

  1. Human p53(264-272) HLA-A2 binding peptide is an immunodominant epitope in DNA-immunized HLA-A2 transgenic mice

    DEFF Research Database (Denmark)

    Petersen, T R; Bregenholta, S; Pedersen, L O

    1999-01-01

    C57BL/10 mice transgenic for HLA-A2 were immunized with either a full-length DNA-construct of the tumor suppressor p53 or with a minigene encoding the p53-derived immunodominant peptide p53(264)LLGRNSFEV272 (L9V). Vaccination with the full-length p53 construct induced potent cytotoxic activity...

  2. The p53 codon 72 polymorphism and association to prostate cancer ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... Tp53 is an important tumor suppressor gene, which induces cell growth arrest or apoptosis when subjected to cytotoxic ... Key words: Prostate cancer, suppressor gene (p53) codon 72, polymorphism, Iran. INTRODUCTION ..... 72 Polymorphism in Basal Cell Carcinoma of the Skin. Pathol. Oncol. Res. 12(1): ...

  3. Loss of p53 Ser18 and Atm results in embryonic lethality without cooperation in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Heather L Armata

    Full Text Available Phosphorylation at murine Serine 18 (human Serine 15 is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM and ATM-related (ATR protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53(S18A mice have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm(-/- animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53(S18A and Atm(-/- animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm(-/- animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.

  4. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    Science.gov (United States)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol

  5. ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding.

    Science.gov (United States)

    Jeon, Bu-Nam; Yoon, Jae-Hyeon; Han, Dohyun; Kim, Min-Kyeong; Kim, Youngsoo; Choi, Seo-Hyun; Song, Jiyang; Kim, Kyung-Sup; Kim, Kunhong; Hur, Man-Wook

    2017-09-01

    Expression of the POK family protein ZNF509L, and -its S1 isoform, is induced by p53 upon exposure to genotoxic stress. Due to alternative splicing of the ZNF509 primary transcript, ZNF509S1 lacks the 6 zinc-fingers and C-terminus of ZNF509L, resulting in only one zinc-finger. ZNF509L and -S1 inhibit cell proliferation by activating p21/CDKN1A and RB transcription, respectively. When cells are exposed to severe DNA damage, p53 activates PUMA (p53-upregulated modulator of apoptosis) transcription. Interestingly, apoptosis due to transcriptional activation of PUMA by p53 is attenuated by ZNF509S1. Thus we investigated the molecular mechanism(s) underlying the transcriptional attenuation and anti-apoptotic effects of ZNF509S1. We show that ZNF509S1 modulation of p53 activity is important in PUMA gene transcription by modulating post-translational modification of p53 by p300. ZNF509S1 directly interacts with p53 and inhibits p300-mediated acetylation of p53 lysine K382, with deacetylation of p53 K382 leading to decreased DNA binding at the p53 response element 1 of the PUMA promoter. ZNF509S1 may play a role not only in cell cycle arrest, by activating RB expression, but also in rescuing cells from apoptotic death by repressing PUMA expression in cells exposed to severe DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  7. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  8. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  9. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    International Nuclear Information System (INIS)

    Kousparou, Christina A; Yiacoumi, Efthymia; Deonarain, Mahendra P; Epenetos, Agamemnon A

    2012-01-01

    A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp) and wild-type, full-length p21 (Antp-p21). This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model) with differing p21 or p53 status. Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology

  10. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  11. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Science.gov (United States)

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-01-01

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  12. [Protein p53 in gastric carcinoma: clinical use of cancer research on neoplasms].

    Science.gov (United States)

    Starzyńska, T

    1999-02-01

    Mutations of the tumour-suppressor p53 gene are a very frequent event in many human cancers. In normal cells and tissue, p53 protein has a very short half-life and attains such a low level that is not detectable immunohistochemically. In contrast, the altered forms, present in 30 to 80% of different neoplasms, are more stable and accumulate to concentration that can be detected by immunohistochemistry. Changes in the p53 gene product can be immunogenic. Thus a simple procedures as immunohistochemistry or Elisa test which stratifies cancer patients into those with and without p53 accumulation or p53 auto- antibodies can be analyzed for useful correlations with clinical and histopathological data. The p53 studies have demonstrated that in gastric carcinoma the expression of p53 protein can be properly assessed prior to surgery, using immunohistochemistry on a small tissue samples obtained during endoscopy. It has been shown that p53 assessment in this carcinoma can be helpful in identifying patients at high risk for metastatic spread, including regional lymph node involvement, and in the discrimination of those patients with especially poor prognosis. Furthermore it was demonstrated that in stomach p53 accumulation is a marker of malignancy. Thus, when combined with routine procedures, a simple test as p53 immunohistochemistry might allow better planing of appropriate treatment strategies and help in the pre-operative diagnosis of gastric carcinoma. Further studies are required to determine the clinical significance of p53 serum antibodies in gastric cancer.

  13. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    Science.gov (United States)

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  14. The role of p53 molecule in radiation and hyperthermic therapies

    International Nuclear Information System (INIS)

    Yasumoto, Jun-ichi; Takahashi, Akihisa; Ohnishi, Ken; Ohnishi, Takeo

    2003-01-01

    In recent years, cancer-related genes have been analyzed at the molecular level as predictive indicators for cancer therapy. Among those genes, the tumor suppressor gene p53 is worthy of notice in cancer therapy, because the p53 molecule prevents the malignant degeneration of non-cancer cells by regulating cell-cycle arrest, apoptosis, and DNA repair. An abnormality of the p53 gene introduces a genetic instability and increases the incidence of carcinogenesis and teratogenesis. Therefore, p53 is called a guardian of the genome. Mutations of p53 are observed at a high frequency in human tumors, and are recognized in about half of all malignant tumors in human head and neck cancers. We previously reported that radio- and heat-sensitivities of human cultured tongue squamous cell carcinoma cells are p53-dependent, and are closely correlated with the induction of apoptosis. In a human cell culture system, the interactive hyperthermic enhancement of radiosensitivity was observed in wild-type p53 cells, but not in mutated p53 cells. In a transplanted tumor system, the combination therapies of radiation and hyperthermia induced efficient tumor growth depression and apoptosis in the wild-type p53 tumors. In this review, we discuss the p53 activation signaling pathways through the modification of p53 molecules, such as phosphorylation after radiation and hyperthermia treatments. (author)

  15. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  16. The p53-dependent radioadaptive response

    Science.gov (United States)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  17. From Sea Anemone to Homo Sapiens: The Evolution of the p53 Family of Genes

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Arnold (Institute for Advanced Study)

    2009-09-14

    The human genome contains three transcription factors termed p53, p63 and p73 which are related orthologues. The function of the p53 protein is to respond to a wide variety of stresses which can disrupt the fidelity of DNA replication and cell division in somatic cells of the body. These stress signals, such as DNA damage, increase the mutation rate during DNA duplication and so an active p53 protein responds by eliminating clones of cells with mutations employing apoptosis, senescence or cell cycle arrest. In this way the p53 protein acts as a tumor suppressor preventing the mutations that can lead to cancers. The p63 and p73 proteins act in a similar fashion to protect the germ line cells in females (eggs). In addition the p63 protein plays a central role in the formation of epithelial cell layers and p73 plays a critical role in the formation of several structures in the central nervous system. Based upon their amino acid sequences and structural considerations the oldest organisms that contain an ancestor of the p53/p63/p73 gene are the sea anemone or hydra. The present day representatives of these animals contain a p63/p73 like ancestor gene and the protein functions in germ cells of this animal to enforce the fidelity of DNA replication after exposure to ultraviolet light. Thus the structure and functions of this gene family have been preserved for over one billion years of evolution. Other invertebrates such as the worm, the fly and the clam contain a very similar ancestor gene with a similar set of functions. The withdrawal of a food source from a worm results in the p63/p73 mediated apoptosis of the eggs so that new organisms will not be hatched into a poor environment. A similar response is thought to occur in humans. Thus this ancestor gene ensures the fidelity of the next generation of organisms. The first time a clearly distinct new p53 gene arises is in the cartilaginous fish and in the bony fish a separation of the p

  18. and p53 in nasopharyngeal carcinoma

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... cellular gene product or viral oncoprotein and wild- type p53 protein45. It has already been shown that the p53 protein can bind to cellular proteins, such as the mdm2 oncogene product and heat-shock protein. 70 and to several DNA tumor virus proteins, including SV40 T antigen and E1b protein from.

  19. The Acetyltransferase p300/CBP-Associated Factor Is a p53 Target Gene in Breast Tumor Cells

    Directory of Open Access Journals (Sweden)

    George S. Watts

    2004-05-01

    Full Text Available p300/CBP-associated factor (PCAF is a coactivator of the tumor suppressor, p53. PCAF participates in p53's transactivation of target genes through acetylation of both bound p53 and histones within p53 target promoters. Using microarrays, we discovered that PCAF itself is induced by p53 in a panel of breast tumor cell lines. Two p53 mutant breast tumor cell lines, BT-549 and UACC-1179, were chosen for further study of PCAF induction by wild-type p53. PCAF induction following adenoviral transduction of p53 expression was confirmed with real-time polymerase chain reaction in a time course experiment. Chromatin immunoprecipitation experiments then showed that PCAF induction was associated with increased p53 binding to the PCAF promoter, which contains p53 consensus-binding sites. PCAF induction by p53 activity was further demonstrated in wild-type p53 MCF10A cells when PCAF expression was induced following activation of endogenous wild-type p53 with doxorubicin in a dose- and time-dependent manner. Furthermore, the doxorubicin-induced increase in PCAF expression was blocked by pretreatment of the MCF10A cells with siRNA (small interfering RNA targeted against p53 mRNA. Taken together, the results show that PCAF expression can be induced by wild-type p53.

  20. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  1. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  2. P53 and p73 differ in their ability to inhibit glucocorticoid receptor (GR transcriptional activity

    Directory of Open Access Journals (Sweden)

    Nie Linghu

    2006-12-01

    Full Text Available Abstract Background p53 is a tumor suppressor and potent inhibitor of cell growth. P73 is highly similar to p53 at both the amino acid sequence and structural levels. Given their similarities, it is important to determine whether p53 and p73 function in similar or distinct pathways. There is abundant evidence for negative cross-talk between glucocorticoid receptor (GR and p53. Neither physical nor functional interactions between GR and p73 have been reported. In this study, we examined the ability of p53 and p73 to interact with and inhibit GR transcriptional activity. Results We show that both p53 and p73 can bind GR, and that p53 and p73-mediated transcriptional activity is inhibited by GR co-expression. Wild-type p53 efficiently inhibited GR transcriptional activity in cells expressing both proteins. Surprisingly, however, p73 was either unable to efficiently inhibit GR, or increased GR activity slightly. To examine the basis for this difference, a series of p53:p73 chimeric proteins were generated in which corresponding regions of either protein have been swapped. Replacing N- and C-terminal sequences in p53 with the corresponding sequences from p73 prevented it from inhibiting GR. In contrast, replacing p73 N- and C-terminal sequences with the corresponding sequences from p53 allowed it to efficiently inhibit GR. Differences in GR inhibition were not related to differences in transcriptional activity of the p53:p73 chimeras or their ability to bind GR. Conclusion Our results indicate that both N- and C-terminal regions of p53 and p73 contribute to their regulation of GR. The differential ability of p53 and p73 to inhibit GR is due, in part, to differences in their N-terminal and C-terminal sequences.

  3. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms.

    Science.gov (United States)

    Allen, Mary Ann; Andrysik, Zdenek; Dengler, Veronica L; Mellert, Hestia S; Guarnieri, Anna; Freeman, Justin A; Sullivan, Kelly D; Galbraith, Matthew D; Luo, Xin; Kraus, W Lee; Dowell, Robin D; Espinosa, Joaquin M

    2014-05-27

    The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms.DOI: http://dx.doi.org/10.7554/eLife.02200.001. Copyright © 2014, Allen et al.

  4. An N-terminal Region of Mot-2 Binds to p53 In Vitro

    Directory of Open Access Journals (Sweden)

    Sunil C. Kaul

    2001-01-01

    Full Text Available The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312–352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its Nterminal amino acid residues 253–282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.

  5. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging.

    Science.gov (United States)

    Gambino, Valentina; De Michele, Giulia; Venezia, Oriella; Migliaccio, Pierluigi; Dall'Olio, Valentina; Bernard, Loris; Minardi, Simone Paolo; Della Fazia, Maria Agnese; Bartoli, Daniela; Servillo, Giuseppe; Alcalay, Myriam; Luzi, Lucilla; Giorgio, Marco; Scrable, Heidi; Pelicci, Pier Giuseppe; Migliaccio, Enrica

    2013-06-01

    Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour-suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53-downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ~200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down-regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  6. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.

    Science.gov (United States)

    Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu

    2013-01-31

    Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.

  7. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  8. The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation.

    Science.gov (United States)

    Smith, Linda; Farzan, Raed; Ali, Simak; Buluwela, Laki; Saurin, Adrian T; Meek, David W

    2017-11-23

    Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic.

  9. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation.

    Science.gov (United States)

    Zhou, Jing; Lu, Guo-Dong; Ong, Chye-Sun; Ong, Choon-Nam; Shen, Han-Ming

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor subfamily with great potential in cancer therapy. Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer activities. Here, we showed that pretreatment with Andro significantly enhances TRAIL-induced apoptosis in various human cancer cell lines, including those TRAIL-resistant cells. Such sensitization is achieved through transcriptional up-regulation of death receptor 4 (DR4), a death receptor of TRAIL. In search of the molecular mechanisms responsible for DR4 up-regulation, we found that the tumor suppressor p53 plays an essential role in DR4 transcriptional activation. Andro is capable of activating p53 via increased p53 phosphorylation and protein stabilization, a process mediated by enhanced reactive oxygen species production and subsequent c-Jun NH(2)-terminal kinase activation. Pretreatment with an antioxidant (N-acetylcysteine) or a c-Jun NH(2)-terminal kinase inhibitor (SP600125) effectively prevented Andro-induced p53 activation and DR4 up-regulation and eventually blocked the Andro-induced sensitization on TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of Andro and support its potential application in cancer therapy to overcome TRAIL resistance.

  10. Induction of p53-dependent and p53-independent cellular responses by topoisomerase 1 inhibitors.

    OpenAIRE

    McDonald, A. C.; Brown, R.

    1998-01-01

    We have previously shown that loss of p53 function in A2780 human ovarian adenocarcinoma cells confers increased clonogenic resistance to several DNA-damaging agents, but not to taxol or camptothecin. We have now extended these studies, comparing wild-type p53-expressing A2780 cells with isogenic derivatives transfected with a dominant negative mutant (143; val to ala) p53. We show that, as well as retaining equivalent clonogenic sensitivity to camptothecin, mutant p53 transfectants of A2780 ...

  11. Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction.

    Science.gov (United States)

    Doveston, Richard G; Kuusk, Ave; Andrei, Sebastian A; Leysen, Seppe; Cao, Qing; Castaldi, Maria P; Hendricks, Adam; Brunsveld, Luc; Chen, Hongming; Boyd, Helen; Ottmann, Christian

    2017-08-01

    14-3-3 proteins are positive regulators of the tumor suppressor p53, the mutation of which is implicated in many human cancers. Current strategies for targeting of p53 involve restoration of wild-type function or inhibition of the interaction with MDM2, its key negative regulator. Despite the efficacy of these strategies, the alternate approach of stabilizing the interaction of p53 with positive regulators and, thus, enhancing tumor suppressor activity, has not been explored. Here, we report the first example of small-molecule stabilization of the 14-3-3 - p53 protein-protein interaction (PPI) and demonstrate the potential of this approach as a therapeutic modality. We also observed a disconnect between biophysical and crystallographic data in the presence of a stabilizing molecule, which is unusual in 14-3-3 PPIs. © 2017 Federation of European Biochemical Societies.

  12. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Tiollais, Pierre [Unite' d' Organisation Nucleaire et Oncogenese, INSERM U.579, Institut Pasteur, Paris (France); Li, Tsaiping [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Zhao, Mujun, E-mail: mjzhao@sibs.ac.cn [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China)

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  13. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    International Nuclear Information System (INIS)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan; Tiollais, Pierre; Li, Tsaiping; Zhao, Mujun

    2011-01-01

    Highlights: → LIS1 mRNA and protein levels are decreased in 70% HCC tissues. → Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. → LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. → Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. → Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the development and

  14. P53 Gene Mutagenesis in Breast Cancer

    National Research Council Canada - National Science Library

    Sommer, Steve S

    2005-01-01

    .... The central hypothesis of this proposal is that variability in the patterns of p53 mutagensis in breast cancer reflects differences in exposures to different amounts and/or types of diverse environmental mutagens...

  15. YEAST AS A MODEL FOR THE STUDY OF HUMAN p53

    OpenAIRE

    PILOTO, CRISTINA

    2012-01-01

    The p53 tumor suppressor gene is a major barrier against cancer, preventing tumor development and promotes apoptosis induced by chemotherapy. P53 is able to regulate apoptosis both through its transcriptional activity and by the induction of the outer mitochondrial membrane (OMM) permeabilization promoting the release of cytochrome c. In the yeast S. cerevisiae, the machinery of the basic apoptotic process seems to be conserved as it presents many of the cytological markers of apoptosis s...

  16. Promoter methylation of IGFBP-3 and p53 expression in ovarian endometrioid carcinoma

    OpenAIRE

    Torng, Pao-Ling; Lin, Ching-Wei; Chan, Michael WY; Yang, Hui-Wen; Huang, Su-Cheng; Lin, Chin-Tarng

    2009-01-01

    Abstract Background Insulin-like growth factor binding protein (IGFBP-3) is an antiproliferative, pro-apoptotic and invasion suppressor protein which is transcriptionally regulated by p53. Promoter methylation has been linked to gene silencing and cancer progression. We studied the correlation between IGFBP-3 and p53 expression as well as IGFBP-3 promoter methylation in ovarian endometrioid carcinoma (OEC) by immunohistochemical staining and quantitative methylation-specific PCR (qMSP). Addit...

  17. Alteration of p53 gene in ovarian carcinoma: clinicopathological correlation and prognostic significance.

    OpenAIRE

    Niwa, K.; Itoh, M.; Murase, T.; Morishita, S.; Itoh, N.; Mori, H.; Tamaya, T.

    1994-01-01

    Inactivation of the tumour-suppressor gene p53 has been demonstrated in a variety of human tumours. We extracted DNA from paraffin-embedded tissues of 67 ovarian carcinoma samples (54 primary tumours, seven metastases and six tumours obtained after chemotherapy), and analysed allelic losses and mutations of the p53 gene using single-strand conformation polymorphism (SSCP) analysis of DNA fragments amplified by a polymerase chain reaction (PCR). Allelic loss was observed in 24 of 32 informativ...

  18. The Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Parisa Shahnazari

    2014-09-01

    Full Text Available Background: The ability of tumour suppressor protein p53 (P53 to regulate cell cycle processes can be modulated by hepatitis B virus (HBV. While preliminary evidences indicates the involvement of protein-x of HBV (HBx in altering p53 DNA binding, no further data have been accumulated for the significance of serum p53 in chronic hepatitis B virus infected patients. Methods: 72 non-cirrhotic and 19 cirrhotic patients infected by HBV were enrolled for the analysis in this study. Enzyme linked immunosorbent assay (ELISA was performed to study the concentrations of serum p53 protein. The tertiary structures of HBx and P53 were docked by Z-dock and Hex servers for in-silico protein-protein interaction analysis. Results: There was a significant association between the serum p53 and cirrhosis (OR=1.81 95% CI: 1.017-3.2, P=0.044. Cirrhotic patients had higher level of serum p53 compare with chronic infection of HBV (1.98±1.22 vs. 1.29±0.72 U/ml, P=0.05. No evidence of correlation was seen between the different variables such as age, gender, log viral load, serum alkaline phosphatase (ALP and alanine aminotransferase (ALT with serum p53. Tertiary model shows that the amino acid residues from Arg110 to Lys132 of the N-terminal of P53 which is critical for ubiquitination, are bonded to a region in N- terminal of HBx amino acid residues from Arg19 to Ser33. Conclusion: There is an increase in serum p53 in HBV-related cirrhosis patients. In this case, HBx might be responsible for such higher concentration of p53 through HBx-p53 protein-protein interaction, as is shown by molecular modeling approach.

  19. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  20. A designed inhibitor of p53 aggregation rescues p53 tumor-suppression in ovarian carcinomas

    Science.gov (United States)

    Soragni, Alice; Janzen, Deanna M.; Johnson, Lisa M.; Lindgren, Anne G.; Nguyen, Anh Thai-Quynh; Tiourin, Ekaterina; Soriaga, Angela B.; Lu, Jing; Jiang, Lin; Faull, Kym F.; Pellegrini, Matteo; Memarzadeh, Sanaz; Eisenberg, David S.

    2015-01-01

    SUMMARY Half of all human cancers lose p53 function by missense mutations, with an unknown fraction of these containing p53 in a self-aggregated, amyloid-like state. Here we show that a cell-penetrating peptide, ReACp53, designed to inhibit p53 amyloid formation, rescues p53 function in cancer cell lines and in organoids derived from high-grade serous ovarian carcinomas (HGSOC), an aggressive cancer characterized by ubiquitous p53 mutations. Rescued p53 behaves similarly to its wild-type counterpart in regulating target genes, reducing cell proliferation and increasing cell death. Intraperitoneal administration decreases tumor proliferation and shrinks xenografts in vivo. Our data show the effectiveness of targeting a specific aggregation defect of p53 and its potential applicability to HGSOCs. PMID:26748848

  1. The Histone Lysine Demethylase JMJD3/KDM6B Is Recruited to p53 Bound Promoters and Enhancer Elements in a p53 Dependent Manner

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Rappsilber, Juri

    2014-01-01

    linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We...... find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle......, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent...

  2. The combined status of ATM and p53 link tumor development with therapeutic response

    DEFF Research Database (Denmark)

    Jiang, Hai; Reinhardt, H Christian; Bartkova, Jirina

    2009-01-01

    commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor...... genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2...

  3. TATA binding protein associated factor 3 (TAF3 interacts with p53 and inhibits its function

    Directory of Open Access Journals (Sweden)

    Tora Laszlo

    2008-06-01

    Full Text Available Abstract Background The tumour suppressor protein p53 is a sequence specific DNA-binding transcription regulator, which exerts its versatile roles in genome protection and apoptosis by affecting the expression of a large number of genes. In an attempt to obtain a better understanding of the mechanisms by which p53 transcription function is regulated, we studied p53 interactions. Results We identified BIP2 (Bric-à-brac interacting protein 2, the fly homolog of TAF3, a histone fold and a plant homeodomain containing subunit of TFIID, as an interacting partner of Drosophila melanogaster p53 (Dmp53. We detected physical interaction between the C terminus of Dmp53 and the central region of TAF3 both in yeast two hybrid assays and in vitro. Interestingly, DmTAF3 can also interact with human p53, and mammalian TAF3 can bind to both Dmp53 and human p53. This evolutionarily conserved interaction is functionally significant, since elevated TAF3 expression severely and selectively inhibits transcription activation by p53 in human cell lines, and it decreases the level of the p53 protein as well. Conclusion We identified TAF3 as an evolutionarily conserved negative regulator of p53 transcription activation function.

  4. p73 competes with p53 and attenuates its response in a human ovarian cancer cell line

    OpenAIRE

    Vikhanskaya, Faina; D’Incalci, Maurizio; Broggini, Massimo

    2000-01-01

    The transcriptional activity of the p53 tumor suppressor protein is crucial for the regulation of cell growth, apoptosis and tumor progression. The first identified p53 relative, p73, was reported to be monoallelically expressed in normal tissues. In some tumors, loss of heterozygosity was associated with overexpression of the silent allele. Human p73α was transfected into the wild-type p53-expressing human ovarian carcinoma cell line A2780. Unlike human osteosarcoma Saos-2 cells, A2780 cells...

  5. Late Cornified Envelope Group I, a Novel Target of p53, Regulates PRMT5 Activity

    Directory of Open Access Journals (Sweden)

    Zhenzhong Deng

    2014-08-01

    Full Text Available p53 is one of the most important tumor suppressor genes involved in human carcinogenesis. Although downstream targets of p53 and their biologic functions in cancer cells have been extensively investigated, it is still far from the full understanding. Here, we demonstrate that Late Cornified Envelope Group I (LCE1 genes, which are located in the LCE gene clusters encoding multiple well-conserved stratum-corneum proteins, are novel downstream targets of p53. Exogenous p53 overexpression using an adenoviral vector system significantly enhanced the expression of LCE1 cluster genes. We also observed induction of LCE1 expressions by DNA damage, which was caused by treatment with adriamycin or UV irradiation in a wild-type p53-dependent manner. Concordantly, the induction of LCE1 by DNA damage was significantly attenuated by the knockdown of p53. Among predicted p53-binding sites within the LCE1 gene cluster, we confirmed one site to be a p53-enhancer sequence by reporter assays. Furthermore, we identified LCE1 to interact with protein arginine methyltransferase 5 (PRMT5. Knockdown of LCE1 by specific small interfering RNAs significantly increased the symmetric dimethylation of histone H3 arginine 8, a substrate of PRMT5, and overexpression of LCE1F remarkably decreased its methylation level. Our data suggest that LCE1 is a novel p53 downstream target that can be directly transactivated by p53 and is likely to have tumor suppressor functions through modulation of the PRMT5 activity.

  6. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  7. p53 requires the stress sensor USF1 to direct appropriate cell fate decision.

    Directory of Open Access Journals (Sweden)

    Amine Bouafia

    Full Text Available Genomic instability is a major hallmark of cancer. To maintain genomic integrity, cells are equipped with dedicated sensors to monitor DNA repair or to force damaged cells into death programs. The tumor suppressor p53 is central in this process. Here, we report that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1 coordinates p53 function in making proper cell fate decisions. USF1 stabilizes the p53 protein and promotes a transient cell cycle arrest, in the presence of DNA damage. Thus, cell proliferation is maintained inappropriately in Usf1 KO mice and in USF1-deficient melanoma cells challenged by genotoxic stress. We further demonstrate that the loss of USF1 compromises p53 stability by enhancing p53-MDM2 complex formation and MDM2-mediated degradation of p53. In USF1-deficient cells, the level of p53 can be restored by the re-expression of full-length USF1 protein similarly to what is observed using Nutlin-3, a specific inhibitor that prevents p53-MDM2 interaction. Consistent with a new function for USF1, a USF1 truncated protein lacking its DNA-binding and transactivation domains can also restore the induction and activity of p53. These findings establish that p53 function requires the ubiquitous stress sensor USF1 for appropriate cell fate decisions in response to DNA-damage. They underscore the new role of USF1 and give new clues of how p53 loss of function can occur in any cell type. Finally, these findings are of clinical relevance because they provide new therapeutic prospects in stabilizing and reactivating the p53 pathway.

  8. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.

    Directory of Open Access Journals (Sweden)

    Jennifer J Jordan

    2008-06-01

    Full Text Available Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt, originally defined by the consensus RRRCWWGYYY (n = 0-13 RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs by wild type (WT and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi-in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical (1/2-(a single decamer and (3/4-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of (1/2- and (3/4-site REs greatly expands the p53 master regulatory network.

  9. TP53 Codon 72 Polymorphism and P53 Protein Expression in Colorectal Cancer Specimens in Isfahan

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbahkt Dastjerdi

    2011-02-01

    Full Text Available The TP53 tumor suppressor gene plays important roles in genomic stability. A common polymorphism at codon 72 of TP53 gene has been associated with increased risk for many human cancers. The p53 protein is expressed in colorectal cancer, but the reported prevalence of its expression varies widely. In the present study, the p53 protein expression in different genotypes of its codon 72 , was investigated. We undertook a case-control study on 250 controls and 250 paraffin block specimens of sporadic colorectal adenocarcinomas from the city of Isfahan. PCR amplification of TP53 codon 72 polymorphism: TP53 codon 72 genotypes were detected by PCR using specific primer pairs for amplifying the proline or the arginine Alleles. The PCR reaction was done separately for each of the two polymorphic variants. The amplified products were subjected to electrophoresis on 1% agarose gel in 1× TBE buffer and visualized on a transilluminator using ethidium bromide. Immunohistochemical Staining: We evaluated the expression patterns of p53 protein, as potential prognostic marker in colorectal cancer specimens by immunohistochemical staining. Statistical analyses: The χ2-test was used to assess the significance of any difference in the prevalence of TP53 codon 72 polymorphism between colorectal cancer patients and controls. The odds ratio and 95% CI (confidence intervals was used as a measure of the strength of the association. Statistical significance level was set to P≤0.05. In control samples, the genotype distribution for TP53 polymorphism showed 30.4%, 45.2% and 24.4% for the arginine/arginine, arginine/proline and proline/proline genotypes, respectively. Allelic frequencies corresponded to 0.663 for the arginine allele and 0.338 for the proline allele. In the cancer group 38.8% of the cases were arginine/arginine, 40.4% were arginine/proline and 20.8% were proline/proline. The corresponding frequencies were 0.590 for the arginine allele and 0.410 for the

  10. miR-34 and p53: New Insights into a Complex Functional Relationship.

    Directory of Open Access Journals (Sweden)

    Francisco Navarro

    Full Text Available miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.

  11. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  12. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    Science.gov (United States)

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  13. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication

    Directory of Open Access Journals (Sweden)

    Constance Qiao Xin Yeo

    2016-04-01

    Full Text Available p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.

  14. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice

    Science.gov (United States)

    Herold, Marco J.

    2016-01-01

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  15. Lack of Major Genome Instability in Tumors of p53 Null Rats

    NARCIS (Netherlands)

    Hermsen, Roel; Toonen, Pim; Kuijk, Ewart|info:eu-repo/dai/nl/304834459; Youssef, Sameh A.; Kuiper, Raoul; van Heesch, Sebastiaan; de Bruin, Alain; Cuppen, Edwin|info:eu-repo/dai/nl/183050487; Simonis, Marieke

    2015-01-01

    Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53), genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats

  16. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Boesten, L.S.M.; Zadelaar, A.S.M.; Nieuwkoop, A. van; Hu, L.; Teunisse, A.F.A.S.; Jochemsen, A.G.; Evers, B.; Water, B. van de; Gijbels, M.J.J.; Vlijmen, B.J.M. van; Havekes, L.M.; Winther, M.P.J. de

    2009-01-01

    The cellular composition of atherosclerotic lesions is determined by many factors including cell infiltration, proliferation and cell death. Tumor suppressor gene p53 has been shown to regulate both cell proliferation and cell death in many cell types. In the present study, we investigated the role

  17. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy

    DEFF Research Database (Denmark)

    Kranz, Dominique; Dobbelstein, Matthias

    2006-01-01

    Mutations in the tumor suppressor gene TP53 represent the most frequent genetic difference between tumor cells and normal cells. Here, we have attempted to turn this difference into an advantage for normal cells during therapy. Using the Mdm2 antagonist nutlin-3, we first activated p53 in U2OS...

  18. p53 and CD44 as clinical markers of tumour progression in colorectal carcinogenesis

    NARCIS (Netherlands)

    Mulder, J. W.; Wielenga, V. J.; Pals, S. T.; Offerhaus, G. J.

    1997-01-01

    Recent advances in molecular genetics have importantly improved our understanding of the development of colorectal cancer. The present review gives an overview of the clinical value of the tumour-suppressor gene, p53, and the CD44 cell adhesion molecule in colorectal cancer and the pitfalls

  19. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    NARCIS (Netherlands)

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA

  20. P53 specifically binds triplex DNA in vitro and in cells

    NARCIS (Netherlands)

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA

  1. Expression de ;'anti-oncogene p53 dans les carcinomes mammaires ...

    African Journals Online (AJOL)

    The tumor suppressor gene TP53 has been localized to the short arm of chromosome 17. It is frequently the site of point mutations in different human tumors (colon, lung, breast, liver). The frequency of this mutation is between 14 and 60%.The mutation leads to the accumulation of an altered form of p53 protein, detectable ...

  2. Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy.

    Directory of Open Access Journals (Sweden)

    Maya Saison-Ridinger

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by an extremely dense fibrotic stroma, which contributes to tumor growth, metastasis, and drug resistance. During tumorigenesis, quiescent pancreatic stellate cells (PSCs are activated and become major contributors to fibrosis, by increasing growth factor signaling and extracellular matrix deposition. The p53 tumor suppressor is known to restrict tumor initiation and progression through cell autonomous mechanisms including apoptosis, cell cycle arrest, and senescence. There is growing evidence that stromal p53 also exerts anti-tumor activity by paracrine mechanisms, though a role for stromal p53 in PDAC has not yet been described. Here, we demonstrate that activation of stromal p53 exerts anti-tumor effects in PDAC. We show that primary cancer-associated PSCs (caPSCs isolated from human PDAC express wild-type p53, which can be activated by the Mdm2 antagonist Nutlin-3a. Our work reveals that p53 acts as a major regulator of PSC activation and as a modulator of PDAC fibrosis. In vitro, p53 activation by Nutlin-3a induces profound transcriptional changes, which reprogram activated PSCs to quiescence. Using immunofluorescence and lipidomics, we have also found that p53 activation induces lipid droplet accumulation in both normal and tumor-associated fibroblasts, revealing a previously undescribed role for p53 in lipid storage. In vivo, treatment of tumor-bearing mice with the clinical form of Nutlin-3a induces stromal p53 activation, reverses caPSCs activation, and decreases fibrosis. All together our work uncovers new functions for stromal p53 in PDAC.

  3. Oncogenic intra-p53 family member interactions in human cancers

    Directory of Open Access Journals (Sweden)

    Maria eFerraiuolo

    2016-03-01

    Full Text Available The p53 gene family members p53, p73 and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologues but hold peculiar functional properties. p53, p73 and p63 are tumor suppressor genes that promote differentiation, senescence and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic gain of function (GOF activities correlated with the induction of proliferation, invasion, chemoresistance and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53 with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor (VDR, Ets-1, NF-kB and YAP or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response (DDR, DNA double-strand breaks (DSBs response, enhanced invasion and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild type p53 (wt-p53 protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73 and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.

  4. PUMA decreases the growth of prostate cancer PC-3 cells independent of p53.

    Science.gov (United States)

    Shan, Zhengfei; Liu, Qingzuo; Li, Yuling; Wu, Jitao; Sun, Dekang; Gao, Zhenli

    2017-03-01

    PUMA (p53 upregulated modulator of apoptosis), a member of the B-cell lymphoma 2 (Bcl-2) protein family, is a pro-apoptotic protein. PUMA expression is modulated by the tumor suppressor p53. PUMA has a role in rapid cell death via p53-dependent and -independent mechanisms. To evaluate whether p53 is required for PUMA-mediated apoptosis in prostate cancer cells, p53 protein was silenced in human prostate cancer PC-3 cells by using p53 small interfering RNA (siRNA). The interference efficiency of p53 on RNA and protein levels was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and p21 expression were subsequently examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and western blot analysis, respectively. p53-silenced or control PC-3 cells were transfected with pCEP4-(hemagglutinin)-PUMA plasmid, or non-carrier plasmid. Enzyme-linked immunosorbent assay was used to determine cell apoptosis by measuring histone release and caspase-3 activation, and MTT assay was used to measure cell viability. In addition, the expression of pro-apoptosis protein Bax and anti-apoptosis protein Bcl-2 were evaluated. The results of the present study revealed that p53 siRNA significantly suppressed p53 RNA and protein expression in PC-3 cells. Deficiency of p53 increased the cell growth rate and decreased p21 expression. However, PUMA overexpression remained able to induce apoptosis in p53-silenced and control cells by increasing Bax expression and decreasing Bcl-2 expression, leading to the activation of caspase-3. These results suggest that PUMA may mediate apoptosis of prostate cancer PC-3 cells, potentially independently of p53. Furthermore, PUMA gene treatment to induce cancer cell apoptosis may be more efficient compared with p53-dependent apoptosis, where loss of p53 expression or function may lead to limited efficacy of PUMA expression. Therefore, the present study proposes the

  5. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  6. Regulation of p53 tetramerization and nuclear export by ARC.

    Science.gov (United States)

    Foo, Roger S-Y; Nam, Young-Jae; Ostreicher, Marc Jason; Metzl, Mark D; Whelan, Russell S; Peng, Chang-Fu; Ashton, Anthony W; Fu, Weimin; Mani, Kartik; Chin, Suet-Feung; Provenzano, Elena; Ellis, Ian; Figg, Nichola; Pinder, Sarah; Bennett, Martin R; Caldas, Carlos; Kitsis, Richard N

    2007-12-26

    Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53.

  7. Critical roles of p53 in epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available Hepatocellular carcinoma (HCC is one of the most malignant tumors and the biggest obstacle in curing HCC is its high metastasis potential. Alteration of p53 is the most frequent genetic change found in HCC. Although the biological function of p53 in tumor initiation and progression has been well characterized, whether or not p53 is implicated in metastasis of HCC is largely unknown. In this study, we analyzed the potential functions of p53 in epithelial-mesenchymal transition (EMT and metastasis of HCC cells. Both insulin- and TGF-β1-induced changes of critical EMT markers were greatly enhanced by p53 knockdown in HCC cells. The insulin- and TGF-β1-stimulated migration of HCC cells were enhanced by p53 knockdown. Furthermore, in vivo metastasis of HCC cells using different mouse models was robustly enhanced by p53 knockdown. In addition, we found that p53 regulation on EMT and metastasis involves β-catenin signaling. The nuclear accumulation and transcriptional activity of β-catenin was modulated by p53. The enhanced EMT phenotype, cell migration and tumor metastasis of HCC cells by p53 knockdown were abrogated by inhibiting β-catenin signal pathway. In conclusion, this study reveals that p53 plays a pivotal role in EMT and metastasis of HCC cells via its regulation on β-catenin signaling.

  8. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth.

    Science.gov (United States)

    Corney, David C; Flesken-Nikitin, Andrea; Godwin, Andrew K; Wang, Wei; Nikitin, Alexander Yu

    2007-09-15

    MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood. To elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have analyzed changes in miRNA microarray expression profile immediately after conditional inactivation of p53 in primary mouse ovarian surface epithelium cells. Among the most significantly affected miRNAs were miR-34b and miR-34c, which were down-regulated 12-fold according to quantitative reverse transcription-PCR analysis. Computational promoter analysis of the mir-34b/mir-34c locus identified the presence of evolutionarily conserved p53 binding sites approximately 3 kb upstream of the miRNA coding sequence. Consistent with evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53-null human ovarian carcinoma cells. Furthermore, as expected from p53 binding to the mir-34b/c promoter, doxorubicin treatment of wild-type, but not p53-deficient, cells resulted in an increase of mir-34b/mir-34c expression. Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement with the partially overlapping spectrum of their predicted targets. Taken together, these results show the existence of a novel mechanism by which p53 suppresses such critical components of neoplastic growth as cell proliferation and adhesion-independent colony formation.

  9. The Inherited p53 Mutation in the Brazilian Population.

    Science.gov (United States)

    Achatz, Maria Isabel; Zambetti, Gerard P

    2016-12-01

    A common criticism of studying rare diseases is the often-limited relevance of the findings to human health. Here, we review ∼15 years of research into an unusual germline TP53 mutation (p.R337H) that began with its detection in children with adrenocortical carcinoma (ACC), a remarkably rare childhood cancer that is associated with poor prognosis. We have come to learn that the p.R337H mutation exists at a very high frequency in Southern and Southeastern Brazil, occurring in one of 375 individuals within a total population of ∼100 million. Moreover, it has been determined that carriers of this founder mutation display variable tumor susceptibility, ranging from isolated cases of pediatric ACC to Li-Fraumeni or Li-Fraumeni-like (LFL) syndromes, thus representing a significant medical issue for this country. Studying the biochemical and molecular consequences of this mutation on p53 tumor-suppressor activity, as well as the putative additional genetic alterations that cooperate with this mutation, is advancing our understanding of how p53 functions in tumor suppression in general. These studies, which originated with a rare childhood tumor, are providing important information for guiding genetic counselors and physicians in treating their patients and are already providing clinical benefit. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system.

    Directory of Open Access Journals (Sweden)

    Virginia Andreotti

    Full Text Available The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4.Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii single copy, chromosomally located p53-responsive and control luminescence reporters, iii enhanced chemical uptake using modified ABC-transporters, iv small-volume formats for treatment and dual-luciferase assays, and v opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins.

  11. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.

    Directory of Open Access Journals (Sweden)

    Dan Su

    2015-01-01

    Full Text Available Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs and gene transactivation from a large pool of potential p53 REs (p53REs. To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS, ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE repeats was significantly higher (p<10-7 and correlated with stronger p53RE sequences (p<10-110 relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53

  12. p53 is required for the developmental restriction in Müller glial proliferation in mouse retina

    Science.gov (United States)

    Ueki, Yumi; Karl, Mike O.; Sudar, Samuel; Pollak, Julia; Taylor, Russell J.; Loeffler, Kati; Wilken, Matthew S.; Reardon, Sara; Reh, Thomas A.

    2012-01-01

    Müller glia are normally mitotically quiescent cells, but in certain pathological states they can reenter the mitotic cell cycle. While several cell cycle regulators have been shown to be important in this process, a role for the tumor suppressor, p53, has not been demonstrated. Here, we investigated a role for p53 in limiting the ability of Müller glia to proliferate in the mature mouse retina. Our data demonstrate that müller glia undergo a developmental restriction in their potential to proliferate. Retinal explants or dissociated cultures treated with EGF become mitotically quiescent by the end of the second postnatal week. In contrast, Müller glia from adult trp53−/+ or trp53−/− mice displayed a greater ability to proliferate in response to EGF stimulation in vitro. The enhanced proliferative ability of trp53 deficient mice correlates with a decreased expression of the mitotic inhibitor Cdkn1a/p21cip and an increase in c-myc, a transcription factor that promotes cell cycle progression. These data show that p53 plays an essential role in limiting the potential of Müller glia to re-enter the mitotic cycle as the retina matures during postnatal development. PMID:22777914

  13. PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma.

    Science.gov (United States)

    Ghannam-Shahbari, Dima; Jacob, Eyal; Kakun, Reli Rachel; Wasserman, Tanya; Korsensky, Lina; Sternfeld, Ofir; Kagan, Juliana; Bublik, Debora Rosa; Aviel-Ronen, Sarit; Levanon, Keren; Sabo, Edmond; Larisch, Sarit; Oren, Moshe; Hershkovitz, Dov; Perets, Ruth

    2018-01-30

    High grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer and it is now widely accepted that this disease often originates from the fallopian tube epithelium. PAX8 is a fallopian tube lineage marker with an essential role in embryonal female genital tract development. In the adult fallopian tube, PAX8 is expressed in the fallopian tube secretory epithelial cell (FTSEC) and its expression is maintained through the process of FTSEC transformation to HGSC. We now report that PAX8 has a pro-proliferative and anti-apoptotic role in HGSC. The tumor suppressor gene TP53 is mutated in close to 100% of HGSC; in the majority of cases, these are missense mutations that endow the mutant p53 protein with potential gain of function (GOF) oncogenic activities. We show that PAX8 positively regulates the expression of TP53 in HGSC and the pro-proliferative role of PAX8 is mediated by the GOF activity of mutant p53. Surprisingly, mutant p53 transcriptionally activates the expression of p21, which localizes to the cytoplasm of HGSC cells where it plays a non-canonical, pro-proliferative role. Together, our findings illustrate how TP53 mutations in HGSC subvert a normal regulatory pathway into a driver of tumor progression.

  14. Mutant p53 drives cancer by subverting multiple tumour suppression pathways

    Directory of Open Access Journals (Sweden)

    Sue eHaupt

    2016-01-01

    Full Text Available The tumour suppressor p53 normally acts as a brake to halt damaged cells from perpetrating their genetic errors into future generations. If p53 is disrupted by mutation, it may not only lose these corrective powers, but counter-productively acquire new capacities that drive cancer. A newly emerging manner in which mutant p53 executes its cancer promoting functions is by harnessing key proteins (including many transcription factors, which normally partner with its wild type, tumour-inhibiting counterpart. In association with the subverted activities of these protein partners, mutant p53 is empowered to act across multiple fundamental cellular pathways (regulating cell division and metabolism and corrupt them to become cancer promoting.

  15. p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amy Tarangelo

    2018-01-01

    Full Text Available How cancer cells respond to nutrient deprivation remains poorly understood. In certain cancer cells, deprivation of cystine induces a non-apoptotic, iron-dependent form of cell death termed ferroptosis. Recent evidence suggests that ferroptosis sensitivity may be modulated by the stress-responsive transcription factor and canonical tumor suppressor protein p53. Using CRISPR/Cas9 genome editing, small-molecule probes, and high-resolution, time-lapse imaging, we find that stabilization of wild-type p53 delays the onset of ferroptosis in response to cystine deprivation. This delay requires the p53 transcriptional target CDKN1A (encoding p21 and is associated with both slower depletion of intracellular glutathione and a reduced accumulation of toxic lipid-reactive oxygen species (ROS. Thus, the p53-p21 axis may help cancer cells cope with metabolic stress induced by cystine deprivation by delaying the onset of non-apoptotic cell death.

  16. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  17. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    Directory of Open Access Journals (Sweden)

    Sathidpak Nantasanti

    Full Text Available The tumor suppressors Retinoblastoma (Rb and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC. DDC is metabolized mainly by cytochrome P450 (Cyp3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  18. The role of p53 in the response to mitotic spindle damage

    International Nuclear Information System (INIS)

    Meek, D.W.

    2000-01-01

    The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoint in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have de-condensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation. (authors)

  19. New small molecules, ISA27 and SM13, inhibit tumour growth inducing mitochondrial effects of p53

    Science.gov (United States)

    Sorriento, D; Del Giudice, C; Bertamino, A; Ciccarelli, M; Gomez-Monterrey, I; Campiglia, P; Novellino, E; Illario, M; Trimarco, B; De Luca, N; Iaccarino, G

    2015-01-01

    Background: p53 is a transcription factor with tumour suppressor properties, which is able to induce mitochondrial apoptosis independently of its transcriptional activity. We recently synthesised two new compounds (ISA27 and SM13), which block p53-MDM2 interaction and induce apoptosis in p53 wild-type (WT) tumour cells. The aim of this study was to verify the effectiveness of these compounds in tumours carrying a mutated form of p53 gene with no transcriptional activity. Methods: In vitro we evaluated the effectiveness of our compounds in cancer cell lines carrying WT, mutated and null p53 gene. In vivo study was performed in Balb/c nude mice and the mitochondrial-dependent apoptotic signalling was evaluated by western blot. Results: Both ISA27 and SM13 reduced cell proliferation and induced apoptosis in vitro in cells carrying either p53 WT or mutated gene, suggesting that its effect is independent from p53 transcriptional activity. On the contrary, SM13 had no effect in a p53 null cell line. In vivo, ISA27 and SM13 induced cancer cell death in a dose-dependent manner through the activation of the mitochondrial-dependent death signalling in p53-mutated cells. In vivo, SM13 reduced tumour growth. Conclusions: Our study proposes SM13 as anticancer compound to use for the treatment of p53-dependent tumours, even in the absence of p53 transcriptional activity. PMID:25422906

  20. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  1. Insight into a Novel p53 Single Point Mutation (G389E by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Maria Cristina De Rosa

    2010-12-01

    Full Text Available The majority of inactivating mutations of p53 reside in the central core DNA binding domain of the protein. In this computational study, we investigated the structural effects of a novel p53 mutation (G389E, identified in a patient with congenital adrenal hyperplasia, which is located within the extreme C-terminal domain (CTD of p53, an unstructured, flexible region (residues 367–393 of major importance for the regulation of the protein. Based on the three-dimensional structure of a carboxyl-terminal peptide of p53 in complex with the S100B protein, which is involved in regulation of the tumor suppressor activity, a model of wild type (WT and mutant extreme CTD was developed by molecular modeling and molecular dynamics simulation. It was found that the G389E amino acid replacement has negligible effects on free p53 in solution whereas it significantly affects the interactions of p53 with the S100B protein. The results suggest that the observed mutation may interfere with p53 transcription activation and provide useful information for site-directed mutagenesis experiments.

  2. Lack of major genome instability in tumors of p53 null rats.

    Directory of Open Access Journals (Sweden)

    Roel Hermsen

    Full Text Available Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53, genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions.

  3. P53 is required for radiation-induced apoptosis in mouse thymocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, S.W.; Schmitt, E.M.; Jacks, Tyler (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Biology); Smith, S.W.; Osborne, B.A. (Massachusetts Univ., Amherst, MA (United States))

    1993-04-29

    The p53 tumor suppressor gene is the most widely mutated gene in human tumorigenesis. p53 encodes a transcriptional activator whose targets may include genes that regulate genomic stability, the cellular response to DNA damage, and cell-cycle progression. Introduction of wild-type p53 into cell lines that have lost endogenous p53 function can cause growth arrest or induce a process of cell death known as apoptosis. During normal development, self- reactive thymocytes undergo negative selection by apoptosis, which can also be induced in immature thymocytes by other stimuli, including exposure to glucocorticoids and ionizing radiation. Although normal negative selection involves signalling through the T- cell receptor, the induction of apoptosis by other stimuli is poorly understood. The authors investigated the requirement for p53 during apoptosis in mouse thymocytes. They report here that immature thymocytes lacking p53 die normally when exposed to compounds that may mimic T-cell receptor engagement and to glucocorticoids but are resistant to the lethal effects of ionizing radiation. These results demonstrate that p53 is required for radiation-induced cell death in the thymus but is not necessary for all forms of apoptosis. (Author).

  4. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug.

    Science.gov (United States)

    Wang, Shu-Ping; Wang, Wen-Lung; Chang, Yih-Leong; Wu, Chen-Tu; Chao, Yu-Chih; Kao, Shih-Han; Yuan, Ang; Lin, Chung-Wu; Yang, Shuenn-Chen; Chan, Wing-Kai; Li, Ker-Chau; Hong, Tse-Ming; Yang, Pan-Chyr

    2009-06-01

    The tumour suppressor p53 is known to prevent cancer progression by inhibiting proliferation and inducing apoptosis of tumour cells. Slug, an invasion promoter, exerts its effects by repressing E-cadherin transcription. Here we show that wild-type p53 (wtp53) suppresses cancer invasion by inducing Slug degradation, whereas mutant p53 may stabilize Slug protein. In non-small-cell lung cancer (NSCLC), mutation of p53 correlates with low MDM2, high Slug and low E-cadherin expression. This expression profile is associated with poor overall survival and short metastasis-free survival in patients with NSCLC. wtp53 upregulates MDM2 and forms a wtp53-MDM2-Slug complex that facilitates MDM2-mediated Slug degradation. Downregulation of Slug by wtp53 or MDM2 enhances E-cadherin expression and represses cancer cell invasiveness. In contrast, mutant p53 inactivates Slug degradation and leads to Slug accumulation and increased cancer cell invasiveness. Our findings indicate that wtp53 and p53 mutants may differentially control cancer invasion and metastasis through the p53-MDM2-Slug pathway.

  5. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  6. Immunofluorometric assay of p53 protein versus sequencing of p53 exons 5 to 9 for the detection of p53 abnormalities in ovarian carcinoma.

    Science.gov (United States)

    Lianidou, E S; Levesque, M A; Katsaros, D; Angelopoulou, K; Yu, H; Genta, F; Arisio, R; Massobrio, M; Bharaj, B; Diamandis, E P

    1999-01-01

    p53 alteration, detected as mutation of the p53 gene or as accumulation of mutant p53 protein, is a common feature of most malignancies, including ovarian carcinoma, and may identify patients with unfavorable prognosis and resistance to chemotherapy. Tumor tissues from 55 patients with well or poorly differentiated (grades 1 or 3) primary epithelial ovarian carcinoma were assessed both for p53 protein overexpression by a sensitive time-resolved immunofluorometric assay employing DO-1 and CM-1 antibodies, and for genetic p53 abnormalities by direct sequencing of PCR-amplified exons 5 to 9. Sixteen p53 mutations (29%), including 3 deletions causing frameshifts as well as one nonsense and 12 missense point mutations were found in all exons except exon 9. Overexpression of p53 protein, defined as a concentration exceeding the 75th percentile, was found in 15 cases (27%), 10 of which had missense mutations (P p53-negative by immunoassay. Both p53 mutation (P = 0.04) and p53 protein accumulation (P p53 mutation was more closely related to grade 3 lesions (P = 0.04) and serous histotype (P = 0.01). These results indicate that p53 protein accumulation correlates well with missense point mutation in carcinoma of the ovary and, together with other evidence that p53 abnormality may be prognostic of outcome in this disease, suggest that the immunoassay of p53 protein may have clinical value.

  7. Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis

    International Nuclear Information System (INIS)

    Jiang, L.C.; Huang, S.Y.; Zhang, D.S.; Zhang, S.H.; Li, W.G.; Zheng, P.H.; Chen, Z.W.

    2014-01-01

    Beclin 1 plays a critical role in autophagy and functions as a haploinsufficient tumor suppressor. The expression and prognostic significance of beclin 1 in head and neck adenoid cystic carcinoma (ACC) are largely unexplored. Therefore, we investigated the expression of beclin 1, Bcl-2, and p53 in head and neck ACC tissue. Tissue samples from 35 cases (15 females, 20 males) of head and neck ACC were utilized for immunohistochemistry. Beclin 1 expression was observed in 32 cases (91.4%) and considered to be high in 15 cases (42.9%) and low in 20 cases (57.1%). Beclin 1 expression was significantly correlated with a histological growth pattern (P=0.046) and histological grade (P=0.037). Beclin 1 expression was inversely correlated with Bcl-2 expression (P=0.013) and significantly associated with overall survival (P=0.006). Bcl-2 and p53 expression were observed in 21 cases (60.0%) and 16 cases (45.7%). Bcl-2 expression was significantly correlated with perineural invasion (P=0.041) and not associated with overall survival (P=0.053). p53 expression was directly correlated with beclin 1 expression (P=0.044). Our results indicated that beclin 1 may be a novel, promising prognostic factor for clinical outcome in head and neck ACC patients and may play a part in the development of head and neck ACC by interacting with Bcl-2 and p53

  8. Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.C.; Huang, S.Y.; Zhang, D.S.; Zhang, S.H.; Li, W.G.; Zheng, P.H.; Chen, Z.W. [Shandong Provincial Hospital Affiliated to Shandong University, Department of Oral and Maxillofacial Surgery, Jinan, China, Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan (China)

    2014-03-03

    Beclin 1 plays a critical role in autophagy and functions as a haploinsufficient tumor suppressor. The expression and prognostic significance of beclin 1 in head and neck adenoid cystic carcinoma (ACC) are largely unexplored. Therefore, we investigated the expression of beclin 1, Bcl-2, and p53 in head and neck ACC tissue. Tissue samples from 35 cases (15 females, 20 males) of head and neck ACC were utilized for immunohistochemistry. Beclin 1 expression was observed in 32 cases (91.4%) and considered to be high in 15 cases (42.9%) and low in 20 cases (57.1%). Beclin 1 expression was significantly correlated with a histological growth pattern (P=0.046) and histological grade (P=0.037). Beclin 1 expression was inversely correlated with Bcl-2 expression (P=0.013) and significantly associated with overall survival (P=0.006). Bcl-2 and p53 expression were observed in 21 cases (60.0%) and 16 cases (45.7%). Bcl-2 expression was significantly correlated with perineural invasion (P=0.041) and not associated with overall survival (P=0.053). p53 expression was directly correlated with beclin 1 expression (P=0.044). Our results indicated that beclin 1 may be a novel, promising prognostic factor for clinical outcome in head and neck ACC patients and may play a part in the development of head and neck ACC by interacting with Bcl-2 and p53.

  9. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features

    International Nuclear Information System (INIS)

    Feng, Chang Wei; Wang, Li Dong; Jiao, Lian Hua; Liu, Bin; Zheng, Shu; Xie, Xin Ji

    2002-01-01

    The growth and metastasis of tumors depend on the development of an adequate blood supply via angiogenesis. Recent studies indicate that the inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF) and the tumor suppressor p53 are fundamental play-markers of the angiogenic process. Overexpression of iNOS and VEGF has been shown to induce angiogenesis in tumors. P53 suppresses angiogenesis by down-regulating VEGF and iNOS. The correlation of expression of p53, VEGF and iNOS and clinical features in gastric carcinogenesis, however, has not been well characterized. The expression of p53, iNOS and VEGF in gastric precancerous and cancerous lesions and its relation with the clinical features was determined with immunohistochemistry (avidin-biotin-peroxidase complex method) on 55 randomly selected GC patients and 60 symptom-free subjects from the mass survey in the high-incidence area for GC in Henan, northern China. The positive immunostainig rates for p53, iNOS and VEGF in gastric carcinomas were 51%, 44% and 51%, respectively, and correlated well with TNM stages, but did not show significant difference among the groups with different degrees of gastric wall invasion depth by GC. A positive immunostaining reaction for the iNOS protein was significantly correlated with lymph node metastasis (p = 0.019; Spearman correlation coefficient). P53 protein accumulation was higher in the poorly-differentiated gastric carcinoma than in well-differentiated one. In gastric biopsies, no positive immunosatining was observed for p53, iNOS and VEGF in the histologically normal tissue and chronic superficial gastritis (CSG). However, p53, iNOS and VEGF positive immunostaining was observed in the tissues with different severities of lesions of chronic atrophic gastritis (CAG), intestinal metaplasia (IM) and dysplasia (DYS), and the positive rates increased with the lesion progression from CAG to IM to DYS. A high coincidental positive and negative immunostaining

  10. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of p53 antibodies in human serum.

    Science.gov (United States)

    Yan, Guihong; Xing, Da; Tan, Shici; Chen, Qun

    2004-05-01

    The mutation of tumor suppressor p53 gene is common in malignant tumor. p53 antibodies are products of immunoresponse against abnormal p53 protein. It has been found that p53 antibodies are of importance in tumor's diagnosis, prognosis and relapse monitoring. However, current method for detecting p53 antibodies, i.e. enzyme-linked immunosorbent assay (ELISA), requires a long time with multiple steps, and the assay is only semi-quantitative. In this work, a protocol for quantitative detection of p53 antibodies in human serum using immunomagnetic electrochemiluminescence (IM-ECL) was devoloped. The immunoassay format consisted of a three antibody sandwich in which a biotinylated capture antibody, was banded with the commercial p53 protein. A detector antibody was added to bind the p53 protein at another site. Then, secondary antibody, labeled with ruthenium(II) tris-bipyridal, was added and, when bound to the bead immunocompiex, generated light in the presence of an excess of tripropylamine. The light was detected and measured by the analyzer made by us. Our experimental results indicate that the sensitivity of this assay was 10 pg of p53 antibodies per ml of reference serum (normal human serum). A stable calibration curve with a wide dynamic range was established. The calibration curve was linear from 0.01 to 1000 ng/ml, thus, making quantitation possible. An immunologic prozone effect was observed above 1000 ng p53 antibodies per milliliter of serum. Serum samples from lung and nasopharyngeal carcinoma patients were tested using the IM-ECL assay. The positive rate of p53 antibodies were 28.6% in lung carcinoma and 8.33% in nasopharyngeal carcinoma, respectively. p53 antibody concentration in the carcerous human sera were quantified from the calibration curve. In the case of lung carcinoma, a trend was found that a higher p53 antibody concentration in the serum was likely linked to a higher stage of the cancer. This trend was not found in nasopharyngeal carcinoma

  11. Pax3 stimulates p53 ubiquitination and degradation independent of transcription.

    Directory of Open Access Journals (Sweden)

    Xiao Dan Wang

    Full Text Available Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.We employed murine embryonic stem cell (ESC-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.

  12. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  13. Molecular screening of compounds to the predicted Protein-Protein Interaction site of Rb1-E7 with p53- E6 in HPV.

    Science.gov (United States)

    Shaikh, Faraz; Sanehi, Parvish; Rawal, Rakesh

    2012-01-01

    Cervical cancer is malignant neoplasm of the cervix uteri or cervical area. Human Papillomaviruses (HPVs) which are heterogeneous groups of small double stranded DNA viruses are considered as the primary cause of cervical cancer, involved in 90% of all Cervical Cancers. Two early HPV genes, E6 and E7, are known to play crucial role in tumor formation. E6 binds with p53 and prevents its translocation and thereby inhibit the ability of p53 to activate or repress target genes. E7 binds to hypophosphorylated Rb and thereby induces cells to enter into premature S-phase by disrupting Rb-E2F complexes. The strategy of the research work was to target the site of interaction of Rb1 -E7 & p53-E6. A total of 88 compounds were selected for molecular screening, based on comprehensive literature survey for natural compounds with anti-cancer activity. Molecular docking analysis was carried out with Molegro Virtual Docker, to screen the 88 chosen compounds and rank them according to their binding affinity towards the site of interaction of the viral oncoproteins and human tumor suppressor proteins. The docking result revealed that Nicandrenone a member of Withanolides family of chemical compounds as the most likely molecule that can be used as a candidate drug against HPV induced cervical cancer. HPV - Human Papiloma Virus, HTSP - Human Tumor Suppressor Proteins, VOP - Viral oncoproteins.

  14. Molecular basis of basal cell carcinogenesis in the atomic-bomb survivor population: p53 and PTCH gene alterations.

    Science.gov (United States)

    Mizuno, Terumi; Tokuoka, Shoji; Kishikawa, Masao; Nakashima, Eiji; Mabuchi, Kiyohiko; Iwamoto, Keisuke S

    2006-11-01

    Epidemiological studies suggest that UV exposure from sunlight is the major etiology for skin cancers, both melanocytic and non-melanocytic. However, the radiation-related risk for skin cancer among atomic bomb survivors of Hiroshima and Nagasaki is primarily derived from the excess risk of basal cell carcinoma (BCC), with no demonstrable excess in squamous cell carcinoma or melanoma. The BCCs in this cohort are therefore unusual in being potentially attributable to two types of radiation-UV and ionizing (IR). BCCs have been associated with PTCH and/or p53 tumor suppressor gene alterations. To investigate the roles of these genes in relation to IR and UV exposures, we analyzed both genes in BCC samples from atomic bomb survivors. We examined 47 tumors, of which 70% had non-silent base-substitution p53 mutations independent of IR or UV exposure. However, the distribution of mutation type depends on UV and/or IR exposure. For example, C-to-T transitions at CpG sites adjacent to pyrimidine-pyrimidine (PyPy) sequences were more prevalent in tumors from UV-exposed than UV-shielded body areas and CpG-mutations at non-PyPy sequences were more prevalent in tumors from UV-shielded body areas with high-IR (>or=1 Gy) than low-IR (<0.2 Gy) exposure. And notably, although p53 deletion-frequencies demonstrated no IR-dose associations, deletions at the PTCH locus were more frequent (79% versus 44%) in tumors with high-IR than low-IR exposure. Moreover, 60% of high-IR tumors harbored both p53 and PTCH abnormalities compared with 23% of low-IR tumors. Therefore, alteration of both genes is likely to play a role in radiation-induced basal cell carcinogenesis.

  15. Molecular cloning, characterization, and expression analysis of p53 from the oriental river prawn, Macrobrachium nipponense, in response to hypoxia.

    Science.gov (United States)

    Sun, Shengming; Gu, Zhimin; Fu, Hongtuo; Zhu, Jian; Ge, Xianping; Xuan, Fujun

    2016-07-01

    The tumor suppressor gene p53 plays a critical role in safeguarding the integrity of the genome in mammalian cells. It acts as a sequence-specific transcription factor. Once p53 is activated by a variety of cellular stresses, it transactivates downstream target genes and regulates the cell cycle and apoptosis. However, little is known about the functions of the p53 pathway in prawns in response to hypoxia. In this study, the cDNA of p53 from the oriental river prawn, Macrobrachium nipponense, (Mnp53) was cloned using a combination of homology cloning and rapid amplification of cDNA ends. The full-length cDNA of Mnp53 has 2130 bp, including an open reading frame of 1125 bp that encodes a polypeptide of 374 amino acids with a predicted molecular weight of 41.9 kDa and a theoretical isoelectric point of 6.9. Quantitative real-time (qRT)-PCR assays revealed that Mnp53 was ubiquitously expressed in all examined tissues, but at high levels in the hepatopancreas. In addition, we studied respiratory bursts and reactive oxygen species (ROS) production in the hepatopancreas of M. nipponense. Our results suggest that oxidative stress occurred in prawns in response to hypoxia and that apoptosis was associated with an increase in caspase-3 mRNA expression. qRT-PCR and western blot results confirmed that hypoxic stress induced the upregulation of Mnp53 at mRNA and protein levels. Furthermore, immunohistochemistry showed remarkable changes in immunopositive staining after the same hypoxic treatment. These results suggest that hypoxia-induced oxidative stress may cause apoptosis and cooperatively stimulate the expression of Mnp53. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines.

    Science.gov (United States)

    Dastjerdi, Mehdi Nikbakht; Salahshoor, Mohammad R; Mardani, Mohammad; Hashemibeni, Batool; Roshankhah, Shiva

    2013-01-01

    P300 is a member of the mammalian histone acetyl transferase (HAT) family, an enzyme that acetylates histones and several non-histone proteins including P53 (the most important tumor suppressor gene) during stress, which plays an important role in the apoptosis of tumor cells. Hereby, this study describes the potency of CTB (Cholera Toxin B subunit) as a P300 activator to induce apoptosis in a breast cancer cell line (MCF-7) and a lung fibroblast cell line (MRC-5) as a non-tumorigenic control sample. MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with or without CTB at a concentration of 85.43 μmol/L, based on half-maximal inhibitory concentration (IC50) index at different times (24, 48 and 72 h). The percentage of apoptotic cells were measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with CTB at different times. ELISA and Bradford protein techniques were used to detect levels of total and acetylated P53 protein generated in MCF-7 and MRC-5. Our findings indicated that CTB could effectively induce apoptosis in MCF-7 significantly higher than MRC-5. We showed that expression of P300 was up-regulated by increasing time of CTB treatment in MCF-7 but not in MRC-5 and the acetylated and total P53 protein levels were increased more in MCF-7 cells than MRC-5. CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.

  17. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Isoe, Yasuko; Okuyama, Teruhiro [Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Taniguchi, Yoshihito [Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kubo, Takeo [Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Takeuchi, Hideaki, E-mail: takeuchi@biol.s.u-tokyo.ac.jp [Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.

  18. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors.

    Science.gov (United States)

    Aizu, Wataru; Belinsky, Glenn S; Flynn, Christopher; Noonan, Emily J; Boes, Colleen C; Godman, Cassandra A; Doshi, Bindi; Nambiar, Prashant R; Rosenberg, Daniel W; Giardina, Charles

    2006-10-16

    The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.

  19. Bladder-like graphical representation of p53 gene alterations in some human cancers

    International Nuclear Information System (INIS)

    Helal, N.L.; Dorrah, M.; LI, C.

    2005-01-01

    the p53 tumor suppressor gene is mutated in about half of all human cancer cells. These mutations are not only important in tumor progression but apparently also in the response of some tumors to chemotherapy and radiation treatment, thus to clinical outcome. Recent studies have shown that cells carrying p53 mutations are more resistant to radiation and chemotherapy than cells with functional p53. More than 15000 tumors with Tp53 mutations were published, leadingto the description of more than 1500 different Tp53 mutants (at the site http:// p53. curie.fr). To exploit this huge bulk of data, specific analytic tools were highly warranted. Also, new computational techniques for rapid determination of such information and comparative studies of different mutations are required. In the present study, a mathematical method for the IARC library p53 mutation database comparing p53 mutations occurring in four different cancers was described. The sizes of the four cancers in the database were bladder (860), liver (786), brain (1170) and skin (38) cancers, for a total of 2854 of p53 mutations. The study was carried out on exons 4-8 of p53 for the four cancers under investigation. From this study, it can be quantitatively obtained some information for each characteristic sequence. The data showed that exon 8 was the most mutant exon in skin cancer and exon 7 was the lowest one. In hepatocellular carcinoma, exon 4 was the most mutant exon and exon 7 was the lowest mutant exon. Brain cancer showed high mutation in exon 8 and low mutation at exon 6. Finally, bladder mutation was mostly mutated at exon 6 comparing to the least value of exon 7. It is expected that this study of p53 mutation may provide useful information for the diagnosis, prognosis and treatment of cancer

  20. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner

    Science.gov (United States)

    Giorgi, Carlotta; Bonora, Massimo; Sorrentino, Giovanni; Missiroli, Sonia; Poletti, Federica; Suski, Jan M.; Galindo Ramirez, Fabian; Rizzuto, Rosario; Di Virgilio, Francesco; Zito, Ester; Pandolfi, Pier Paolo; Wieckowski, Mariusz R.; Mammano, Fabio; Del Sal, Giannino; Pinton, Paolo

    2015-01-01

    The tumor suppressor p53 is a key protein in preventing cell transformation and tumor progression. Activated by a variety of stimuli, p53 regulates cell-cycle arrest and apoptosis. Along with its well-documented transcriptional control over cell-death programs within the nucleus, p53 exerts crucial although still poorly understood functions in the cytoplasm, directly modulating the apoptotic response at the mitochondrial level. Calcium (Ca2+) transfer between the endoplasmic reticulum (ER) and mitochondria represents a critical signal in the induction of apoptosis. However, the mechanism controlling this flux in response to stress stimuli remains largely unknown. Here we show that, in the cytoplasm, WT p53 localizes at the ER and at specialized contact domains between the ER and mitochondria (mitochondria-associated membranes). We demonstrate that, upon stress stimuli, WT p53 accumulates at these sites and modulates Ca2+ homeostasis. Mechanistically, upon activation, WT p53 directly binds to the sarco/ER Ca2+-ATPase (SERCA) pump at the ER, changing its oxidative state and thus leading to an increased Ca2+ load, followed by an enhanced transfer to mitochondria. The consequent mitochondrial Ca2+ overload causes in turn alterations in the morphology of this organelle and induction of apoptosis. Pharmacological inactivation of WT p53 or naturally occurring p53 missense mutants inhibits SERCA pump activity at the ER, leading to a reduction of the Ca2+ signaling from the ER to mitochondria. These findings define a critical nonnuclear function of p53 in regulating Ca2+ signal-dependent apoptosis. PMID:25624484

  1. Prima-1 induces apoptosis in bladder cancer cell lines by activating p53

    Directory of Open Access Journals (Sweden)

    Camila B. Piantino

    2013-01-01

    Full Text Available OBJECTIVES: Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines. METHOD: The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR. RESULTS: Prima-1 was able to reactivate p53 function in the T24 (p53 mt bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner. CONCLUSION: Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.

  2. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    International Nuclear Information System (INIS)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito; Kubo, Takeo; Takeuchi, Hideaki

    2012-01-01

    Highlights: ► Progenitor migration is accompanied by an increase in their numbers in the adult brain. ► p53 Mutation suppressed an increase in the number of the migrated progenitors. ► The decreased progenitor number is not due to enhanced cell death. ► p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.

  3. Alterations in the K-ras and p53 genes in rat lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States)] [and others

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  4. Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells

    Science.gov (United States)

    Aimola, Pierpaolo; Carmignani, Marco; Volpe, Anna Rita; Di Benedetto, Altomare; Claudio, Luigi; Waalkes, Michael P.; van Bokhoven, Adrie; Tokar, Erik J.; Claudio, Pier Paolo

    2012-01-01

    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis. PMID:22448262

  5. p53 expression in colorectal carcinoma in relation to ...

    African Journals Online (AJOL)

    p53 expression in colorectal carcinoma in relation to histopathological features in Ugandan patients. ... Molecular pathogenesis of colorectal cancer commonly involves mutation in p53 gene which leads to expression of p53 protein in tumor cells. Expression of p53 protein has been associated with poor clinical outcome and ...

  6. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  7. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  8. Targeted p53 activation by saRNA suppresses human bladder cancer cells growth and metastasis.

    Science.gov (United States)

    Wang, Chenghe; Ge, Qiangqiang; Zhang, Qingsong; Chen, Zhong; Hu, Jia; Li, Fan; Ye, Zhangqun

    2016-03-25

    Previous study showed that dsP53-285 has the capacity to induce tumor suppressor gene p53 expression by targeting promoter in non-human primates' cells. And it is well known that TP53 gene is frequently mutant or inactivated in human bladder cancer. Hereby, whether this small RNA can activate the expression of wild-type p53 and inhibit human bladder cancer cells remains to be elucidated. Oligonucleotide and lentivirus were used to overexpress dsP53-285 and dsControl. Real-time PCR and western blot were used to detect genes' mRNA and protein expression, respectively. Cell proliferation assay, colony formation, flow cytometry, transwell assay and wound healing assay were performed to determine the effects on bladder cancer cells proliferation and migration/invasion in vitro. Animal models were carried out to analyze the effects on cells growth and metastasis in vivo. Transfection of dsP53-285 into human bladder cancer cell lines T24 and EJ readily activate wild-type p53 expression by targeting promoter. Moreover, dsP53-285 exhibited robust capacity to inhibit cells proliferation and colony formation, induce cells G0/G1 arrest, suppress migration and invasion. Besides, the Cyclin-CDK genes (Cyclin D1 and CDK4/6) were down-regulated and the EMT-associated genes (E-cadherin, β-catenin, ZEB1 and Vimentin) were also expressed inversely after dsP53-285 treatment. In addition, dsP53-285 could also significantly suppress the growth of bladder cancer xenografts and metastasis in nude mice. Most importantly, the anti-tumor effects mediated by dsP53-285 were mainly achieved by manipulating wild-type p53 expression. Our findings indicate that the dsP53-285 can upregulate wild-type p53 expression in human bladder cancer cells through RNA activation, and suppresses cells proliferation and metastasis in vitro and in vivo.

  9. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  10. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage.

    Science.gov (United States)

    Zhang, Ali; Zhou, Nanjiang; Huang, Jianguo; Liu, Qian; Fukuda, Koji; Ma, Ding; Lu, Zhaohui; Bai, Cunxue; Watabe, Kounosuke; Mo, Yin-Yuan

    2013-03-01

    It is well known that upon stress, the level of the tumor suppressor p53 is remarkably elevated. However, despite extensive studies, the underlying mechanism involving important inter-players for stress-induced p53 regulation is still not fully understood. We present evidence that the human lincRNA-RoR (RoR) is a strong negative regulator of p53. Unlike MDM2 that causes p53 degradation through the ubiquitin-proteasome pathway, RoR suppresses p53 translation through direct interaction with the heterogeneous nuclear ribonucleoprotein I (hnRNP I). Importantly, a 28-base RoR sequence carrying hnRNP I binding motifs is essential and sufficient for p53 repression. We further show that RoR inhibits p53-mediated cell cycle arrest and apoptosis. Finally, we demonstrate a RoR-p53 autoregulatory feedback loop where p53 transcriptionally induces RoR expression. Together, these results suggest that the RoR-hnRNP I-p53 axis may constitute an additional surveillance network for the cell to better respond to various stresses.

  11. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription.

    Science.gov (United States)

    Ampofo, Emmanuel; Kietzmann, Thomas; Zimmer, Andreas; Jakupovic, Mirza; Montenarh, Mathias; Götz, Claudia

    2010-10-01

    The von Hippel-Lindau tumour suppressor gene encodes a protein with 213 amino acids, which is known to be part of an E3-ubiquitin ligase targeting the HIF-1alpha transcription factor as well as to form a complex with p53. The VHL protein can be phosphorylated by protein kinase CK2 at serines 33, 38 and 43. However, the role of VHL phosphorylation in the context of p53 and HIF-1alpha regulation remained so far unknown. In the present study we investigated whether phosphorylation of VHL by CK2 might affect the function of p53 and HIF-1alpha. By using 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, as well as a mutant VHL where serines 33, 38 and 43 were replaced by alanines we found that CK2 phosphorylation affected the VHL protein half-life and increased VHL protein stability. Further, we found that inhibition of VHL phosphorylation by CK2 reduced p53 function. In addition, the enhanced levels of VHL due to CK2 inhibition contributed to the down-regulation of HIF-activity and degradation of HIF-1alpha. Thus, these results demonstrate that phosphorylation of VHL by CK2 plays an important role in the regulation of VHL protein stability and may contribute to the survival of tumour cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    Science.gov (United States)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  14. Multiplex PCR screening detects small p53 deletions and insertions in human ovarian cancer cell lines.

    Science.gov (United States)

    Runnebaum, I B; Tong, X W; Moebus, V; Heilmann, V; Kieback, D G; Kreienberg, R

    1994-06-01

    Mutations at the p53 tumor suppressor gene locus are a frequent genetic alteration associated with human ovarian carcinoma. Little information exists regarding whether mutational events occur other than point mutations and large deletions, causing loss of heterozygosity. Small intragenic deletions and insertions in the p53 gene have been observed in various human neoplasias. We developed a multiplex polymerase chain reaction (MPCR) screening assay to amplify the complete p53 coding region from genomic DNA in a single step. Deletions and/or insertions were found in six out of 11 newly established ovarian carcinoma cell lines. MPCR detected deletions as small as 2 bp, as confirmed by nucleotide sequence analysis. Most of the observed alterations (6/7) were homozygous or hemizygous. Structural aberrations of the p53 gene possibly leading to loss of p53 cell cycle control may be a consequence of a slipped-mispairing mechanism in rapid DNA replication during repetitious ovulation and wound repair of ovarian epithelial cells. MPCR may be a valuable tool for screening for possible p53 deletion and insertion mutations not only in ovarian cancer but also in other malignancies.

  15. Peran p53 Sebagai Jalur Kritis pada Mekanisme Kontrol Siklus Sel Sebagai Pencegah Terjadinya Kanker Mulut

    Directory of Open Access Journals (Sweden)

    Herlia Nur Istindiah

    2015-09-01

    Full Text Available In cell cycle control, p53 acts as an emergency brake, where its important checkpoint function is to maintain the genome integrity by preventing the formation and proliferation of mutant cells. P53 activity is increased by DNA damage occurs caused by agents (such as radioation, UV light or drugs or oncogenes. Mdm2 protein can inhibit the p53 activation, but oncogenes can inhibit Mdm2 or activate p53. If DNA damage occurs, then p53 prevents the cells from replicating their DNA by arresting the cell cycle, so that the cells can repair the damage. Alternatively, p53 instructs the cells to undergo apoptosis by inducing bax gene expression, so that irregular cell growth, and cancer can be avoided. Cancer, including oral cancer, oftenthuolved cells with altered p53. Exogenous factors, such as tobacco and alcohol, presumably plays a role in triggering p53 mutations. Several techniques, such as immunohistochemistry and PCR can be used to investigation their etiology and development of oral cancer. The results hopefully be applied clinically in early detection, prevention and prediction of cancer. This paper discusses the role on p53 in preventing the occurrence and proliferation of mutated cells that lead to cancer, including oral cancer.

  16. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  17. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.

    Directory of Open Access Journals (Sweden)

    Balu Kamaraj

    Full Text Available The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R. In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis to treat human cancer.

  18. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM

    Science.gov (United States)

    Engeland, Kurt

    2018-01-01

    Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV. Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia. Importantly, when DREAM function is lost, CDK inhibitor drugs employed in cancer treatment such as Palbociclib, Abemaciclib and Ribociclib can compensate for defects in early steps in the pathway upstream from cyclin/CDK complexes. In summary, the p53–p21–DREAM–E2F/CHR pathway controls a plethora of cell cycle genes

  19. p53 protein aggregation promotes platinum resistance in ovarian cancer.

    Science.gov (United States)

    Yang-Hartwich, Y; Soteras, M G; Lin, Z P; Holmberg, J; Sumi, N; Craveiro, V; Liang, M; Romanoff, E; Bingham, J; Garofalo, F; Alvero, A; Mor, G

    2015-07-01

    High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their

  20. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    Science.gov (United States)

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  1. Characterization of Two Novel Oncogenic Pathways Collaborating With Loss of P53 or Activated Neu in Mouse Models of Breast Cancer

    National Research Council Canada - National Science Library

    Lu, Jianrong; Leder, Philip

    2005-01-01

    Cancer develops through accumulation of multiple genetic mutations. Loss of tumor suppressor gene p53 and activation of oncogene Neu/ErbB2 are among the most frequent genetic alterations in human breast cancer...

  2. Decreased Mdm2 expression inhibits tumor development and extends survival independent of Arf and dependent on p53.

    Directory of Open Access Journals (Sweden)

    Christine M Eischen

    Full Text Available Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of overt oncogene overexpression and the role of Mdm2 in this process remain unclear. In a series of genetic experiments in mice with defined deficiencies in Arf, Mdm2 and/or p53, we show Mdm2 haploinsufficiency significantly delayed tumorigenesis in mice deficient in Arf and p53. Mdm2 heterozygosity significantly inhibited tumor development in the absence of Arf, and in contrast to Myc oncogene-driven cancer, this delay in tumorigenesis could not be rescued with the presence of one allele of Arf. Notably, Mdm2 haploinsufficieny blocked the accelerated tumor development in Arf deficient mice caused by p53 heterozygosity. However, tumorigenesis was not inhibited in Mdm2 heterozygous mice lacking both alleles of p53 regardless of Arf status. Surprisingly, loss of Arf accelerated tumor development in p53-null mice. Tumor spectrum was largely dictated by Arf and p53 status with Mdm2 haploinsufficiency only modestly altering the tumor type in some of the genotypes and not the number of primary tumors that arose. Therefore, the significant effects of Mdm2 haploinsufficiency on tumor latency were independent of Arf and required at least one allele of p53, and an Mdm2 deficiency had minor effects on the types of tumors that developed. These data also demonstrate that decreased levels of Mdm2 are protective in the presence of multiple genetic events in Arf and p53 genes that normally accelerate tumorigenesis.

  3. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  4. Mutations in p53, p53 protein overexpression and breast cancer survival

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Gammon, M. D.; Zhang, Y.J.; Terry, M. B.; Hibshoosh, H.; Memeo, L.; Mansukhani, M.; Long, CH.M.; Gabrowski, G.; Agrawal, M.; Kalra, T.S.; Teitelbaum, S. L.; Neugut, A. I.; Santella, R. M.

    2009-01-01

    Roč. 13, č. 9B (2009), s. 3847-3857 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50390512 Keywords : Breast cancer * p53 mutations * Survival Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 5.228, year: 2009

  5. Promoter methylation of IGFBP-3 and p53 expression in ovarian endometrioid carcinoma

    Directory of Open Access Journals (Sweden)

    Huang Su-Cheng

    2009-12-01

    Full Text Available Abstract Background Insulin-like growth factor binding protein (IGFBP-3 is an antiproliferative, pro-apoptotic and invasion suppressor protein which is transcriptionally regulated by p53. Promoter methylation has been linked to gene silencing and cancer progression. We studied the correlation between IGFBP-3 and p53 expression as well as IGFBP-3 promoter methylation in ovarian endometrioid carcinoma (OEC by immunohistochemical staining and quantitative methylation-specific PCR (qMSP. Additionally, we assessed the molecular regulatory mechanism of wild type (wt p53 on IGFBP-3 expression using two subclones of OEC, the OVTW59-P0 (low invasive and P4 (high invasive sublines. Results In 60 cases of OEC, 40.0% showed lower IGFBP-3 expression which was significantly correlated with higher IGFBP-3 promoter methylation. p53 overexpression was detected in 35.0% of OEC and was unrelated to clinical outcomes and IGFBP-3. By Kaplan-Meier analysis, patients with lower IGFBP-3, higher IGFBP-3 promoter methylation, and normal p53 were associated most significantly with lower survival rates. In OEC cell line, IGFBP-3 expression was correlated with IGFBP-3 promoter methylation. IGFBP-3 expression was restored after treatment with a DNA methy-transferase inhibitors (5-aza-deoxycytidine and suppressed by a p53 inhibitor (pifithrin-α. The putative p53 regulatory sites on the promoter of IGFBP-3 were identified at -210, -206, -183 and -179 bases upstream of the transcription start site. Directed mutagenesis at these sites quantitatively reduced the transcription activity of IGFBP-3. Conclusion Our data suggests that IGFBP-3 silencing through IGFBP-3 promoter methylation in the absence of p53 overexpression is associated with cancer progression. These results support a potential role of IGFBP-3 methylation in the carcinogenesis of OEC.

  6. Promoter methylation of IGFBP-3 and p53 expression in ovarian endometrioid carcinoma.

    Science.gov (United States)

    Torng, Pao-Ling; Lin, Ching-Wei; Chan, Michael Wy; Yang, Hui-Wen; Huang, Su-Cheng; Lin, Chin-Tarng

    2009-12-11

    Insulin-like growth factor binding protein (IGFBP-3) is an antiproliferative, pro-apoptotic and invasion suppressor protein which is transcriptionally regulated by p53. Promoter methylation has been linked to gene silencing and cancer progression. We studied the correlation between IGFBP-3 and p53 expression as well as IGFBP-3 promoter methylation in ovarian endometrioid carcinoma (OEC) by immunohistochemical staining and quantitative methylation-specific PCR (qMSP). Additionally, we assessed the molecular regulatory mechanism of wild type (wt) p53 on IGFBP-3 expression using two subclones of OEC, the OVTW59-P0 (low invasive) and P4 (high invasive) sublines. In 60 cases of OEC, 40.0% showed lower IGFBP-3 expression which was significantly correlated with higher IGFBP-3 promoter methylation. p53 overexpression was detected in 35.0% of OEC and was unrelated to clinical outcomes and IGFBP-3. By Kaplan-Meier analysis, patients with lower IGFBP-3, higher IGFBP-3 promoter methylation, and normal p53 were associated most significantly with lower survival rates. In OEC cell line, IGFBP-3 expression was correlated with IGFBP-3 promoter methylation. IGFBP-3 expression was restored after treatment with a DNA methy-transferase inhibitors (5-aza-deoxycytidine) and suppressed by a p53 inhibitor (pifithrin-alpha). The putative p53 regulatory sites on the promoter of IGFBP-3 were identified at -210, -206, -183 and -179 bases upstream of the transcription start site. Directed mutagenesis at these sites quantitatively reduced the transcription activity of IGFBP-3. Our data suggests that IGFBP-3 silencing through IGFBP-3 promoter methylation in the absence of p53 overexpression is associated with cancer progression. These results support a potential role of IGFBP-3 methylation in the carcinogenesis of OEC.

  7. AAVPG: A vigilant vector where transgene expression is induced by p53

    Energy Technology Data Exchange (ETDEWEB)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E., E-mail: bstrauss@usp.br

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  8. Synthesis and evaluation of modified chalcone based p53 stabilizing agents.

    Science.gov (United States)

    Iftikhar, Sunniya; Khan, Sardraz; Bilal, Aishah; Manzoor, Safia; Abdullah, Muhammad; Emwas, Abdel-Hamid; Sioud, Salim; Gao, Xin; Chotana, Ghayoor Abbas; Faisal, Amir; Saleem, Rahman Shah Zaib

    2017-09-01

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (CAL-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI 50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI 50 of 0.473±0.043µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-h post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya

    2017-07-15

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  10. C. elegans CEP-1/p53 and BEC-1 are involved in DNA repair.

    Directory of Open Access Journals (Sweden)

    Sandy Hoffman

    Full Text Available p53 is a transcription factor that regulates the response to cellular stress. Mammalian p53 functions as a tumor suppressor. The C. elegans p53, cep-1, regulates DNA-damage induced germline cell death by activating the transcription of egl-1 and ced-13. We used the C. elegans model to investigate how, in the whole animal, different forms of DNA damage can induce p53-dependent versus p53-independent cell death and DNA repair. DNA damage was induced by ultraviolet type C (UVC radiation, or 10-decarbamoyl mitomycin C (DMC, an agent known to induce mammalian p53-independent cell death. Wild-type or cep-1 loss-of-function mutant animals were assayed for germline cell death and DNA lesions. Wild-type animals displayed greater removal of UVC-lesions over time, whereas cep-1 mutant animals displayed increased UVC-lesion retention. The cep-1 mutation increased UVC-lesion retention directly correlated with a reduction of progeny viability. Consistent with DMC inducing p53-independent cell death in mammalian cells DMC induced a C. elegans p53-independent germline cell death pathway. To examine the influence of wild-type CEP-1 and DNA damage on C. elegans tumors we used glp-1(ar202gf/Notch germline tumor mutants. UVC treatment of glp-1 mutant animals activated the CEP-1 target gene egl-1 and reduced tumor size. In cep-1(gk138;glp-1(ar202gf animals, UVC treatment resulted in increased susceptibility to lesions and larger tumorous germlines. Interestingly, the partial knockdown of bec-1 in adults resulted in a CEP-1-dependent increase in germline cell death and an increase in DNA damage. These results strongly support cross-talk between BEC-1 and CEP-1 to protect the C. elegans genome.

  11. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Vaehaekangas, K.H.; Metcalf, R.A.; Welsh, J.A.; Bennett, W.P.; Harris, C.C. (National Cancer Inst., Bethesda, MD (United States)); Samet, J.M. (New Mexico Univ., Albuquerque, NM (United States). UNM Medical Center); Lane, D.P. (Dundee Univ. (United Kingdom). Dept. of Biochemistry)

    1992-03-07

    Radon increases the risk of lung cancer in smoking and non-smoking underground miners. To investigate the mutational spectrum associated with exposure to high levels of radon, the authors sequenced exons 5-9 of the p53 tumour suppressor gene and codons 12-13 of the Ki-ras protooncogene in 19 lung cancers from uranium miners exposed to radon and tobacco smoke. Mutations were not found in Ki-ras, but 9 p53 mutations, including 2 deletions, were found in 7 patients by direct DNA sequencing after polymerase chain reaction amplification of DNA from formalin-fixed, paraffin-embedded tissue. In tumours from 5 patients, the mutation produced an aminoacid change and an increased nuclear content of p53 protein. (author).

  12. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    Czech Academy of Sciences Publication Activity Database

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, A.; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, M.L.; Subramaniam, V.; Babkova, Z.; Martínek, T.; Lexa, M.; Adámik, Matěj

    2016-01-01

    Roč. 11, č. 12 (2016), č. článku e0167439. E-ISSN 1932-6203 R&D Projects: GA ČR GA13-36108S; GA ČR(CZ) GP204/06/P369; GA ČR GA15-02891S Institutional support: RVO:68081707 Keywords : c-terminal domain * suppressor protein p53 * supercoiled dna Subject RIV: BO - Biophysics Impact factor: 2.806, year: 2016

  13. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  14. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes

    Science.gov (United States)

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-01

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53. PMID:26384566

  15. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo; Matsumoto, Hideki

    2004-01-01

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  16. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  17. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Ino, Y; Gerdes, A M

    1999-01-01

    The two gene products of the CDKN2A gene, p16 and p19ARF, have recently been linked to each of two major tumour suppressor pathways in human carcinogenesis, the RB1 pathway and the p53 pathway. p16 inhibits the phosphorylation of the retinoblastoma gene product by cyclin D-dependent kinases......, whereas p19ARF targets MDM2, a p53 inhibitory protein, for degradation. A deletion of CDKN2A would therefore disturb both pathways. To explore the p53 pathway genes as a functional unit in diffuse large B cell non-Hodgkin's lymphomas (DLCL), we wanted to see whether there exists mutually exclusiveness...... hypermethylated at the 5' CpG island of p16. No point mutations were found in CDKN2B or CDKN2A. Immunohistochemical staining of formalin-fixed, paraffin-embedded tissue for p16 confirmed these results, as all tumours with alterations of CDKN2A were p16 immunonegative. We found p53 mutations in eight (22%) cases...

  18. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  19. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction

    Directory of Open Access Journals (Sweden)

    Louis Chesler

    2008-11-01

    Full Text Available Chemoresistance in neuroblastoma is a significant issue complicating treatment of this common pediatric solid tumor. MYCN-amplified neuroblastomas are infrequently mutated at p53 and are chemosensitive at diagnosis but acquire p53 mutations and chemoresistance with relapse. Paradoxically, Myc-driven transformation is thought to require apoptotic blockade. We used the TH-MYCN transgenic murine model to examine the role of p53-driven apoptosis on neuroblastoma tumorigenesis and the response to chemotherapy. Tumors formed with high penetrance and low latency in p53-haploinsufficient TH-MYCN mice. Cyclophosphamide (CPM induced a complete remission in p53 wild type TH-MYCN tumors, mirroring the sensitivity of childhood neuroblastoma to this agent. Treated tumors showed a prominent proliferation block, induction of p53 protein, and massive apoptosis proceeding through induction of the Bcl-2 homology domain-3-only proteins PUMA and Bim, leading to the activation of Bax and cleavage of caspase-3 and -9. Apoptosis induced by CPM was reduced in p53-haploinsufficient tumors. Treatment of MYCN-expressing human neuroblastoma cell lines with CPM induced apoptosis that was suppressible by siRNA to p53. Taken together, the results indicate that the p53 pathway plays a significant role in opposing MYCN-driven oncogenesis in a mouse model of neuroblastoma and that basal inactivation of the pathway is achieved in progressing tumors. This, in part, explains the striking sensitivity of such tumors to chemotoxic agents that induce p53-dependent apoptosis and is consistent with clinical observations that therapy-associated mutations in p53 are a likely contributor to the biology of tumors at relapse and secondarily mediate resistance to therapy.

  20. A central role for CK1 in catalysing phosphorylation of the P53 transactivation domain at serine 20 after HHV-6B viral infection

    DEFF Research Database (Denmark)

    Maclaine, NJ; Øster, Bodil; Bundgaard, Bettina

    2008-01-01

    The tumour suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type-I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at serine 20 (Ser20) whose modification stabilises the binding of the transc...

  1. The Clinicopathologic Significance of p53 and BAF-250a (ARID1A) Expression in Clear Cell Carcinoma of the Endometrium

    OpenAIRE

    Fadare, Oluwole; Gwin, Katja; Desouki, Mohamed M.; Crispens, Marta A.; Jones, Howard W.; Khabele, Dineo; Liang, Sharon X.; Zheng, Wenxin; Mohammed, Khaled; Hecht, Jonathan L.; Parkash, Vinita

    2013-01-01

    TP53 mutation (and associated p53 protein overexpression) is probably a negative prognostic marker in endometrial cancers, but its relevance in the rarer histologic subtypes, including clear cell carcinomas, has not been delineated. Preclinical studies suggest functional interactions between p53 and the BAF250a protein, the product of a tumor suppressor gene ARID1A that is frequently mutated in ovarian clear cell carcinoma. In this study, we evaluated the significance of p53 and BAF250a expre...

  2. PTEN Plays Dual Roles As a Tumor Suppressor in Osteosarcoma Cells.

    Science.gov (United States)

    Xi, Yongming; Chen, Yan

    2017-09-01

    Osteosarcoma (OS) is the most common primary bone cancer, which occurs primarily in children and adolescents. Functional loss of the tumor suppressor PTEN has been demonstrated in bone malignancies including OS. We have recently reported that Pten expression inversely correlates with OS aggressiveness in mouse models. However, the mechanism whereby PTEN exerts its anti-tumor effect remains unknown. In this study, we first examined the expression of PTEN in human OS cell lines including U2OS, MG63 and Saos-2, and found that PTEN expression is reduced as compared to normal human osteoblasts. The downregulation of PTEN also associates with activation of AKT pathway. We then treated previously reported mouse OS tumor cells MOTO-Rank Δ/ΔOC and human OS cell line U2OS with PTEN inhibitor VO-OHpic to investigate how PTEN impacts tumor cell behaviors. Our results showed that PTEN inhibits tumor cell proliferation, migration and invasion, but enhances tumor cell apoptosis. However, PTEN has no effects on tumor cell senescence and chemotaxis. PTEN also fails to induce tumor cells differentiation toward osteoblast lineage. On the other hand, PTEN inhibits tumor associated osteoclast differentiation. Moreover, overexpression of PTEN using gene transfer in U2OS cells inhibits proliferation but increases apoptosis. These findings indicate that PTEN not only targets tumor cells themselves by impacting cell behaviors, but also blocks osteoclast-mediated bone destruction, leading to interruption of the vicious cycle during osteosarcomagenesis. Loss of PTEN may consequently facilitate tumor growth and expansion in bone. Restoration of fully functional PTEN using gene therapy represents a potential approach against OS. J. Cell. Biochem. 118: 2684-2692, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null cell lines.

    Directory of Open Access Journals (Sweden)

    Elisabeth Silden

    Full Text Available The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1, Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(PH quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level.

  4. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  5. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Laurence

    1998-01-01

    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  6. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Lawrence

    1997-01-01

    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  7. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53......, and only a minor fraction of the infected cells undergoes apoptosis. Using pifithrin-alpha, a p53 inhibitor, and p53-null cells, this study showed that infected epithelial cells accumulated viral transcripts and proteins to a significantly higher degree in the absence of active p53. Moreover, HHV-6B......-induced cytopathic effects were greatly enhanced in the absence of p53. This suggests that, in epithelial cells, some of the functions of p53 leading to cell-cycle arrest and apoptosis are restrained by HHV-6B infection, whereas other cellular defences, causing inhibition of virus transcription, are partially...

  8. Aciculatin induces p53-dependent apoptosis via MDM2 depletion in human cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chin-Yu Lai

    Full Text Available Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/- (p53-KO HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+. The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.

  9. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  10. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    activation. These stresses promote tumour formation, often culminating in cancer. The chief role of p53 is to guard cells against malignant transformation. .... is found to be digital in the form of a discrete number of p53 and MDM2 protein pulses. As already mentioned, the p53-MDM2 network can be described in terms of a ...

  11. P53 Sensitizes Human Colon Cancer Cells to Hesperidin through ...

    African Journals Online (AJOL)

    Furthermore, hesperidin activates the proapoptotic (Bax) and cyclin dependent kinase inhibitor (p21) in only HCT116 p53+/+ cells. Interestingly, using p53 transcriptional inhibitor (pifithrin-), hesperidin-inducing Bax and p21 upregulation in only HCT116 p53+/+ cells was reduced by cotreatment with pifithrin- without ...

  12. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    Science.gov (United States)

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  13. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    Science.gov (United States)

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD + dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  14. Zeranol Down-Regulates p53 Expression in Primary Cultured Human Breast Cancer Epithelial Cells through Epigenetic Modification

    Directory of Open Access Journals (Sweden)

    Young C. Lin

    2011-02-01

    Full Text Available Epidemiological studies have suggested that there are many risk factors associated with breast cancer. Silencing tumor suppressor genes through epigenetic alterations play critical roles in breast cancer initiation, promotion and progression. As a growth promoter, Zeranol (Z has been approved by the FDA and is widely used to enhance the growth of beef cattle in the United States. However, the safety of Z use as a growth promoter is still under debate. In order to provide more evidence to clarify this critical health issue, the current study investigated the effect of Z on the proliferation of primary cultured human normal and cancerous breast epithelial cells (PCHNBECs and PCHBCECs, respectively isolated from the same patient using MTS assay, RT-PCR and Western blot analysis. We also conducted an investigation regarding the mechanisms that might be involved. Our results show that Z is more potent to stimulate PCHBCEC growth than PCHNBEC growth. The stimulatory effects of Z on PCHBCECs and PCHBCECs may be mediated by its down-regulating expression of the tumor suppressor gene p53 at the mRNA and protein levels. Further investigation showed that the expression of DNA methylatransferase 1 mRNA and protein levels is up-regulated by treatment with Z in PCHBCECs as compared to PCHNBECs, which suggests a role of Z in epigenetic modification involved in the regulation of p53 gene expression in PCHBCECs. Our experimental results imply the potentially adverse health effect of Z in breast cancer development. Further study is continuing in our laboratory.

  15. Alteration of p53 gene in ovarian carcinoma: clinicopathological correlation and prognostic significance.

    Science.gov (United States)

    Niwa, K; Itoh, M; Murase, T; Morishita, S; Itoh, N; Mori, H; Tamaya, T

    1994-12-01

    Inactivation of the tumour-suppressor gene p53 has been demonstrated in a variety of human tumours. We extracted DNA from paraffin-embedded tissues of 67 ovarian carcinoma samples (54 primary tumours, seven metastases and six tumours obtained after chemotherapy), and analysed allelic losses and mutations of the p53 gene using single-strand conformation polymorphism (SSCP) analysis of DNA fragments amplified by a polymerase chain reaction (PCR). Allelic loss was observed in 24 of 32 informative cases. The mutation was detected in 14 of 54 primary ovarian carcinomas: eight serous cystadenocarcinomas (SCA), 42%), five endometrioid adenocarcinomas (EA, 42%) and one mucinous cystadenocarcinoma (14%). The incidence of the alteration was higher in SCA and EA than in other histological types, but the difference was not statistically significant. The incidence of p53 gene abnormalities in ovarian carcinomas tended to be increased in patients with disease advanced (over FIGO stage II). Mutations were found in exons 5 and 7 only and consisted mainly of single nucleotide substitutions [9 or 14 (64%) in exon 7; 4 of 14 (29%) in exon 5]. In 13 of 14 cases, p53 gene mutations occurred concomitantly with losses of the normal allele. The status of the p53 gene in metastases and the tumours obtained after chemotherapy was identical to that in the primary tumours. The presence of p53 gene mutation did not correlate with histological grade, response to primary therapy and survival. These findings suggest that mutational alterations of the p53 gene are involved in the development of a significant proportion of some ovarian carcinomas (SCAs or EAs), especially in advanced stages. However, they may not be a marker predicting the biological behaviour or the outcome of the disease.

  16. p53 as the focus of gene therapy: past, present and future.

    Science.gov (United States)

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. P53 activation, a key event of the cellular response to gamma irradiation; L'activation de la proteine p53, un evenement determinant de la reponse cellulaire aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Drane, P.; Alvarez, S.; Meiller, A.; May, E. [CEA Fontenay-aux-Roses, Dept. de Radiobiologie et de Radiopathologie, Lab. de Cancerogenese Moleculaire, CNRS, UMR 217, 92 (France)

    2002-03-01

    The tumor suppressor gene p53 encodes a protein whose major function is to protect organisms from proliferation of potentially tumorigenic cells. In normal conditions (unstressed cells), the p53 protein is inert and maintained at low level through its association with the Mdm2 oncogene, causing its translocation from the nucleus into the cytoplasm and its degradation through ubiquitin/proteasome pathway. In response to damaged DNA or to a variety of stresses, p53 accumulates in the nucleus and is activated as a transcriptional trans-activator. Posttranslational modifications of p53 including multi-site phosphorylation and acetylation are the major mechanism of p53 regulation. After exposure to ionising radiation, p53 activation implicates ATM, ATR, Chk2 and Chk1 kinases that phosphorylate the N-terminal domain on Ser15 (ATM and/or ATR), and Ser20 (Chk2 and/or Chk1), causing the dissociation of the p53/Mdm2 complex and thereby the stabilisation of p53. The process initiated by {gamma}-irradiation exposure involves also increased interaction of the p53 N-terminal domain with CBP/p300 and P/CAF leading to acetylation of the distant C-terminal domain at Lys 320, 373 and 382. In addition, the ATM-mediated dephosphorylation of Ser376 creates a fixation site for 14-3-3 protein. Taken together, phosphorylation, acetylation and association with co factors induce the stimulation of p53 transcriptional activity resulting in the expression of a set of genes involved, notably, in cell cycle arrest and apoptosis. This stress-induced p53 pathways lead to one of two outcomes: growth arrest or apoptosis and consequently protects the organism from the genotoxic effects of ionising radiation. (author)

  18. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Agha, B.; Barth, S.; Voges, Y.; Loeschmann, N.; von Deimling, A.; Breitling, R.; Doerr, H. Wilhelm; Roedel, F.; Speidel, D.; Cinatl, J.; Cinatl Jr., J.; Stephanou, A.

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3,

  19. Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signalling.

    Science.gov (United States)

    Huang, Yong; Ding, Li; Li, Zhaocai; Dai, Meiling; Zhao, Xiaomin; Li, Wei; Du, Qian; Xu, Xingang; Tong, Dewen

    2013-08-01

    Transmissible gastroenteritis virus (TGEV) infection induced apoptosis in several cell lines in vitro. Our previous studies demonstrated that TGEV could activate FasL- and mitochondria-mediated pathways to induce apoptosis in PK-15 cells. In this study, we investigated the regulation of p53 and p38 mitogen-activated protein kinases (MAPK) signalling pathways in the interaction of TGEV with host cells. We observed that TGEV infection decreased p300/CBP, downregulated MDM2 and promoted p53 phosphorylation at serines 15, 20 and 46, resulting in accumulation and activation of p53 in PK-15 cells. TGEV infection induced the transient activation of p38 MAPK in the early phase of inoculation and constant activation in the later phase of infection. However, UV-irradiated TGEV did not promote the activation of p53 and p38 MAPK in the later phase, whereas it only triggered the transient activation of p38 MAPK in the early phase. Blocking of p53 activation significantly inhibited the occurrence of apoptosis through suppressing the TGEV-induced FasL expression, Bcl-2 reduction, Bax and cytochrome c redistribution, while inhibition of p38 activity moderately blocked apoptosis induction and partly attenuated the accumulation and activation of p53. However, inhibition of p38 and p53 activity had no significant effects on viral gene transcription at 12 and 24 h post-infection. Taken together, these results demonstrated that TGEV infection promoted the activation of p38 MAPK and p53 signalling, and p53 signalling might play a dominant role in the regulation of cell apoptosis. These findings provide new insights into the function of p53 and p38 MAPK in the interaction of TGEV with host cells.

  20. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  1. p53 Over-expression and p53 mutations in colon carcinomas: Relation to dietary risk factors

    NARCIS (Netherlands)

    Voskuil, D.W.; Kampman, E.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    1999-01-01

    Epidemiological studies have suggested that dietary factors may differently affect p53-dependent and p53-independent pathways to colon cancer. Results of such studies may depend on the method used to assess p53 status. This case-control study of 185 colon-cancer cases and 259 controls examines this

  2. Role of p53 and CDKN2A Inactivation in Human Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Alessia Pacifico

    2007-01-01

    Several studies have shown that human SCCs harbour unique mutations in the p53 gene as well as inactivation of the CDKN2A gene. While mutations in the p53 gene are induced by UV radiation and represent tumor initiating events, the majority of alterations detected in the CDKN2A gene do not appear to be UV-dependent. In conclusion, in addition to p53 mutations, silencing of the CDKN2A gene might play a significant role in SCC development.

  3. The role of p53 and pRB in apoptosis and cancer

    DEFF Research Database (Denmark)

    Hickman, Emma S; Moroni, M Cristina; Helin, Kristian

    2002-01-01

    Loss of function of both the p53 pathway and the retinoblastoma protein (pRB) pathway plays a significant role in the development of most human cancers. Loss of pRB results in deregulated cell proliferation and apoptosis, whereas loss of p53 desensitizes cells to checkpoint signals, including...... apoptosis. In the past two years, mouse genetics and gene expression profiling have led to major advances in our understanding of how the pRB and p53 pathways regulate apoptosis and thus the development of tumours....

  4. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    Science.gov (United States)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  5. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  6. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death.

    Science.gov (United States)

    Fortin, A; Cregan, S P; MacLaurin, J G; Kushwaha, N; Hickman, E S; Thompson, C S; Hakim, A; Albert, P R; Cecconi, F; Helin, K; Park, D S; Slack, R S

    2001-10-15

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulation of this process have not been identified. In the present study, we demonstrate that p53 directly upregulates Apaf1 transcription as a critical step in the induction of neuronal cell death. Using DNA microarray analysis of total RNA isolated from neurons undergoing p53-induced apoptosis a 5-6-fold upregulation of Apaf1 mRNA was detected. Induction of neuronal cell death by camptothecin, a DNA-damaging agent that functions through a p53-dependent mechanism, resulted in increased Apaf1 mRNA in p53-positive, but not p53-deficient neurons. In both in vitro and in vivo neuronal cell death processes of p53-induced cell death, Apaf1 protein levels were increased. We addressed whether p53 directly regulates Apaf1 transcription via the two p53 consensus binding sites in the Apaf1 promoter. Electrophoretic mobility shift assays demonstrated p53-DNA binding activity at both p53 consensus binding sequences in extracts obtained from neurons undergoing p53-induced cell death, but not in healthy control cultures or when p53 or the p53 binding sites were inactivated by mutation. In transient transfections in a neuronal cell line with p53 and Apaf1 promoter-luciferase constructs, p53 directly activated the Apaf1 promoter via both p53 sites. The importance of Apaf1 as a p53 target gene in neuronal cell death was evaluated by examining p53-induced apoptotic pathways in primary cultures of Apaf1-deficient neurons. Neurons treated with camptothecin were significantly protected in the absence of Apaf1 relative to those derived from wild-type littermates. Together, these results demonstrate that Apaf1 is a key transcriptional target for p53 that plays a pivotal role in the regulation of

  7. Construction and Characterization of Human Mammary Epithelial Cell Lines Containing Mutations in the p53 or BRCAl Genes

    National Research Council Canada - National Science Library

    White, Raymond

    1997-01-01

    ...) that become deficient in normal p53 and BRCA1 gene functions. Our work during the third year of the funding period has produced good progress establishing new systems to create and characterize HMEC with an altered tumor suppressor gene activity...

  8. Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19(+)- liver cells deficient for p53 and Rb

    NARCIS (Netherlands)

    Matondo, Ramadhan B.; Toussaint, Mathilda J. M.; Govaert, Klaas M.; van Vuuren, Luciel D.; Nantasanti, Sathidpak; Nijkamp, Maarten W.; Pandit, Shusil K.; Tooten, Peter C. J.; Koster, Mirjam H.; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain

    2016-01-01

    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma ( Rb), we

  9. Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R

    Directory of Open Access Journals (Sweden)

    Jonathan K. Mitchell

    2017-04-01

    Full Text Available Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV, a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR/Cas9-mediated ablation of double-stranded RNA (dsRNA-activated protein kinase R (PKR restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis.

  10. Clinical implications of cytosine deletion of exon 5 of P53 gene in non small cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Rashid Mir

    2016-01-01

    Full Text Available Aim: Lung cancer is considered to be the most common cancer in the world. In humans, about 50% or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate the cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Our study was aimed to evaluate the frequency of cytosine deletion in nonsmall cell lung cancer (NSCLC patients. Methods: One hundred NSCLC patients were genotyped for P53 (exon5, codon168 cytosine deletion leading to loss of its function and activate the target genes by allele-specific polymerase chain reaction. The P53 cytosine deletion was correlated with all the clinicopathological parameters of the patients. Results and Analysis: 59% cases were carrying P53 cytosine deletion. Similarly, the significantly higher incidence of cytosine deletion was reported in current smokers (75% in comparison to exsmoker and nonsmoker. Significantly higher frequency of cytosine deletion was reported in adenocarcinoma (68.08% than squamous cell carcinoma (52.83%. Also, a significant difference was reported between p53 cytosine deletion and metastasis (64.28%. Further, the majority of the cases assessed for response carrying P53 cytosine deletion were found to show faster disease progression. Conclusion: The data suggests that there is a significant association of the P53 exon 5 deletion of cytosine in codon 168 with metastasis and staging of the disease.

  11. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  12. Status and advances of p53-gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong

    2006-01-01

    Cancer treatment is one of the most important fields in medical research. All strategies such as radio-therapy, chemotherapy, surgery, and gene-based therapy have their own advantages and disadvantages. Nowadays, a novel method which combined p53-gene therapy with radiotherapy plays an important role in the field of cancer research. This review summarized the current state of combined therapies of p53-gene therapy and radiotherapy, possible mechanism and recent progress. (authors)

  13. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  14. Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2018-02-01

    Full Text Available Summary: Overactive p53 has been proposed as an important pathophysiological factor for bone marrow failure syndromes, including Fanconi anemia (FA. Here, we report a p53-dependent effect on hematopoietic stem and progenitor cell (HSPC proliferation in mice deficient for the FA gene Fanca. Deletion of p53 in Fanca−/− mice leads to replicative exhaustion of the hematopoietic stem cell (HSC in transplant recipients. Using Fanca−/− HSCs expressing the separation-of-function mutant p53515C transgene, which selectively impairs the p53 function in apoptosis but keeps its cell-cycle checkpoint activities intact, we show that the p53 cell-cycle function is specifically required for the regulation of Fanca−/− HSC proliferation. Our results demonstrate that p53 plays a compensatory role in preventing FA HSCs from replicative exhaustion and suggest a cautious approach to manipulating p53 signaling as a therapeutic utility in FA. : In this article, Pang and colleagues demonstrate a p53-dependent HSPC proliferation regulation in mice deficient for the Fanca gene in the Fanconi anemia (FA pathway. They show that the p53 cell-cycle function is specifically required for the regulation of FA HSC proliferation. These results suggest that overactive p53 may represent a compensatory checkpoint mechanism for FA HSC proliferation. Keywords: p53, bone marrow failure, Fanconi anemia, hematopoietic stem and progenitor cells, apoptosis, cell cycle, proliferation

  15. RNF43 interacts with NEDL1 and regulates p53-mediated transcription

    International Nuclear Information System (INIS)

    Shinada, Keisuke; Tsukiyama, Tadasuke; Sho, Takuya; Okumura, Fumihiko; Asaka, Masahiro; Hatakeyama, Shigetsugu

    2011-01-01

    Research highlights: → RNF43 binds to NEDD-4-like ubiquitin-protein ligase-1 (NEDL1). → RNF43 interacts with p53 and suppresses transcriptional activity of p53. → RNF43 attenuates apoptosis induced by ultraviolet irradiation. → RNF43 is likely associated with p53-mediated apoptosis in collaboration with NEDL1 in colorectal carcinogenesis. -- Abstract: The ubiquitin-proteasomal system plays a crucial role in oncogenesis in colorectal tissues. Recent studies have shown that stability of β-catenin, which functions as an oncogene for colorectal cancer, is regulated by ubiquitin-mediated degradation. It has been reported that a putative E3 ubiquitin ligase, RNF43, is highly expressed in human colorectal carcinoma and that RNF43 promotes cell growth. However, the involvement of RNF43 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that RNF43 binds to NEDD-4-like ubiquitin-protein ligase-1 (NEDL1), which enhances pro-apoptotic activity by p53. In addition, we found that RNF43 also interacts with p53 and that RNF43 suppresses transcriptional activity of p53 in H1299 cells and attenuates apoptosis induced by ultraviolet irradiation. These findings suggest that RNF43 is associated with p53-mediated apoptosis in collaboration with NEDL1 in colorectal carcinogenesis.

  16. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    Science.gov (United States)

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  17. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain); Elvira, Gema; Silva, Augusto [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain)

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.

  18. NAD+ Modulates p53 DNA Binding Specificity and Function

    Science.gov (United States)

    McLure, Kevin G.; Takagi, Masatoshi; Kastan, Michael B.

    2004-01-01

    DNA damage induces p53 DNA binding activity, which affects tumorigenesis, tumor responses to therapies, and the toxicities of cancer therapies (B. Vogelstein, D. Lane, and A. J. Levine, Nature 408:307-310, 2000; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Both transcriptional and transcription-independent activities of p53 contribute to DNA damage-induced cell cycle arrest, apoptosis, and aneuploidy prevention (M. B. Kastan et al., Cell 71:587-597, 1992; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD+ binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. Niacinamide (vitamin B3) increases the rate of intracellular NAD+ synthesis, alters radiation-induced p53 DNA binding specificity, and modulates activation of a subset of p53 transcriptional targets. These effects are likely due to a direct effect of NAD+ on p53, as a molecule structurally related to part of NAD+, TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B1), inhibits intracellular p53 activity. Niacinamide and thiamine affect two p53-regulated cellular responses to ionizing radiation: rereplication and apoptosis. Thus, niacinamide and thiamine form a novel basis for the development of small molecules that affect p53 function in vivo, and these results suggest that changes in cellular energy metabolism may regulate p53. PMID:15509798

  19. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53

    DEFF Research Database (Denmark)

    Zandi, Roza; Selivanova, Galina; Christensen, Camilla Laulund

    2011-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor...... function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations....

  20. Comparison of effects of p53 null and gain-of-function mutations on salivary tumors in MMTV-Hras transgenic mice.

    Directory of Open Access Journals (Sweden)

    Dadi Jiang

    Full Text Available p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53(+/+, MMTV-Hras/p53(-/-, and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53(-/- and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53(+/+ mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53(-/- and MMTV-Hras/p53(R172H/R172H tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53(+/+ tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53(-/- and MMTV-Hras/p53(R172H/R172H tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53.

  1. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  2. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  3. Senescence and aging: the critical roles of p53.

    Science.gov (United States)

    Rufini, A; Tucci, P; Celardo, I; Melino, G

    2013-10-24

    p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.

  4. Expression of p53 protein and prognosis in gastric carcinoma.

    Science.gov (United States)

    Gürel, S; Dolar, E; Yerci, O; Samli, B; Oztürk, H; Nak, S G; Gülten, M; Memik, F

    1999-01-01

    A study was carried out to assess whether p53 expression is related to tumour type, grade or pathological characteristics, or to prognosis, in gastric cancer. Immunohistochemical studies were performed to detect p53 protein in sections from 55 consecutive gastrectomy or partial gastrectomy specimens. Tumours were classified for T-stage, histopathological grade and pathological characteristics. Immunohistochemical staining detected p53 protein in 11 (19%) of the 55 specimens. There was no statistically significant difference between patients with p53 positively staining tumours and patients with p53 negatively staining tumours with regard to tumour grade, stage or pathological characteristics (lymph-node infiltration, depth of invasion, necrosis, or necrosis of vessels). Survival time was statistically significantly lower in patients with positively staining tumours (mean survival times 12.0 and 23.4 months, respectively). These results suggest that expression of p53 protein is related to poor prognosis in gastric carcinoma.

  5. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  6. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2018-03-01

    Full Text Available Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC. While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.

  7. Regulation of MCP-1 chemokine transcription by p53.

    Science.gov (United States)

    Hacke, Katrin; Rincon-Orozco, Bladimiro; Buchwalter, Gilles; Siehler, Simone Y; Wasylyk, Bohdan; Wiesmüller, Lisa; Rösl, Frank

    2010-04-20

    Our previous studies showed that the expression of the monocyte-chemoattractant protein (MCP)-1, a chemokine, which triggers the infiltration and activation of cells of the monocyte-macrophage lineage, is abrogated in human papillomavirus (HPV)-positive premalignant and malignant cells. In silico analysis of the MCP-1 upstream region proposed a putative p53 binding side about 2.5 kb upstream of the transcriptional start. The aim of this study is to monitor a physiological role of p53 in this process. The proposed p53 binding side could be confirmed in vitro by electrophoretic-mobility-shift assays and in vivo by chromatin immunoprecipitation. Moreover, the availability of p53 is apparently important for chemokine regulation, since TNF-alpha can induce MCP-1 only in human keratinocytes expressing the viral oncoprotein E7, but not in HPV16 E6 positive cells, where p53 becomes degraded. A general physiological role of p53 in MCP-1 regulation was further substantiated in HPV-negative cells harboring a temperature-sensitive mutant of p53 and in Li-Fraumeni cells, carrying a germ-line mutation of p53. In both cases, non-functional p53 leads to diminished MCP-1 transcription upon TNF-alpha treatment. In addition, siRNA directed against p53 decreased MCP-1 transcription after TNF-alpha addition, directly confirming a crosstalk between p53 and MCP-1. These data support the concept that p53 inactivation during carcinogenesis also affects immune surveillance by interfering with chemokine expression and in turn communication with cells of the immunological compartment.

  8. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  9. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    International Nuclear Information System (INIS)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk; Yoo, Young A.

    2012-01-01

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)–Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh–Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3–p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2–p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  10. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer.

    Science.gov (United States)

    Xiong, Yanlu; Wang, Lei; Wang, Shan; Wang, Mingxing; Zhao, Jinbo; Zhang, Zhipei; Li, Xiaofei; Jia, Lintao; Han, Yong

    2018-02-01

    In non-small cell lung cancer (NSCLC), success of targeted therapy has promoted researches explicitly orientated based on genetic background. Although PTEN deficiency is common in NSCLC, carcinogenesis about such genetic type has not been fully explored. Here, we have found that classical tumor suppressor P53 could be modulated by deacetylase sirtuin-3 (SIRT3) depending on the PTEN condition in NSCLC, which may be a novel breakpoint for handling PTEN deficiency NSCLC. First, we examined SIRT3 and P53 expression files in PTEN-deficient NSCLC clinical samples and investigated their correlation. Second, we built SIRT3 high or low expression models in different PTEN conditions by plasmid overexpression or si-RNA interference in NSCLC cell lines and explored the effect of SIRT3 upon P53. Furthermore, we investigated the influence of SIRT3 upon the ubiquitin-proteasome dependent degradation pathway of P53 in PTEN-deficient NSCLC cell lines. Finally, we probed into the deacetylation modification of P53 via SIRT3. We found that SIRT3 expression was strongly positive and P53 expression was almost negative in PTEN-deficient NSCLC clinical samples. Further, we demonstrated that SIRT3 promoted degradation of P53 in PTEN-deficient NSCLC cell lines via the ubiquitin-proteasome pathway. Finally, we demonstrated that SIRT3 could deacetylate P53 at lysines 320 and 382, which may account for the observed degradation of P53 in PTEN-deficient tumor cells. We have identified a novel mechanism by which P53 was inactivated via SIRT3 in PTEN-deficient cells. This may shed light on the mechanisms underlying the malignancy of PTEN-deficient NSCLC.

  11. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Na [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Oh, Sang Cheul; Kim, Jun Suk [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Yoo, Young A., E-mail: ydanbi@korea.ac.kr [Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  12. Small Molecule Modulator of p53 Signaling Pathway: Application for Radiosensitizing or Radioprotection Agents

    International Nuclear Information System (INIS)

    Oh, Sang Taek; Cho, Mun Ju; Gwak, Jung Sug; Ryu, Min Jung; Song, Jie Young; Yun, Yeon Sook

    2009-01-01

    The tumor suppressor p53 is key molecule to protect the cell against genotoxic stress and..the most frequently mutated..protein..in cancer cells. Lack of functional p53..is accompanied by high rate of genomic instability, rapid tumor progression, resistance to anticancer therapy, and increased angiogenesis. In response to DNA damage, p53 protein rapidly accumulated through attenuated proteolysis and is also activated as transcription factor. Activated p53 up-regulates target genes involved in cell cycle arrest and/or apoptosis and then lead to suppression of malignant transformation and the maintenance of genomic integrity. Chemical genetics is a new technology to uncover the signaling networks that regulated biological phenotype using exogenous reagents such as small molecules. Analogous to classical forward genetic screens in model organism, this approach makes use of high throughput, phenotypic assay to identify small molecules that disrupt gene product function in a way that alters a phenotype of interest. Recently, interesting small molecules were identified from cell based high throughput screening and its target protein or mechanism of action were identified by various methods including affinity chromatography, protein array profiling, mRNA or phage display, transcription profiling, and RNA interference

  13. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents.

    Science.gov (United States)

    Hickman, M J; Samson, L D

    1999-09-14

    All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O(6)-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine (O(6)CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutSalpha branch of the DNA mismatch repair pathway (but not the MutSbeta branch) is absolutely required for signaling the initiation of apoptosis in response to O(6)MeGs and is partially required for signaling apoptosis in response to O(6)CEGs. Further, O(6)MeG lesions signal the stabilization of the p53 tumor suppressor, and such signaling is also MutSalpha-dependent. Despite this, MutSalpha-dependent apoptosis can be executed in a p53-independent manner. DNA mismatch repair status did not influence the response of cells to other inducers of p53 and apoptosis. Thus, it appears that mismatch repair status, rather than p53 status, is a strong indicator of the susceptibility of cells to alkylation-induced apoptosis. This experimental system will allow dissection of the signal transduction events that couple a specific type of DNA base lesion with the final outcome of apoptotic cell death.

  14. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53.

    Science.gov (United States)

    Long, Jaclyn S; Crighton, Diane; O'Prey, James; Mackay, Gillian; Zheng, Liang; Palmer, Timothy M; Gottlieb, Eyal; Ryan, Kevin M

    2013-05-09

    Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. p53 immunostaining pattern in Brazilian patients with hepatocellular carcinoma Expressão imunohistoquímica do p53 carcinoma hepatocelular de pacientes brasileiros

    Directory of Open Access Journals (Sweden)

    Venâncio Avancini Ferreira Alves

    2004-02-01

    Full Text Available Hepatocellular carcinoma (HCC is an important type of cancer etiologically related to some viruses, chemical carcinogens and other host or environmental factors associated to chronic liver injury in humans. The tumor suppressor gene p53 is mutated in highly variable levels (0-52% of HCC in different countries. OBJECTIVE: The objective of the present study was to compare the frequency of aberrant immunohistochemical expression of p53 in HCC occurring in cirrhotic or in non-cirrhotic patients as well as in liver cell dysplasia and in adenomatous hyperplasia. We studied 84 patients with HCC or cirrhosis. RESULTS: We detected p53 altered immuno-expression in 58.3% of patients in Grade III-IV contrasting to 22.2% of patients in Grade I-II (p = 0.02. Nontumorous areas either in the vicinity of HCC or in the 30 purely cirrhotic cases showed no nuclear p53 altered expression, even in foci of dysplasia or adenomatous hyperplasia. No significant difference was found among cases related to HBV, HCV or alcohol. CONCLUSION: The high frequency of p53 immunoexpression in this population is closer to those reported in China and Africa, demanding further studies to explain the differences with European and North American reports.O carcinoma hepatocelular (CHC é um importante tipo de câncer relacionado etiologicamente a alguns vírus, carcinógenos químicos e outros fatores ambientais que causam danos crônicos ao fígado em humanos. A freqüência de mutação do gene p53 em CHC é altamente heterogênea (0-52% nos diversos países. OBJETIVO: O objetivo deste estudo foi determinar, imuno-histologicamente, a freqüência da expressão anômala de p53 em CHCs em pacientes cirróticos versus não-cirróticos, bem como em displasia hepática e hiperplasia adenomatosa. Para isso, foram estudados 84 pacientes com carcinoma hepatocelular ou cirrose. RESULTADOS: Foram detectadas expressões do p53 alterado em 58,3% dos pacientes com CHC graus III-IV, contrastando com

  16. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53.

    Science.gov (United States)

    Mao, Chao; Wang, Xiang; Liu, Yating; Wang, Min; Yan, Bin; Jiang, Yiqun; Shi, Ying; Shen, Yi; Liu, Xiaoli; Liai, Weiwei; Yang, Rui; Xiao, Desheng; Cheng, Yan; Liu, Shuang; Zhou, Hu; Cao, Ya; Yu, Weishi; Muegge, Kathrin; Yu, Herbert; Tao, Yongguang

    2018-03-27

    Long non-coding RNAs (lncRNA) have been associated with various types of cancer, however, the precise role of many lncRNAs in tumorigenesis remains elusive. Here we demonstrate that the cytosolic lncRNA P53RRA is downregulated in cancers and functions as a tumor suppressor by inhibiting cancer progression. Chromatin remodeling proteins LSH and Cfp1 silenced or increased P53RRA expression respectively. P53RRA bound Ras GTPase-activating protein-binding protein 1 (G3BP1) using nucleotides 1 and 871 of P53RRA and the RRM interaction domain of G3BP1 (aa 177-466). The cytosolic P53RRA-G3BP1 interaction displaced p53 from a G3BP1 complex resulting in greater p53 retention in the nucleus which led to cell cycle arrest, apoptosis, and ferroptosis. P53RRA promoted ferroptosis and apoptosis by affecting transcription of several metabolic genes. Low P53RRA expression significantly correlated with poor survival in patients with breast and lung cancers harboring wild-type p53. These data show that lncRNAs can directly interact with the functional domain of signaling proteins in the cytoplasm, thus regulating p53 modulators to suppress cancer progression. Copyright ©2018, American Association for Cancer Research.

  17. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways.

    Directory of Open Access Journals (Sweden)

    Aishwarya G Jacob

    Full Text Available MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.

  18. Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer.

    Science.gov (United States)

    Astanehe, Arezoo; Arenillas, David; Wasserman, Wyeth W; Leung, Peter C K; Dunn, Sandra E; Davies, Barry R; Mills, Gordon B; Auersperg, Nelly

    2008-03-01

    Inactivation of the transcription factor and tumor suppressor p53, and overexpression or mutational activation of PIK3CA, which encodes the p110alpha catalytic subunit of phosphatidylinositol-3-kinase (PI3K), are two of the most common deleterious genomic changes in cancer, including in ovarian carcinomas. We investigated molecular mechanisms underlying interactions between these two mediators and their possible roles in ovarian tumorigenesis. We identified two alternate PIK3CA promoters and showed direct binding of and transcriptional inhibition by p53 to one of these promoters. Conditional suppression of functional p53 increased p110alpha transcripts, protein levels and PI3K activity in immortalized, non-tumorigenic ovarian surface epithelial (OSE) cells, the precursors of ovarian carcinoma. Conversely, overexpression of p53 by adenoviral infection and activation of p53 by gamma-irradiation both diminished p110alpha protein levels in normal OSE and ovarian cancer cells. The demonstration that p53 binds directly to the PIK3CA promoter and inhibits its activity identifies a novel mechanism whereby these two mediators regulate cellular functions, and whereby inactivation of p53 and subsequent upregulation of PIK3CA might contribute to the pathophysiology of ovarian cancer.

  19. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  20. Maintaining appearances-The role of p53 in adult neurogenesis

    International Nuclear Information System (INIS)

    Medrano, Silvia; Scrable, Heidi

    2005-01-01

    In the adult mammalian brain, neuronal turnover continues to replenish cells in existing neuronal circuits, such as those involved either in odor discrimination or in learning and memory, throughout life. With age, however, the capacity for neurogenesis diminishes and these functions become impaired. Neuronal turnover is a two-step process, which first generates excess neuronal progenitors and then eliminates all but the few that differentiate into fully functional neurons. This process requires a fine balance between cell proliferation and cell death. Altered activity of the tumor suppressor p53 can upset this balance by affecting the rate of cell proliferation, but not the rate of cell death, in neurogenic regions of the adult brain. Genetically engineered mice in which p53 activity is increased demonstrate that premature loss of neurogenic capacity is linked to accelerated organismal aging

  1. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ikuo Konishi

    2006-01-01

    Full Text Available BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no signifi cant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

  2. p53 autoantibodies, cytokine levels and ovarian carcinogenesis.

    Science.gov (United States)

    Tsai-Turton, Miyun; Santillan, Antonio; Lu, Dan; Bristow, Robert E; Chan, Kwun C; Shih, Ie-Ming; Roden, Richard B S

    2009-07-01

    To address the hypothesis that type II ovarian carcinoma, mutation of p53 and plasma levels of particular cytokines are associated with the generation of p53-specific serum autoantibody (AAb) responses in patients. Levels of CA125, 17 cytokines and AAbs to tumor-associated antigens including p53 were measured in plasma of 130 gynecologic tumor patients and 84 healthy controls. TP53 exons 4-9 were sequenced in tumor specimens. p53 AAbs are associated with high grade, but not low grade ovarian carcinoma. Seropositivity for p53 AAb occurred only in those ovarian carcinoma patients whose tumors contained mutated TP53, regardless of the exon targeted. Higher p53 AAb levels were detected in ovarian carcinoma patients who had higher stage disease, but p53 AAb levels were not correlated with CA125 levels. Among high-grade carcinoma patients, there was no relationship between p53 AAb seropositivity and seropositivity to other tumor-associated antigens tested, CA125 level or survival outcome. Both high and low grade ovarian carcinoma patients exhibited elevated levels of IL6, IL8 and IL10 as compared to healthy volunteers, although increased levels of IL5, MCP1, MIP1 and TNFalpha were associated only with high grade and advanced disease. Higher levels of p53AAb responses were correlated with elevated circulating IL4 and IL12, but reduced IL8 levels. Type II, but not type I, ovarian carcinoma patients had elevated serum levels of p53 AAb. P53 AAb is associated with mutation of TP53, higher plasma IL4 and IL12 but lower plasma IL8 levels and no survival advantage.

  3. Δ133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer

    Science.gov (United States)

    Hofstetter, G; Berger, A; Schuster, E; Wolf, A; Hager, G; Vergote, I; Cadron, I; Sehouli, J; Braicu, E I; Mahner, S; Speiser, P; Marth, C; Zeimet, A G; Ulmer, H; Zeillinger, R; Concin, N

    2011-01-01

    Background: We aimed to evaluate the clinical relevance of p53 and p73 isoforms that modulate the function of p53. Methods: This prospective multicentre study included 154 patients with stage III and IV serous ovarian cancer. A functional yeast-based assay and subsequent sequencing were performed to analyse the p53 mutational status. Expression of p53 and p73 isoforms was determined using RT–qPCR. Results: Δ133p53 expression constituted an independent prognostic marker for recurrence-free (hazard ratio=0.571, P=0.016, 95% CI: 0.362–0.899) and overall survival (hazard ratio=0.365, P=0.004, 95% CI: 0.182–0.731) in patients with p53 mutant ovarian cancer (n=121). High Δ40p53 expression was associated with favourable tumour grading (P=0.037) and improved recurrence-free survival (33.4 vs 19.6 months, P=0.029), but not overall survival (43.1 vs 33.6 months, P=0.139), in patients with p53 wild-type cancer (n=33). Neither the p53 mutational status nor p73 isoform expression possessed prognostic significance in the examined ovarian cancer cases. Conclusion: Δ133p53 expression was associated with prognosis in the vast majority of ovarian cancer cases, that is, patients with p53 mutant advanced serous carcinomas. Thus, our findings underline the importance of considering the complex p53 regulatory network. PMID:22009029

  4. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  5. [Expression and significance of microRNAs in the p53 pathway in ovarian cancer cells and serous ovarian cancer tissues].

    Science.gov (United States)

    Zhang, Qi; He, Xiang-jun; Ma, Li-ping; Li, Na; Yang, Jing; Cheng, Ye-xia; Cui, Heng

    2011-12-01

    The aim of this study was to investigate whether miR-449a, miR-449b and miR-192 family microRNAs play the same roles in p53 pathway as miR-34 family in ovarian cancer. Wild-type p53 ovarian carcinoma cell line A2780 cells were treated with genotoxic agent adriamycin. The reactivation of p53 was detected by Western blot. The expression of miR-449a/b, miR-34a, miR-34b, miR-34c, miR-192 and miR-194 were detected by real-time quantitative PCR. Mutant p53 ovarian cancer cell line SKOV3.ipl cells were transfected with pre-microRNAs and the cell-cycle changes were detected. The expression level of miR-449a/b, miR-34a, miR-34b, miR-34c, miR-192 and miR-194 in serous ovarian carcinomas of varying grade and stage were compared with real-time PCR. The expressions of miR-449a/b, miR-34b and miR-34c were 19-fold to 21-fold elevated after p53 activation by genotoxic agent. Ectopic expression of miR-449b, as well as miR-34c, resulted in cell-cycle arrest in SKOV3.ipl cells. The expression of miR-449a/b was parallel with that of miR-34b, miR-34c, and were significantly lower in late stage and high-grade serous carcinomas than in the normal fallopian tube, early stage and low-grade serous carcinomas. The expression of miR-192, miR-194 and miR-34a did not show evident features in serous ovarian carcinomas and were much lower than miR-449a/b, miR-34b and miR-34c in normal fallopian tube. As tumor-suppressor microRNAs, miR-449a/b, miR-34b and miR-34c cooperate and play important roles in p53 pathway. Their inactivation may contribute to the carcinogenesis and progression of serous ovarian carcinomas.

  6. Vaccines to Breast Cancer Based on p53 Mutants

    National Research Council Canada - National Science Library

    Ertl, Hildegund

    1997-01-01

    The aim of this proposal is to test vaccines expressing mouse mutant or wild-type p53 for induction of protective immunity against challenge with tumor cell lines expressing either mutant or high levels of wild-type p53...

  7. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Purpose: To examine the role of endogenous nitric oxide (NO•) and influence of p53 status during apoptosis induced by a ... endogenous NO•, based on p53 status, and indicate manipulation of iNOS may offer exciting opportunities to improve the ..... agents, further research will be required to define more specifically the ...

  8. Chronology of p53 protein accumulation in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1995-01-01

    p53 Protein accumulation in early gastric carcinoma was studied in relation to the histological type (Lauren classification) and the type of growth pattern, including the chronology of p53 protein accumulation during carcinogenesis. Forty five, paraffin embedded gastrectomy specimens from early

  9. Data on the putative role of p53 in breast cancer cell adhesion: Technical information for adhesion assay

    Directory of Open Access Journals (Sweden)

    Kallirroi Voudouri

    2016-12-01

    Full Text Available In this data article, the potential role of p53 tumor suppressor gene (p53 on the attachment ability of MCF-7 breast cancer cells was investigated. In our main article, “IGF-I/ EGF and E2 signaling crosstalk through IGF-IR conduit point affect breast cancer cell adhesion” (K. Voudouri, D. Nikitovic, A. Berdiaki, D. Kletsas, N.K. Karamanos, G.N. Tzanakakis, 2016 [1], we describe the key role of IGF-IR in breast cancer cell adhesion onto fibronectin (FN. p53 tumor suppressor gene is a principal regulator of cancer cell proliferation. Various data have demonstrated an association between p53 and IGF-IR actions on cell growth through its’ putative regulation of IGF-IR expression. According to our performed experiments, p53 does not modify IGF-IR expression and does not affect basal MCF-7 cells adhesion onto FN. Moreover, technical details about the performance of adhesion assay onto the FN substrate were provided.

  10. Lack of mutations in the P53 gene exons 5 to 8 in ataxia-telangiectasia.

    Science.gov (United States)

    Jonveaux, P; Berger, R

    1993-04-01

    Alterations of the TP53 tumor suppressor gene are present in various human malignancies and in the dominantly inherited Li-Fraumeni syndrome. Recently, a cell cycle checkpoint pathway involving p53 and GADD45 has been identified as defective in ataxia-telangiectasia. Using single strand conformation polymorphism analysis of PCR products, we looked for TP53 mutations in DNA of patients with AT. We did not find any mutation in 6 patients, suggesting that TP53 mutations are not directly involved in the cancer susceptibility observed in AT.

  11. Phenolphthalein induces thymic lymphomas accompanied by loss of the p53 wild type allele in heterozygous p53-deficient (+/-) mice.

    Science.gov (United States)

    Dunnick, J K; Hardisty, J F; Herbert, R A; Seely, J C; Furedi-Machacek, E M; Foley, J F; Lacks, G D; Stasiewicz, S; French, J E

    1997-01-01

    Epidemiology studies have indicated that many human cancers are influenced by environmental factors. Genetically altered mouse model systems offer us the opportunity to study the interaction of chemicals with genetic predisposition to cancer. Using the heterozygous p53-deficient (+/-) mouse, an animal model carrying one wild type p53 gene and one p53 null allele, we studied the effects of phenolphthalein on tumor induction and p53 gene alterations. Earlier studies showed that phenolphthalein caused carcinogenic effects in Fisher 344 rats and B6C3F1 mice after a 2-yr dosing period (Dunnick and Hailey, Cancer Res. 56: 4922-4926, 1996). The p53 (+/-) mice received phenolphthalein in the feed at concentrations of 200, 375, 750, 3,000, or 12,000 ppm (approximately 43, 84, 174, 689, or 2,375 mg/kg body weight/day or 129, 252, 522, 2,867, or 7,128 mg/m2 body surface area/day) for up to 6 mo. A target organ cancer site that accumulated p53 protein in the B6C3F1 mouse (i.e., thymic lymphoma) was also a target site for cancer in the p53 (+/-) mouse. In the p53 (+/-) mouse, treatment-related atypical hyperplasia and malignant lymphoma of thymic origin were seen in the control and dosed groups at a combined incidence of 0, 5, 5, 25, 100, and 95%, respectively. Twenty-one of the thymic lymphomas were examined for p53 gene changes, and all showed loss of the p53 wild type allele. Chemical-induced ovarian tumors in the B6C3F1 mouse showed no evidence for p53 protein accumulation and did not occur in the p53 (+/-) mouse. The p53-deficient (+/-) mouse model responded to phenolphthalein treatment with a carcinogenic response in the thymus after only 4 mo of dosing. This carcinogenic response took 2 yr to develop in the conventional B6C3F1 mouse bioassay. The p53-deficient (+/-) mouse is an important model for identifying a carcinogenic response after short-term (phenolphthalein combined with a genetic predisposition to cancer can potentiate the carcinogenic process and cause p53

  12. The association between the p53/topoisomerase I and p53/ topoisomerase IIalpha immunophenotypes and the progression of ovarian carcinomas.

    Science.gov (United States)

    Bar, Julia K; Grelewski, Piotr; Noga, Leszek; Rabczyński, Jerzy; Gryboś, Marian; Jeleń, Michał

    2012-01-01

    In in vitro studies it has been revealed that p53 protein expression might regulate topoisomerase I (topo I) and topoisomerase IIalpha (topo IIalpha) levels in tumor cells. So far, the association between the p53 protein and topo I and topo IIalpha expression and its impact on ovarian carcinoma progression has not been analyzed. The aim of the study was to examine the association between topo I and topo IIalpha expression and p53 protein overexpression with respect to the morphological features and progressive growth of ovarian tumors. The expression of the studied biomarkers was estimated by immunohistochemical staining in tumor sections from 136 malignant and 30 benign ovarian neoplasms. Significant differences for topo I, topo IIalpha and p53 expression between malignant and benign tumors were observed (p p53 protein was associated with advanced stages of ovarian carcinomas (p ovarian carcinomas, positive correlations between topo I and topo IIalpha, topo I and p53 and topo Ilalpha and p53 protein expression were revealed (p = 0.001). No relationship between the studied biomarkers was found in benign ovarian tumors (p > 0.05). p53/topo I and p53/topo IIalpha immunophenotypes were associated with advanced stages of ovarian carcinoma (p = 0.045 and p = 0.009, respectively), p53/topo IIalpha positive ovarian carcinomas were more frequently observed in high than in low tumor grades and the differences were only of borderline significance (p = 0.07). Current findings suggest that on the one hand, cooperation between topo I, topo IIalpha and p53 protein participates in the progressive growth of ovarian tumors. On the other hand, simultaneous expression of the studied proteins identifies the subgroup of ovarian cancers with aggressive biological features which might be considered in therapy.

  13. P53 and bcl-2 assessment in serous ovarian carcinoma.

    Science.gov (United States)

    Palmer, J E; Sant Cassia, L J; Irwin, C J; Morris, A G; Rollason, T P

    2008-01-01

    The study objective was to determine the prognostic value of assessment of staining of p53 and bcl-2 in a well-selected group of serous ovarian carcinomas. Immunohistochemical detection was used to identify both p53 and bcl-2 positive tumors. One hundred thirty-two tumors were analyzed for positivity of staining, grade of staining intensity, and for p53 alone, percent expression rates. These were analyzed alongside traditional clinicopathologic parameters for their ability to predict overall survival (OS), disease-free survival (DFS), and response to chemotherapy (CR). Univariate COX analysis revealed percent p53 expression (P = 0.012) and p53 grade (P = 0.01) to be significant predictors of DFS. Neither the p53 nor bcl-2 measurement parameters were found significant for OS or prediction of CR. On multivariate analysis, incorporating clinicopathologic parameters, p53 parameters did not retain independent significance for any outcome measure. As in primary reported studies, bcl-2 was not found to be of clear independent prognostic value in this group of ovarian tumors. If mutation of p53 and its consequent overexpression is an early event in ovarian tumorigenesis, then p53 assessment may prove useful prognostically in the assessment of either low-grade ovarian carcinomas, as a possible indicator for progression, or in early-stage ovarian tumors, as a marker of tumor aggression or likelihood of recurrence. p53 analysis of a larger group of stage I ovarian tumors would be desirable to further explain the potential association with DFS.

  14. p53 selectively regulates developmental apoptosis of rod photoreceptors.

    Directory of Open Access Journals (Sweden)

    Linda Vuong

    Full Text Available Retinal cells become post-mitotic early during post-natal development. It is likely that p53, a well-known cell cycle regulator, is involved in regulating the genesis, differentiation and death of retinal cells. Furthermore, retinal cells are under constant oxidative stress that can result in DNA damage, due to the extremely high level of metabolic activity associated with phototransduction. If not repaired, this damage may result in p53-dependent cell death and ensuing vision loss. In this study, the role of p53 during retinal development and in the post-mitotic retina is investigated. A previously described super p53 transgenic mouse that expresses an extra copy of the mouse p53 gene driven by its endogenous promoter is utilized. Another transgenic mouse (HIP that expresses the p53 gene in rod and cone photoreceptors driven by the human interphotoreceptor retinoid binding protein promoter was generated. The electroretinogram (ERG of the super p53 mouse exhibited reduced rod-driven scotopic a and b wave and cone-driven photopic b wave responses. This deficit resulted from a reduced number of rod photoreceptors and inner nuclear layer cells. However, the reduced photopic signal arose only from lost inner retinal neurons, as cone numbers did not change. Furthermore, cell loss was non-progressive and resulted from increased apoptosis during retinal developmental as determined by TUNEL staining. In contrast, the continuous and specific expression of p53 in rod and cone photoreceptors in the mature retinas of HIP mice led to the selective loss of both rods and cones. These findings strongly support a role for p53 in regulating developmental apoptosis in the retina and suggest a potential role, either direct or indirect, for p53 in the degenerative photoreceptor loss associated with human blinding disorders.

  15. p53 mutation is infrequent in clear cell carcinoma of the ovary.

    Science.gov (United States)

    Ho, E S; Lai, C R; Hsieh, Y T; Chen, J T; Lin, A J; Hung, M H; Liu, F S

    2001-02-01

    p53 gene alteration has been extensively studied in epithelial ovarian cancer. However, its occurrence in clear cell carcinoma, an infrequent histologic subtype of epithelial ovarian cancer, is rarely reported. The aim of this study is to determine the status of p53 gene alteration in this distinct type of ovarian carcinoma. Paraffin blocks of tumors from 38 patients with primary or recurrent ovarian clear cell carcinoma were studied for p53 alteration. All these tumors were subjected to immunohistochemical and molecular analysis. Two monoclonal antibodies (DO-7 and PAb 1801) were used for immunohistochemical staining. Genomic DNAs extracted from paraffin blocks of the 38 tumors were subscribed for a nested polymerase chain reaction/single-strand conformation polymorphism (PCR/SSCP) analysis. Tumors showing band shift on SSCP were further prepared for DNA sequencing to determine the site of mutation. Overexpression of p53 was observed in only one stage III clear cell carcinoma. However, focal positive p53 staining was noted in another five tumors. Of the six tumors showing positive immunohistochemistry, p53 alterations were noted in four tumors. Three tumors revealed a missense point mutation: two were in exon 7 (TCT(227) --> TTT and GGC(245) --> AGC) and one was in exon 5 (CGC(156) --> CAC). Another tumor revealed a 12-bp deletion in two possible ways: it might involve the last four codons at the 3' end of exon 4 (nucleotides 12,288-12,299) or it might cross over the splice junction between exon 4 and intron 4 (nucleotides 12,290-12,301). The former would result in a predicted protein product of 389 amino acids whereas the latter would cause a frameshift in the gene sequence and would result in a truncated protein. Mutations in p53 appear to be much less frequent in clear cell carcinoma than in other histologic types of epithelial ovarian cancer. We suggest that p53 alterations may not play an important role in the development of clear cell carcinoma.

  16. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  17. The p53 molecule and its prognostic role in squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Nylander, K; Dabelsteen, Erik; Hall, P A

    2000-01-01

    studies have focused on the TP53 tumour suppressor gene, analysing its gene status and protein status. When looking at p53 protein expression, using immunohistochemistry, no correlation to patient outcome has been seen for the whole group of SCCHN. However, a significant association between p53 expression...... the prognostic significance of mutations in the TP53 gene, results differ. But when restricting analysis to tumours with mutations causing an obvious change in protein, TP53 mutation was found to be a strong and independent variable for prognosticating survival. This review article gives an up-to-date overview...

  18. Expression of Cyclooxygenase 2 and p-53 and their Relation with 5 Years Survival in Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    E. Abdoli

    2012-07-01

    Full Text Available Introduction & Objective: Hodgkin lymphoma accounts for about 1% of all cancers. Cyclooxygenase 2 (COX2 is a cytoplasmic enzyme. Oncogene, and growth factor induce over expression of COX2. COX2 is apoptotic inhibitor. Mutation of the p53 tumor suppressor gene represents the most common genetic alternation in human tumors. This study aimed to evaluate the expression of COX2 and p53 in subtypes of Hodgkin's lymphoma.Materials & Methods: In this cross- sectional study,62 Hodgkin's lymphomas were studied in admitted samples of pathology departments of Hamadan hospitals before 2005.Age,sex and type of HL were recorded in each case. p53 and COX2 expression was investigated immunohistochemically and expression intensity. The comparison of p53 and COX2 between subtypes of HL was evaluated with SPSS v13 soft ware and chi-square test.Results: The mean age of the patients of HL was 41±16 and 79% if HL immunoreactive for p53. In this study the mean age of the patients of HL who died was more than the mean age of the patients of HL who survived which is statistically considered significant (P<0.003. 24% of the patients of HL were immunoreactive for COX2.Conclusion: Regarding to p53 and COX2 in subtypes of HL and insignificant difference in p53 and COX2 expression between subtypes of HL. We concluded that p53 and COX2 have not an important role in the prognosis of HL, but it is recommended to do more universal studies in the immunohistochemical level of P53 and COX2 to attain perfect results.(Sci J Hamadan Univ Med Sci 2012;19(2:34-38

  19. p53 Gene (NY-CO-13 Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib

    Directory of Open Access Journals (Sweden)

    Hayder M. Al-kuraishy

    2018-01-01

    Full Text Available The p53 gene is also known as tumor suppressor p53. The main functions of the p53 gene are an anticancer effect and cellular genomic stability via various pathways including activation of DNA repair, induction of apoptosis, and arresting of cell growth at the G1/S phase. Normally, the p53 gene is inactivated by mouse double minute 2 proteins (mdm2, but it is activated in chronic myeloid leukemia (CML. Tyrosine kinase inhibitors are effective chemotherapeutic agents in the management of CML. The purpose of the present study was to evaluate the differential effect of imatinib and nilotinib on p53 gene serum levels in patients with CML. A total number of 60 patients with chronic myeloid leukemia with ages ranging from 47 to 59 years were recruited from the Iraqi Hematology Center. They started with tyrosine kinase inhibitors as first-line chemotherapy. They were divided into two groups—Group A, 29 patients treated with imatinib and Group B, 31 patients treated with nilotinib—and compared with 28 healthy subjects for evaluation p53 serum levels regarding the selective effect of either imatinib or nilotinib. There were significantly (p < 0.01 high p53 gene serum levels in patients with CML (2.135 ± 1.44 ng/mL compared to the control (0.142 ± 0.11 ng/mL. Patients with CML that were treated with either imatinib or nilotinib showed insignificant differences in most of the hematological profile (p > 0.05 whereas, p53 serum levels were high (3.22 ± 1.99 ng/mL in nilotinib-treated patients and relatively low (1.18 ± 0.19 ng/mL in imatinib-treated patients (p = 0.0001. Conclusions: Nilotinib is more effective than imatinib in raising p53 serum levels in patients with chronic myeloid leukemia.

  20. Expression of Egr1 and p53 in human carotid plaques and apoptosis induced by 7-oxysterol or p53.

    Science.gov (United States)

    Miah, Sayem; Zadeh, Shahram Nour Mohammad; Yuan, Xi-Ming; Li, Wei

    2013-07-01

    Egr-1 and p53 are involved in pathology of both atherosclerosis and cancer. However, it is unknown whether p53 and Egr1 are interactively involved in apoptosis in atherosclerosis. We found that in human carotid plaques, the expression of p53 was inversely correlated with Egr1. In U937 cells, 7β-hydroxycholesterol and 7-ketocholesterol induced production of reactive oxygen species (ROS), transient up-regulation of Egr1 followed by late induction of p53 and apoptosis. Cells with nuclear fragmentation induced by 7-oxysterol or p53 showed increased levels of p53, but decreased levels of Egr1. In conclusion, ROS induced by 7-oxysterols may function as an early initiator of Egr1 expression. The late induced p53 by 7-oxysterols contributes to apoptotic cell death and is linked to the reduction of Egr1 levels, which resembles the differential expression of p53 and Egr1 in human atheroma progression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. 14-3-3 Sigma And p53 Expression in Gastric Cancer and Its Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilbert Mühlmann

    2010-01-01

    Full Text Available 14-3-3 sigma (σ induces G2 arrest enabling the repair of damaged DNA. The function of 14-3-3 σ is frequently lost in tumor cells, indicating a potential tumor suppressor function. The purpose of this study was to evaluate the prognostic value of 14-3-3 σ expression in human gastric cancer. 14-3-3 σ expression was analyzed by immunohistochemistry in 157 tumor samples of patients, who underwent resection for gastric cancer. Since 14-3-3 σ is involved in the p53 network, p53 expression was detected in parallel and correlated with 14-3-3 σ. 14-3-3 σ was found to be overexpressed in 75 (47.8% of 157 cases, the overexpression rate of p53 protein was 27.4%. 14-3-3 σ overexpression was statistically significantly associated with pT-stage (p=0.041 pN-stage (p=0.015 and UICC-stage (p=0.019 and showed a borderline significance with Lauren classification (p=0.057. Univariate survival calculations revealed a coexistent 14-3-3 σ and p53 overexpression as a significant predictor of disease-free survival. Multivariate analysis did not unfold 14-3-3 as an independent prognostic factor for disease-free survival and overall survival. Concomitant 14-3-3 σ and p53 overexpression in tumor cells of patients with gastric cancer identifies a population of patients with relatively unfavorable prognosis.

  2. A rare DNA contact mutation in cancer confers p53 gain-of-function and tumor cell survival via TNFAIP8 induction.

    Science.gov (United States)

    Monteith, Jessica A; Mellert, Hestia; Sammons, Morgan A; Kuswanto, Laudita A; Sykes, Stephen M; Resnick-Silverman, Lois; Manfredi, James J; Berger, Shelley L; McMahon, Steven B

    2016-10-01

    The p53 tumor suppressor gene encodes a sequence-specific transcription factor. Mutations in the coding sequence of p53 occur frequently in human cancer and often result in single amino acid substitutions (missense mutations) in the DNA binding domain (DBD), blocking normal tumor suppressive functions. In addition to the loss of canonical functions, some missense mutations in p53 confer gain-of-function (GOF) activities to tumor cells. While many missense mutations in p53 cluster at six "hotspot" amino acids, the majority of mutations in human cancer occur elsewhere in the DBD and at a much lower frequency. We report here that mutations at K120, a non-hotspot DNA contact residue, confer p53 with the previously unrecognized ability to bind and activate the transcription of the pro-survival TNFAIP8 gene. Mutant K120 p53 binds the TNFAIP8 locus at a cryptic p53 response element that is not occupied by wild-type p53. Furthermore, induction of TNFAIP8 is critical for the evasion of apoptosis by tumor cells expressing the K120R variant of p53. These findings identify induction of pro-survival targets as a mechanism of gain-of-function activity for mutant p53 and will likely broaden our understanding of this phenomenon beyond the limited number of GOF activities currently reported for hotspot mutants. Published by Elsevier B.V.

  3. P53 expression in prostatic cancer: an immunohistochemical study

    International Nuclear Information System (INIS)

    Al-Nuaimy, W.M.; Al-Allaf, L.I.; Alnaimi, H.A.

    2011-01-01

    Prostate cancer is the most common malignancy in men and second leading cause of cancer death in the Western world. P53 alterations are the most frequent genetic changes in human cancers. Mutation of the p53 gene has been implicated in the development of >50% of all human cancer. The current study aims at evaluating the immuno-histochemical expression of p53 protein in patients with cancer of prostate, as prognostic parameter in correlation with other parameters including PSA receptors, and to correlate the results with those of other studies. (authors).

  4. p53 and survival in early onset breast cancer

    DEFF Research Database (Denmark)

    Gentile, M; Bergman Jungeström, M; Olsen, K E

    1999-01-01

    The p53 protein has proven to be central in tumorigenesis by its cell cycle regulatory properties and both gene mutations and protein accumulation have been associated with poor prognosis in breast cancer. The present study was undertaken to investigate the prognostic significance of gene mutations......, p53 protein accumulation and of loss of heterozygosity (LOH) at the TP53 locus in young (age ... (46%). Log rank analysis revealed no significant association between survival and TP53 mutations (in general), p53 protein accumulation or LOH. However, missense mutations localised to the zinc binding domain were significantly (P = 0.0007) associated with poorer prognosis. As indicated...

  5. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  6. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    Directory of Open Access Journals (Sweden)

    Mariell Pettersson

    Full Text Available The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2 via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  7. A p53-regulated apoptotic gene signature predicts treatment response and outcome in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Bainer, Russell O; Trendowski, Matthew R; Cheng, Cheng; Pei, Deqing; Yang, Wenjian; Paugh, Steven W; Goss, Kathleen H; Skol, Andrew D; Pavlidis, Paul; Pui, Ching-Hon; Gilliam, T Conrad; Evans, William E; Onel, Kenan

    2017-01-01

    Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well.

  8. Distribution of p53 expression in tissue from 774 Danish ovarian tumour patients and its prognostic significance in ovarian carcinomas.

    Science.gov (United States)

    Høgdall, Estrid V S; Christensen, Lise; Høgdall, Claus K; Frederiksen, Kirsten; Gayther, Simon; Blaakaer, Jan; Jacobs, Ian J; Kjaer, Susanne K

    2008-05-01

    The clinical roles played by normal and altered p53 in cancer are under intensive investigation, but larger studies describing the pattern as well as the prognostic value are still needed. The aim of this study was, using tissue array (TA), to examine the overexpression of p53 protein in 774 epithelial ovarian tumour tissues from Danish women and to evaluate whether p53 tissue expression levels correlate with clinicopathological parameters and prognosis. The distribution of p53 expression levels at different stages of disease, in different histological subtypes, and the prognostic value of p53 tissue expression were examined. Overall, p53 was expressed in 24/189 (13%) low malignant potential ovarian tumours (LMP) and in 278/585 (48%) ovarian cancers (OC). No significant difference in frequency of p53 tissue expression in LMP tissue was noted with increasing tumour stage (p=0.98). By contrast, there was a significant increase in the frequency of p53 tissue expression in OC with increasing FIGO stage (pp53 was associated with longer OC disease-specific survival. Tissue p53 expression may be of prognostic value in women with OC.

  9. Relationship of p53 Mutations to Epidermal Cell Proliferation and Apoptosis in Human UV-Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janine G. Einspahr

    1999-11-01

    Full Text Available Human skin is continually subjected to UV-irradiation with the p53 gene playing a pivotal role in repair of UV-induced DNA damage and apoptosis. Consequently, p53 alterations are early events in human UV-induced skin carcinogenesis. We studied 13 squamous cell carcinomas (SCC, 16 actinic keratoses (AK, 13 samples adjacent to an AK (chronically sun-damaged, and 14 normal-appearing skin samples for p53 mutation, p53 immunostaining (IHC, apoptosis (in situ TUNEL and morphology, and proliferation (PCNA. The frequency of p53 mutation increased from 14% in normal skin, to 38.5% in sun-damaged skin, 63% in AK, and 54% in SCC. p53 IHC increased similarly. Apoptosis (TUNEL increased from 0.06 ± 0.02%, to 0.1 ± 0.2, 0.3 ± 0.3, and 0.4 ± 0.3 in normal skin, sun-damaged skin, AK, and SCC, respectively. Apoptosis was strongly correlated with proliferation (i.e., TUNEL and PCNA, r = 0.7, P < 0.0001, and proliferation was significantly increased in the progression from normal skin to SCC. Bax was significantly increased in SCC compared to AK. These data imply that apoptosis in samples with a high frequency of p53 mutation may not necessarily be p53-dependent. We suggest that there is a mechanism for apoptosis in response to increased cellular proliferation that is p53-independent.

  10. The different regulatory effects of p53 status on multidrug resistance are determined by autophagy in ovarian cancer cells.

    Science.gov (United States)

    Kong, Dejuan; Ma, Shumei; Liang, Bing; Yi, Heqing; Zhao, Yinlong; Xin, Rui; Cui, Li; Jia, Lili; Liu, Xin; Liu, Xiaodong

    2012-06-01

    Multidrug resistance (MDR) has become an obstacle for chemotherapy of cancer. p53 is reported to participate in the regulation of MDR, but the association between p53 status and MDR are complicated and conditional. It has been verified that apoptosis is not the only mechanism for MDR regulation by p53, the roles of autophagy in MDR is less studied. Human ovarian carcinoma cell lines SKOV3 and multidrug resistant phenotype SKVCR cells were used and wild-type p53 (wt p53) and mutant 175H constructs were introduced into cells to establish cell models with different p53 status by gene engineering, the sensitivity to vincristine (VCR), cisplatin (DDP), pirarubicin (THP) and etoposide (VP-16) were detected by MTT assay, Western blot and quantitative real-time PCR were used to detect the expression of protein and mRNA, especially, monodansylcadaverine (MDC) staining was used for autophagy rate, Hoechst 33342/propidium iodide (PI) were used to assess apoptosis and necrosis. SKVCR cells induced by VCR shown overexpression of P-glycoprotein (P-gp) and MDR, and also displayed an enhanced autophagy compared with parental SKOV3. Wt p53 and 175H has no influence on drug sensitivity in SKOV3, while both sensitized SKVCR cells to VCR, THP and VP-16, especially 175H. The introduction of wt p53-induced apoptosis only, while 175H trigged autophagic cell death, necrosis and apoptosis so as to reverse the MDR. The enhancement of autophagy in MDR cells allows to survive during chemotherapy stress, autophagy plays important role in wt p53 and mutant p53-immediated MDR. The different influence of p53 status on drug sensitivity hint the individual treatment strategies based on p53 status in patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Golubovskaya, Vita M., E-mail: Vita.Golubovskaya@roswellpark.org; Ho, Baotran [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Conroy, Jeffrey [Genomics Shared Resource, Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Liu, Song; Wang, Dan [Bioinformatics Core Facility, Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Cance, William G. [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States)

    2014-01-21

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53{sup +/+} and p53{sup −/−} cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53{sup +/+} cells but not in p53{sup −/−} cells. Among up-regulated genes in HCT p53{sup +/+} cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53{sup +/+} colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  12. p53 mutations and codon 213 polymorphism of p53 in lung cancers of former uranium miners.

    Science.gov (United States)

    Popp, W; Vahrenholz, C; Schuster, H; Wiesner, B; Bauer, P; Täuscher, F; Plogmann, H; Morgenroth, K; Konietzko, N; Norpoth, K

    1999-01-01

    There is a high prevalence of G-->T transversions of p53 in lung cancers of smokers. One study has reported a special "hotspot" mutation at codon 249 of p53 in lung cancers of former uranium miners. The aim of our study was to look for mutational spectra of p53 in former German uranium miners with lung cancers. We investigated 16 patients with lung cancer who had worked as uranium miners in Germany and 13 lung cancer patients without a mining history of the same region. By means of the polymerase chain reaction and sequencing we looked for mutations in exons 5 7 of the p53 gene. We could not find any suggestion of hotspot mutations. The only G-->T mutation in former uranium miners was detected in the only nonsmoker. In 3 patients (19% of the total) we found a codon 213/3 polymorphism. The results indicate that G-->T transversions do not seem to be very common mutations in p53 in lung cancers probably caused by radiation. Therefore, p53 may be mutated early in lung cancer development if radiation exposure is a critical factor in carcinogenesis. In accordance with studies of thyroid cancer patients in the Chernobyl region, our results may indicate an overrepresentation of codon 213/3 polymorphism in p53 in radiation-caused cancers.

  13. p53-dependent delayed effects of radiation vary according to time of irradiation of p53 + / - mice.

    Science.gov (United States)

    Okazaki, Ryuji; Ootsuyama, Akira

    2014-01-01

    We previously reported that in p53 (+ / -) mice that had been given a whole-body dose of 3 Gy at 8 weeks of age, p53-dependent delayed effects of radiation, as manifested in T-cell receptor (TCR) variant fractions (VF) instability in mouse splenocytes, were biphasic, namely, induction of TCR-VF mutation reappeared at 44 weeks. The manifestation of the delayed effects and the measures of biological markers varied according to the timing of irradiation. We also reported that the decrease in function of the p53 gene was related to the effects of a delayed mutation. In the present study, we investigated the functions and mutations of the p53 gene in old age for p53 (+ / -) mice following irradiation at various ages. p53 (+ / -) mice were given a whole-body dose of 3 Gy at 8, 28 or 40 weeks of age. There were significant differences for all variables tested at 8 weeks of age. This was similarly the case for mice irradiated at 28 weeks of age, in which there were also significant differences in TCR VF and the percentage of apoptosis. In mice irradiated at 40 weeks of age, there were significant differences for all considered variables except for the p53 allele. We demonstrated that the different patterns of delayed mutation of the p53 gene at 56 weeks of age depended on the age at which mice had undergone 3-Gy whole-body irradiation. Our conclusions are limited to variation in p53-dependent delayed effects according to the time of irradiation.

  14. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2016-07-01

    killing ovarian cancer cells in vitro. This is unreported, novel finding paves the way for using super p53 for ovarian cancer treatment. Main...This is unreported, novel finding paves the way for using super p53 for ovarian cancer treatment. Main activities and objectives completed to date...What do you plan to do during the next reporting period to accomplish the goals?  Now that the basic groundwork for the experimental assays has

  15. Biologic effect of exogenous wild p53 combined with irradiation on human melanoma cell lines with different p53 status

    International Nuclear Information System (INIS)

    Min Fengling; Zhang Hong; Li Wenjian; Liu Bing; Zhou Qingming; Duan Xin; Gao Qingxiang

    2007-01-01

    Objective: To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on apoptosis and radiosensitivity of radioresistant human melanoma cell lines A375(wild type p53)and WM983a(mutant type p53). Methods: Control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect A375 cells and WM983a cells preirradiated with or without 1 Gy X-ray. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. These two types of cells irradiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 (AdCMV-p53), and mRNA level was detected by RT-PCR. The cell cycle delay and the expression of exogenous P53 were detected using flow cytometry (FCM) at different times after transfection. Tunel technique was used to detect cell apoptosis. The radiosensivity of A375 and WM983a cells after p53 transduction was analyzed by colony formation. Results: It is found that 1 Gy irradiation increased the gene transfection efficiency of A375 and WM983a cells. The expression of exogenous P53 was found to range from 60% to 80% among transfected cells during the first three days after transduction and then declined continuously down to the control level on day 10. G 1 cell cycle arrest was also observed after p53 gene transduction. WM983a cells transfected with p53 showed higher sensitivity to X-ray-induced cell killing than A375 cells. Conclusions: It is indicated that low dose of ionizing radiation can improve gene transfection efficiency of A375 and WM983a cells mediated by adenovirus vector. Althrough the overexpresion of exogenous p53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 and WM983a irt vitro, the two cell lines are much more sensitive to cell death induced by irradiation. It is

  16. Thymocyte apoptosis induced by p53-dependent and independent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.R.; Purdie, C.A.; Harrison, D.J.; Morris, R.G.; Bird, C.C.; Hooper, M.L.; Wyllie, A.H. (Edinburgh Univ. Medical School (United Kingdom). Dept. of Pathology)

    1993-04-29

    The authors studied the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca[sup 2+]-dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time- dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage. (Author).

  17. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance

    International Nuclear Information System (INIS)

    Pardo, F.S.; Su, M.; Gerweck, L.; Schmidt, E.V.; Borek, C.; Preffer, F.; Dombkowski, D.

    1994-01-01

    Dominant oncogenic sequences have been shown to modulate the intrinsic radiation sensitivity of cells of both human and murine tumor cell lines. Whether transfection with candidate tumor-suppressor genes can modulate intrinsic radiation sensitivity is unknown. The data presented here demonstrate that transfection of rat embryo cells with a mutant p53 allele can increase the intrinsic radiation resistance of cells in vitro. First, transfection with mutant p53 resulted in transformed cellular morphology. Second, the transfected clone and the corresponding pooled population of transfected clones were more resistant to ionizing radiation in vitro. Last, analyses of the parameters of cell kinetics suggested that the radiobiological effects were unlikely to be due to altered parameters of cell kinetics at the time of irradiation, suggesting that mutant p53 altered the intrinsic radiation resistance of transfected cells by a more direct mechanism. Further experimentation will be necessary to develop a mechanistic approach for the study of these alterations. 29 refs., 3 figs., 2 tabs

  18. DNA hypermethylation, Her-2/neu overexpression and p53 mutations in ovarian carcinoma.

    Science.gov (United States)

    Feng, Qinghua; Deftereos, Georgios; Hawes, Stephen E; Stern, Joshua E; Willner, Julia B; Swisher, Elizabeth M; Xi, Longfu; Drescher, Charles; Urban, Nicole; Kiviat, Nancy

    2008-11-01

    To define patterns of aberrant DNA methylation, p53 mutation and Her-2/neu overexpression in tissues from benign (n=29), malignant (n=100), and border line malignant ovaries (n=10), as compared to normal (n=68) ovarian tissues. Further, to explore the relationship between the presence of genetic and epigenetic abnormalities in ovarian cancers, and assess the association between epigenetic changes and clinical stage of malignancy at presentation and response to therapy. The methylation status of 23 genes that were previously reported associated with various epithelial malignancies was assessed in normal and abnormal ovarian tissues by methylation-specific PCR. The presence of p53 mutation (n=82 cases) and Her-2/neu overexpression (n=51 cases) were assessed by DNA sequencing and immunohistochemistry, respectively. Methylation of four genes (MINT31, HIC1, RASSF1, and CABIN1) was significantly associated with ovarian cancer but not other ovarian pathology. Her-2/neu overexpression was associated with aberrant methylation of three genes (MINT31, RASSF1, and CDH13), although aberrant methylation was not associated with p53 mutations. Methylation of RASSF1 and HIC1 was more frequent in early compared to late stage ovarian cancer, while methylation of CABIN1 and RASSF1 was associated with response to chemotherapy. DNA methylation of tumor suppressor genes is a frequent event in ovarian cancer, and in some cases is associated with Her-2/neu overexpression. Methylation of CABIN1 and RASSF1 may have the utility to predict response to therapy.

  19. Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53.

    Science.gov (United States)

    Park, See-Hyoung; Lee, Jung Han; Berek, Jonathan S; Hu, Mickey C-T

    2014-10-01

    Auranofin is a gold-containing compound classified by the World Health Organization as a clinically established rheumatoid arthritis therapeutic agent. Through drug screening for novel anticancer therapeutics, we unexpectedly identified auranofin as a potent anticancer agent against a p53-null ovarian carcinoma SKOV3 cell line. However, the molecular mechanism underlying auranofin-mediated anticancer activity in ovarian cancer cells is basically unknown. Here, we show that auranofin inhibits proliferation and survival of SKOV3 cells in a dose‑ and time‑dependent manner. Auranofin treatment activates the pro-apoptotic caspase-3, increases protein levels of apoptosis-inducing proteins Bax and Bim and reduces the expression of the anti-apoptotic mediator Bcl-2 in SKOV3 cells. Moreover, auranofin downregulates IκB kinase (IKK)-β and promotes nuclear localization and the activation of FOXO3 tumor suppressor, leading to cellular apoptosis in SKOV3 cells. In contrast, silencing FOXO3 diminishes the pro-apoptotic signaling of auranofin in SKOV3 cells. These results suggest that auranofin may induce caspase-3-mediated apoptosis in a FOXO3-dependent manner. The observed upregulation of pro-apoptotic genes and apoptosis in cancer cells without p53 in response to auranofin suggests a novel p53-independent mechanism underlying aurano