WorldWideScience

Sample records for suppresses myogenic differentiation

  1. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  2. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  3. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  4. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    Science.gov (United States)

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  5. Adult medulloblastoma with myogenic differentiation

    Directory of Open Access Journals (Sweden)

    Xia-ling ZHANG

    2015-09-01

    Full Text Available Objective To explore the clinicopathological features of adult medulloblastoma with myogenic differentiation and to discuss clinicopathological differentiations from relevant tumors, so as to improve the ability of diagnosing and differentiating this kind of tumor. Methods The clinical manifestations, imaging, pathological features and immunohistochemical features of one case of adult medulloblastoma with myogenic differentiation were analyzed, and related literatures were reviewed. Results A 32-year-old female patient presented with repeated distortion of mouth and facial numbness for over 6 years. T1WI showed a mixed-signal lesion in the cerebellar vermis and dorsal part of brainstem, and protruded toward the fourth ventricle. Enhanced T1WI showed a round strengthened nodule in the lesion. During operation, it was seen that the tumor arised in cerebellar vermis, projected into the fourth ventricle and invaded brainstem. On microscopy examination, it was found that oval nuclei tumor cells were distributed in sheet or scattered patterns, and neuroblastic rosettes were observed. Abundant and eosinophilic cytoplasm, eccentrically placed and atypical nuclei containing hyperchromatic chromatin or prominent nucleoli in the tumor could be displayed. Mitoses were frequently seen. The tumor also presented with fresh and old hemorrhage in some place. Immunohistochemical staining showed that tumor cells were diffusely positive for integrase interactor 1 (INI1, synaptophysin (Syn, chromogranin A (CgA, human internexin neuronal intermediate filament protein α (INα, neurofilament protein (NF, Nestin (Nes, β-catenin and P53, and partly positive for desmin (Des, neuronal nuclei (NeuN and S-100 protein (S-100, but negative for glial fibrillary acidic protein (GFAP, oligodendrocyte transcription factor-2 (Olig-2, CD99, pan cytokeratin (PCK, epithelial membrane antigen (EMA, MyoD1, myogenin, muscle-specific actin (MSA and smooth muscle actin (SMA. Ki-67

  6. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  7. Opposite roles of MRF4 and MyoD in cell proliferation and myogenic differentiation

    International Nuclear Information System (INIS)

    Jin Xun; Kim, Jong-Gun; Oh, Myung-Joo; Oh, Ho-Yeon; Sohn, Young-Woo; Pian, Xumin; Yin, Jin Long; Beck, Samuel; Lee, Namkyung; Son, Jeesoo; Kim, Hyunggee; Yan Changguo; Wang Jihui; Choi, Yun-Jaie; Whang, Kwang Youn

    2007-01-01

    The basic helix-loop-helix myogenic regulatory factors play critical roles in skeletal myogenesis. Among the myogenic regulatory factors (MRFs), MRF4 shows a biphasic expression pattern during the formation of myotomes, although its function remains unclear. In this study, we used BEF (spontaneously immortalized bovine embryonic fibroblast that shows myogenic differentiation by overexpression of MyoD) and C2C12 cells to investigate the function of MRF4. Ectopic expressions of MRF4 did not stimulate myogenic differentiation in the BEF and C2C12 cells, but did show a marked increase of cell proliferation, upregulation of cyclin E, and downregulation of p21 WAF1 . Furthermore, MRF4 was found to induce degradation of the MyoD protein, which acts as a transcriptional activator for p21 WAF1 , and thus indicates that MRF4 accelerates cell proliferation by suppressing MyoD-dependent p21 WAF1 expression. However, forced expression of MyoD in the MRF4-overexpressing cells inhibited cell proliferation and partially induced myogenic differentiation, which suggests that MyoD is a potential negative intercessor of MRF4 in the regulation of the cell cycle. Taken together, these results indicate that MRF4 and MyoD play competitive roles in myogenesis by stimulating cell proliferation and differentiation, respectively

  8. CD36 is required for myoblast fusion during myogenic differentiation

    International Nuclear Information System (INIS)

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-01-01

    Highlights: ► CD36 expression was induced during myogenic differentiation. ► CD36 expression was localized in multinucleated myotubes. ► The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. ► Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  9. CD36 is required for myoblast fusion during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Yoon [Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714 (Korea, Republic of); Yun, Youngeun [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, In-San, E-mail: iskim@knu.ac.kr [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Biomedical Research Institute, Korea Institute Science and Technology, Seoul (Korea, Republic of)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  10. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  11. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

    Science.gov (United States)

    Sin, Jon; Andres, Allen M; Taylor, David J R; Weston, Thomas; Hiraumi, Yoshimi; Stotland, Aleksandr; Kim, Brandon J; Huang, Chengqun; Doran, Kelly S; Gottlieb, Roberta A

    2016-01-01

    Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

  12. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  13. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    Science.gov (United States)

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  14. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    Directory of Open Access Journals (Sweden)

    Tanja Seeger

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521 showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.

  15. Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Koki Higashioka

    2017-01-01

    Full Text Available It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.

  16. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  17. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    International Nuclear Information System (INIS)

    Yanagisawa, Michiko; Mukai, Atsushi; Shiomi, Kosuke; Song, Si-Yong; Hashimoto, Naohiro

    2011-01-01

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  18. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation

    Directory of Open Access Journals (Sweden)

    Rescan Pierre-Yves

    2010-05-01

    Full Text Available Abstract Background Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f promoter, and cultivated genetically modified myogenic cells derived from these fish. Results In transgenic trout, green fluorescence appeared in fast muscle fibers as early as the somitogenesis stage and persisted throughout life. Using an in vitro myogenesis system we observed that satellite cells isolated from the myotomal muscle of transgenic trout expressed GFP about 5 days post-plating as they started to fuse. GFP fluorescence persisted subsequently in myosatellite cell-derived myotubes. Using this in vitro myogenesis system, we showed that the rate of muscle cell differentiation was strongly dependent on temperature, one of the most important environmental factors in the muscle growth of poikilotherms. Conclusions We produced MLC2f-gfp transgenic trout that exhibited fluorescence in their fast muscle fibers. The culture of muscle cells extracted from these trout enabled the real-time monitoring of myogenic differentiation. This in vitro myogenesis system could have numerous applications in fish physiology to evaluate the myogenic activity of circulating growth factors, to test interfering RNA and to assess the myogenic potential of fish mesenchymal stem cells. In ecotoxicology, this system could be useful to assess the impact of environmental factors and marine pollutants on fish muscle growth.

  19. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Nagarajan

    2010-09-01

    Full Text Available Aging is accompanied by considerable heterogeneity with possible co-expression of differentiation pathways. The present study investigates the interplay between crucial myogenic, adipogenic and Wnt-related genes orchestrating aged myogenic progenitor differentiation (AMPD using clonal gene expression profiling in conjunction with Bayesian structure learning (BSL techniques. The expression of three myogenic regulatory factor genes (Myogenin, Myf-5, MyoD1, four genes involved in regulating adipogenic potential (C/EBPα, DDIT3, FoxC2, PPARγ, and two genes in the Wnt-signaling pathway (Lrp5, Wnt5a known to influence both differentiation programs were determined across thirty-four clones by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Three control genes were used for normalization of the clonal expression data (18S, GAPDH and B2M. Constraint-based BSL techniques, namely (a PC Algorithm, (b Grow-shrink algorithm (GS, and (c Incremental Association Markov Blanket (IAMB were used to model the functional relationships (FRs in the form of acyclic networks from the clonal expression profiles. A novel resampling approach that obviates the need for a user-defined confidence threshold is proposed to identify statistically significant FRs at small sample sizes. Interestingly, the resulting acyclic network consisted of FRs corresponding to myogenic, adipogenic, Wnt-related genes and their interaction. A significant number of these FRs were robust to normalization across the three house-keeping genes and the choice of the BSL technique. The results presented elucidate the delicate balance between differentiation pathways (i.e. myogenic as well as adipogenic and possible cross-talk between pathways in AMPD.

  20. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  1. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  2. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  3. Borax-Loaded PLLA for Promotion of Myogenic Differentiation.

    Science.gov (United States)

    Rico, Patricia; Rodrigo-Navarro, Aleixandre; Salmerón-Sánchez, Manuel

    2015-11-01

    Boron is an essential metalloid, which plays a key role in plant and animal metabolisms. It has been reported that boron is involved in bone mineralization, has some uses in synthetic chemistry, and its potential has been only recently exploited in medicinal chemistry. However, in the area of tissue engineering, the use of boron is limited to works involving certain bioactive glasses. In this study, we engineer poly(l-lactic acid) (PLLA) substrates with sustained release of boron. Then, we analyze for the first time the uniqueness effects of boron in cell differentiation using murine C2C12 myoblasts and discuss a potential mechanism of action in cooperation with Ca(2+). Our results demonstrate that borax-loaded materials strongly enhance myotube formation at initial steps of myogenesis. Furthermore, we demonstrate that Ca(2+) plays an essential role in combination with borax as chelating or blocking Ca(2+) entry into the cell leads to a detrimental effect on myoblast differentiation observed on borax-loaded materials. This research identifies borax-loaded materials to trigger differentiation mechanisms and it establishes a new tool to engineer microenvironments with applications in regenerative medicine for muscular diseases.

  4. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation

    Directory of Open Access Journals (Sweden)

    Ashvin Iyer

    2017-10-01

    Full Text Available Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD, a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

  5. Myogenic Differentiation Potential of Human Newborn Foreskin Stem Cells Combined with Polycaprolactone-Based Nanofiber

    Directory of Open Access Journals (Sweden)

    Ozge Sezin Somuncu

    2016-03-01

    Full Text Available A previous study performed by the authors of the current study revealed the characterization and differentiation of newly defined stem cells known as human newborn foreskin stem cells (hnFSSCs. According to their stem cell properties, this study aimed at investigating myogenic differentiation and related tissue engineering. Human newborn foreskin stem cells were characterized by flow cytometry. The results showed that hnFSSCs carries a noble prospective for myogenic differentiation and can be used as a beneficial method for muscle related diseases, including muscular dystrophy, neuromuscular disorders, muscle damages, muscle weakness, lesion formations, and other problems associated with tissue obtainability and multi-potency; these cells may be accepted as effortlessly accessible and functional, and even superior to other stem cell origins. Furthermore, hnFFSCs were also seeded onto 3D micro-wells and Polycaprolactone (PCL scaffolds in order to examine tissue development. Human newborn foreskin stem cells on PCL scaffolds showed good cell-cell integration, so that they may be thought as a stem cell basis for tissue engineering.

  6. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  7. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation

    Science.gov (United States)

    Agarwal, Noopur; Hardt, Tanja; Brero, Alessandro; Nowak, Danny; Rothbauer, Ulrich; Becker, Annette; Leonhardt, Heinrich; Cardoso, M. Cristina

    2007-01-01

    There is increasing evidence of crosstalk between epigenetic modifications such as histone and DNA methylation, recognized by HP1 and methyl CpG-binding proteins, respectively. We have previously shown that the level of methyl CpG-binding proteins increased dramatically during myogenesis leading to large-scale heterochromatin reorganization. In this work, we show that the level of HP1 isoforms did not change significantly throughout myogenic differentiation but their localization did. In particular, HP1γ relocalization to heterochromatin correlated with MeCP2 presence. Using co-immunoprecipitation assays, we found that these heterochromatic factors interact in vivo via the chromo shadow domain of HP1 and the first 55 amino acids of MeCP2. We propose that this dynamic interaction of HP1 and MeCP2 increases their concentration at heterochromatin linking two major gene silencing pathways to stabilize transcriptional repression during differentiation. PMID:17698499

  8. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  9. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    International Nuclear Information System (INIS)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-01-01

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method

  10. [Electromyographic differential diagnosis in cases of abducens nerve paresis with nuclear or distal neurogenic sive myogenic origine (author's transl)].

    Science.gov (United States)

    Heuser, M

    1979-09-01

    Abducens nerve paresis may be of nuclear, of peripheral distal neurogenic origine, or is simulated by a myogenic weakness of abduction. Polygraphic emg analysis of the oculoauricularphenomenon (oap) permits a differentiation. In the emg, the oap proved to be a physiologic and constant automatic and always bilateral interaction between the hemolateral abducens nerve and both Nn. faciales with corresponding and obligatory coinnervation of the Mm. retroauricularis of the external ear. In case of medullary, nuclear or internuclear lesions, the oap is disturbed, instable, diminished or abolished, whereas in distal neurogenic or myogenic paresis, even in complete paralysis the oap is bilaterally well preserved.

  11. A Comparative Study to Evaluate Myogenic Differentiation Potential of Human Chorion versus Umbilical Cord Blood-derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bana, Nikoo; Sanooghi, Davood; Soleimani, Mansoureh; Hayati Roodbari, Nasim; Alavi Moghaddam, Sepideh; Joghataei, Mohammad Taghi; Sayahpour, Forough Azam; Faghihi, Faezeh

    2017-08-01

    Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10μM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (P<0.05). No significant upregulation was detected in the expression of GATA-4 in both groups. Immunocytochemical staining revealed the expression of Desmin, cTnT and α-MHC. Results showed that these cells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs. Copyright © 2017. Published by Elsevier Ltd.

  12. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells

    Directory of Open Access Journals (Sweden)

    Carol M. Collins

    2017-04-01

    Full Text Available Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD. Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3. Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo.

  13. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    Science.gov (United States)

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Degree of Suppression of Mouse Myoblast Cell Line C₂C12 Differentiation Varies According to Chondroitin Sulfate Subtype.

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Hosaka, Yoshinao Z

    2016-10-21

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C₂C 12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion.

  15. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  16. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro.

    Directory of Open Access Journals (Sweden)

    Akihito Tanaka

    Full Text Available The establishment of human induced pluripotent stem cells (hiPSCs has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1 in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70-90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF. These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.

  17. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro

    Science.gov (United States)

    Tanaka, Akihito; Woltjen, Knut; Miyake, Katsuya; Hotta, Akitsu; Ikeya, Makoto; Yamamoto, Takuya; Nishino, Tokiko; Shoji, Emi; Sehara-Fujisawa, Atsuko; Manabe, Yasuko; Fujii, Nobuharu; Hanaoka, Kazunori; Era, Takumi; Yamashita, Satoshi; Isobe, Ken-ichi; Kimura, En; Sakurai, Hidetoshi

    2013-01-01

    The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs. PMID:23626698

  18. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  19. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    International Nuclear Information System (INIS)

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-01-01

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression

  20. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    Directory of Open Access Journals (Sweden)

    Kim CH

    2016-05-01

    Full Text Available Cy Hyun Kim,1,2,* Jin-Hong Shin,1,3,* Sung Jun Hwang,1,2 Yung Hyun Choi,4 Dae-Seong Kim,1,3 Cheol Min Kim2,51Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 2Center for Anti-Aging Industry, Pusan National University, Busan, 3Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 4Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 5Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea*These authors contributed equally to this work Abstract: Schisandrae fructus (SF has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 µg/mL of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 µg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged

  1. Large cell/anaplastic medulloblastoma with myogenic, melanotic and neuronal differentiation: A case report of a rare tumor

    Directory of Open Access Journals (Sweden)

    Amany A. Fathaddin

    2014-01-01

    Full Text Available Medulloblastoma is an embryonal neuroepithelial tumor of the cerebellum and is the most common malignant central nervous system tumor in children. Different histological variants and patterns have been described. The classic variant represents the majority of cases. This report describes a rare case of large cell/anaplastic medulloblastoma with myogenic, melanotic and neuronal differentiation arising in the cerebellum of a 3-year-old boy who presented with headache and vomiting. Magnetic resonance imaging demonstrated a heterogeneously enhanced lesion in the fourth ventricle. Surgical resection of the tumor was accomplished, but a residual tumor was left behind because of the involvement of the brainstem. Postoperatively, the patient received chemotherapy and radiotherapy. Currently, 20 months after treatment, the patient has survived without further progression. Pathological examination revealed a high grade primitive neuronal tumor with foci of myogenic features, melanin containing epithelial elements and ganglion-like cells, which were confirmed by immunohistochemistry.

  2. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation

    International Nuclear Information System (INIS)

    Jana, Soumen; Leung, Matthew; Zhang, Miqin; Chang, Julia

    2014-01-01

    Skeletal muscle injury can lead to severe motor deficits that adversely affect movement and quality of life. Current surgical treatments for skeletal muscle are hindered by the poor formation of organized myotube bundles at the wound site. Tissue-engineered skeletal muscle constructs to date have been unable to generate high degrees of myotube density and alignment. Generating a suitable in vitro tissue-engineered skeletal muscle construct requires the design of a scaffold that recapitulates the structural combination of nanoscale collagen fibrils and aligned microscale basal lamina tracks present in the native extracellular matrix (ECM). We hypothesized that a 3D aligned tubular porous scaffold containing aligned nanofibers inside the pores can mimic the native muscle tissue environment. We constructed a laminar section of the hypothesized scaffold with aligned chitosan-PCL nanofibers arranged co-axially with the aligned microscale chitosan scaffold bands to mimic the required myogenic environment. A 6-day study of C2C12 mouse myoblast cells cultured on this hybrid scaffold indicated that the nanofibers and scaffold bands in the scaffold played a synergetic role in directing cell orientation, interaction, migration and organization. Our results showed that aligned nanofibers mediated cell alignment and the aligned scaffold bands induced the formation of a more compact assembly of myotube cells as compared to various control substrates including chitosan films, nanofibers, and chitosan bands. The expression levels of both early and late-stage myogenic differentiation genes associated with myogenin and myosin heavy chain, respectively, were higher on the hybrid substrate than on control substrates. Our study suggests that the combination of nano and microscale topological features in the ECM can direct myogenic differentiation, and the hybrid material has the potential to improve the outcome of skeletal tissue engineering. (papers)

  4. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration.

    Science.gov (United States)

    Du, Yuzhang; Ge, Juan; Li, Yannan; Ma, Peter X; Lei, Bo

    2018-03-01

    Artificial muscle-like biomaterials have gained tremendous interests owing to their broad applications in regenerative medicine, wearable devices, bioelectronics and artificial intelligence. Unfortunately, key challenges are still existed for current materials, including biomimetic viscoelasticity, biocompatibility and biodegradation, multifunctionality. Herein, for the first time, we develop highly elastomeric, conductive and biodegradable poly (citric acid-octanediol-polyethylene glycol)(PCE)-graphene (PCEG) nanocomposites, and demonstrate their applications in myogenic differentiation and guiding skeletal muscle tissue regeneration. In PCEG nanocomposites, PCE provides the biomimetic elastomeric behavior, and the addition of reduced graphene oxide (RGO) endows the enhanced mechanical strength and conductivity. The highly elastomeric behavior, significantly enhanced modulus (400%-800%), strength (200%-300%) of PCEG nanocomposites with controlled biodegradability and electrochemical conductivity were achieved. The myoblasts proliferation and myogenic differentiation were significantly improved by PCEG nanocomposite. Significantly high in vivo biocompatibility of PCEG nanocomposites was observed when implanted in the subcutaneous tissue for 4 weeks in rats. PCEG nanocomposites could significantly enhance the muscle fibers and blood vessels formation in vivo in a skeletal muscle lesion model of rat. This study may provide a novel strategy to develop multifunctional elastomeric nanocomposites with high biocompatibility for potential soft tissue regeneration and stretchable bioelectronic devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    Full Text Available Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF and α-tocopherol (ATF in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal expression, myogenic differentiation and myogenic regulatory factors (MRFs expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.

  6. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  7. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    Science.gov (United States)

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  9. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  10. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    International Nuclear Information System (INIS)

    Hagiwara, Hiroki; Saito, Fumiaki; Masaki, Toshihiro; Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro

    2011-01-01

    Highlights: ► We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. ► TSA enhances the expression of myosin heavy chain without affecting DAPC expression. ► TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. ► TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. ► TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  11. Pressure pain thresholds, clinical assessment, and differential diagnosis: reliability and validity in patients with myogenic pain.

    Science.gov (United States)

    Ohrbach, R; Gale, E N

    1989-11-01

    Four studies are presented testing the validity and reliability of pressure pain thresholds (PPTs) and of examination parameters believed to be important in the clinical assessment of sites commonly used for such measures in patient samples. Forty-five patients with a myogenous temporomandibular disorder were examined clinically prior to PPT measures. Criteria for history and examination included functional aspects of the pain, tissue quality of the pain site, and the type of pain elicited from palpation. Control sites within the same muscle and in the contralateral muscle were also examined. PPTs were measured as an index of tenderness using a strain gauge algometer at these sites. The data from the 5 male subjects were excluded from subsequent analyses due to the higher PPT in the males and to their unequal distribution among the various factorial conditions. The first study demonstrated strong validity in PPT measures between patients (using pain sites replicating the patients' pain) and matched controls (n = 11). The PPT was not significantly different between the primary pain site (referred pain and non-referred pain collapsed) and the no-pain control site in the same muscle (n = 16). The PPT was significantly lower at the pain site compared to the no-pain control site in the contralateral muscle (n = 13). The second study indicated adequate reliability in patient samples of the PPT measures. In the third study, the PPT was significantly lower at sites producing referred pain on palpation compared to sites producing localized pain on palpation. The PPT findings from the control sites were inconsistent on this factor. The fourth study presented preliminary evidence that palpable bands and nodular areas in muscle were most commonly associated with muscle regions that produce pain; such muscle findings were not specific, however, for regions that produce pain. Further, the intraexaminer reliability in reassessing these pain sites qualitatively was only fair

  12. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  13. Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

    Directory of Open Access Journals (Sweden)

    Kumiko Terada

    2013-01-01

    Full Text Available Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8 activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4 expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.

  14. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  15. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    Science.gov (United States)

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  16. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Science.gov (United States)

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P; Parton, Robert G; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  17. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Directory of Open Access Journals (Sweden)

    Fiorella Faggi

    Full Text Available The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3 in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS, an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  18. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  19. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  20. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  1. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy.

    Science.gov (United States)

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

  2. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  3. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  4. Retinoid acid-induced microRNA-27b-3p impairs C2C12 myoblast proliferation and differentiation by suppressing α-dystrobrevin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan; Tang, Yi; Liu, Bo; Cong, Wei; Liu, Chao, E-mail: liuchao_19760711@yahoo.com; Xiao, Jing, E-mail: xiaoj@dmu.edu.cn

    2017-01-15

    We previously reported that excess retinoic acid (RA) resulted in hypoplastic and derangement of myofilaments in embryonic tongue by inhibiting myogenic proliferation and differentiation through CamKIID pathway. Our further studies revealed that the expression of a series of miRNAs was altered by RA administration in embryonic tongue as well as in C2C12 cells. Thus, if excess RA impairs myogenic proliferation and differentiation through miRNAs is taken into account. In present study, miR-27b-3p was found up-regulated in RA-treated C2C12 cells as in embryonic tongue, and predicted to target the 3′UTR of α-dystrobrevin (DTNA). Luciferase reporter assays confirmed the direct interaction between miR-27b-3p and the 3′UTR of DTNA. MiR-27b-3p mimics recapitulated the RA repression on DTNA expression, C2C12 proliferation and differentiation, while the miR-27b-3p inhibitor circumvented these defects resulting from excess RA. As expected, the effects of siDTNA on C2C12 were coincided with those by RA treatment or miR-27b-3p mimics. Therefore, these findings indicated that excess RA inhibited the myoblast proliferation and differentiation by up-regulating miR-27b-3p to target DTNA, which implied a new mechanism in myogenic hypoplasia. - Highlights: • A mechanism that RA results in tongue deformity by disrupting the myogenesis. • A non-muscle specific miR mediating the RA suppression on tongue myogenesis. • A target gene of non-muscle specific miR involved in RA induced tongue deformity.

  5. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Francesca Megiorni

    2017-10-01

    Full Text Available Abstract Background EPH (erythropoietin-producing hepatocellular receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM. GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg in vivo activity alone or in combination with irradiation (2 Gy was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that

  6. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    International Nuclear Information System (INIS)

    Kuang Wei; Tan Jiali; Duan Yinzhong; Duan Jianmin; Wang Weijian; Jin Fang; Jin Zuolin; Yuan Xiao; Liu Yanpu

    2009-01-01

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  7. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

    Science.gov (United States)

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-01-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  8. Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro

    Directory of Open Access Journals (Sweden)

    Gollop Thomaz R

    2009-01-01

    Full Text Available Abstract The dystrophin gene, located at Xp21, codifies dystrophin, which is part of a protein complex responsible for the membrane stability of muscle cells. Its absence on muscle causes Duchenne Muscular Dystrophy (DMD, a severe disorder, while a defect of muscle dystrophin causes Becker Muscular Dystrophy (DMB, a milder disease. The replacement of the defective muscle through stem cells transplantation is a possible future treatment for these patients. Our objective was to analyze the potential of CD34+ stem cells from umbilical cord blood to differentiate in muscle cells and express dystrophin, in vitro. Protein expression was analyzed by Immunofluorescence, Western Blotting (WB and Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR. CD34+ stem cells and myoblasts from a DMD affected patient started to fuse with muscle cells immediately after co-cultures establishment. Differentiation in mature myotubes was observed after 15 days and dystrophin-positive regions were detected through Immunofluorescence analysis. However, WB or RT-PCR analysis did not detect the presence of normal dystrophin in co-cultures of CD34+ and DMD or DMB affected patients' muscle cells. In contrast, some CD34+ stem cells differentiated in dystrophin producers' muscle cells, what was observed by WB, reinforcing that this progenitor cell has the potential to originate muscle dystrophin in vitro, and not just in vivo like reported before.

  9. Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Directory of Open Access Journals (Sweden)

    Si Won Kim

    2017-08-01

    Full Text Available Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2 gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7 cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

  10. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  11. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases.

    Science.gov (United States)

    de Almeida, Fernanda Losi Alves; Carvalho, Robson Francisco; Pinhal, Danillo; Padovani, Carlos Roberto; Martins, Cesar; Dal Pai-Silva, Maeli

    2008-12-01

    Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulated by differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechanisms in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the most important food species farmed in Brazil and has been extensively used in Brazilian aquaculture programs. The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pattern in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n=5) and adult (n=5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. White dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sections (10 microm thick) were stained with Haematoxilin-Eosin (HE) for morphological and morphometric analysis. Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. These fibers were grouped into three classes (50 microm) to evaluate hypertrophy and hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative RT-PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had similar morphology. The large number of fish confirms active hyperplasia. In adult fish, most fibers were over 50 microm diameter and denote more intense muscle fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus partial sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displayed high similarity among several vertebrates, including teleosts. The differential MyoD gene expression observed in pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, with hyperplasia predominant in juveniles and hypertrophy in adult fish. These results should provide a foundation for

  12. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  13. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation

    Science.gov (United States)

    Sebastian, Soji; Sreenivas, Prethish; Sambasivan, Ramkumar; Cheedipudi, Sirisha; Kandalla, Prashanth; Pavlath, Grace K.; Dhawan, Jyotsna

    2009-01-01

    Most cells in adult tissues are nondividing. In skeletal muscle, differentiated myofibers have exited the cell cycle permanently, whereas satellite stem cells withdraw transiently, returning to active proliferation to repair damaged myofibers. We have examined the epigenetic mechanisms operating in conditional quiescence by analyzing the function of a predicted chromatin regulator mixed lineage leukemia 5 (MLL5) in a culture model of reversible arrest. MLL5 is induced in quiescent myoblasts and regulates both the cell cycle and differentiation via a hierarchy of chromatin and transcriptional regulators. Knocking down MLL5 delays entry of quiescent myoblasts into S phase, but hastens S-phase completion. Cyclin A2 (CycA) mRNA is no longer restricted to S phase, but is induced throughout G0/G1, with activation of the cell cycle regulated element (CCRE) in the CycA promoter. Overexpressed MLL5 physically associates with the CCRE and impairs its activity. MLL5 also regulates CycA indirectly: Cux, an activator of CycA promoter and S phase is induced in RNAi cells, and Brm/Brg1, CCRE-binding repressors that promote differentiation are repressed. In knockdown cells, H3K4 methylation at the CCRE is reduced, reflecting quantitative global changes in methylation. MLL5 appears to lack intrinsic histone methyl transferase activity, but regulates expression of histone-modifying enzymes LSD1 and SET7/9, suggesting an indirect mechanism. Finally, expression of muscle regulators Pax7, Myf5, and myogenin is impaired in MLL5 knockdown cells, which are profoundly differentiation defective. Collectively, our results suggest that MLL5 plays an integral role in novel chromatin regulatory mechanisms that suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells. PMID:19264965

  14. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  15. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    The cultured primary bladder fibroblasts were transfected by pEGFP-Myod1 with Lipofection 2000 reagent. The results showed that expression of Myod1 could cause myogenic differentiation of bladder fibroblasts. These findings support the possibility of an alternative approach to exploit the capacity of Myod1 to activate ...

  16. The Efficacy of Thyrotropin Suppression Therapy in Treatment of Differentiated Thyroid Cancer after Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Abo-Touk Niveen A.

    2015-06-01

    Full Text Available Background: The aim of this prospective study was to assess the effect of the TSH suppression on both disease-free and overall survivals in patients with nonmetastatic differentiated thyroid cancer (DTC after total thyroidectomy.

  17. Myogenic potential of canine craniofacial satellite cells

    Directory of Open Access Journals (Sweden)

    Rita Maria Laura La Rovere

    2014-05-01

    Full Text Available The skeletal fibres have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterise also the adult muscle stem cells, known as satellite cells (SCs and responsible for the fibre growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here we isolated SCs from canine somitic (SDM: vastus lateralis, rectus abdominus, gluteus superficialis, biceps femoris, psoas and presomitic (PSDM: lateral rectus, temporalis and retractor bulbi muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM satellite cells were obtained also from Golden retrievers affected by muscular dystrophy (GRMD. We characterised the lifespan, the myogenic potential and functions and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with ageing and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD and late (MyHC, Myogenin myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD satellite cells and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.

  18. Different Effects of Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-2 on Myogenic Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Doaa Aboalola

    2017-01-01

    Full Text Available Insulin-like growth factors (IGFs are critical components of the stem cell niche, as they regulate proliferation and differentiation of stem cells into different lineages, including skeletal muscle. We have previously reported that insulin-like growth factor binding protein-6 (IGFBP-6, which has high affinity for IGF-2, alters the differentiation process of placental mesenchymal stem cells (PMSCs into skeletal muscle. In this study, we determined the roles of IGF-1 and IGF-2 and their interactions with IGFBP-6. We showed that IGF-1 increased IGFBP-6 levels within 24 hours but decreased after 3 days, while IGF-2 maintained higher levels of IGFBP-6 throughout myogenesis. IGF-1 increased IGFBP-6 in the early phase as a requirement for muscle commitment. In contrast, IGF-2 enhanced muscle differentiation as shown by the expression of muscle differentiation markers MyoD, MyoG, and MHC. IGF-1 and IGF-2 had different effects on muscle differentiation with IGF-1 promoting early commitment to muscle and IGF-2 promoting complete muscle differentiation. We also showed that PMSCs acquired increasing capacity to synthesize IGF-2 during muscle differentiation, and the capacity increased as the differentiation progressed suggesting an autocrine and/or paracrine effect. Additionally, we demonstrated that IGFBP-6 could enhance the muscle differentiation process in the absence of IGF-2.

  19. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  20. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs.

    Science.gov (United States)

    Ikeda, Kazushi; Ito, Akira; Sato, Masanori; Kanno, Shota; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-05-01

    Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    Science.gov (United States)

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  2. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    Science.gov (United States)

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer.

    Science.gov (United States)

    Pujol, P; Daures, J P; Nsakala, N; Baldet, L; Bringer, J; Jaffiol, C

    1996-12-01

    We investigate whether the prognosis of patients with differentiated thyroid cancer is improved by maintaining a greater level of TSH suppression. One hundred and forty-one patients who underwent hormone therapy after thyroidectomy were followed up from 1970 to 1993 (mean, 95 months). Patients received levothyroxine (L-T4; mean dose, 2.6 micrograms/kg-day). TSH suppression was evaluated by TRH stimulation test until 1986 and thereafter by a second generation immunoradiometric assay. As TSH underwent fluctuation over time in most patients, we focused on subgroups of patients with relatively constant TSH levels during the follow-up. The relapse-free survival (RFS) was longer in the group with constantly suppressed TSH (all TSH values, or = 1 mU/L; n = 15; P 90% of undetectable TSH values; n = 19) had a trend toward a longer RFS than the remaining population (n = 102; P = 0.14). The patients with a lesser degree of TSH suppression (< 10% of undetectable TSH values; n = 27) had a shorter RFS than the remaining patients (n = 94; P < 0.01). In multivariate analysis that included TSH suppression, age, sex, histology, and tumor node metastasis stage, the degree of TSH suppression predicted RFS independently of other factors (P = 0.02). This study shows that a lesser degree of TSH suppression is associated with an increased incidence of relapse, supporting the hypothesis that a high level of TSH suppression is required for the endocrine management of thyroid cancer.

  4. The role of thyrotropin suppression in patients with differentiated thyroid carcinoma.

    LENUS (Irish Health Repository)

    Deasy, J

    2010-07-01

    Thyroid carcinoma is the commonest endocrine malignancy. The majority of these are differentiated thyroid carcinomas, which have a good overall prognosis. Treatment includes surgical excision, radio-iodine ablation and long-term thyrotropin suppression. The degree and length of suppression required, as well as the potential side-effect remain controversial. Therefore, the aim of this study was to establish the degree of thyrotropin suppression achieved in a cohort of patients with differentiated thyroid carcinoma. A retrospective review was performed of a prospectively maintained database. All patients with a diagnosis of differentiated thyroid carcinoma between January 1998 and January 2008 were identified. Demographic data, pathological stage and the treatment that the patient received was documented. TSH and free T4 levels were identified at specific time points post-operatively. Eighty-eight patients with differentiated thyroid carcinoma were identified. Seventy patients (79.5%) were female. The mean age was 55, with a range of 18 to 79 years. The majority of patients underwent a total thyroidectomy (n=79; 89.7%) and of those 29 (32.9%) had an associated modified neck dissection. Accurate follow-up was available on forty-nine patients. TSH and free T4 were measured at 3 and 6 months, as well as at 1 and 2 years post-operatively. Adequate TSH suppression was taken at a level < 0.1 mU\\/L. The majority of patients (69.5%) had achieved adequate TSH suppression at 2 years. However, 65% of these same patients had a high free T4 at 2 years indicating a degree of hyperthyroidism. This study has demonstrated that TSH suppression is being adequately achieved in the majority of patients with differentiated thyroid carcinoma. However, this must be carefully weighed against the potential detrimental side-effects of long-term sub-clinical hyperthyroidism.

  5. Roles for miR-375 in Neuroendocrine Differentiation and Tumor Suppression via Notch Pathway Suppression in Merkel Cell Carcinoma.

    Science.gov (United States)

    Abraham, Karan J; Zhang, Xiao; Vidal, Ricardo; Paré, Geneviève C; Feilotter, Harriet E; Tron, Victor A

    2016-04-01

    Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown. Herein, we show that elevated miR-375 expression is a specific feature of well-differentiated MCC cell lines that express NE markers. In contrast, miR-375 is strikingly down-regulated in highly aggressive, undifferentiated MCC cell lines. Enforced miR-375 expression in these cells induced NE differentiation, and opposed cancer cell viability, migration, invasion, and survival, pointing to tumor-suppressive roles for miR-375. Mechanistically, miR-375-driven phenotypes were caused by the direct post-transcriptional repression of multiple Notch pathway proteins (Notch2 and RBPJ) linked to cancer and regulation of cell fate. Thus, we detail a novel molecular axis linking tumor-suppressive miR-375 and Notch with NE differentiation and cancer cell behavior in MCC. Our findings identify miR-375 as a putative regulator of NE differentiation, provide insight into the cell of origin of MCC, and suggest that miR-375 silencing may promote aggressive cancer cell behavior through Notch disinhibition. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Repetition suppression and multi-voxel pattern similarity differentially track implicit and explicit visual memory.

    Science.gov (United States)

    Ward, Emily J; Chun, Marvin M; Kuhl, Brice A

    2013-09-11

    Repeated exposure to a visual stimulus is associated with corresponding reductions in neural activity, particularly within visual cortical areas. It has been argued that this phenomenon of repetition suppression is related to increases in processing fluency or implicit memory. However, repetition of a visual stimulus can also be considered in terms of the similarity of the pattern of neural activity elicited at each exposure--a measure that has recently been linked to explicit memory. Despite the popularity of each of these measures, direct comparisons between the two have been limited, and the extent to which they differentially (or similarly) relate to behavioral measures of memory has not been clearly established. In the present study, we compared repetition suppression and pattern similarity as predictors of both implicit and explicit memory. Using functional magnetic resonance imaging, we scanned 20 participants while they viewed and categorized repeated presentations of scenes. Repetition priming (facilitated categorization across repetitions) was used as a measure of implicit memory, and subsequent scene recognition was used as a measure of explicit memory. We found that repetition priming was predicted by repetition suppression in prefrontal, parietal, and occipitotemporal regions; however, repetition priming was not predicted by pattern similarity. In contrast, subsequent explicit memory was predicted by pattern similarity (across repetitions) in some of the same occipitotemporal regions that exhibited a relationship between priming and repetition suppression; however, explicit memory was not related to repetition suppression. This striking double dissociation indicates that repetition suppression and pattern similarity differentially track implicit and explicit learning.

  7. Decorin expression in quiescent myogenic cells

    International Nuclear Information System (INIS)

    Nishimura, Takanori; Nozu, Kenjiro; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito

    2008-01-01

    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells

  8. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  9. Reporter-Based Isolation of Developmental Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Eyemen Kheir

    2018-04-01

    Full Text Available The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS. The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

  10. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  11. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  12. IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity

    Directory of Open Access Journals (Sweden)

    Michele Pelosi

    2014-01-01

    Full Text Available IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice, interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program.

  13. Human occipital cortices differentially exert saccadic suppression: intracranial recording in children

    Science.gov (United States)

    Uematsu, Mitsugu; Matsuzaki, Naoyuki; Brown, Erik C.; Kojima, Katsuaki; Asano, Eishi

    2013-01-01

    By repeating saccades unconsciously, humans explore the surrounding world every day. Saccades inevitably move external visual images across the retina at high velocity; nonetheless, healthy humans don’t perceive transient blurring of the visual scene during saccades. This perceptual stability is referred to as saccadic suppression. Functional suppression is believed to take place transiently in the visual systems, but it remains unknown how commonly or differentially the human occipital lobe activities are suppressed at the large-scale cortical network level. We determined the spatial-temporal dynamics of intracranially-recorded gamma activity at 80–150 Hz around spontaneous saccades under no-task conditions during wakefulness and those in darkness during REM sleep. Regardless of wakefulness or REM sleep, a small degree of attenuation of gamma activity was noted in the occipital regions during saccades, most extensively in the polar and least in the medial portions. Longer saccades were associated with more intense gamma-attenuation. Gamma-attenuation was subsequently followed by gamma-augmentation most extensively involving the medial and least involving the polar occipital region. Such gamma-augmentation was more intense during wakefulness and temporally locked to the offset of saccades. The polarities of initial peaks of perisaccadic event-related potentials (ERPs) were frequently positive in the medial and negative in the polar occipital regions. The present study, for the first time, provided the electrophysiological evidence that human occipital cortices differentially exert peri-saccadic modulation. Transiently suppressed sensitivity of the primary visual cortex in the polar region may be an important neural basis for saccadic suppression. Presence of occipital gamma-attenuation even during REM sleep suggests that saccadic suppression might be exerted even without external visual inputs. The primary visual cortex in the medial region, compared to the

  14. FoxO6 and PGC-1? form a regulatory loop in myogenic cells

    OpenAIRE

    Chung, Shih?Ying; Huang, Wei?Chieh; Su, Ching?Wen; Lee, Kuan?Wei; Chi, Hsiang?Cheng; Lin, Cheng?Tao; Chen, Szu-Tah; Huang, Kai?Min; Tsai, Mu?Shiun; Yu, Hui?Peng; Chen, Shen?Liang

    2013-01-01

    Transcription factors of the FoxO (forkhead box O) family regulate a wide range of cellular physiological processes, including metabolic adaptation and myogenic differentiation. The transcriptional activity of most FoxO members is inhibitory to myogenic differentiation and overexpression of FoxO1 inhibits the development of oxidative type?I fibres in?vivo. In this study, we found that FoxO6, the last discovered FoxO family member, is expressed ubiquitously in various tissues but with higher e...

  15. Differentiation between benign and malignant breast lesions using fat-suppressed dynamic MR imaging

    International Nuclear Information System (INIS)

    Koshiishi, Takeshi; Isomoto, Ichirou; Nakamura, Kazukuni; Kajiwara, Yoshifumi; Izawa, Kunihide

    1998-01-01

    To assess the value and problems of fat-suppressed dynamic MR imaging in differentiating between benign and malignant lesions. In twenty-nine patients who underwent excisional biopsy or surgical resection, fat-suppressed dynamic MR imaging was performed with a 0.5 T superconducting magnet. Pre- and post-contrast 3D-spoiled gradient echo sequences were employed with fat suppression. We calculated and evaluated the contrast-to-noise ratio (CNR) and contrast enhancement ratio (CER) at each contrast determination time (CDT), which is the intermediate time in the scan. Time intensity curves of CNR showed no statistically significant difference between cancers and other benign lesions. The difference in CER between malignant and benign disease was highly significant (p=0.006) at CDT 45 sec., but there was great overlap in the time intensity curve of CER after CDT 45 sec. When we attempt to differentiate malignant from benign breast lesions by dynamic MR imaging, comparison of CNR is impertinent, and we should evaluate the differential diagnosis of cancer versus benign lesions by means of CER at CDT points of about 45 sec. (author)

  16. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations.

    Science.gov (United States)

    Huang, Mugen; Luo, Jiaowan; Hu, Linchao; Zheng, Bo; Yu, Jianshe

    2017-12-14

    To suppress wild population of Aedes mosquitoes, the primary transmission vector of life-threatening diseases such as dengue, malaria, and Zika, an innovative strategy is to release male mosquitoes carrying the bacterium Wolbachia into natural areas to drive female sterility by cytoplasmic incompatibility. We develop a model of delay differential equations, incorporating the strong density restriction in the larval stage, to assess the delicate impact of life table parameters on suppression efficiency. Through mathematical analysis, we find the sufficient and necessary condition for global stability of the complete suppression state. This condition, combined with the experimental data for Aedes albopictus population in Guangzhou, helps us predict a large range of releasing intensities for suppression success. In particular, we find that if the number of released infected males is no less than four times the number of mosquitoes in wild areas, then the mosquito density in the peak season can be reduced by 95%. We introduce an index to quantify the dependence of suppression efficiency on parameters. The invariance of some quantitative properties of the index values under various perturbations of the same parameter justifies the applicability of this index, and the robustness of our modeling approach. The index yields a ranking of the sensitivity of all parameters, among which the adult mortality has the highest sensitivity and is considerably more sensitive than the natural larvae mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differentially Fed Metal Frame Antenna With Common Mode Suppression for Biomedical Smartband Applications

    Science.gov (United States)

    Xu, Li-Jie; Duan, Zhu

    2018-04-01

    This paper proposes a differentially fed metal frame antenna for biomedical smartband applications. It occupies a planar area of 40 × 20 mm, operating at 2.45-GHz industrial, scientific, and medical band. The proposed antenna is composed of an external metal frame and an internal metal box acting as ground for electronics. Through a differential feeding to two copper strips located between the metal frame and the metal box, a rectangular ring slot is excited with common mode suppression capability. The antenna prototype is designed in free space, and then adapted to on-body scenario for both repeater and transmitter cases. Additionally, the proposed differential feeding is modified to the traditional single port, demonstrating the half-size miniaturization technique. Finally, the simulated results are verified by measurement. The proposed antenna's simple structure and satisfactory performance makes it a perfect candidate for future medical smartband applications, monitoring the physiological parameters of humans for health-care purposes.

  18. Differential roles of resistance to proactive interference and suppression of prepotent responses in overgeneral memory.

    Science.gov (United States)

    Comas, Michelle; Valentino, Kristin; Johnson, Anne F; Gibson, Bradley S; Taylor, Courtney

    2018-06-12

    Overgeneral memory (OGM), difficulty in retrieving specific autobiographical memories, is a robust phenomenon related to the onset and course of depressive and posttraumatic stress disorders. Inhibitory mechanisms are theorized to underlie OGM; however, empirical support for this link is equivocal. The current study examines the differential roles of two aspects of inhibitory control in association with OGM: suppression of prepotent responses and resistance to proactive interference (PI). Only resistance to PI was expected to be negatively related to OGM, whereby individuals with greater ability to resist PI would have reduced OGM. Participants (n = 49) completed a self-report measure of depressive symptoms and engaged in two tasks aimed at assessing resistance to PI and suppression of prepotent responses. Participants also completed a task assessing overgeneral autobiographical memory. As hypothesized, resistance to PI, but not suppression of prepotent responses negatively predicted OGM above and beyond the influence of depressive symptoms. Because a double dissociation was not examined, we cannot address the potential independence of the submechanisms of inhibitory control that we assessed. Results exemplify the differential associations of two components of inhibition and OGM, suggesting that resistance to PI, in particular, may contribute to the development and/or maintenance of OGM and associated depressive disorders. Directions for future research are discussed. Copyright © 2018. Published by Elsevier Ltd.

  19. Diphlorethohydroxycarmalol from Ishige okamurae Suppresses Osteoclast Differentiation by Downregulating the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hye Jung Ihn

    2017-12-01

    Full Text Available Marine algae possess a variety of beneficial effects on human health. In this study, we investigated whether diphlorethohydroxycarmalol (DPHC, isolated from Ishige okamurae, a brown alga, suppresses receptor activator of nuclear factor-κB ligand (RANKL-induced osteoclast differentiation. DPHC significantly suppressed RANKL-induced osteoclast differentiation and macrophage-colony stimulating factor (M-CSF expression in a dose-dependent manner. In addition, it significantly inhibited actin ring formation, the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase (TRAP, nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1, cathepsin K (Ctsk, and dendritic cell-specific transmembrane protein (Dcstamp, and osteoclast-induced bone resorption. Analysis of the RANKL-mediated signaling pathway showed that the phosphorylation of both IκB and p65 was specifically inhibited by DPHC. These results suggest that DPHC substantially suppresses osteoclastogenesis by downregulating the RANK-NF-κB signaling pathway. Thus, it holds significant potential for the treatment of skeletal diseases associated with an enhanced osteoclast activity.

  20. A survey of Sertoli cell differentiation in men after gonadotropin suppression and in testicular cancer

    DEFF Research Database (Denmark)

    Tarulli, Gerard A; Stanton, Peter G; Loveland, Kate L

    2013-01-01

    It is widely held that the somatic cell population that is responsible for sperm development and output (Sertoli cells) is terminally differentiated and unmodifiable in adults. It is postulated, with little evidence, that Sertoli cells are not terminally differentiated in some phenotypes of infer...... tubules with CIS and the emergence of strong JAM-A reactivity in seminoma. These findings indicate that adult human Sertoli cells exhibit characteristics of an undifferentiated state in oligospermic men and patients with CIS and seminoma in the presence of germ cell neoplasia....... of infertility and testicular cancer. This study sought to compare markers of Sertoli cell differentiation in normospermic men, oligospermic men (undergoing gonadotropin suppression) and testicular carcinoma in situ (CIS) and seminoma samples. Confocal microscopy was used to assess the expression of markers...... of proliferation (PCNA and Ki67) and functional differentiation (androgen receptor). As additional markers of differentiation, the organization of Sertoli cell tight junction and associated proteins were assessed in specimens with carcinoma in situ. In normal men, Sertoli cells exhibited a differentiated phenotype...

  1. The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma

    NARCIS (Netherlands)

    Heemstra, K. A.; Hamdy, N. A. T.; Romijn, J. A.; Smit, J. W. A.

    2006-01-01

    Patients with differentiated thyroid carcinoma (DTC) are commonly treated long-term with thyrotropin (TSH)- suppressive thyroxine replacement therapy resolving in a state of subclinical hyperthyroidism. The relationship between subclinical hyperthyroidism and osteoporosis is not clear. In this

  2. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    Science.gov (United States)

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  4. Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores.

    Directory of Open Access Journals (Sweden)

    Brian M Leckie

    Full Text Available Acylsugars are secondary metabolites exuded from type IV glandular trichomes that provide broad-spectrum insect suppression for Solanum pennellii Correll, a wild relative of cultivated tomato. Acylsugars produced by different S. pennellii accessions vary by sugar moieties (glucose or sucrose and fatty acid side chains (lengths and branching patterns. Our objective was to determine which acylsugar compositions more effectively suppressed oviposition of the whitefly Bemisia tabaci (Gennadius (Middle East--Asia Minor 1 Group, tobacco thrips, Frankliniella fusca (Hinds, and western flower thrips, Frankliniella occidentalis (Pergande. We extracted and characterized acylsugars from four S. pennellii accessions with different compositions, as well as from an acylsugar-producing tomato breeding line. We also fractionated the acylsugars of one S. pennellii accession to examine the effects of its components. Effects of acylsugars on oviposition were evaluated by administering a range of doses to oviposition sites of adult whiteflies and thrips in non-choice and choice bioassays, respectively. The acylsugars from S. pennellii accessions and the tomato breeding line demonstrated differential functionality in their ability to alter the distribution of whitefly oviposition and suppress oviposition on acylsugar treated substrates. Tobacco thrips were sensitive to all compositions while western flower thrips and whiteflies were more sensitive to acylsugars from a subset of S. pennellii accessions. It follows that acylsugars could thus mediate plant-enemy interactions in such a way as to affect evolution of host specialization, resistance specificity, and potentially host differentiation or local adaptation. The acylsugars from S. pennellii LA1376 were separated by polarity into two fractions that differed sharply for their sugar moieties and fatty acid side chains. These fractions had different efficacies, with neither having activity approaching that of the

  5. Bistable switches control memory and plasticity in cellular differentiation

    Science.gov (United States)

    Wang, Lei; Walker, Brandon L.; Iannaccone, Stephen; Bhatt, Devang; Kennedy, Patrick J.; Tse, William T.

    2009-01-01

    Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an “all-or-none” behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process. PMID:19366677

  6. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    Science.gov (United States)

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  7. Selection of reference genes for expression studies with fish myogenic cell cultures

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-08-01

    Full Text Available Abstract Background Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.. The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Results Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1α, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. Conclusion The geometric average of any three of Hprt1, Ef1α, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  8. Selection of reference genes for expression studies with fish myogenic cell cultures.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2009-08-10

    Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  9. The critical role of myostatin in differentiation of sheep myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenxi [College of Life Science and Technology, Xinjiang University, Urumqi (China); Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China); Ge, Yubin [The State Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun (China); Liu, Mingjun, E-mail: xjlmj2004@yahoo.com.cn [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  10. The critical role of myostatin in differentiation of sheep myoblasts

    International Nuclear Information System (INIS)

    Liu, Chenxi; Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng; Ge, Yubin; Liu, Mingjun

    2012-01-01

    Highlights: ► Identification of the effective and specific shRNA to knockdown MSTN. ► Overexpression of MSTN reversibly suppressed myogenic differentiation. ► shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. ► MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. ► Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  11. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  12. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization.

    Science.gov (United States)

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from 'Taishanzaoxia' apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in 'Taishanzaoxia'. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening.

  13. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    Science.gov (United States)

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  14. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy.

    Science.gov (United States)

    Reza, Musarrat Maisha; Subramaniyam, Nathiya; Sim, Chu Ming; Ge, Xiaojia; Sathiakumar, Durgalakshmi; McFarlane, Craig; Sharma, Mridula; Kambadur, Ravi

    2017-10-24

    Exercise induces expression of the myokine irisin, which is known to promote browning of white adipose tissue and has been shown to mediate beneficial effects following exercise. Here we show that irisin induces expression of a number of pro-myogenic and exercise response genes in myotubes. Irisin increases myogenic differentiation and myoblast fusion via activation of IL6 signaling. Injection of irisin in mice induces significant hypertrophy and enhances grip strength of uninjured muscle. Following skeletal muscle injury, irisin injection improves regeneration and induces hypertrophy. The effects of irisin on hypertrophy are due to activation of satellite cells and enhanced protein synthesis. In addition, irisin injection rescues loss of skeletal muscle mass following denervation by enhancing satellite cell activation and reducing protein degradation. These data suggest that irisin functions as a pro-myogenic factor in mice.

  15. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    Science.gov (United States)

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The value of fat-suppressed T2 or STIR sequences in distinguishing lipoma from well-differentiated liposarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Galant, J. [Servicio de Radiodiagnostico, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain); Resonancia Magnetica del Sureste, Murcia (Spain); Marti-Bonmati, L. [Department of Radiology, Hospital Universitario Dr. Peset, Valencia (Spain); Saez, F. [Department of Radiology, Hospital Cruces de Baracaldo, Vizcaya (Spain); Soler, R. [Department of Radiology, Hospital Juan Canalejo, A Coruna (Spain); Alcala-Santaella, R. [Department of Traumatology, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain); Navarro, M. [Servicio de Radiodiagnostico, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain)

    2003-02-01

    The objective of this study was to evaluate the diagnostic value of fat-suppressed T2-weighted (FS-T2) images or short tau inversion recovery (STIR) imaging in distinguishing lipoma from lipoma-like subtype of well-differentiated liposarcoma. Spin-echo T1-weighted and STIR or fat-suppression T2-weighted sequences were performed in 60 lipomas and 32 lipoma-like well-differentiated liposarcomas, histologically proven, looking for thick septa or nodules in T1-weighted images and linear, nodular, or amorphous hyperintensities on FS-T2/STIR sequences. Fourteen lipomas (23.3%) showed thick septa and/or nodules on T1, whereas on FS-T2 or STIR sequences only seven (11.7%) displayed hyperintense nodules and/or septa. All well-differentiated liposarcomas contained these signs on FS-T2 or STIR sequences. The presence of hyperintense septa or nodules in a predominantly lipomatous tumor on FS-T2/STIR sequences helps to differentiate malignant tumors from lipomas. Employing the presence of hyperintense nodules and/or septa as criteria of malignancy specificity was 76.6% and sensitivity 100%. Overdiagnoses of well-differentiated liposarcoma can occur due to the presence of non-lipomatous areas within lipomas. (orig.)

  17. The value of fat-suppressed T2 or STIR sequences in distinguishing lipoma from well-differentiated liposarcoma

    International Nuclear Information System (INIS)

    Galant, J.; Marti-Bonmati, L.; Saez, F.; Soler, R.; Alcala-Santaella, R.; Navarro, M.

    2003-01-01

    The objective of this study was to evaluate the diagnostic value of fat-suppressed T2-weighted (FS-T2) images or short tau inversion recovery (STIR) imaging in distinguishing lipoma from lipoma-like subtype of well-differentiated liposarcoma. Spin-echo T1-weighted and STIR or fat-suppression T2-weighted sequences were performed in 60 lipomas and 32 lipoma-like well-differentiated liposarcomas, histologically proven, looking for thick septa or nodules in T1-weighted images and linear, nodular, or amorphous hyperintensities on FS-T2/STIR sequences. Fourteen lipomas (23.3%) showed thick septa and/or nodules on T1, whereas on FS-T2 or STIR sequences only seven (11.7%) displayed hyperintense nodules and/or septa. All well-differentiated liposarcomas contained these signs on FS-T2 or STIR sequences. The presence of hyperintense septa or nodules in a predominantly lipomatous tumor on FS-T2/STIR sequences helps to differentiate malignant tumors from lipomas. Employing the presence of hyperintense nodules and/or septa as criteria of malignancy specificity was 76.6% and sensitivity 100%. Overdiagnoses of well-differentiated liposarcoma can occur due to the presence of non-lipomatous areas within lipomas. (orig.)

  18. Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells

    International Nuclear Information System (INIS)

    Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru; Maruyama, Natsuki; Aihara, Eitaro; Tadaishi, Miki; Shimizu, Makoto; Kobayashi-Hattori, Kazuo

    2017-01-01

    We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivation conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.

  19. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  20. Impaired myogenic tone in mesenteric arteries from overweight rats

    Directory of Open Access Journals (Sweden)

    Sweazea Karen L

    2012-03-01

    Full Text Available Abstract Background Rats fed high fat (HFD or high sucrose (HSD diets develop increased adiposity as well as impaired vasodilatory responsiveness stemming from oxidative stress. Moreover, HFD rats become hypertensive compared to either control (Chow or HSD fed rats, suggesting elevated vascular tone. We hypothesized that rats with increased adiposity and oxidative stress demonstrate augmented pressure-induced vasoconstriction (i.e. myogenic tone that could account for the hypertensive state. Methods Male Sprague-Dawley rats were fed Chow, HFD or HSD for 6 weeks. The effects of oxidative stress and endogenous nitric oxide on myogenic responses were examined in small mesenteric arteries by exposing the arteries to incremental intraluminal pressure steps in the presence of antioxidants or an inhibitor of nitric oxide synthase, LNNA (100 μM. Results Contrary to the hypothesis, rats fed either HSD or HFD had significantly impaired myogenic responses despite similar vascular morphology and passive diameter responses to increasing pressures. Vascular smooth muscle (VSM calcium levels were normal in HFD arteries suggesting that diminished calcium sensitivity was responsible for the impaired myogenic response. In contrast, VSM calcium levels were reduced in HSD arteries but were increased with pre-exposure of arteries to the antioxidants tiron (10 mM and catalase (1200 U/mL, also resulting in enhanced myogenic tone. These findings show that oxidative stress impairs myogenic tone in arteries from HSD rats by decreasing VSM calcium. Similarly, VSM calcium responses were increased in arteries from HFD rats following treatment with tiron and catalase, but this did not result in improved myogenic tone. Nitric oxide is involved in the impaired myogenic response in HFD, but not HSD, rats since inhibition with LNNA resulted in maximal myogenic responses at lower intraluminal pressures and VSM calcium levels, further implicating reduced calcium sensitivity in

  1. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  2. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation.

    Science.gov (United States)

    Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka

    2006-02-01

    Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.

  3. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    Science.gov (United States)

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  4. Utility of fat-suppressed sequences in differentiation of aggressive vs typical asymptomatic haemangioma of the spine.

    Science.gov (United States)

    Nabavizadeh, Seyed Ali; Mamourian, Alexander; Schmitt, James E; Cloran, Francis; Vossough, Arastoo; Pukenas, Bryan; Loevner, Laurie A; Mohan, Suyash

    2016-01-01

    While haemangiomas are common benign vascular lesions involving the spine, some behave in an aggressive fashion. We investigated the utility of fat-suppressed sequences to differentiate between benign and aggressive vertebral haemangiomas. Patients with the diagnosis of aggressive vertebral haemangioma and available short tau inversion-recovery or T2 fat saturation sequence were included in the study. 11 patients with typical asymptomatic vertebral body haemangiomas were selected as the control group. Region of interest signal intensity (SI) analysis of the entire haemangioma as well as the portion of each haemangioma with highest signal on fat-saturation sequences was performed and normalized to a reference normal vertebral body. A total of 8 patients with aggressive vertebral haemangioma and 11 patients with asymptomatic typical vertebral haemangioma were included. There was a significant difference between total normalized mean SI ratio (3.14 vs 1.48, p = 0.0002), total normalized maximum SI ratio (5.72 vs 2.55, p = 0.0003), brightest normalized mean SI ratio (4.28 vs 1.72, p 88%) and specificity (>82%). In addition to the conventional imaging features such as vertebral expansion and presence of extravertebral component, quantitative evaluation of fat-suppression sequences is also another imaging feature that can differentiate aggressive haemangioma and typical asymptomatic haemangioma. The use of quantitative fat-suppressed MRI in vertebral haemangiomas is demonstrated. Quantitative fat-suppressed MRI can have a role in confirming the diagnosis of aggressive haemangiomas. In addition, this application can be further investigated in future studies to predict aggressiveness of vertebral haemangiomas in early stages.

  5. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Inoue, Hirofumi; Takahashi, Nobuyuki; Katsumata-Tsuboi, Rie; Uehara, Mariko

    2017-01-01

    Sulforaphane (SFN), a kind of isothiocyanate, is derived from broccoli sprouts. It has anti-tumor, anti-inflammatory, and anti-oxidation activity. The molecular function of SFN in the inhibition of osteoclast differentiation is not well-documented. In this study, we assessed the effect of SFN on osteoclast differentiation in vitro. SFN inhibited osteoclast differentiation in both bone marrow cells and RAW264.7 cells. Key molecules involved in the inhibitory effects of SFN on osteoclast differentiation were determined using a microarray analysis, which showed that SFN inhibits osteoclast-associated genes, such as osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells cytoplasmic-1, tartrate-resistant acid phosphatase, and cathepsin K. Moreover, the mRNA expression levels of the cell-cell fusion molecules dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP) were strongly suppressed in cells treated with SFN. Furthermore, SFN increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), a regulator of macrophage and osteoclast cell fusion. Thus, our data suggested that SFN significantly inhibits the cell-cell fusion molecules DC-STAMP and OC-STAMP by inducing the phosphorylation of STAT1 (Tyr701), which might be regulated by interactions with OSCAR. - Highlights: • Sulforaphane inhibited osteoclast differentiation and osteoclast cell-fusion. • Sulforaphane suppressed not only NFATc1, but also cell-cell fusion molecules, DC-STAMP and OC-STAMP. • Sulforaphane decreased multinucleated osteoclasts, whereas increased mono-nucleated osteoclasts. • Sulforaphane inhibits the cell-cell fusion by inducing the phosphorylation of STAT1 (Tyr701).

  6. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  7. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  8. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Lafreniere, J.F.; Mills, P.; Bouchentouf, M.; Tremblay, J.P.

    2006-01-01

    Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface α5 integrin but increased the presence of β3 and β1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient

  9. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  10. Microarray evaluation of EP4 receptor-mediated prostaglandin E2 suppression of 3T3-L1 adipocyte differentiation

    International Nuclear Information System (INIS)

    Sugimoto, Yukihiko; Tsuboi, Hiroaki; Okuno, Yasushi; Tamba, Shigero; Tsuchiya, Soken; Tsujimoto, Gozo; Ichikawa, Atsushi

    2004-01-01

    Prostaglandin E 2 (PGE 2 ) has been shown to negatively regulate adipogenesis. To explore to what extent PGE 2 inhibits the differentiation of cells to adipocytes and to examine whether its effect could be due to EP4 receptor signaling, we used microarrays to analyze the gene expression profiles of 3T3-L1 cells exposed to a differentiation cocktail supplemented with PGE 2 , AE1-329 (an EP4 agonist), or vehicle. The differentiation-associated responses in genes such as adipocytokines and enzymes related to lipid metabolism were largely weakened upon PGE 2 treatment. In particular, the expression of peroxisome proliferator activated receptor-γ and CCAAT/enhancer binding protein-α, genes playing a central role in adipogenesis, was greatly suppressed. PGE 2 appears to be ineffective to a subclass of insulin target genes such as hexokinase 2 and phosphofructokinase. Similar responses were produced in the differentiation-associated genes upon AE1-329 treatment. These results suggest that PGE 2 inhibits a crucial step of the adipocyte differentiation process by acting on the EP4 receptor in 3T3-L1 cells

  11. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  12. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  13. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    International Nuclear Information System (INIS)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.; Piroli, Gerardo G.; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J.; Koh, Ho-Jin

    2016-01-01

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  14. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α

    International Nuclear Information System (INIS)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-01-01

    Highlights: → TNF-α inhibits POEM gene expression. → Inhibition of POEM gene expression is caused by NF-κB activation by TNF-α. → Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-α. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  15. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  16. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation.

    Science.gov (United States)

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-02-10

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.

  17. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    -forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

  18. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Directory of Open Access Journals (Sweden)

    Teruhito Yamashita

    pit-forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

  19. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    -forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways. PMID:24465763

  20. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  1. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    Science.gov (United States)

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  2. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  3. Creating Tic Suppression: Comparing the Effects of Verbal Instruction to Differential Reinforcement

    Science.gov (United States)

    Woods, Douglas W.; Himle, Michael B.

    2004-01-01

    The purpose of this study was to compare two methods designed to produce tic reduction in 4 children with Tourette's syndrome. Specifically, a verbal instruction not to engage in tics was compared to a verbal instruction plus differential reinforcement of zero-rate behavior (DRO). Results showed that the DRO-enhanced procedure yielded greater…

  4. Clozapine inhibits Th1 cell differentiation and causes the suppression of IFN-γ production in peripheral blood mononuclear cells.

    Science.gov (United States)

    Chen, Mao-Liang; Tsai, Tzung-Chieh; Wang, Lu-Kai; Lin, Yi-Yin; Tsai, Ya-Min; Lee, Ming-Cheng; Tsai, Fu-Ming

    2012-08-01

    Antipsychotic drugs (APDs) are widely used to alleviate a number of psychic disorders and may have immunomodulatory effects. However, the previous studies of cytokine and immune regulation in APDs are quite inconsistent. The aim of this study was to examine the in vitro effects of different ADPs on cytokine production by peripheral blood mononuclear cells (PBMCs). We examined the effects of risperidone, clozapine, and haloperidol on the production of phorbol myristate acetate and ionomycin-induced interferon-γ (IFN-γ)/interleukin (IL)-4 in PBMCs by using intracellular staining. Real-time quantitative PCR and Western blot were used to further examine the expression changes of some critical transcription factors related to T-cell differentiation in antipsychotic-treated PBMCs. Our results indicated that clozapine can suppress the stimulated production of IFN-γ by 30.62%, whereas haloperidol weakly enhances the expression of IFN-γ. Differences in IL-4 production or in the number of CD4+ T cells were not observed in cells treated with different APDs. Furthermore, clozapine and risperidone inhibited the T-bet mRNA and protein expression, which are critical to Th1 differentiation. Also, clozapine can enhance the expression of Signal Transducer and Activator of Transcription 6 and GATA3, which are critical for the differentiation of Th2 cells. The results suggested that clozapine and haloperidol may induce different immunomodulatory effects on the immune system.

  5. Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.

    Science.gov (United States)

    Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

    2014-01-01

    Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.

  6. RUNX1 suppression induces megakaryocytic differentiation of UT-7/GM cells

    International Nuclear Information System (INIS)

    Nagai, Ryohei; Matsuura, Eri; Hoshika, Yusuke; Nakata, Emi; Nagura, Hironori; Watanabe, Ayako; Komatsu, Norio; Okada, Yoshiaki; Doi, Takefumi

    2006-01-01

    The transcription factor RUNX1 plays a crucial role in hematopoiesis. RUNX1 regulates both differentiation and proliferation of hematopoietic cells. Several reports have shown that RUNX1 participates in megakaryopoiesis, which is a process that leads to formation of platelets. However, to date, the mechanisms by which this occurs have not been fully elucidated. In the present study, we investigated whether siRNA-mediated depletion of RUNX1 affected megakaryopoiesis of UT-7/GM cells. The depletion of RUNX1 in UT-7/GM cells resulted in up-regulation of the expression of megakaryocytic markers and polyploidization, while cell proliferation was down-regulated. Furthermore, the overexpression of RUNX1 decreased the activity of megakaryocytic gene promoters. These results suggest that RUNX1 down-regulates terminal differentiation of megakaryocytes and promotes proliferation of megakaryocytic progenitors

  7. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis

    Directory of Open Access Journals (Sweden)

    Yu Fujita

    2015-11-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, encapsulate proteins and microRNAs (miRNAs as new modulators of both intercellular crosstalk and disease pathogenesis. The composition of EVs is modified by various triggers to maintain physiological homeostasis. In response to cigarette smoke exposure, the lungs develop emphysema, myofibroblast accumulation and airway remodelling, which contribute to chronic obstructive pulmonary disease (COPD. However, the lung disease pathogenesis through modified EVs in stress physiology is not understood. Here, we investigated an EV-mediated intercellular communication mechanism between primary human bronchial epithelial cells (HBECs and lung fibroblasts (LFs and discovered that cigarette smoke extract (CSE-induced HBEC-derived EVs promote myofibroblast differentiation in LFs. Thorough evaluations of the modified EVs and COPD lung samples showed that cigarette smoke induced relative upregulation of cellular and EV miR-210 expression of bronchial epithelial cells. Using co-culture assays, we showed that HBEC-derived EV miR-210 promotes myofibroblast differentiation in LFs. Surprisingly, we found that miR-210 directly regulates autophagy processes via targeting ATG7, and expression levels of miR-210 are inversely correlated with ATG7 expression in LFs. Importantly, autophagy induction was significantly decreased in LFs from COPD patients, and silencing ATG7 in LFs led to myofibroblast differentiation. These findings demonstrate that CSE triggers the modification of EV components and identify bronchial epithelial cell-derived miR-210 as a paracrine autophagy mediator of myofibroblast differentiation that has potential as a therapeutic target for COPD. Our findings show that stressor exposure changes EV compositions as emerging factors, potentially controlling pathological disorders such as airway remodelling in COPD.

  8. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  9. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  10. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    Science.gov (United States)

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. © FASEB.

  11. Aggregatibacter actinomycetemcomitans-Induced AIM2 Inflammasome Activation Is Suppressed by Xylitol in Differentiated THP-1 Macrophages.

    Science.gov (United States)

    Kim, Seyeon; Park, Mi Hee; Song, Yu Ri; Na, Hee Sam; Chung, Jin

    2016-06-01

    Aggressive periodontitis is characterized by rapid destruction of periodontal tissue caused by Aggregatibacter actinomycetemcomitans. Interleukin (IL)-1β is a proinflammatory cytokine, and its production is tightly regulated by inflammasome activation. Xylitol, an anticaries agent, is anti-inflammatory, but its effect on inflammasome activation has not been researched. This study investigates the effect of xylitol on inflammasome activation induced by A. actinomycetemcomitans. The differentiated THP-1 macrophages were stimulated by A. actinomycetemcomitans with or without xylitol and the expressions of IL-1β and inflammasome components were detected by real time PCR, ELISA, confocal microscopy and Immunoblot analysis. The effects of xylitol on the adhesion and invasion of A. actinomycetemcomitans to cells were measured by viable cell count. A. actinomycetemcomitans increased pro IL-1β synthesis and IL-1β secretion in a multiplicity of infection- and time-dependent manner. A. actinomycetemcomitans also stimulated caspase-1 activation. Among inflammasome components, apoptosis-associated speck-like protein containing a CARD (ASC) and absent in melanoma 2 (AIM2) proteins were upregulated by A. actinomycetemcomitans infection. When cells were pretreated with xylitol, proIL-1β and IL-1β production by A. actinomycetemcomitans infection was significantly decreased. Xylitol also inhibited ASC and AIM2 proteins and formation of ASC puncta. Furthermore, xylitol suppressed internalization of A. actinomycetemcomitans into differentiated THP-1 macrophages without affecting viability of A. actinomycetemcomitans within cells. A. actinomycetemcomitans induced IL-1β production and AIM2 inflammasome activation. Xylitol inhibited these effects, possibly by suppressing internalization of A. actinomycetemcomitans into cells. Thus, this study proposes a mechanism for IL-1β production via inflammasome activation and discusses a possible use for xylitol in periodontal inflammation

  12. Deconvolution of the vestibular evoked myogenic potential.

    Science.gov (United States)

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization.

    Science.gov (United States)

    Deng, Chuan-liang; Wang, Ning-na; Li, Shu-fen; Dong, Tian-yu; Zhao, Xin-peng; Wang, Shao-jing; Gao, Wu-jun; Lu, Long-dou

    2015-09-01

    Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.

  14. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  15. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  16. Prolonged activation of S6K1 does not suppress IRS or PI-3 kinase signaling during muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    MacKenzie Matthew G

    2010-05-01

    Full Text Available Abstract Background Myogenesis in C2C12 cells requires the activation of the PI3K/mTOR signaling pathways. Since mTOR signaling can feedback through S6K1 to inhibit the activation of PI3K, the aim of this work was to assess whether feedback from S6K1 played a role in myogenesis and determine whether siRNA mediated knockdown of S6K1 would lead to an increased rate of myotube formation. Results S6K1 activity increased in a linear fashion following plating and was more than 3-fold higher after Day 3 of differentiation (subconfluent = 11.09 ± 3.05, Day 3 = 29.34 ± 3.58. IRS-1 levels tended to increase upon serum withdrawal but decreased approximately 2-fold (subconfluent = 0.88 ± 0.10, Day 3 = 0.42 ± 0.06 3 days following differentiation whereas IRS-2 protein remained stable. IRS-1 associated p85 was significantly reduced upon serum withdrawal (subconfluent = 0.86 ± 0.07, Day 0 = 0.31 ± 0.05, remaining low through day 1. IRS-2 associated p85 decreased following serum withdrawal (subconfluent = 0.96 ± 0.05, Day 1 = 0.56 ± 0.08 and remained suppressed up to Day 3 following differentiation (0.56 ± 0.05. Phospho-tyrosine associated p85 increased significantly from subconfluent to Day 0 and remained elevated throughout differentiation. siRNA directed against S6K1 and S6K2 did not result in changes in IRS-1 levels after either 48 or 96 hrs. Furthermore, neither 48 nor 96 hrs of S6K1 knockdown caused a change in myotube formation. Conclusions Even though S6K1 activity increases throughout muscle cell differentiation and IRS-1 levels decrease over this period, siRNA suggests that S6K1 is not mediating the decrease in IRS-1. The decrease in IRS-1/2 associated p85 together with the increase in phospho-tyrosine associated p85 suggests that PI3K associates primarily with scaffolds other than IRS-1/2 during muscle cell differentiation.

  17. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    Science.gov (United States)

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  18. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis.

    Science.gov (United States)

    Cheon, Se-Yun; Chung, Kyung-Sook; Roh, Seong-Soo; Cha, Yun-Yeop; An, Hyo-Jin

    2017-12-24

    Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.

  19. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    Science.gov (United States)

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  20. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    Science.gov (United States)

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  1. Effect of chronic L-thyroxine-suppressive therapy on cardiac function in patients with differentiated thyroid carcinoma: Radionuclide techniques

    International Nuclear Information System (INIS)

    Ziada, G.; Farouk, S.; Zidan, A.; Mustafa, S.; El-Reffaie, S.

    2005-01-01

    Differentiated thyroid carcinoma (DTC) is usually treated by a combination of surgery, radioiodine (I-131) and suppressive doses of thyroid hormones [L-thyroxine (Eltroxine)]. It is well-known that thyroid hormone affects the function of cardiovascular system. However there is no study to objectively substantiate this phenomenon. The objective of this study was to assess the left ventricular function with the help of radionuclide ventriculography in patients of DTC. Various parameters of systolic function [ejection fraction (EF), peak ejection rate (PER) and time to peak ejection rate (TPER)], diastolic function [peak filling rate (PFR) and time to peak filling rate (TPFR)] and heart rate were determined. Ten healthy control subjects and 50 patients of DTC on suppressive doses of eltroxine following surgery and radio-iodine (I-131) therapy were evaluated. The patients were divided into 5 groups according to their clinical status and thyroid hormone profile. These groups were: euthyroid, sub-clinical hypothyroid, hypothyroid, sub-clinical hyperthyroid and hyperthyroid groups. The results of the study revealed that Eltroxine significantly affected left ventricular function. Although it did not affect the systolic function, the diastolic function was significantly impaired. Prolongation of TPER was noted in hypothyroid patients, while the same was significantly decreased in hyper- and sub-clinical hyper-thyroids patients. Such abnormalities in cardiac function would be responsible for serious morbidity and could affect the lives of patients' in several ways. Hence, early effective treatment of thyroid function is important in patients of DTC, which would improve their quality of life and avoid long-term serious or irreversible cardiovascular disorder. (author)

  2. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Identification of differential gene expression in in vitro FSH treated pig granulosa cells using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Tosser-Klopp G

    2006-07-01

    Full Text Available Abstract FSH, which binds to specific receptors on granulosa cells in mammals, plays a key role in folliculogenesis. Its biological activity involves stimulation of intercellular communication and upregulation of steroidogenesis, but the entire spectrum of the genes regulated by FSH has yet to be fully characterized. In order to find new regulated transcripts, however rare, we have used a Suppression Subtractive Hybridization approach (SSH on pig granulosa cells in primary culture treated or not with FSH. Two SSH libraries were generated and 76 clones were sequenced after selection by differential screening. Sixty four different sequences were identified, including 3 novel sequences. Experiments demonstrated the presence of 25 regulated transcripts. A gene ontology analysis of these 25 genes revealed (1 catalytic; (2 transport; (3 signal transducer; (4 binding; (5 anti-oxidant and (6 structural activities. These findings may deepen our understanding of FSH's effects. Particularly, they suggest that FSH is involved in the modulation of peroxidase activity and remodelling of chromatin.

  4. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization.

    Science.gov (United States)

    Pimentel, Paula; Salvatierra, Ariel; Moya-León, María Alejandra; Herrera, Raúl

    2010-09-15

    Fragaria chiloensis, the native Chilean strawberry, is noted for its good fruit quality characters. However, it is a highly perishable fruit due to its rapid softening. With the aim to screen for genes differentially expressed during development and ripening of strawberry fruit, the subtractive suppressive hybridization (SSH) methodology was employed. Six libraries were generated contrasting transcripts from four different developmental stages. A set of 1807 genes was isolated and characterized. In our EST collection, approximately 90% of partial cDNAs showed significant similarity to proteins with known or unknown function registered in databases. Among them, proteins related to protein fate were identified in a large green fruit library and protein related with cellular transport, cell wall-related proteins, and transcription regulators were identified in a ripe fruit library. Thirteen genes were analyzed by qRT-PCR during development and ripening of the Chilean strawberry fruit. The information generated in this study provides new clues to aid the understanding of the ripening process in F. chiloensis fruit. Copyright 2010 Elsevier GmbH. All rights reserved.

  5. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration

    Directory of Open Access Journals (Sweden)

    Masakazu Yamamoto

    2018-03-01

    Full Text Available Summary: MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO] are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. : In this article, Goldhamer and colleagues show that loss of both MyoD and Myf5 in skeletal muscle satellite cells results in regenerative failure following injury. Satellite cell progeny accumulate in injured muscle and continue to express markers of myoblast identity, but do not undergo muscle differentiation, and exhibit a propensity for non-myogenic differentiation. Keywords: skeletal muscle regeneration, muscle stem cell programming, muscle differentiation, satellite cell, MyoD, Myf5, adipogenesis, fibrosis, conditional knockout, Cre/loxP

  6. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Valdiglesias Vanessa

    2012-01-01

    Full Text Available Abstract Background Okadaic acid (OA, a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h. A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure, excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.

  7. Performance of the 4-mg intravenous dexamethasone suppression test in differentiating Cushing disease from pseudo-Cushing syndrome.

    Science.gov (United States)

    Nouvel, Migueline; Rabilloud, Muriel; Raverot, Véronique; Subtil, Fabien; Vouillarmet, Julien; Thivolet, Charles; Jouanneau, Emmanuel; Borson-Chazot, Françoise; Pugeat, Michel; Raverot, Gérald

    2016-02-01

    Discriminating Cushing disease (CD) from pseudo-Cushing syndrome (PCS) is a challenging task that may be overcome with the 4-mg intravenous (IV) dexamethasone suppression test (DST). Assess the performance of the 4-mg IV DST in the differential diagnosis between CD and PCS in well-characterized patients. Retrospective comparative study of subjects seen in a tertiary care unit (November 2008 to July 2011). Thirty-six patients with PCS and 32 patients with CD underwent 4-mg IV dexamethasone infusions from 11 am to 3 pm. Areas Under ROC Curves (AUCs) were estimated and compared for ACTH and cortisol measured at 4 pm the same day (day 1) and 8 am the next day (day 2). The ROC curve of the marker with the highest AUC was used to determine the threshold with the highest specificity for 100% sensitivity. The AUC of ACTH at 8 am on day 2 was estimated at 98.4% (95% CI: [92.1-100]), which is significantly greater than that of ACTH at 4 pm on day 1 (P=0.04) and that of cortisol at 8 am on day 2 (P=0.05). For ACTH at 8 am on day 2, the threshold with the highest specificity for 100% sensitivity was estimated at 14.8 ng/L. At this threshold, the sensitivity was estimated at 100% [89-100] and the specificity at 83.3% [67-94]. The 4-mg IV DST is an easy and accurate tool in distinguishing CD from PCS. It deserves thus a better place in establishing the diagnosis of CD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    DEFF Research Database (Denmark)

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C

    2013-01-01

    in muscle disease. SPARC overexpression almost completely abolished myogenic differentiation in these cultures as determined by substantially reduced levels of myogenic factors (Pax7, Myf5, Myod, Mef2B, Myogenin, and Myostatin) and a lack of multinucleated myotubes. These results demonstrate...

  9. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.

    Directory of Open Access Journals (Sweden)

    Marco Cassano

    2008-09-01

    Full Text Available Hepatocyte Growth Factor (HGF is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1 is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major

  11. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber.

    Science.gov (United States)

    Tashiro, Shota; Le, Minh Nguyen Tuyet; Kusama, Yuta; Nakatani, Eri; Suga, Mika; Furue, Miho K; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi

    2018-04-19

    Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Suppression substractive hybridisation and NGS reveal differential transcriptome expression profiles in Wayfaring Tree (Viburnum lantana L. treated with ozone

    Directory of Open Access Journals (Sweden)

    Elena eGottardini

    2016-06-01

    Full Text Available Tropospheric ozone (O3 is a global air pollutant that causes high economical damages by decresing plant productivity. It entering leaves through the stomata, generating reactive oxygen species, which following decreases photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d-1 for 45 consecutive days. Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 4.2% of the total surface. Using 454-pyrosequencing, the transcriptome analysis of O3-responsive genes in leaves was performed, compiling a total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319±156.7 and 255±107.4 bp. The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%. mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Photosynthetic performance of unigenes functionally associated to photosynthesis and carbon utilization was repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including

  13. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    Science.gov (United States)

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  14. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  15. Normalization reduces intersubject variability in cervical vestibular evoked myogenic potentials.

    Science.gov (United States)

    van Tilburg, Mark J; Herrmann, Barbara S; Guinan, John J; Rauch, Steven D

    2014-09-01

    Cervical vestibular evoked myogenic potentials are used to assess saccular and inferior vestibular nerve function. Normalization of the VEMP waveform has been proposed to reduce the variability in vestibular evoked myogenic potentials by correcting for muscle activation. In this study, we test the hypothesis that normalization of the raw cervical VEMP waveform causes a significant decrease in the intersubject variability. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty healthy subjects were used in this study. All subjects underwent cervical vestibular evoked myogenic potential testing using short tone bursts at 250, 500, 750, and 1,000 Hz. Both intersubject and intrasubject variability was assessed. Variability between raw and normalized peak-to-peak amplitudes was compared using the coefficient of variation. Intrasubject variability was assessed using the intraclass correlation coefficient and interaural asymmetry ratio. cVEMPs were present in most ears. Highest peak-to-peak amplitudes were recorded at 750 Hz. Normalization did not alter cVEMP tuning characteristics. Normalization of the cVEMP response caused a significant reduction in intersubject variability of the peak-to-peak amplitude. No significant change was seen in the intrasubject variability. Normalization significantly reduces cVEMP intersubject variability in healthy subjects without altering cVEMP characteristics. By reducing cVEMP amplitude variation due to nonsaccular, muscle-related factors, cVEMP normalization is expected to improve the ability to distinguish between healthy and pathologic responses in the clinical application of cVEMP testing.

  16. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor

    International Nuclear Information System (INIS)

    Mills, Philippe; Lafreniere, Jean-Francois; Benabdallah, Basma Fattouma; El Fahime, El Mostafa; Tremblay, Jacques-P.

    2007-01-01

    Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C 2 C 12 cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine

  17. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24.

    Science.gov (United States)

    Velleman, S G; Harding, R L

    2017-06-01

    Myogenic satellite cells are an adult stem cell responsible for all post-hatch muscle growth in poultry. As a stem cell population, satellite cells are highly heterogeneous, but the origin of this heterogeneity remains unclear. Heterogeneity is, in part, regulated by gene expression. One method of endogenous gene regulation that may contribute to heterogeneity is microRNAs (miRNAs). Two miRNAs previously shown to regulate poultry myogenic satellite cell proliferation and differentiation, miR-128 and miR-24, were studied to determine if they also affected satellite cell migration. Satellite cell migration is an essential step for both proliferation and differentiation. During proliferation, satellite cells will migrate and align to form new myofibers or donate their nuclei to existing myofibers leading to muscle fiber hypertrophy or regeneration. Transient transfection of miRNA specific mimics to each miRNA reduced migration of satellite cells following a cell culture scratch at 72 h of proliferation when the cultures were 90 to 100% confluent. However, only the migration in cells transfected with miR-24 mimics at 24 and 30 h following the scratch was significantly reduced (P ≤ 0.05) to around 70% of the distance migrated by controls. Alternately, transfection with inhibitors specific to miR-128 or miR-24 significantly (P ≤ 0.05) increased migration between 147 and 252% compared to their controls between 24 and 48 h following the scratch. These data demonstrate that miR-128 and miR-24 play a role in myogenic satellite cell migration, which will impact muscle development and growth. © 2016 Poultry Science Association Inc.

  18. Highly sensitive determination of TSH in the follow-up of TSH-suppressive therapy of patients with differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Mann, K.; Saller, B.; Mehl, U.; Hoermann, R.; Moser, E.

    1988-01-01

    Basal and TRH-stimulated TSH levels were determined in 72 patients with differentiated thyroid cancer on hormonal treatment, using a highly sensitive immunoradiometric assay (IRMAclon, Henning). 43 patients were under treatment with levothyroxine (T 4 ), 29 patients with triiodothyronine (T 3 ). In 33/43 patients (77%) under T 4 - and in 18/29 patients (62%) under T 3 -treatment basal TSH levels were below 0.1 mU/l. 3 patients showed a significant response (to above 0.5 mU/l) in the TRH test despite basal values of less than 0.1 mU/l. In 2 patients with elevated basal TSH levels (0.23 and 0.60 mU/l, resp.) in the IRMAclon, total suppression of TSH secretion was suggested by a failure of TSH to rise after TRH. By retesting these samples in an own TSH IRMA, basal and stimulated TSH values were below 0.1 mU/l. In conclusion, basal and TRH-stimulated TSH levels are well correlated in most patients with thyroid cancer under hormonal treatment. However, in some cases (5/72) determination of basal TSH could not clearly define the degree of thyrotropic suppression. Thus, TRH testing is still necessary to establish definitely complete TSH suppression in patients with thyroid carcinoma under suppressive treatment. (orig.) [de

  19. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  20. Radiodine administration under suppression of TSH for identification of false positive receptions in patients with thyroid differentiated carcinoma (TDC): utility of the potassium perchlorate

    International Nuclear Information System (INIS)

    Santangelo, L.A.; Pitoia, F.; Sanz, C.; Niepomniszcze, H.; El Tamer, Elias

    2004-01-01

    The total body scan, after a dose of 131 I correlated with the measurement of stimulated Tg, constitute the principal pillars in follow-up of patients with TDC (thyroid differentiated carcinoma). A bibliographical search revealed more than 70 situations that can cause false total body scans positive. The examination is essential to avoid unnecessary treatment with radioiodine. The object is to evaluate the effectiveness of the radioiodine administration under hormonal therapy thyroid suppressive (THST) to eliminate the possibility of a false total body scan positive in five patients with TDC with stimulated Tg <1ng/ml

  1. NOV/CCN3 impairs muscle cell commitment and differentiation

    International Nuclear Information System (INIS)

    Calhabeu, Frederico; Lafont, Jerome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Martinerie, Cecile; Dubois, Catherine

    2006-01-01

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10 -6 M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts

  2. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    OpenAIRE

    Gregory M. Dick; Ravi Namani; Bhavesh Patel; Ghassan S. Kassab

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic d...

  3. FOXO1-suppressed miR-424 regulates the proliferation and osteogenic differentiation of MSCs by targeting FGF2 under oxidative stress

    Science.gov (United States)

    Li, Liangping; Qi, Qihua; Luo, Jiaquan; Huang, Sheng; Ling, Zemin; Gao, Manman; Zhou, Zhiyu; Stiehler, Maik; Zou, Xuenong

    2017-02-01

    Recently, microRNAs (miRNAs) have been identified as key regulators of the proliferation and differentiation of mesenchymal stem cells (MSCs). Our previous in vivo study and other in vitro studies using miRNA microarrays suggest that miR-424 is involved in the regulation of bone formation. However, the role and mechanism of miR-424 in bone formation still remain unknown. Here, we identified that the downregulation of miR-424 mediates bone formation under oxidative stress, and we explored its underlying mechanism. Our results showed that miR-424 was significantly downregulated in an anterior lumbar interbody fusion model of pigs and in a cell model of oxidative stress induced by H2O2. The overexpression of miR-424 inhibited proliferation and osteogenic differentiation shown by a decrease in alkaline phosphatase (ALP) activity, mineralization and osteogenic markers, including RUNX2 and ALP, whereas the knockdown of miR-424 led to the opposite results. Moreover, miR-424 exerts its effects by targeting FGF2. Furthermore, we found that FOXO1 suppressed miR-424 expression and bound to its promoter region. FOXO1 enhanced proliferation and osteogenic differentiation in part through the miR-424/FGF2 pathway. These results indicated that FOXO1-suppressed miR-424 regulates both the proliferation and osteogenic differentiation of MSCs via targeting FGF2, suggesting that miR-424 might be a potential novel therapeutic strategy for promoting bone formation.

  4. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication.

    Science.gov (United States)

    Qin, Yiwen; Peng, Yuanzhen; Zhao, Wei; Pan, Jianping; Ksiezak-Reding, Hanna; Cardozo, Christopher; Wu, Yingjie; Divieti Pajevic, Paola; Bonewald, Lynda F; Bauman, William A; Qin, Weiping

    2017-06-30

    Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation

    OpenAIRE

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-01-01

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all i...

  7. Furosin, an ellagitannin, suppresses RANKL-induced osteoclast differentiation and function through inhibition of MAP kinase activation and actin ring formation

    International Nuclear Information System (INIS)

    Park, Eui Kyun; Kim, Myung Sunny; Lee, Seung Ho; Kim, Kyung Hee; Park, Ju-Young; Kim, Tae-Ho; Lee, In-Seon; Woo, Je-Tae; Jung, Jae-Chang; Shin, Hong-In; Choi, Je-Yong; Kim, Shin-Yoon

    2004-01-01

    Phenolic compounds including tannins and flavonoids have been implicated in suppression of osteoclast differentiation/function and prevention of bone diseases. However, the effects of hydrolysable tannins on bone metabolism remain to be elucidated. In this study, we found that furosin, a hydrolysable tannin, markedly decreased the differentiation of both murine bone marrow mononuclear cells and Raw264.7 cells into osteoclasts, as revealed by the reduced number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and decreased TRAP activity. Furosin appears to target at the early stage of osteoclastic differentiation while having no cytotoxic effect on osteoclast precursors. Analysis of the inhibitory mechanisms of furosin revealed that it inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1). Furthermore, furosin reduced resorption pit formation in osteoclasts, which was accompanied by disruption of the actin rings. Taken together, these results demonstrate that naturally occurring furosin has an inhibitory activity on both osteoclast differentiation and function through mechanisms involving inhibition of the RANKL-induced p38MAPK and JNK/AP-1 activation as well as actin ring formation

  8. A2E Suppresses Regulatory Function of RPE Cells in Th1 Cell Differentiation Via Production of IL-1β and Inhibition of PGE2.

    Science.gov (United States)

    Shi, Qian; Wang, Qiu; Li, Jing; Zhou, Xiaohui; Fan, Huimin; Wang, Fenghua; Liu, Haiyun; Sun, Xiangjun; Sun, Xiaodong

    2015-12-01

    Inflammatory status of RPE cells induced by A2E is essential in the development of AMD. Recent research indicated T-cell immunity was involved in the pathological progression of AMD. This study was designed to investigate how A2E suppresses immunoregulatory function of RPE cells in T-cell immunity in vitro. Mouse RPE cells or human ARPE19 cells were stimulated with A2E, and co-cultured with naïve T cells under Th1, Th2, Th17, and regulatory T cell (Treg) polarization conditions. The intracellular cytokines or transcript factors of the induced T-cells subset were detected with flow cytometer and qRT-PCR. The ROS levels were detected, and the factors and possible pathways involved in the A2E-laden RPE cells were analyzed through neutralization antibody of IL-1β and inhibitors of related pathways. The A2E reduced regulatory function of RPE cells in Treg differentiation. The A2E-laden RPE cells promoted polarization of Th1 cells in vitro, but not Th2 or Th17 differentiation. The A2E induced RPE cells to release inflammatory cytokines and ROS, but PGE2 production was inhibited. Through neutralization of IL-1β or inhibition of COX2-PGE2 pathways, A2E-laden RPE cells expressed reduced effect in inducing Th1 cells. The A2E inhibited regulatory function of RPE cells in suppressing Th1 cell immunity in vitro through production of IL-1β and inhibition of PGE2. Our data indicate that A2E could suppress immunoregulatory function of RPE cells and adaptive immunity might play a role in the immune pathogenesis of AMD.

  9. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1.

    Science.gov (United States)

    Wang, Yanqiu; Pang, Xiyao; Wu, Jintao; Jin, Lin; Yu, Yan; Gobin, Romila; Yu, Jinhua

    2018-01-31

    MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1. © 2018 Wiley Periodicals, Inc.

  10. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  11. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min

    2017-02-01

    Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.

  13. PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Alessandro Magli

    2017-06-01

    Full Text Available Pluripotent stem (PS-cell-derived cell types hold promise for treating degenerative diseases. However, PS cell differentiation is intrinsically heterogeneous; therefore, clinical translation requires the development of practical methods for isolating progenitors from unwanted and potentially teratogenic cells. Muscle-regenerating progenitors can be derived through transient PAX7 expression. To better understand the biology, and to discover potential markers for these cells, here we investigate PAX7 genomic targets and transcriptional changes in human cells undergoing PAX7-mediated myogenic commitment. We identify CD54, integrin α9β1, and Syndecan2 (SDC2 as surface markers on PAX7-induced myogenic progenitors. We show that these markers allow for the isolation of myogenic progenitors using both fluorescent- and CGMP-compatible magnetic-based sorting technologies and that CD54+α9β1+SDC2+ cells contribute to long-term muscle regeneration in vivo. These findings represent a critical step toward enabling the translation of PS-cell-based therapies for muscle diseases.

  14. Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells.

    Science.gov (United States)

    Essig, Katharina; Hu, Desheng; Guimaraes, Joao C; Alterauge, Dominik; Edelmann, Stephanie; Raj, Timsse; Kranich, Jan; Behrens, Gesine; Heiseke, Alexander; Floess, Stefan; Klein, Juliane; Maiser, Andreas; Marschall, Susan; Hrabĕ de Angelis, Martin; Leonhardt, Heinrich; Calkhoven, Cornelis F; Noessner, Elfriede; Brocker, Thomas; Huehn, Jochen; Krug, Anne B; Zavolan, Mihaela; Baumjohann, Dirk; Heissmeyer, Vigo

    2017-12-19

    Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MicroRNA-214 Suppresses Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting ATF4

    Directory of Open Access Journals (Sweden)

    Siqi Yao

    2017-01-01

    Full Text Available Periodontitis is the main cause of adult tooth loss. Stem cell-based tissue engineering has become a promising therapy for periodontitis treatment. To date, human periodontal ligament stem cells (hPDLSCs have been shown to be a favorable source for tissue engineering, but modulatory mechanisms of hPDLSCs remain unclear. Approximately 60% of mammalian genes are the targets of over 2000 miRNAs in multiple human cell types, and miRNAs are able to influence various biological processes in the human body, including bone formation. In this study, we found that after osteogenic induction, miR-214 was significantly decreased in hPDLSCs; therefore, we examined the effects of miR-214 on osteogenic differentiation. Computational miRNA target prediction analyses and luciferase reporter assays revealed that activating transcription factor 4 (ATF4 is a direct target of miR-214. We prepared cells overexpressing miR-214 and found that miR-214 negatively regulates osteogenic differentiation of hPDLSCs. For the target of miR-214, ATF4 protein expression level was decreased after induction. In conclusion, we found that miR-214-ATF4 axis is a novel pathway for regulating hPDLSC osteogenic differentiation.

  16. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  17. XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease.

    Directory of Open Access Journals (Sweden)

    Trevor L Cameron

    2015-09-01

    Full Text Available Schmid metaphyseal chondrodysplasia (MCDS involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2, generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent or pathologically redundant (XBP1-dependent. XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation

  18. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing Th17-cell differentiation and regulating cytokine production.

    Science.gov (United States)

    Liu, Haijie; Wan, Chunxiao; Ding, Yanan; Han, Ranran; He, Yating; Xiao, Jinting; Hao, Junwei

    2017-04-01

    Experimental autoimmune neuritis (EAN) is a CD4 + T-cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system. It has been replicated in an animal model of human inflammatory demyelinating polyradiculoneuropathy, Guillain-Barré syndrome. In this study, we evaluated the therapeutic efficacy of a selective inhibitor of the immunoproteasome subunit, low-MW polypeptide 7 (PR-957) in rats with EAN. Our results showed that PR-957 significantly delayed onset day, reduced severity and shortened duration of EAN, and alleviated demyelination and inflammatory infiltration in sciatic nerves. In addition to significantly regulating expression of the cytokine profile, PR-957 treatment down-regulated the proportion of proinflammatory T-helper (T h )17 cells in sciatic nerves and spleens of rats with EAN. Data presented show the role of PR-957 in the signal transducer and activator of transcription 3 (STAT3) pathway. PR-957 not only decreased expression of IL-6 and IL-23 but also led to down-regulation of STAT3 phosphorylation in CD4 + T cells. Regulation of the STAT3 pathway led to a reduction in retinoid-related orphan nuclear receptor γ t and IL-17 production. Furthermore, reduction of STAT3 phosphorylation may have directly suppressed T h 17-cell differentiation. Therefore, our study demonstrates that PR-957 could potently alleviate inflammation in rats with EAN and that it may be a likely candidate for treating Guillain-Barré syndrome.-Liu, H., Wan, C., Ding, Y., Han, R., He, Y., Xiao, J., Hao, J. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing T h 17-cell differentiation and regulating cytokine production. © FASEB.

  19. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  20. Pien Tze Huang inhibits the proliferation, and induces the apoptosis and differentiation of colorectal cancer stem cells via suppression of the Notch1 pathway.

    Science.gov (United States)

    Qi, Fei; Wei, Lihui; Shen, Aling; Chen, Youqin; Lin, Jiumao; Chu, Jianfeng; Cai, Qiaoyan; Pan, Jie; Peng, Jun

    2016-01-01

    Cancer stem cells (CSCs) possess properties of continuous self-renewal, multi-directional differentiation and natural chemoresistance, leading to the initiation, progression and relapse of cancer. The characteristics of CSCs are strongly associated with multiple cellular pathways such as Notch1 signaling. Therefore, targeting CSCs via suppressing the Notch1 pathway might represent a promising strategy for cancer treatment. The well-known traditional Chinese medicine (TCM) formula Pien Tze Huang (PZH) has long been used as an alternative remedy for various cancers including colorectal cancer (CRC). We previously reported that PZH contains a broad range of anticancer activities including an inhibitory effect on CSCs. To further elucidate the mode of action of PZH, in this study we isolated the stem-like side population (SP) from the human CRC SW480 cell line to investigate its effect on CSCs as well as the possible molecular mechanisms. As compared with non-SP cells, the isolated SW480 SP cells displayed stronger capacities of spheroid formation in vitro and tumorigenicity in vivo, demonstrating the stem cell-like features of SP cells. However, PZH treatment significantly decreased the percentage of SP cells in a dose-dependent manner. In addition, PZH significantly and does-dependently inhibited the viability and promoted the apoptosis and differentiation of the isolated SW480 SP cells. Moreover, PZH treatment profoundly reduced the mRNA and protein expression of Notch1 and Hes1 in the SP cells. Our findings suggest that PZH negatively modulates the characteristics of CSCs through suppression of the Notch1 signaling pathway.

  1. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  2. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  3. Characterization by Suppression Subtractive Hybridization of Transcripts That Are Differentially Expressed in Leaves of Anthracnose-Resistant Ramie Cultivar.

    Science.gov (United States)

    Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng

    2012-01-01

    For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.

  4. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    Science.gov (United States)

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.

  5. Dominance as adaptive stressing and ranking of males, serving to allocate reproduction by differential self-suppressed fertility: towards a fully biological understanding of social systems.

    Science.gov (United States)

    Moxon, Steve

    2009-07-01

    mutually exclusive of the consensus model, that dominance/DH is: same-sex only; present whenever, within one or both sexes, there is potential conflict over reproduction, and there is no mechanism to preclude this, but otherwise is absent; always associated with some degree of differential physiological reproductive suppression. This new conceptualization of dominance has major implications for the social as well as biological sciences, in that resource-competition models of the basis of sociality will have to give way to a thoroughgoing biological understanding that places centre-stage not resources but reproduction; with consequent radical revision of notions of 'power'.

  6. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization

    Science.gov (United States)

    2014-01-01

    Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832

  7. Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization.

    Science.gov (United States)

    Ballester, M; Castelló, A; Peiró, R; Argente, M J; Santacreu, M A; Folch, J M

    2013-06-01

    Suppressive subtractive hybridization libraries from oviduct at 62 h post-mating of two lines of rabbits divergently selected for uterine capacity were generated to identify differentially expressed genes. A total of 438 singletons and 126 contigs were obtained by cluster assembly and sequence alignment of 704 expressed sequence tags (ESTs), of which 54% showed homology to known proteins of the non-redundant NCBI databases. Differential screening by dot blot validated 71 ESTs, of which 47 showed similarity to known genes. Transcripts of genes were functionally annotated in the molecular function and the biological process gene ontology categories using the BLAST2GO software and were assigned to reproductive developmental process, immune response, amino acid metabolism and degradation, response to stress and apoptosis terms. Finally, three interesting genes, PGR, HSD17B4 and ERO1L, were identified as overexpressed in the low line using RT-qPCR. Our study provides a list of candidate genes that can be useful to understanding the molecular mechanisms underlying the phenotypic differences observed in early embryo survival and development traits. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  8. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  9. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    International Nuclear Information System (INIS)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-01-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin -/- (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of

  10. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  11. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  12. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  13. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Terra Vleeshouwer-Neumann

    Full Text Available Embryonal rhabdomyosarcoma (ERMS is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.

  14. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials,

    Directory of Open Access Journals (Sweden)

    Erika Celis-Aguilar

    Full Text Available Abstract Introduction: Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. Objective: To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Methods: Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8 mL of gentamicin intratympanic application at a 30 mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Results: Ten patients were included; nine patients with Meniere's disease and one patient with (late onset delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30 dB. Conclusions: Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials.

  15. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway.

    Science.gov (United States)

    Wagatsuma, Akira; Takayama, Yuzo; Hoshino, Takayuki; Shiozuka, Masataka; Yamada, Shigeru; Matsuda, Ryoichi; Mabuchi, Kunihiko

    2017-12-16

    We have shown that pharmacological inhibition of HSP90 ATPase activity induces apoptosis of myoblasts during their differentiation. However, the signaling pathways remain not fully characterized. We report that pharmacological targeting of HSP90 with 17-AAG activates the intrinsic pathway including caspase-dependent and caspase-independent pathways. 17-AAG induces the typical apoptotic phenotypes including PARP cleavage, chromatin condensation, and nuclear fragmentation with mitochondrial release of cytochrome c, Smac/DIABLO, procaspase-9 processing, and caspase-3 activation. AIF and EndoG redistribute from the mitochondria into the cytosol and are partially translocated to the nucleus in 17-AAG-treated cells. These results suggest that caspase-dependent and caspase-independent pathways should be considered in apoptosis of myogenic cells induced by inhibition of HSP90 ATPase activity.

  16. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes.

    Science.gov (United States)

    Lee, Chang Won; Seo, Jeong Yeon; Kim, Sun-Lim; Lee, Jisun; Choi, Ji Won; Park, Yong Il

    2017-09-01

    Present study was aimed to investigate the potential anti-obesity effects of maysin, a major flavonoid of corn silk, in vitro and in vivo using 3T3-L1 preadipocyte cells and C57BL/6 mice. Maysin decreased the levels of intracellular lipid droplets and triglycerides (TG), and down-regulated the protein expression levels of C/EBP-β, C/EBP-α, PPAR-γ, and aP2 in 3T3-L1 preadipocyte cells, suggesting that maysin inhibits lipid accumulation and adipocyte differentiation. In addition, maysin was shown to induce the apoptotic cell death in 3T3-L1 preadipocyte cells via activation of caspase cascades and mitochondrial dysfunction, which may ultimately lead to reduction of adipose tissue mass. Furthermore, oral administration of maysin (25mg/kg body weight) decreased weight gain and epididymal fat weight in high-fat diet (HFD)-fed C57BL/6 mice. Administration of maysin also reduced serum levels of TG, total-cholesterol, LDL-cholesterol, and glucose. Taken collectively, these results suggest for the first time that the purified maysin exerts an anti-obesity effect in vitro and in vivo. These observations may support the applicability of maysin as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat obesity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Science.gov (United States)

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  18. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Directory of Open Access Journals (Sweden)

    Gregory M. Dick

    2018-05-01

    Full Text Available Myogenic responses (pressure-dependent contractions of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure. Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a analyze myogenic data with standard criteria; (b assign results to diameter categories defined by morphometry; and (c use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease.

  19. Global skeletal uptake of technetium-99m methylene diphosphonate in female patients receiving suppressive doses of L-thyroxine for differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Frusciante, V.; Dicembrino, F. [Department of Nuclear Medicine, Ospedale ``Casa Sollievo della Sofferenza``, IRCCS di San Giovanni Rotondo (Italy); Carnevale, V. [Division of Internal Medicine, Ospedale ``Casa Sollievo della Sofferenza``, IRCCS di San Giovanni Rotondo (Italy); Scillitani, A.; Zingrillo, M.; Ghiggi, M.R. [Division of Endocrinology, Ospedale ``Casa Sollievo della Sofferenza``, IRCCS di San Giovanni Rotondo (Italy); Giannatempo, G.M. [Department of Radiology, Ospedale ``Casa Sollievo della Sofferenza``, IRCCS di San Giovanni Rotondo (Italy); Minisola, S. [Istituto di II Clinica Medica, Universita degli Studi di Roma ``La Sapienza``, Rome (Italy)

    1998-02-01

    This study was carried out in order to investigate the possible detrimental effects on bone of levothyroxine (l-T{sub 4}) suppressive therapy in female patients who had undergone surgery for differentiated thyroid cancer (DTC). Twenty female (14 premenopausal and 6 postmenopausal) patients receiving l-T{sub 4} suppressive therapy for DTC were studied. The sample was selected in such a way as to avoid factors influencing bone metabolism other than l-T{sub 4}. All patients were monitored by sensitive thyroid-stimulating hormone, free triiodothyronine and free thyroxine assays throughout the follow-up. Nineteen healthy (12 premenopausal and 7 postmenopausal) matched women served as controls. In all subjects bone turnover was evaluated by the measurement of global skeletal uptake of technetium-99m methylene diphosphonate (GSU); bone mineral density (BMD) was measured by quantitative computed tomography at the lumbar spine (LS) and by dual-energy X-ray absorptiometry both at the LS and at three femoral sites: the femoral neck, Ward`s triangle and the greater trochanter. No significant difference was found in either GSU or BMD between patients (treated for an average period of 68 months) and controls in the whole sample or in any subgroup. Furthermore, no correlations were found between either GSU or BMD and the duration of therapy, daily doses of l-T{sub 4} or results of thyroid function tests. Our data show that carefully monitored l-T{sub 4} therapy does not influence skeletal turnover (directly reflected by GSU) or the bone density of the spine and femur. (orig.) With 1 fig., 2 tabs., 36 refs.

  20. Global skeletal uptake of technetium-99m methylene diphosphonate in female patients receiving suppressive doses of L-thyroxine for differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Frusciante, V.; Dicembrino, F.; Carnevale, V.; Scillitani, A.; Zingrillo, M.; Ghiggi, M.R.; Giannatempo, G.M.; Minisola, S.

    1998-01-01

    This study was carried out in order to investigate the possible detrimental effects on bone of levothyroxine (l-T 4 ) suppressive therapy in female patients who had undergone surgery for differentiated thyroid cancer (DTC). Twenty female (14 premenopausal and 6 postmenopausal) patients receiving l-T 4 suppressive therapy for DTC were studied. The sample was selected in such a way as to avoid factors influencing bone metabolism other than l-T 4 . All patients were monitored by sensitive thyroid-stimulating hormone, free triiodothyronine and free thyroxine assays throughout the follow-up. Nineteen healthy (12 premenopausal and 7 postmenopausal) matched women served as controls. In all subjects bone turnover was evaluated by the measurement of global skeletal uptake of technetium-99m methylene diphosphonate (GSU); bone mineral density (BMD) was measured by quantitative computed tomography at the lumbar spine (LS) and by dual-energy X-ray absorptiometry both at the LS and at three femoral sites: the femoral neck, Ward's triangle and the greater trochanter. No significant difference was found in either GSU or BMD between patients (treated for an average period of 68 months) and controls in the whole sample or in any subgroup. Furthermore, no correlations were found between either GSU or BMD and the duration of therapy, daily doses of l-T 4 or results of thyroid function tests. Our data show that carefully monitored l-T 4 therapy does not influence skeletal turnover (directly reflected by GSU) or the bone density of the spine and femur. (orig.)

  1. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Kwang Soo [Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 (United States); Hwang, Eun Sook, E-mail: eshwang@ewha.ac.kr [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  2. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    International Nuclear Information System (INIS)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong; Kim, Kwang Soo; Hwang, Eun Sook

    2016-01-01

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  3. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 Pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Wei

    Full Text Available Norisoboldine (NOR is the main alkaloid constituent in the dry root of Lindera aggregata (Sims Kosterm. (L. strychnifolia Vill.. As reported previously, orally administered NOR displayed a robust inhibition of joint bone destruction present in both mouse collagen-induced arthritis and rat adjuvant-induced arthritis with lower efficacious doses than that required for ameliorating systemic inflammation. This attracted us to assess the effects of NOR on differentiation and function of osteoclasts, primary effector cells for inflammatory bone destruction, to get insight into its anti-rheumatoid arthritis mechanisms. Both RAW264.7 cells and mouse bone marrow-derived macrophages (BMMs were stimulated with RANKL (100 ng/mL to establish osteoclast differentiation models. ELISA, RT-PCR, gelatin zymography, western blotting, immunoprecipitation and EMSA were used to reveal related signalling pathways. NOR (10 and 30 µM, without significant cytotoxicity, showed significant reduction of the number of osteoclasts and the resorption pit areas, and it targeted osteoclast differentiation at the early stage. In conjunction with the anti-resorption effect of NOR, mRNA levels of cathepsin K and MMP-9 were decreased, and the activity of MMP-9 was attenuated. Furthermore, our mechanistic studies indicated that NOR obviously suppressed the ubiquitination of TRAF6, the accumulation of TRAF6-TAK1 complexes and the activation of ERK and p38 MAPK, and reduced the nuclear translocation of NF-κB-p65 and DNA-binding activity of NF-κB. However, NOR had little effect on expressions of TRAF6 or the phosphorylation and degradation of IκBα. Moreover, NOR markedly inhibited expressions of transcription factor NFATc1, but not c-Fos. Intriguingly, the subsequent nuclear translocations of c-Fos and NFATc1 were substantially down-regulated. Hence, we demonstrated for the first time that preventing the differentiation and function of osteoclasts at the early stage was an

  4. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise.

    Directory of Open Access Journals (Sweden)

    Gabi Shefer

    2010-10-01

    Full Text Available Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo. The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro. We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.

  5. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment.

    Science.gov (United States)

    Buhrmann, Constanze; Mobasheri, Ali; Matis, Ulrike; Shakibaei, Mehdi

    2010-01-01

    Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterised by joint inflammation and cartilage degradation. Although mesenchymal stem cell (MSC)-like progenitors are resident in the superficial zone of articular cartilage, damaged tissue does not possess the capacity for regeneration. The high levels of pro-inflammatory cytokines present in OA/RA joints may impede the chondrogenic differentiation of these progenitors. Interleukin (IL)-1β activates the transcription factor nuclear factor-κB (NF-κB), which in turn activates proteins involved in matrix degradation, inflammation and apoptosis. Curcumin is a phytochemical capable of inhibiting IL-1β-induced activation of NF-κB and expression of apoptotic and pro-inflammatory genes in chondrocytes. Therefore, the aim of the present study was to evaluate the influence of curcumin on IL-1β-induced NF-κB signalling pathway in MSCs during chondrogenic differentiation. MSCs were either cultured in a ratio of 1:1 with primary chondrocytes in high-density culture or cultured alone in monolayer with/without curcumin and/or IL-1β. We demonstrate that although curcumin alone does not have chondrogenic effects on MSCs, it inhibits IL-1β-induced activation of NF-κB, activation of caspase-3 and cyclooxygenase-2 in MSCs time and concentration dependently, as it does in chondrocytes. In IL-1β stimulated co-cultures, four-hour pre-treatment with curcumin significantly enhanced the production of collagen type II, cartilage specific proteoglycans (CSPGs), β1-integrin, as well as activating MAPKinase signaling and suppressing caspase-3 and cyclooxygenase-2. Curcumin treatment may help establish a microenvironment in which the effects of pro-inflammatory cytokines are antagonized, thus facilitating chondrogenesis of MSC-like progenitor cells in vivo. This strategy may support the regeneration of articular cartilage.

  6. Suppressed osteoclast differentiation at the chondro-osseous junction mediates endochondral ossification retardation in long bones of Wistar fetal rats with prenatal ethanol exposure

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhengqi [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Zhang, Xianrong [Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Shangguan, Yangfan; Hu, Hang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2016-08-15

    Prenatal ethanol exposure (PEE) inhibits longitudinal growth of fetal bones, but the underlying mechanisms remain unknown. In this study, we aimed to investigate how PEE induces the retardation of long bone development in fetal rats. Pregnant Wistar rats were treated with ethanol or distilled water (control group) by gavage from gestational day (GD) 9 to 20. Fetuses were delivered by cesarean section on GD20. Fetal sera were collected for assessing corticosterone (CORT) level. Fetal long bones were harvested for histochemical, immunohistochemical and gene expression analysis. Primary chondrocytes were treated with ethanol or CORT for analyzing genes expression. PEE fetuses showed a significant reduction in birth weight and body length. The serum CORT concentration in PEE group was significantly increased, while the body weight, body length and femur length all were significantly decreased in the PEE group. The length of the epiphyseal hypertrophy zone was enlarged, whereas the length of the primary ossification center was significantly reduced in PEE fetuses. TUNEL assay showed reduced apoptosis in the PEE group. Further, the gene expression of osteoprotegerin (OPG) was markedly up-regulated. In vitro experiments showed that CORT (but not ethanol) treatment significantly activated the expression of OPG, while the application of glucocorticoid receptor inhibitor, mifepristone, attenuated these change induced by CORT. These results indicated that PEE-induced glucocorticoid over-exposure enhanced the expression of OPG in fetal epiphyseal cartilage and further lead to the suppressed osteoclast differentiation in the chondro-osseous junction and consequently inhibited the endochondral ossification in long bones of fetal rats. - Highlights: • Glucocorticoid but not ethanol enhanced the expression of OPG in chondrocytes. • PEE reduced osteoclast differentiation relative with over-expression of OPG. • PEE inhibited endochondral ossification in fetal long bones of

  7. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Sally M. Rosengren

    2018-04-01

    Full Text Available Bilateral vestibulopathy (BVP is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function.

  8. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  9. Effect of practicing yoga on cervical vestibular evoked myogenic potential.

    Science.gov (United States)

    Shambhu, Tejaswini; Kumar, Shubhaganga Dhrruva; Prabhu, Prashanth

    2017-10-01

    The present study attempted to determine the effect of practicing yoga on functioning of sacculo-collic pathway using cervical vestibular evoked myogenic potential (cVEMP). cVEMP was recorded from 40 participants (20 who practice yoga regularly and 20 who do not practice yoga regularly). The differences in amplitude of P1, N1, P1-N1 complex, asymmetry ratio and latencies of P1 and N1 of cVEMP were compared between both the groups. The results of the study showed that there was a significant increase (p yoga was significantly lower (Mean = 6.73) compared to the control group (Mean = 19.13). Multivariate regression analyses suggested that the number of years of yoga practice significantly predicted the amplitude of P1-N1 complex (β = 0.70, p yoga improves postural control and strengthens the muscles and vestibular system leading to enhanced cVEMP responses. The plastic changes in the vestibular system and increased muscular strength because of constant practicing of yoga could have led to changes in cVEMP responses. However, further studies on a larger group of individuals are essential for better clinical applicability of the results.

  10. Changes in vestibular evoked myogenic potentials after Meniere attacks.

    Science.gov (United States)

    Kuo, Shih-Wei; Yang, Ting-Hua; Young, Yi-Ho

    2005-09-01

    The aim of this study was to apply videonystagmography (VNG) and vestibular evoked myogenic potential (VEMP) tests to patients with Meniere attacks, to explore the mechanics of where saccular disorders may affect the semicircular canals. From January 2001 to December 2003, 12 consecutive patients with unilateral definite Meniere's disease with vertiginous attacks underwent VNG for recording spontaneous nystagmus, as well as VEMP tests. At the very beginning of the Meniere attack, the spontaneous nystagmus beat toward the lesion side in 5 patients (42%) and toward the healthy side in 7 patients (58%). Twenty-four hours later, only 6 patients (50%) showed spontaneous nystagmus beating toward the healthy side. Nevertheless, spontaneous nystagmus subsided in all patients within 48 hours. The VEMP test was performed within 24 hours of a Meniere attack; the VEMPs were normal in 4 patients and abnormal in 8 patients (67%). After 48 hours, 4 patients with initially abnormal VEMPs had resolution and return to normal VEMPs, and the other 4 patients still had absent VEMPs. Most patients (67%) with Meniere attacks revealed abnormal VEMPs, indicating that the saccule participates in a Meniere attack. This is an important idea that stimulates consideration of the mechanism of Meniere attacks.

  11. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    Science.gov (United States)

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  12. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics.

    Science.gov (United States)

    Harrigan, T P

    1996-01-01

    A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.

  13. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  14. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  15. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.

    Science.gov (United States)

    Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C

    2008-03-01

    Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.

  16. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Goris, Maaike; Landheer, Sjoerd W.; Buikema, Hendrik; van Dokkum, Richard P. E.

    Introduction:Intact myogenic constriction plays a role in renal blood flow autoregulation and protection against pressure-related (renal) injury. However, to what extent alterations in renal artery myogenic constriction are involved in development of renal damage during aging is unknown. Therefore,

  17. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice

    Directory of Open Access Journals (Sweden)

    Jessica L. Fleming

    2013-04-01

    Full Text Available Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

  18. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    Science.gov (United States)

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Growth differentiation factor 9 reverses activin A suppression of steroidogenic acute regulatory protein expression and progesterone production in human granulosa-lutein cells.

    Science.gov (United States)

    Shi, Feng-Tao; Cheung, Anthony P; Klausen, Christian; Huang, He-Feng; Leung, Peter C K

    2010-10-01

    We have reported that growth differentiation factor 9 (GDF9) can enhance activin A (β(A)β(A))-induced inhibin B (αβ(B)) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey's test. Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of α-subunit siRNA, activin A level increased (P progesterone production were attenuated (P progesterone secretion than those observed with activin A treatment alone. GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.

  20. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation

    Science.gov (United States)

    Riquelme, Manuel A.; Cea, Luis A.; Vega, José L.; Puebla, Carlos; Vargas, Aníbal A.; Shoji, Kenji F.; Subiabre, Mario; Sáez, Juan C.

    2015-01-01

    The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs. PMID:26000275

  1. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  2. Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.

    Science.gov (United States)

    Wakao, Junko; Kishida, Tsunao; Fumino, Shigehisa; Kimura, Koseki; Yamamoto, Kenta; Kotani, Shin-Ichiro; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu; Tajiri, Tatsuro; Mazda, Osam

    2017-06-24

    The skeletal muscle consists of contractile myofibers and plays essential roles for maintenance of body posture, movement, and metabolic regulation. During the development and regeneration of the skeletal muscle tissue, the myoblasts fuse into multinucleated myotubes that subsequently form myofibers. Transplantation of myoblasts may make possible a novel regenerative therapy against defects or dysfunction of the skeletal muscle. It is reported that rodent fibroblasts are converted into myoblast-like cells and fuse to form syncytium after forced expression of exogenous myogenic differentiation 1 (MYOD1) that is a key transcription factor for myoblast differentiation. But human fibroblasts are less efficiently converted into myoblasts and rarely fused by MYOD1 alone. Here we found that transduction of v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog (MYCL) gene in combination with MYOD1 gene induced myoblast-like phenotypes in human fibroblasts more strongly than MYOD1 gene alone. The rate of conversion was approximately 90%. The directly converted myoblasts (dMBs) underwent fusion in an ERK5 pathway-dependent manner. The dMBs also formed myofiber-like structure in vivo after an inoculation into mice at the subcutaneous tissue. The present results strongly suggest that the combination of MYCL plus MYOD1 may promote direct conversion of human fibroblasts into functional myoblasts that could potentially be used for regenerative therapy for muscle diseases and congenital muscle defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. INFLUENCE OF DANCE TRAINING ON SACCULOCOLLIC PATHWAY: VESTIBULAR EVOKED MYOGENIC POTENTIALS (VEMP) AS AN OBJECTIVE TOOL

    OpenAIRE

    Swathi; Sathish Kumar

    2013-01-01

    ABSTRACT : Auditory system is shaped by experience and training. Training (s ensory experience) induces neurophysiologic changes & plasticity in normal hearing individuals, hearing loss patients, hearing aid users and cochlear implanted subjects. Not only speech stimulus, but music also brings about functional and structural organi zation of the brain in musician compared to non - musicians. The Vestibular evoked myogenic potentials (VEMP) are a biphasic in...

  4. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. The cost-effectiveness of TheraBite® as treatment for acute myogenic temporomandibular disorder

    NARCIS (Netherlands)

    Heres Diddens, A.; Kraaijenga, S.; Coupe, V.; Hilgers, F.; van der Molen, L.; Smeele, L.; Retèl, V.P.

    2017-01-01

    Objective: Temporomandibular disorder (TMD) is a very common and costly pain problem concerning the temporomandibular joint. A previous study has shown that for the treatment of acute myogenic TMD, TheraBite® (TB) offers a faster and greater effect than usual care consisting of physical therapy

  6. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    NARCIS (Netherlands)

    Costamagna, D. (Domiziana); Quattrocelli, M. (Mattia); F.H.J. van Tienen; L. Umans (Lieve); De Coo, I.F.M. (Irineus F.M.); A. Zwijsen (An); D. Huylebroeck (Danny); Sampaolesi, M. (Maurilio)

    2016-01-01

    textabstractMesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein

  7. Ocular vestibular evoked myogenic potential in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mozhgan Masoom

    2014-06-01

    Full Text Available Background and Aim: Since utricle is the main damaged organ in benign paroxysmal positional vertigo (BPPV, ocular vestibular evoked myogenic potential (oVEMP may be an appropriate method to evaluate the utricule dysfunction and the effect of disease recurrence rate on it. This study aimed to record myogenic potential in patients with benign paroxysmal positional vertigo.Methods: In a cross-sectional study, ocular myogenic potential was recorded in 25 healthy subjects and 20 patients with benign paroxysmal positional vertigo using 500 Hz-tone bursts (95 dB nHL.Results: In the affected ear, mean amplitude was lower and mean threshold was higher than those in the unaffected ear and in the normal group (p<0.05. Mean amplitude asymmetry ratio of patients was more than the healthy subjects (p0.05. Frequencies of abnormal responses in the affected ears were higher than in unaffected ears and in the normal group (p<0.05. Furthermore, the patients with recurrent vertigo showed more abnormalities than the patients with non-recurrent (p=0.030.Conclusion: In the recurrent benign paroxysmal positional vertigo, ocular vestibular evoked myogenic potential showed more damage in the utricle, suggesting this response could be used to evaluate the patients with benign paroxysmal positional vertigo.

  8. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  9. Altered myogenic vasoconstriction and regulation of whole kidney blood flow in the ASIC2 knockout mouse.

    Science.gov (United States)

    Gannon, Kimberly P; McKey, Susan E; Stec, David E; Drummond, Heather A

    2015-02-15

    Previous studies from our laboratory have suggested that degenerin proteins contribute to myogenic constriction, a mechanism of blood flow regulation and protection against pressure-dependent organ injury, in renal vessels. The goal of the present study was to determine the importance of one family member, acid-sensing ion channel 2 (ASIC2), in myogenic constriction of renal interlobar arteries, myogenic regulation of whole kidney blood flow, renal injury, and blood pressure using ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice. Myogenic constriction in renal interlobar arteries was impaired in ASIC2(+/-) and ASIC2(-/-) mice, whereas constriction to KCl/phenylephrine was unchanged. Correction of whole kidney renal vascular resistance (RVR) during the first 5 s after a 10- to 20-mmHg step increase in perfusion pressure, a timeframe associated with myogenic-mediated correction of RVR, was slowed (4.2 ± 0.9, 0.3 ± 0.7, and 2.4 ± 0.3 resistance units/s in ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice). Although modest reductions in function were observed in ASIC2(-/-) mice, greater reductions were observed in ASIC2(+/-) mice, which may be explained by protein-protein interactions of ASIC2 with other degenerins. Isolated glomeruli from ASIC2(+/-) and ASIC2(-/-) mice had modest alterations in the expression of inflammation and injury markers (transforming growth factor-β, mouse anti-target of antiproliferative antibody-1, and nephrin), whereas ASIC2(+/-) mice had an increase in the remodeling marker collagen type III. Consistent with a more severe loss of function, mean arterial pressure was increased in ASIC2(+/-) mice (131 ± 3 mmHg) but not in ASIC2(-/-) mice (122 ± 3 vs. 117 ± 2 mmHg in ASIC2(+/+) mice). These results suggest that ASIC2 contributes to transduction of the renal myogenic response and are consistent with the protective role of myogenic constriction against renal injury and hypertension. Copyright © 2015 the American Physiological Society.

  10. In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors

    Science.gov (United States)

    Gantner, Florian; Kupferschmidt, Rochus; Schudt, Christian; Wendel, Albrecht; Hatzelmann, Armin

    1997-01-01

    During in vitro culture in 10% human AB serum, human peripheral blood monocytes acquire a macrophage-like phenotype. The underlying differentiation was characterized by increased activities of the macrophage marker enzymes unspecific esterase (NaF-insensitive form) and acid phosphatase, as well as by a down-regulation in surface CD14 expression. In parallel, a dramatic change in the phosphodiesterase (PDE) profile became evident within a few days that strongly resembled that previously described for human alveolar macrophages. Whereas PDE1 and PDE3 activities were augmented, PDE4 activity, which represented the major cyclic AMP-hydrolysing activity of peripheral blood monocytes, rapidly declined. Monocytes and monocyte-derived macrophages responded to lipopolysaccharide (LPS) with the release of tumour necrosis factor-α (TNF). In line with the change in CD14 expression, the EC50 value of LPS for induction of TNF release increased from approximately 0.1 ng ml−1 in peripheral blood monocytes to about 2 ng ml−1 in macrophages. Both populations of cells were equally susceptible towards inhibition of TNF release by cyclic AMP elevating agents such as dibutyryl cyclic AMP, prostaglandin E2 (PGE2) or forskolin, which all led to a complete abrogation of TNF production in a concentration-dependent manner and which were more efficient than the glucocorticoid dexamethasone. In monocytes, PDE4 selective inhibitors (rolipram, RP73401) suppressed TNF formation by 80%, whereas motapizone, a PDE3 selective compound, exerted a comparatively weak effect (10–15% inhibition). Combined use of PDE3 plus PDE4 inhibitors resulted in an additive effect and fully abrogated LPS-induced TNF release as did the mixed PDE3/4 inhibitor tolafentrine. In monocyte-derived macrophages, neither PDE3- nor PDE4-selective drugs markedly affected TNF generation when used alone (<15% inhibition), whereas in combination, they led to a maximal inhibition of TNF formation by about 40–50

  11. Expression Pattern of Myogenic Regulatory Transcription Factor mRNAs in the Embryo and Adult Labeo rohita (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Archya Sengupta

    2014-01-01

    Full Text Available Understanding the regulation of skeletal muscle development is important to meet the increasing demand of Indian major carp Labeo rohita. Myogenic regulatory factors (MRFs along with myocyte specific enhancer factor 2 (MEF2 play the pivotal role in the determination and differentiation of skeletal muscle. The majority of skeletal muscle genes require both MRFs and MEF2 family members to activate their transcription. In this study, the expression pattern of MyoD, myf-5, myogenin, and MEF2A was observed from 6 h after fertilization to 12 months of age using semiquantitative RT-PCR as well as real-time PCR method. MyoD and myf-5 mRNAs were expressed at high level at the early embryonic stages. Myogenin and MEF2A were expressed after MyoD and myf-5 and remained active up to adult stage. Expression of MyoD was lower than that of Myf-5 after the 5th month. Partial sequencing of MyoD, myf-5, and MEF2A was done to draw phylogeny. In phylogenetic study, Labeo MyoD, MEF2A and myf-5 were found to be closely related to those of common carp. The present investigation suggests that the four transcription factors play pivotal role in the regulation of muscle growth of Labeo rohita in an overlapping and interconnected way.

  12. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  13. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Drummond, J. C.

    1997-01-01

    We have compared the effects of 50% nitrous oxide and propofol, each administered concurrently with sufentanil, on the amplitudes and latencies of the compound muscle action potential (CMAP) response to transcranial electrical stimulation. Using a crossover design, 12 patients undergoing spinal

  14. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation

    DEFF Research Database (Denmark)

    Lafuste, Peggy; Sonnet, Corinne; Chazaud, Bénédicte

    2005-01-01

    of alpha9 parallels that of ADAM12 and culminates at time of fusion. alpha9 and ADAM12 coimmunoprecipitate and participate to mpc adhesion. Inhibition of ADAM12/alpha9beta1 integrin interplay, by either ADAM12 antisense oligonucleotides or blocking antibody to alpha9beta1, inhibited overall mpc fusion...

  15. The Differential Hormonal Milieu of Morning versus Evening May Have an Impact on Muscle Hypertrophic Potential.

    Directory of Open Access Journals (Sweden)

    Simon D Burley

    Full Text Available Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3, myogenic index and differentiation and catabolic processes (cortisol. Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg with no sustained resistance training experience were allocated to a resistance exercise group (REP. Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP protocol. REP performed two bouts of resistance exercise (80% 1RM in the morning (AM: 0800 hrs and evening (PM: 1800 hrs, with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05. Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely.

  16. The Differential Hormonal Milieu of Morning versus Evening May Have an Impact on Muscle Hypertrophic Potential.

    Science.gov (United States)

    Burley, Simon D; Whittingham-Dowd, Jayde; Allen, Jeremy; Grosset, Jean-Francois; Onambele-Pearson, Gladys L

    2016-01-01

    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely.

  17. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  18. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries

    DEFF Research Database (Denmark)

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte

    2002-01-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression...... of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker......); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P maintenance of myogenic tone in rat cremaster muscle arterioles....

  19. Inhibitory effects of silodosin on the bladder mechanosensitive afferent activities and their relation with bladder myogenic contractions in male rats with bladder outlet obstruction.

    Science.gov (United States)

    Aizawa, Naoki; Watanabe, Daiji; Fukuhara, Hiroshi; Fujimura, Tetsuya; Kume, Haruki; Homma, Yukio; Igawa, Yasuhiko

    2018-03-06

    We investigated the effects of silodosin, an α1A-adrenoceptor (AR) antagonist, on bladder function, especially on non-voiding contractions (NVCs), in a male rat model of bladder outlet obstruction (BOO) by evaluating cystometry (CMG) findings and bladder mechanosensitive single-unit afferent activities (SAAs), related with microcontractions, which may be similar with NVCs and to be of myogenic origin, in the rat model. BOO was created by partial ligation of the posterior urethra. At 4 days after surgery for BOO, an osmotic pump filled with silodosin (0.12 mg/kg/day) or its vehicle was subcutaneously implanted. At 10 days after surgery, CMG and SAAs measurements were taken under conscious and urethane-anesthetized conditions, respectively. The SAAs of Aδ- and C-fibers, which were identified by electrical stimulation of the pelvic nerve and by bladder distention, and intravesical pressure were recorded during constant bladder-filling with saline. Microcontractions were divided into three phases: "ascending," "descending," and "stationary." The silodosin-treated group showed a smaller number of NVCs in CMG measurements and lower SAAs of both Aδ- and C-fibers than the vehicle-treated group during bladder-filling. Moreover, in the vehicle-treated groups, the SAAs of both fibers for the ascending phase of microcontractions were significantly higher than those for the other two phases. On the contrary, no significant change was found between any of these three phases in the silodosin-treated group. The present results suggest that silodosin inhibits the SAAs of mechanosensitive Aδ- and C-fibers at least partly due to suppressing myogenic bladder contractions in male BOO rats. © 2018 Wiley Periodicals, Inc.

  20. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lindsey A Muir

    2014-01-01

    Full Text Available Autologous dermal fibroblasts (dFbs are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells resulted in a peak of ∼600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD.

  1. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  2. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease -- can it differentiate bone infarcts from acute osteomyelitis?

    Science.gov (United States)

    Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor

    2015-12-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.

  3. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    International Nuclear Information System (INIS)

    Delgado, Jorge; Bedoya, Maria A.; Green, Abby M.; Jaramillo, Diego; Ho-Fung, Victor

    2015-01-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  4. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jorge; Bedoya, Maria A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Green, Abby M. [The Children' s Hospital of Philadelphia, Division of Oncology, Philadelphia, PA (United States); Jaramillo, Diego; Ho-Fung, Victor [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States)

    2015-12-15

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  5. Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB(1) receptors in the least shrew.

    Science.gov (United States)

    Darmani, N A

    2001-01-01

    We have recently shown that the cannabinoid CB(1) receptor antagonist, SR 141716A, produces emesis in the least shrew (Cryptotis parva) in a dose- and route-dependent manner. This effect was blocked by delta-9-tetrahydrocannabinol (Delta(9)-THC). The present study investigates the cannabinoid receptor mechanisms by which Delta(9)-THC produces its antiemetic effects against cisplatin (20 mg/kg, i.p.)-induced emesis as well as its cannabimimetic activity profile (motor reduction) in the least shrew. Intraperitoneal administration of Delta(9)-THC (1, 2.5, 5 and 10 mg/kg) dose-dependently reduced both the percentage of animals vomiting (ID(50)=1.8+/-1.6 mg/kg) and the frequency of vomits (ID(50)=0.36+/-1.18 mg/kg) in a potent manner. The lowest significantly effective antiemetic dose of Delta(9)-THC for the latter emesis parameters was 2.5 mg/kg. Although Delta(9)-THC reduced the frequency of vomits up to 98%, it failed to completely protect all tested shrews from vomiting (80% protection). The cannabinoid CB(1) antagonist (SR 141716A) and not the CB(2) antagonist (SR 144528), reversed the antiemetic effects of Delta(9)-THC in a dose-dependent fashion. Delta(9)-THC (1, 5, 10 and 20 mg/kg, ip) suppressed locomotor parameters (spontaneous locomotor activity, duration of movement and rearing frequency) in a biphasic manner and only the 20-mg/kg dose simultaneously suppressed the triad of locomotor parameters to a significant degree. Subcutaneous (1-10 mg/kg) and intraperitoneal (0.05-40 mg/kg) injection of some doses of SR 141716A caused significant reductions in one or more components of the triad of locomotor parameters but these reductions were not dose dependent. Subcutaneous injection of SR 141716A (0.2, 1, 5 and 10 mg/kg) reversed the motor suppressant effects of a 20-mg/kg dose of Delta(9)-THC (ip) in a dose-dependent manner. Relative to its motor suppressant effects, Delta(9)-THC is a more potent antiemetic agent. Both effects are probably mediated via CB(1

  6. Hormonal Contraceptives Differentially Suppress TFV and TAF Inhibition of HIV Infection and TFV-DP in Blood and Genital Tract CD4+ T cells.

    Science.gov (United States)

    Shen, Zheng; Rodriguez-Garcia, Marta; Patel, Mickey V; Bodwell, Jack; Kashuba, Angela D M; Wira, Charles R

    2017-12-18

    HIV prevention research is focused on combining antiretrovirals (ARV) and progestin contraceptives to prevent HIV infection and pregnancy. The possibility that progestins compromise ARV anti-HIV activity prompted us to evaluate the effects of progestins on tenofovir (TFV) and TFV-alafenamide (TAF) on HIV infection and intracellular TFV-diphosphate (TFV-DP) concentrations in blood and genital CD4+ T cells. Following incubation of blood CD4+ T cells with TFV or TAF, Medroxyprogesterone acetate (MPA), but not Levonorgestrel, Norethisterone or progesterone, suppressed the anti-HIV effect of TFV by reducing intracellular TFV-DP, but had no effect on TAF inhibition of infection or TFV-DP. In contrast, with genital CD4+ T cells, MPA suppressed TAF inhibition of HIV infection and lowered of TFV-DP concentrations without affecting TFV protection. These findings demonstrate that MPA selectively compromises TFV and TAF protection in blood and genital CD4+ T cells and suggests that MPA may decrease ARV protection in individuals who use ARV intermittently for prevention.

  7. Human Monocytes Accelerate Proliferation and Blunt Differentiation of Preadipocytes in Association With Suppression of C/Ebpα mRNA

    Science.gov (United States)

    Couturier, Jacob; Patel, Sanjeet G.; Iyer, Dinakar; Balasubramanyam, Ashok; Lewis, Dorothy E.

    2015-01-01

    Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation. PMID:21869759

  8. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  10. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  11. 1,25D3 differentially suppresses bladder cancer cell migration and invasion through the induction of miR-101-3p.

    Science.gov (United States)

    Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S

    2017-09-01

    Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.

  12. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea.

    Directory of Open Access Journals (Sweden)

    Katrin Reimann

    Full Text Available Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.

  13. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  14. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway.

    Science.gov (United States)

    Zhang, Kai; Guo, Yawei; Ge, Zhenzhen; Zhang, Zhihui; Da, Yurong; Li, Wen; Zhang, Zimu; Xue, Zhenyi; Li, Yan; Ren, Yinghui; Jia, Long; Chan, Koon-Ho; Yang, Fengrui; Yan, Jun; Yao, Zhi; Xu, Aimin; Zhang, Rongxin

    2017-09-01

    T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.

  15. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    International Nuclear Information System (INIS)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.; Wheeler-Jones, Caroline P.D.

    2008-01-01

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE 2 on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure of ECs to PGE 2 increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF 1α release and EC proliferation. In contrast, PGE 2 attenuated VEGF 165 -induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE 2 restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH 2 (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling

  16. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  17. Otolithic disease: clinical features and the role of vestibular evoked myogenic potentials.

    Science.gov (United States)

    Curthoys, Ian S; Manzari, Leonardo

    2013-07-01

    Through selective tests of the function of the canal and otolith sense organs, it is possible to assert that patient conditions are purely otolithic and that the canals are not involved. The video head impulse test selectively tests each semicircular canal; the ocular vestibular-evoked myogenic potential to 500 Hz Fz (Fz is the location on the forehead in the midline at the hairline) bone-conducted vibration (BCV) selectively tests the utricular macula and the cervical vestibular-evoked myogenic potential to 500 Hz Fz BCV selectively tests the saccular macula. The development of new specific tests of otolith function has shown that some patients may have specific deficits of just otolithic function. In the authors' experience, patients who complain strongly of postural unsteadiness should be suspected to have otolithic deficits. They may also have vertigo and in some cases have spontaneous nystagmus of peripheral origin, even though their semicircular canal function is normal. The prognosis for such patients is good. They usually appear to regain their postural stability spontaneously over weeks (or longer), even though they still have an otolithic deficit as shown by objective tests when they are free of symptoms. It is not known what procedures may accelerate the recovery of otolith function. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  19. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  20. Association of Differentiation-Related Gene-1 (DRG1) with Breast Cancer Survival and in Vitro Impact of DRG1 Suppression

    International Nuclear Information System (INIS)

    Baig, Ruqia Mehmood; Sanders, Andrew J.; Kayani, Mahmood Akhtar; Jiang, Wen G.

    2012-01-01

    Differentiation-related gene-1, DRG1, is a metastasis suppressor gene whose expression has been shown to be dysregulated in a number of malignancies. The current study examines the expression of DRG1 in a clinical breast cohort and its association with a number of clinical pathological factors using quantitative polymerase chain reaction. Additionally, DRG1 expression is targeted in vitro using ribozyme transgene technology to explore the function of DRG1 in two human breast cancer cell lines. Low levels of DRG1 were found in patients who developed metastasis (p = 0.036) and who died of breast cancer (p = 0.0048) compared to disease free patients. Knockdown of DRG1 also resulted in significantly increased invasion and motility, but decreased matrix-adhesion in MCF7 cells. Knockdown of DRG1 seemed to have minimal impact on the cellular functions of the MDA-MB-231 breast cancer cell line causing no significant differences in cell growth, invasion, motility or matrix-adhesion. Thus, DRG1 appears to be linked to development of metastasis and death in patients who died as a result of breast cancer and may be useful as a prognostic factor as its knockdown appears to be linked with increased invasion and motility and decreased adhesion in MCF7 breast cancer cells

  1. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  2. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Science.gov (United States)

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  3. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the sting of a braconid wasp

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel; Lukáš, J.

    2011-01-01

    Roč. 57, č. 2 (2011), s. 251-259 ISSN 0022-1910 Grant - others:MZe ČR(CZ) 002 700 604 Institutional research plan: CEZ:AV0Z50070508 Keywords : autonomic heartbeat * myogenic heartbeat * anterograde heartbeat Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  4. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  5. Serial changes of serum thyroid-stimulating hormone after total thyroidectomy or withdrawal of suppressive thyroxine therapy in patients with differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Lee, Jae Tae; Seo, Ji Hyoung [School of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-12-01

    Radioactive iodine (RAI) therapy and whole-body scanning are the fundamentals of treatment and follow-up of patients with differentiated thyroid cancer. It is generally accepted that a Thyroid-Stimulating Hormone (TSH) level of at least 30 {mu}U/ml is a prerequisite for the effective use of RAI, and that it requires 4-6 weeks of off-thyroxine to attain these levels. Because thyroxine withdrawal and the consequent hypothyroidism are often poorly tolerated, and occasionally might be hazardous, it is important to be certain that these assumptions are correct. We have measured serial changes in serum TSH after total thyroidectomy or withdrawl of thyroxine in patients with thyroid cancer. Serum TSH levels were measured weekly after thyroidectomy in 10 patients (group A) and after the discontinuation of thyroxine in 12 patients (group B). Symptoms and signs of hypothyroidism were also evaluated weekly by modified Billewicz diagnostic index. By the second week, 78% of group A patients and 17% of group B patients had serum TSH levels {>=} 30 {mu}U/ml. By the third week, 89% of group A patients and 90% of group B patients had serum TSH levels {>=} 30 {mu}U/ml. By the fourth week, all patients in two groups achieved target TSH levels and there were no overt hypothyroidism. In all patients, serum TSH elevated to the target concentration ({>=} 30 {mu}U/ml) within 4 weeks without significant manifestation of hypothyroidism. The schedule of RAI administration could be adjusted to fit. the needs and circumstances of individual patients with a shorter preparation period than the conventional.

  6. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis.

    Science.gov (United States)

    Wieser, Friedrich; Wu, Juanjuan; Shen, Zhaoju; Taylor, Robert N; Sidell, Neil

    2012-06-01

    To determine the effects of all-trans-retinoic acid (RA) on establishment and growth of endometrial lesions, peritoneal interleukin-6 (IL-6) and macrophage chemotactic factor-1 (MCP-1) concentrations, and CD38, CD11b, and F4/80 expression on peritoneal macrophages in an immunocompetent mouse model of endometriosis. Experimental transplantation study using mice. Academic medical center. C57BL/6 recipient mice and syngeneic green fluorescent protein transgenic (GFP+) mice. Recipient mice were inoculated with GFP+ minced uterine tissue to induce endometriosis and treated with RA (400 nmol/day) or vehicle for 17 days (3 days before to 14 days after tissue injection). Total number of GFP+ implants in recipient mice, number of implants showing visible blood vessels, total volume of established lesions per mouse, concentrations of IL-6 and MCP-1 in peritoneal fluid, and expression of CD11b, F4/80, and CD38 on peritoneal macrophages. Retinoic acid treatment for 17 days reduced the number of implants versus controls and decreased the frequency of lesions with vessels. Peritoneal washings in RA-treated animals had lower concentrations of IL-6 and MCP-1 than controls 3 days after endometrial inoculation and lower levels of IL-6 on day 14 after inoculation. Concomitant with these effects on day 14, CD38, CD11b, and F4/80 were higher on macrophages from RA-treated mice versus controls. The development of endometriotic implants is inhibited by RA. This effect may be caused, at least in part, by reduced IL-6 and MCP-1 production and enhanced differentiation of peritoneal macrophages. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  8. The dental literature on occlusion and myogenous orofacial pain: application of critical thinking.

    Science.gov (United States)

    Solow, Roger Alan

    2016-09-01

    To enhance the reader's critical thinking when reading the dental literature on the relationship of occlusion and myogenous orofacial pain (MOP). Representative journal articles and systematic reviews from the dental literature confirming and denying a relationship of occlusion to MOP were analyzed and reviewed. Studies using computerized occlusal analysis (COA) consistently find a relationship of the occlusion to MOP. Studies that do not confirm this relationship have problems with invalid primary source conclusions, unstated assumptions, bias, and errors in logic that disqualify their conclusion. This review explains four categories of problems with the dental literature that denies occlusion has a relationship with MOP. When the reader understands these examples of flaws in this literature, they can apply this critical thinking to future studies. Correct interpretation of the literature on occlusion and MOP requires a foundation of basic and clinical scientific knowledge as well as an understanding of the details of the primary source articles.

  9. Factor and Rasch analysis of the Fonseca anamnestic index for the diagnosis of myogenous temporomandibular disorder.

    Science.gov (United States)

    Rodrigues-Bigaton, Delaine; de Castro, Ester M; Pires, Paulo F

    Rasch analysis has been used in recent studies to test the psychometric properties of a questionnaire. The conditions for use of the Rasch model are one-dimensionality (assessed via prior factor analysis) and local independence (the probability of getting a particular item right or wrong should not be conditioned upon success or failure in another). To evaluate the dimensionality and the psychometric properties of the Fonseca anamnestic index (FAI), such as the fit of the data to the model, the degree of difficulty of the items, and the ability to respond in patients with myogenous temporomandibular disorder (TMD). The sample consisted of 94 women with myogenous TMD, diagnosed by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD), who answered the FAI. For the factor analysis, we applied the Kaiser-Meyer-Olkin test, Bartlett's sphericity, Spearman's correlation, and the determinant of the correlation matrix. For extraction of the factors/dimensions, an eigenvalue >1.0 was used, followed by oblique oblimin rotation. The Rasch analysis was conducted on the dimension that showed the highest proportion of variance explained. Adequate sample "n" and FAI multidimensionality were observed. Dimension 1 (primary) consisted of items 1, 2, 3, 6, and 7. All items of dimension 1 showed adequate fit to the model, being observed according to the degree of difficulty (from most difficult to easiest), respectively, items 2, 1, 3, 6, and 7. The FAI presented multidimensionality with its main dimension consisting of five reliable items with adequate fit to the composition of its structure. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers.

    Science.gov (United States)

    Zhao, M M; Gao, T; Zhang, L; Li, J L; Lv, P A; Yu, L L; Gao, F; Zhou, G H

    2017-09-01

    We investigated the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on energy reserves, satellite cell mitotic activity (SCMA) and myogenic gene expression in breast muscle of embryos and neonatal broilers. A total of 960 eggs were randomly allocated into three treatments: 1) non-injected control group, 2) saline group injected with 0.6 mL of physiological saline (0.75%), and 3) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg at 17.5 d of incubation. After hatching, a total of 120 male chicks were randomly assigned to each treatment group, with eight replicate sets per group. Selected chicks had body BW close to the average of their pooled group. Our results showed that the total and relative breast muscle weights of broilers subjected to CrPyr treatment were higher than those in the control and saline groups on 19 d of incubation (19 E), the day of hatch, 3 and 7 d post-hatch (P creatine concentrations on 19 E, the day of hatch and 3 d post-hatch, the same treatment increased phosphocreatine concentrations on 19 E. Broilers in the CrPyr group showed higher expression of myogenic differentiation 1 (MyoD) (P < 0.05), myogenin and paired box 7 (Pax7), as well as higher index of SCMA on 3 d post-hatch. However, myostatin mRNA expression in CrPyr-treated broilers was down-regulated on 3 d post-hatch (P < 0.05). These results indicated that IOF of CrPyr increased energy reserves of embryos and SCMA of broilers on 3 d post-hatch, which led to enhanced muscle growth in the late embryos and neonatal broilers. Additionally, IOF of CrPyr increased the activity of satellite cells possibly through up-regulating MyoD, myogenin, and Pax7 mRNA expression and down-regulating myostatin mRNA expression. © 2017 Poultry Science Association Inc.

  11. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    Science.gov (United States)

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  12. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    Science.gov (United States)

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs

    Directory of Open Access Journals (Sweden)

    Walter M. Hodges

    2017-12-01

    Full Text Available Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2 mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor β-1 (TGFβ-1. In addition, transforming growth factor β-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFβ-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFβ-1 expression.

  14. Effects of standardized Ginkgo biloba extract on the acquisition, retrieval and extinction of conditioned suppression: Evidence that short-term memory and long-term memory are differentially modulated.

    Science.gov (United States)

    Zamberlam, C R; Vendrasco, N C; Oliveira, D R; Gaiardo, R B; Cerutti, S M

    2016-10-15

    demonstrated (SR=0.63, Pshort-term memory as verified by data from the within-session extinction (1 to 8-10 trials) during the retention test (SR=0.73 to SR=0.59; Pmemory, which suggests that EGb has anti-anxiety effects. Taken together, the current findings suggest that EGb differentially modulates short- and long-term memory, as well as anxiety-like behavior. The actions of EGb may provide information regarding the beneficial effects in the prevention and treatment of neurocognitive impairments and anxiety disorders. Additional analyses are necessary to facilitate an understanding of these effects; however, previous data from our group suggest that GABAergic, serotoninergic and glutamatergic receptors are potential targets of the effects of EGb on conditioned suppression. Copyright © 2016. Published by Elsevier Inc.

  15. Changes in numbers and types of mast cell colony-forming cells in the peritoneal cavity of mice after injection of distilled water: evidence that mast cells suppress differentiation of bone marrow-derived precursors

    International Nuclear Information System (INIS)

    Kanakura, Y.; Kuriu, A.; Waki, N.; Nakano, T.; Asai, H.; Yonezawa, T.; Kitamura, Y.

    1988-01-01

    Two different types of cells in the peritoneal cavity of mice produce mast cell colonies in methylcellulose. Large mast cell colonies are produced by bone marrow-derived precursors resembling lymphoid cells by light microscopy (L-CFU-Mast), whereas medium and small mast cell colonies are produced by morphologically identifiable mast cells (M-CFU-Mast and S-CFU-Mast, respectively). In the present study we eradicated peritoneal mast cells by intraperitoneal (IP) injection of distilled water. The regeneration process was investigated to clarify the relationship between L-CFU-Mast, M-CFU-Mast, and S-CFU-Mast. After injection of distilled water, M-CFU-Mast and S-CFU-Mast disappeared, but L-CFU-Mast increased, and then M-CFU-Mast and S-CFU-Mast appeared, suggesting the presence of a hierarchic relationship. When purified peritoneal mast cells were injected two days after the water injection, the L-CFU-Mast did not increase. In the peritoneal cavity of WBB6F1-+/+ mice that had been lethally irradiated and rescued by bone marrow cells of C57BL/6-bgJ/bgJ (beige, Chediak-Higashi syndrome) mice, L-CFU-Mast were of bgJ/bgJ type, but M-CFU-Mast and S-CFU-Mast were of +/+ type. The injection of distilled water to the radiation chimeras resulted in the development of bgJ/bgJ-type M-CFU-Mast and then S-CFU-Mast. The presence of mast cells appeared to suppress the recruitment of L-CFU-Mast from the bloodstream and to inhibit the differentiation of L-CFU-Mast to M-CFU-Mast

  16. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro

    DEFF Research Database (Denmark)

    Wewer, U M; Iba, K; Durkin, M E

    1998-01-01

    differentiation in vitro. We find that tetranectin expression coincides with muscle differentiation and maturation in the second half of gestation and further that tetranectin is enriched at the myotendinous and myofascial junctions. The tetranectin immunostaining declines after birth and no immunostaining...... cells in dystrophic mdx mice. Murine C2C12 myogenic cells and pluripotent embryonic stem cells can undergo muscle cell differentiation in vitro. Tetranectin is not expressed in the undifferentiated myogenic cells, but during the progression of muscle differentiation, tetranectin mRNA is induced...... that in some tissues, such as the limbs, tetranectin may function locally, whereas in other tissues, such as the lung, tetranectin production may be destined for body fluids. In summary, these results suggest that tetranectin is a matricellular protein and plays a role in myogenesis....

  17. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    Science.gov (United States)

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

    Directory of Open Access Journals (Sweden)

    Zhi-Qin Yang

    2015-06-01

    Full Text Available The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range. The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TT-CT (p0.05. Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

  19. Pregnancy causes diminished myogenic tone and outward hypotrophic remodeling of the cerebral vein of Galen.

    Science.gov (United States)

    van der Wijk, Anne-Eva; Schreurs, Malou P H; Cipolla, Marilyn J

    2013-04-01

    Pregnancy increases the risk of several complications associated with the cerebral veins, including thrombosis and hemorrhage. In contrast to the cerebral arteries and arterioles, few studies have focused on the effect of pregnancy on the cerebral venous side. Here, we investigated for the first time the effect of pregnancy on the function and structure of the cerebral vein of Galen in rats. Our major finding was that cerebral veins from late-pregnant (LP, n=11) rats had larger lumen diameters and thinner walls than veins from nonpregnant (NP, n=13) rats, indicating that pregnancy caused outward hypotrophic remodeling of the vein of Galen. Moreover, veins from NP animals had a small amount of myogenic tone at 10 mm Hg (3.9±1.0%) that was diminished in veins during pregnancy (0.8±0.3%; Ppregnancy. Using immunohistochemistry, we show that the vein of Galen receives perivascular innervation, and that serotonergic innervation of cerebral veins is significantly higher in veins from LP animals. Outward hypotrophic remodeling and diminished tone of cerebral veins during pregnancy may contribute to the development of venous pathology through elevated wall tension and wall stress, and possibly by promoting venous blood stasis.

  20. Cervical Vestibular Evoked Myogenic Potential in Hypoglossal Nerve Schwannoma: A Case Report.

    Science.gov (United States)

    Rajasekaran, Aravind Kumar; Savardekar, Amey Rajan; Shivashankar, Nagaraja Rao

    2018-02-01

    Schwannoma of the hypoglossal nerve is rare. This case report documents an atypical abnormality of the cervical vestibular evoked myogenic potential (cVEMP) in a patient with schwannoma of the hypoglossal nerve. The observed abnormality was attributed to the proximity of the hypoglossal nerve to the spinal accessory nerve in the medullary cistern and base of the skull. To report cVEMP abnormality in a patient with hypoglossal nerve schwannoma and provide an anatomical correlation for this abnormality. Case report. A 44-yr-old woman. Pure-tone and speech audiometry, tympanometry, acoustic stapedial reflex, auditory brainstem response, and cVEMP testing were performed. The audiological test results were normal except for the absence of cVEMP on the lesion side (right). A cVEMP abnormality indicating a compromised spinal accessory nerve was observed in a patient with hypoglossal nerve schwannoma. This case report highlights the importance of recording cVEMP in relevant neurological conditions and provides clinical proof for the involvement of the spinal accessory nerve in the vestibulocollic reflex pathway. American Academy of Audiology

  1. Vestibular neuritis: three-dimensional videonystagmography and vestibular evoked myogenic potential results.

    Science.gov (United States)

    Chen, C W; Young, Y H; Wu, C H

    2000-10-01

    Eight patients diagnosed with vestibular neuritis received the newly developed three-dimensional videonystagmography (3D VNG) and vestibular evoked myogenic potential (VEMP) examination in order to localize the lesion site. Two (25%) of the 8 patients exhibited spontaneous nystagmus with 3 components, indicating that both the horizontal semicircular canal (HSCC) and anterior semicircular canal (ASCC) were affected. The remaining 6 patients (75%) displayed only horizontal nystagmus, meaning that only the HSCC was involved. Seven (88%) of the 8 patients had bilateral normal VEMPs, revealing sparing of the posterior semicircular canal (PSCC). In a comparative study, another seven patients with vestibular neuritis 1 year post-treatment also received the caloric test, 3D VNG and VEMP examination. Only one patient exhibited spontaneous nystagmus. An absent caloric response of the lesioned side persisted in 5 (71%) of the 7 patients. However, all patients showed normal VEMPs bilaterally. 3D VNG and VEMP examination indicates that vestibular neuritis mainly affects the superior division of the vestibular nerve, which innervates the HSCC and ASCC. Meanwhile, the function of the PSCC and saccule, innervated by the inferior vestibular nerve, is preserved.

  2. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture.

    Science.gov (United States)

    Jiwlawat, Saowanee; Lynch, Eileen; Glaser, Jennifer; Smit-Oistad, Ivy; Jeffrey, Jeremy; Van Dyke, Jonathan M; Suzuki, Masatoshi

    Human induced-pluripotent stem cells (iPSCs) are a promising resource for propagation of myogenic progenitors. Our group recently reported a unique protocol for the derivation of myogenic progenitors directly (without genetic modification) from human pluripotent cells using free-floating spherical culture. Here we expand our previous efforts and attempt to determine how differentiation duration, culture surface coatings, and nutrient supplements in the medium influence progenitor differentiation and formation of skeletal myotubes containing sarcomeric structures. A long differentiation period (over 6 weeks) promoted the differentiation of iPSC-derived myogenic progenitors and subsequent myotube formation. These iPSC-derived myotubes contained representative sarcomeric structures, consisting of organized myosin and actin filaments, and could spontaneously contract. We also found that a bioengineering approach using three-dimensional (3D) artificial muscle constructs could facilitate the formation of elongated myotubes. Lastly, we determined how culture surface coating matrices and different supplements would influence terminal differentiation. While both Matrigel and laminin coatings showed comparable effects on muscle differentiation, B27 serum-free supplement in the differentiation medium significantly enhanced myogenesis compared to horse serum. Our findings support the possibility to create an in vitro model of contractile sarcomeric myofibrils for disease modeling and drug screening to study neuromuscular diseases. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  4. Myogenic temporomandibular disorders: Clinical systemic comorbidities in a female population sample.

    Science.gov (United States)

    de-Pedro-Herráez, M; Mesa-Jiménez, J; Fernández-de-Las-Peñas, C; de-la-Hoz-Aizpurua, J-L

    2016-11-01

    Myogenic temporomandibular disorders (MTMD) frequently coexist with other clinical conditions in the same individual. In the last decades, several authors have analyzed these comorbidities looking for the origin of this overlapping. Objetives: The aim of this study was to perform a comparative anaylisis between a group of patients with MTMD and a control group of dental patients without dysfunctional pathology to assess whether there are significant differences in the presence of systemic medical comorbidities between the two groups. Restrospective epidemiological analysis, based on medical questionnaires in a group of 31 patients, women, aged from 24 to 58 (average 39.96 years), diagnosed with MTMD (Masticatory Myofascial Pain), with a control group with the same number of individuals, gender and age range to evaluate if there is a significant statistical difference in the presence of medical comorbidities in this group of patients with MTMD and if they are in a higher risk of suffering different pathological conditions. It was found that the group affected by MTMD presented many more associated medical conditions than the control group: health changes during the last year, medical evaluations and treatments, presence of pain, sinus disease, tinnitus, headache, joint pain, ocular disorders, fatigue, dizziness, genitourinary disorders and xerostomia among others; and they were also in a higher risk to suffer other pathological entities as headaches and articular pain. These results reinforce our hypothesis that MTMD belong to a group of medical conditions triggered by a loss of equilibrium of the individual's Psycho-Neuro-Endocrine-Immune (PNEI) Axis that produces alterations in the response against external stimuli in some genetically predisposed individuals. It is, therefore, necessary to change the way of diagnosing and managing these individual's medical conditions, being mandatory to look from a more multidisciplinary perspective than the one we are currently

  5. Eliciting Cervical Vestibular-Evoked Myogenic Potentials by Bone-Conducted Vibration via Various Tapping Sites.

    Science.gov (United States)

    Tseng, Chia-Chen; Young, Yi-Ho

    2016-01-01

    This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.

  6. Vestibular evoked myogenic potentials and video head impulse test in patients with vertigo, dizziness and imbalance.

    Science.gov (United States)

    Skorić, Magdalena Krbot; Adamec, Ivan; Pavičić, Tin; Pavlović, Ivan; Ruška, Berislav; Crnošija, Luka; Habek, Mario

    2017-05-01

    The aim of this study was to compare vestibular evoked myogenic potentials (VEMP) and video head impulse test (vHIT) results in patients presenting with vertigo and dizziness. We retrospectively analyzed data of all patients with the chief complaint of vertigo, dizziness, or imbalance that underwent VEMP and vHIT from January 2015 to January 2016. A total of 117 patients (73 females, mean age 53.92±16.76) fulfilled inclusion criteria: group 1 included patients with the final diagnosis of vestibular neuritis (VN) (N=31 (16 right and 15 left VN)), group 2 included patients with the final diagnosis of vertigo of central origin (N=23) and group 3 included patients with the final diagnosis of unspecified dizziness (N=63). There was significant correlation between oVEMP asymmetry and asymmetry of the lateral canals 60ms gains on vHIT (r=0.225, p=0.026). Significant correlation between oVEMP and vHIT asymmetry was present in VN patients (r=0.749, p<0.001), while no correlation was found in the groups 2 and 3. oVEMP and vHIT lateral canals asymmetries were significantly greater in patients with vestibular neuritis. Furthermore, positive correlations of oVEMP amplitudes with 60ms gain of the lateral semicircular canal and slope of the anterior semicircular canal on vHIT, and cVEMP with slope of the posterior semicircular canal on the vHIT were found. These changes were significantly more pronounced in patients with vestibular neuritis. In conclusion, VEMPs and vHIT data should be used complementarily; asymmetry on both tests strongly supports peripheral vestibular system involvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  8. The influence of caffeine on calorics and cervical vestibular evoked myogenic potentials (cVEMPs).

    Science.gov (United States)

    McNerney, Kathleen; Coad, Mary Lou; Burkard, Robert

    2014-03-01

    Prior to undergoing vestibular function testing, it is not uncommon for clinicians to request that patients abstain from caffeine 24 hr prior to the administration of the tests. However, there is little evidence that caffeine affects vestibular function. To evaluate whether the results from two tests commonly used in a clinical setting to assess vestibular function (i.e., calorics and the cervical vestibular evoked myogenic potential [cVEMP]) are affected by caffeine. Subjects were tested with and without consuming a moderate amount of caffeine prior to undergoing calorics and cVEMPs. Thirty young healthy controls (mean = 23.28 yr; females = 21). Subjects were excluded if they reported any history of vestibular/balance impairment. The Variotherm Plus Caloric Irrigator was used to administer the water, while the I-Portal VNG software was used to collect and analyze subjects' eye movements. The TECA Evoked Potential System was used for the cVEMP stimulus presentation as well as for the data collection. During cVEMP collection, subjects were asked to monitor their sternocleidomastoid muscle contraction with a Delsys EMG monitor. IBM SPSS Statistics 20 was used to statistically analyze the results via paired t-tests. Analysis of the data revealed that ingestion of caffeine did not significantly influence the results of either test of vestibular function. The results revealed that a moderate amount of caffeine does not have a clinically significant effect on the results from caloric and cVEMP tests in young healthy adults. Future research is necessary to determine whether similar results would be obtained from individuals with a vestibular impairment, as well as older adults. American Academy of Audiology.

  9. Assessment of otolith function using cervical and ocular vestibular evoked myogenic potentials in individuals with motion sickness.

    Science.gov (United States)

    Singh, Niraj Kumar; Pandey, Preeti; Mahesh, Soumya

    2014-01-01

    The involvement of otolith organs in motion sickness has long been debated; however, equivocal findings exist in literature. The present study thus aimed at evaluating the otolith functioning in individuals with motion sickness. Cervical and ocular vestibular evoked myogenic potentials were recorded from 30 individuals with motion sickness, 30 professional drivers and 30 healthy individuals. The results revealed no significant difference in latencies and amplitudes between the groups (p>0.05). Nonetheless, thresholds were significantly elevated and inter-aural asymmetry ratio significantly higher in motion sickness susceptible group (p otolithic function seem the likely reasons behind motion sickness susceptibility.

  10. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  11. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  12. Group I Paks Promote Skeletal Myoblast Differentiation In Vivo and In Vitro

    DEFF Research Database (Denmark)

    Joseph, Giselle A; Lu, Min; Radu, Maria

    2017-01-01

    fusion in Drosophila We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42. Individual genetic deletion of Pak1 and Pak2 in mice....... Furthermore, primary myoblasts lacking Pak1 and Pak2 display delayed expression of myogenic differentiation markers and myotube formation. These results identify Pak1 and Pak2 as redundant regulators of myoblast differentiation in vitro and in vivo and as components of the promyogenic Ncad/Cdo/Cdc42 signaling...

  13. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation.

    Science.gov (United States)

    Öztürk-Kaloglu, Deniz; Hercher, David; Heher, Philipp; Posa-Markaryan, Katja; Sperger, Simon; Zimmermann, Alice; Wolbank, Susanne; Redl, Heinz; Hacobian, Ara

    2017-01-01

    Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.

  14. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Emma L. Watson

    2017-07-01

    Full Text Available Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients.Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α, myogenic (MyoD, myogenin, myostatin, anabolic (P-Akt, P-eEf2 and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates and overall levels of oxidative stress have been studied.Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001, 25-fold (P < 0.001, and 4-fold (P < 0.001, respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46, 2.4-fold (P = 0.19, and 2.5-fold (P = 0.06, respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84, but this was restored following training (P = 0.01. Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively. There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism.Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is

  15. Vestibular evoked myogenic potentials and digital vectoelectronystagmography's study in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Lira-Batista, Marta Maria da Silva

    2013-04-01

    Full Text Available Introduction: Benign Paroxysmal Positional Vertigo (BPPV is a very common vestibular disorder characterized by brief but intense attacks of rotatory vertigo triggered by simple rapid movement of the head. The integrity of the vestibular pathways can be assessed using tests such as digital vectoelectronystagmography (VENG and vestibular evoked myogenic potentials (VEMP. Aim: This study aimed to determine the VEMP findings with respect to latency, amplitude, and waveform peak to peak and the results of the oculomotor and vestibular components of VENG in patients with BPPV. Method: Although this otoneurological condition is quite common, little is known of the associated VEMP and VENG changes, making it important to research and describe these results. Results: We examined the records of 4438 patients and selected 35 charts after applying the inclusion and exclusion criteria. Of these, 26 patients were women and 9 men. The average age at diagnosis was 52.7 years, and the most prevalent physiological cause, accounting for 97.3% of cases, was ductolithiasis. There was a statistically significant association between normal hearing and mild contralateral sensorineural hearing loss. The results of the oculomotor tests were within the normal reference ranges for all subjects. Patients with BPPV exhibited symmetrical function of the semicircular canals in their synergistic pairs (p < 0.001. The caloric test showed statistically normal responses from the lateral canals. The waveforms of all patients were adequate, but the VEMP results for the data-crossing maneuver with positive positioning showed a trend toward a relationship for the left ear Lp13. There was also a trend towards an association between normal reflexes in the caloric test and the inter-peak VEMP of the left ear. It can be concluded that although there are some differences between the average levels of the VENG and VEMP results, these differences were not statistically significant

  16. Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in Zucker Diabetic Fatty rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Landheer, Sjoerd W.; Wang, Yumei; Deelman, Leo E.; van Dokkum, Richard P. E.; Buikema, Hendrik

    Type 2 diabetes mellitus (T2DM) is associated with risk for chronic kidney disease (CKD), which is associated with a decrease in renal myogenic tone - part of renal autoregulatory mechanisms. Novel class of drugs used for the treatment of T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitors, have

  17. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    OpenAIRE

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive mult...

  18. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  19. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  20. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  1. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall

    2016-01-01

    -PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS: We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET......, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch...... and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β...

  2. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. Methods Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. Results In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial gastrocnemius CSAs to the sham side after complete atrophy because of immobilization. PMID:25001065

  3. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2018-02-01

    Full Text Available Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction (p < 0.01. Cells differentiated in 5% oxygen conditions showed greater contraction effect (p < 0.01. Hypoxia influences differentiation of smooth muscle cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  4. Low-dose oral tolerance due to antigen in the diet suppresses differentially the cholera toxin-adjuvantized IgE, IgA and IgG response

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Kjær, Tanja; Frøkiær, Hanne

    2003-01-01

    Background: Cholera toxin (CT) is used as a mucosal adjuvant amongst other applications for studying food allergy because oral administration of antigen with CT induces an antigen-specific type 2 response, including IgE and IgA production. Priorly established oral tolerance due to antigen...... soy-trypsin inhibitor (KSTI) (F0 mice) and mice fed a soy-free diet (F2 mice) were orally immunized with KSTI and CT. KSTI-specific serum IgG1, IgG2a, IgA and IgE and fecal IgA were monitored. KSTI-stimulated cell proliferation and interleukin (IL)-6 production were determined. Results: The anti...... immunizations. However, cell proliferation and IL-6 production were clearly suppressed even after five immunizations. Conclusions: Priorly established low-dose oral tolerance considerably suppressed the CT-adjuvantized KSTI-specific IgE, IgA and cellular immune response but only weakly and transiently the Ig...

  5. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/Activin/Nodal signaling using SB-431542

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Schrøder, Henrik Daa

    2010-01-01

    Directing differentiation of human embryonic stem cells (hESC) into specific cell types using an easy and reproducible protocol is a prerequisite for the clinical use of hESC in regenerative medicine procedures. Here, we report a protocol for directing the differentiation of hESC into mesenchymal...... in vivo. Interestingly, SB-OG cells cultured in 10% fetal bovine serum (FBS) developed into a homogeneous population of mesenchymal progenitors that expressed CD markers characteristic of mesenchymal stem cells (MSC): CD44(+) (100%), CD73(+) (98%), CD146(+) (96%) and CD166(+) (88%) with the ability...... progenitor cells. We demonstrate that inhibition of TGF-beta/Activin/Nodal signaling during embryoid bodies (EB) formation using SB-431542 (SB) in serum free medium, markedly up-regulated paraxial mesodermal markers (TBX6, TBX5), and several myogenic developmental markers including early myogenic...

  6. Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications

    Science.gov (United States)

    2016-03-01

    to the altered contents of exosomes , those from prostate cancer cells (tumor exosomes ) no longer have tumor suppressive functions. If this... cancer . To develop this concept, exosomes will be isolated from normal prostate epithelial cells by differential centrifugations or affinity...purifications and evaluated for tumor suppressing activities against various prostate cancer cells (Aim 1). Then the components of the tumor suppressing exosomes

  7. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  8. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  9. A study on vestibular-evoked myogenic potentials via galvanic vestibular stimulation in normal people

    Directory of Open Access Journals (Sweden)

    Ying Cheng

    2018-03-01

    Discussions: Galvanic vestibular stimulation could elicit biphasic EMG responses from SCM via the vestibular nerve but not from the otolith organs. Galvanic stimulation together with air conducted sound (ACS or bone conducted vibration (BCV can elicit VEMPs and may enable the differentiation of retrolabyrinthine lesions from labyrinthine lesions in vestibular system.

  10. Cancer-associated myositis associated with oesophageal adenocarcinoma arising in Barrett's oesophagus without serum myogenic enzymes elevation: an example suggesting the importance of MRI.

    Science.gov (United States)

    Sasaki, Yosuke; Shimizu, Hiroshige; Nemoto, Tetsuo; Urita, Yoshihisa

    2016-04-21

    The strong association between myositis and malignancy has been well recognised. Cancer-associated myositis (CAM) is thought to be a cross-reaction to regenerating muscle tissue similar to tumour antigen. We report a case of CAM due to oesophageal adenocarcinoma arising in Barrett's oesophagus without elevation of myogenic enzymes, diagnosed by MRI and repeated endoscopy. Elderly onset, prominent symptoms, lack of interstitial pneumonia, poorer response to immunosuppressive therapies, and the combination of negative conventional myositis-related antibodies and positive anti-p155/140 antibody may help to distinguish CAM from idiopathic inflammatory myopathy. As the prognosis of patients with CAM depends on the malignancy, aggressive diagnosis of CAM and the causative malignancy is required. Our experience underscores the importance of avoiding the over-reliance on serum myogenic enzymes for excluding CAM and recognising MRI as a useful diagnostic tool of myositis. 2016 BMJ Publishing Group Ltd.

  11. Cervical flexion-rotation test and physiological range of motion - A comparative study of patients with myogenic temporomandibular disorder versus healthy subjects.

    Science.gov (United States)

    Greenbaum, Tzvika; Dvir, Zeevi; Reiter, Shoshana; Winocur, Ephraim

    2017-02-01

    Temporomandibular Disorders (TMD) refer to several common clinical disorders which involve the masticatory muscles, the temporomandibular joint (TMJ) and the adjacent structures. Although neck signs and symptoms are found with higher prevalence in TMD patients compared to the overall population, whether limitation of cervical mobility is an additional positive finding in this cohort is still an open question. To compare the physiological cervical range of motion (CROM) and the extent of rotation during cervical flexion (flexion-rotation test, FRT) in people with TMD (muscular origin) and healthy control subjects. The range of motion of the neck and FRT was measured in 20 women with myogenic TMD and 20 age matched healthy controls. Women with myogenic TMD had significantly lower FRT scores compared to their matched healthy women. No difference was found between groups in CROM in any of the planes of movement. The FRT was positive (less than 32°) in 90% of the TMD participants versus 5% in the healthy control but the findings were not correlated with TMD severity. The results point out a potential involvement of the upper cervical joints (c1-c2) in women with myogenic TMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  13. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  14. Potencial evocado miogênico vestibular a baixas frequências de estimulação Vestibular evoked myogenic potentials using low frequency stimuli

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2011-12-01

    Full Text Available Os potenciais evocados miogênicos vestibulares são reflexos vestíbulo-cervicais, decorrentes da estimulação do sáculo com sons de forte intensidade. São necessários parâmetros de normalidade para indivíduos jovens normais, utilizando-se estímulos a baixas frequências, as quais configuram a região de maior sensibilidade desse órgão sensorial. OBJETIVO: Realizar normatização do potencial evocado miogênico vestibular para baixas frequências de estimulação. MATERIAL E MÉTODO: Captou-se o potencial evocado miogênico vestibular em 160 orelhas, no músculo esternocleidomastoideo, de forma ipsilateral, por meio da promediação de 200 tone bursts, frequência de 250 Hz, intensidade de 95 dB NAn. FORMA DE ESTUDO: Estudo de coorte contemporânea com corte transversal. RESULTADOS: Aplicando-se o teste T de Student ou o Teste de Mann-Whitney, não foi constatada diferença significativa para parâmetros do potencial evocado miogênico vestibular entre os gêneros, para p Vestibular evoked myogenic potentials are vestibulocervical reflexes resulting from sacculus stimulation with strong intensity sounds. Normality parameters are necessary for young normal individuals, using low frequency stimuli, which configure the most sensitive region of this sensory organ. AIM: To establish vestibular evoked myogenic potential standards for low frequency stimulation. MATERIAL AND METHOD: Vestibular evoked myogenic potential was captured from 160 ears, in the ipsilateral sternocleidomastoid muscle, using 200 averaged tone-burst stimuli, at 250 Hz, with an intensity of 95 dB NAn. CASE STUDY: Clinical observational cross-sectional. RESULTS: Neither the student's t-test nor the Mann-Whitney test showed a significant difference in latency or vestibular evoked myogenic potential amplitudes, for p <; 0.05. Irrespective of gender, we found latencies of p13-n23 and p13-n23 interpeaks of 13.84 ms (± 1.41, 23.81 ms (±1.99 and 10.62 ms (± 6.56, respectively

  15. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  16. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation

    Science.gov (United States)

    Brero, Alessandro; Easwaran, Hariharan P.; Nowak, Danny; Grunewald, Ingrid; Cremer, Thomas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2005-01-01

    Pericentric heterochromatin plays an important role in epigenetic gene regulation. We show that pericentric heterochromatin aggregates during myogenic differentiation. This clustering leads to the formation of large chromocenters and correlates with increased levels of the methyl CpG–binding protein MeCP2 and pericentric DNA methylation. Ectopic expression of fluorescently tagged MeCP2 mimicked this effect, causing a dose-dependent clustering of chromocenters in the absence of differentiation. MeCP2-induced rearrangement of heterochromatin occurred throughout interphase, did not depend on the H3K9 histone methylation pathway, and required the methyl CpG–binding domain (MBD) only. Similar to MeCP2, another methyl CpG–binding protein, MBD2, also increased during myogenic differentiation and could induce clustering of pericentric regions, arguing for functional redundancy. This MeCP2- and MBD2-mediated chromatin reorganization may thus represent a molecular link between nuclear genome topology and the epigenetic maintenance of cellular differentiation. PMID:15939760

  17. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  18. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy

    2015-01-01

    -regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key

  19. Comparison of bone-conducted vibration for eliciting ocular vestibular-evoked myogenic potentials: forehead versus mastoid tapping.

    Science.gov (United States)

    Tseng, Chia-Chen; Wang, Shou-Jen; Young, Yi-Ho

    2012-02-01

    This study compared bone-conducted vibration (BCV) stimuli at forehead (Fz) and mastoid sites for eliciting ocular vestibular-evoked myogenic potentials (oVEMPs). Prospective study. University hospital. Twenty healthy subjects underwent oVEMP testing via BCV stimuli at Fz and mastoid sites. Another 50 patients with unilateral Meniere's disease also underwent oVEMP testing. All healthy subjects showed clear oVEMPs via BCV stimulation regardless of the tapping sites. The right oVEMPs stimulated by tapping at the right mastoid had earlier nI and pI latencies and a larger nI-pI amplitude compared with those stimulated by tapping at the Fz and left mastoid. Similar trends were also observed in left oVEMPs. However, the asymmetry ratio did not differ significantly between the ipsilateral mastoid and Fz sites. Clinically, tapping at the Fz revealed absent oVEMPs in 28% of Meniere's ears, which decreased to 16% when tapping at the ipsilesional (hydropic) mastoid site, exhibiting a significant difference. Tapping at the ipsilateral mastoid site elicits earlier oVEMP latencies and larger oVEMP amplitudes when compared with tapping at the Fz site. Thus, tapping at the Fz site is suggested to screen for the otolithic function, whereas tapping at the ipsilesional mastoid site is suitable for evaluating residual otolithic function.

  20. Comparison of Vestibular Evoked Myogenic Potential and Caloric Tests Findings in Noise Induced Hearing Loss-Affected and Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Farinoosh Fakharnia

    2010-06-01

    Full Text Available Background and Aim: Balance disturbance is one of the non-auditory effects of noisy industrial environments that is usually neglected. The aim of the current study was to investigate the effect of occupational noise on vestibular system among workers with noise-induced hearing loss (NIHL, based on both vestibular evoked myogenic potentials (VEMP and caloric tests.Methods: Thirty male workers with noise-induced hearing loss and thirty male matched controls were examined by VEMP and caloric tests. Study parameters included unilateral weakness, p13 and n23 latencies, and p13-n23 amplitude. Caloric test was performed only for 20 patients.Results: No significant difference was observed in unilateral weakness between the two groups. On the other hand, the difference in mean latencies of p13 in the right ear (p=0.003 and left ear (p=0.01 was significant between the two groups. However, the difference in n23 latency was significant only in the right ear (p=0.03. There was no significant difference between groups in p13-n23 amplitude.Conclusion: It seems that pars inferior of vestibule is the susceptible part in individuals with NIHL. In general, abnormal findings in both VEMP and caloric tests were more common compared to functional symptoms such as vertigo, which may be due to central compensation and the symmetry of the disorder.

  1. Vestibular evoked myogenic potential testing for the diagnosis of conductive hearing loss: survey of pediatric otolaryngologists' knowledge and beliefs.

    Science.gov (United States)

    Dargie, Jenna M; Zhou, Guangwei; Dornan, Briana K; Whittemore, Kenneth R

    2014-11-01

    To assess physicians' knowledge and beliefs regarding vestibular evoked myogenic potential (VEMP) testing in children. A survey was delivered via email in html format to 1069 members of the American Academy of Otolaryngology--Head and Neck Surgery who identified as pediatric otolaryngologists. Study data were collected and managed using the Research Electronic Data Capture (REDCap) tools. 443 (41.4%) physicians opened the email. 190 (42.9% of opens) initiated the survey, of which 117 (61.9%) fully completed the survey of the physicians who responded to a question regarding knowledge of VEMP, 16% of respondents had never heard of the test. 16% of participants would use it in the setting of diagnosing pediatric conductive hearing loss. Responses regarding the youngest age at which VEMP is possible ranged from younger than 6 months through greater than 13 years of age. Beliefs regarding utility and reliability of VEMP varied, with 'unsure' as the most frequent response. Additionally, only 26% of pediatric otolaryngologists indicated some access to the test. The knowledge and availability of VEMP testing in the pediatric otolaryngology community varies widely. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Ocular vestibular evoked myogenic potential elicited from binaural air-conducted stimulations: clinical feasibility in patients with peripheral vestibular dysfunction.

    Science.gov (United States)

    Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya

    2013-07-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.

  3. The efficiency of simultaneous binaural ocular vestibular evoked myogenic potentials: a comparative study with monaural acoustic stimulation in healthy subjects.

    Science.gov (United States)

    Kim, Min-Beom; Ban, Jae Ho

    2012-12-01

    To evaluate the test-retest reliability and convenience of simultaneous binaural acoustic-evoked ocular vestibular evoked myogenic potentials (oVEMP). Thirteen healthy subjects with no history of ear diseases participated in this study. All subjects underwent oVEMP test with both separated monaural acoustic stimulation and simultaneous binaural acoustic stimulation. For evaluating test-retest reliability, three repetitive sessions were performed in each ear for calculating the intraclass correlation coefficient (ICC) for both monaural and binaural tests. We analyzed data from the biphasic n1-p1 complex, such as latency of peak, inter-peak amplitude, and asymmetric ratio of amplitude in both ears. Finally, we checked the total time required to complete each test for evaluating test convenience. No significant difference was observed in amplitude and asymmetric ratio in comparison between monaural and binaural oVEMP. However, latency was slightly delayed in binaural oVEMP. In test-retest reliability analysis, binaural oVEMP showed excellent ICC values ranging from 0.68 to 0.98 in latency, asymmetric ratio, and inter-peak amplitude. Additionally, the test time was shorter in binaural than monaural oVEMP. oVEMP elicited from binaural acoustic stimulation yields similar satisfactory results as monaural stimulation. Further, excellent test-retest reliability and shorter test time were achieved in binaural than in monaural oVEMP.

  4. Imaging and Outcomes for a New Entity: Low-Grade Sinonasal Sarcoma with Neural and Myogenic Features.

    Science.gov (United States)

    Cannon, Richard B; Wiggins, Richard H; Witt, Benjamin L; Dundar, Yusuf; Johnston, Tawni M; Hunt, Jason P

    2017-01-01

    Objectives  Low-grade sinonasal sarcoma with neural and myogenic features (LGSSNMF) is a new, rare tumor. Our goal is to describe the imaging characteristics and surgical outcomes of this unique skull base malignancy. Design  Retrospective case series. Setting  Academic medical center. Participants  There were three patients who met inclusion criteria with a confirmed LGSSNMF. Main Outcome Measures  Imaging and histopathological characteristics, treatments, survival and recurrence outcomes, complications, morbidity, and mortality. Results  Patients presented with diplopia, facial discomfort, a supraorbital mass, and nasal obstruction. Magnetic resonance imaging and computed tomography imaging in all cases showed an enhancing sinonasal mass with associated hyperostotic bone formation that involved the frontal sinus, invaded the lamina papyracea and anterior skull base, and had intracranial extension. One patient underwent a purely endoscopic surgical resection and the second underwent a craniofacial resection, while the last is pending treatment. All patients recovered well, without morbidity or long-term complications, and are currently without evidence of disease (mean follow-up of 2.1 years). One patient recurred after 17 months and underwent a repeat endoscopic skull base and dural resection. Conclusions  The surgical outcomes and imaging of this unique, locally aggressive skull base tumor are characterized.

  5. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    Science.gov (United States)

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  7. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  8. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad

    2013-10-01

    To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.

  9. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  10. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2009-06-01

    Full Text Available The vestibular evoked myogenic potential (VEMP test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the history, methods, current VEMP status, and discuss its specific application in the diagnosis of the Ménière's Syndrome.O teste do potencial evocado miogênico vestibular (PEMV é um instrumento diagnóstico relativamente novo e ainda em processo de validação em estudos com pacientes portadores de desordens vestibulares específicas. De forma resumida, o PEMV é uma resposta bifásica em resposta a estímulos sonoros gravados a partir de contrações do músculo esternocleidomastóideo e é o único recurso existente para avaliar a função do sáculo e da divisão inferior do nervo vestibular. OBJETIVO: Nesta revisão iremos destacar a história, método de realização, situação atual da pesquisa envolvendo o PEMV, além de discutir as suas aplicações específicas no diagnóstico da síndrome de Ménière.

  11. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle.

    Science.gov (United States)

    Shah, Shivam A; Kormpakis, Ioannis; Cavinatto, Leonardo; Killian, Megan L; Thomopoulos, Stavros; Galatz, Leesa M

    2017-12-01

    Large rotator cuff tear size and advanced muscle degeneration can affect reparability of tears and compromise tendon healing. Clinicians often rely on direct measures of rotator cuff tear size and muscle degeneration from magnetic resonance imaging (MRI) to determine whether the rotator cuff tear is repairable. The objective of this study was to identify the relationship between gene expression changes in rotator cuff muscle degeneration to standard data available to clinicians. Radiographic assessment of preoperative rotator cuff tear severity was completed for 25 patients with varying magnitudes of rotator cuff tears. Tear width and retraction were measured using MRI, and Goutallier grade, tangent (tan) sign, and Thomazeau grade were determined. Expression of myogenic-, adipogenic-, atrophy-, and metabolism-related genes in biopsied muscles were correlated with tear width, tear retraction, Goutallier grade, tan sign, and Thomazeau grade. Tear width positively correlated with Goutallier grade in both the supraspinatus (r = 0.73) and infraspinatus (r = 0.77), along with tan sign (r = 0.71) and Thomazeau grade (r = 0.68). Decreased myogenesis (Myf5), increased adipogenesis (CEBPα, Lep, Wnt10b), and decreased metabolism (PPARα) correlated with radiographic assessments. Gene expression changes suggest that rotator cuff tears lead to a dramatic molecular response in an attempt to maintain normal muscle tissue, increase adipogenesis, and decrease metabolism. Fat accumulation and muscle atrophy appear to stem from endogenous changes rather than from changes mediated by infiltrating cells. Results suggest that chronic unloading of muscle, induced by rotator cuff tear, disrupts muscle homeostasis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2808-2814, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. High intensity training may reverse the fiber type specific decline in myogenic stem cells in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Jean eFarup

    2016-05-01

    Full Text Available Multiple sclerosis (MS is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells – SCs are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n=23 and age matched healthy controls (HC, n=18. Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS+HC and following 12 weeks of training (MS only. Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7+, myonuclei (MN and central nuclei content and fiber cross-sectional area (fCSA using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fiber in both MS (119%, p<0.01 and HC (69%, p<0.05, whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p<0.05. No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and fCSA in MS patients increased by 165% (p<0.05 and 135% (p<0.05, respectively. Furthermore, the type II fiber MN content increased by 35% (p<0.05 following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients.

  13. Myogenic Potential of Whole Bone Marrow Mesenchymal Stem Cells In Vitro and In Vivo for Usage in Urinary Incontinence

    Science.gov (United States)

    Giammò, Alessandro; Boido, Marina; Rustichelli, Deborah; Mareschi, Katia; Errichiello, Edoardo; Parola, Maurizio; Ferrero, Ivana; Fagioli, Franca; Vercelli, Alessandro; Carone, Roberto

    2012-01-01

    Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation. PMID:23029081

  14. Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence.

    Directory of Open Access Journals (Sweden)

    Monica Gunetti

    Full Text Available Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.

  15. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    Science.gov (United States)

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  16. Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts

    International Nuclear Information System (INIS)

    Leong, C.-W.; Wong, C.H.; Lao, S.-C.; Leong, Emilia Conceicao; Lao, Iok Fong; Law, Patrick Tik Wan; Fung, Kwok Pui; Tsang, Kam Sze; Waye, Mary Miu-Yee; Tsui, Stephen Kwok-Wing; Wang Yitao; Lee, Simon Ming-Yuen

    2007-01-01

    Resveratrol (trans-3,5,4'-trihydroxystilbene), a polyphenolic compound found largely in the skins of red grapes, has been used as a nutritional supplement or an investigational new drug for prevention of cardiovascular diseases. Previous reports showed that resveratrol had a protective effect against oxidative agent-induced cell injury. Our studies indicate that resveratrol plays a role in the differentiation of cardiomyoblasts. The cardiomyoblast cell line, H9c2, was exposed to 30-120 μM resveratrol for up to 5 days. Resveratrol inhibits cardiomyoblast proliferation without causing cells injury. Moreover, resveratrol treatment modulated the differentiation of morphological characteristics including elongation and cell fusion in cardiomyoblasts. Proliferation and differentiation of H9c2 cells were further revealed by measurement of the mRNA expression of a cell cycle marker (CDK2), a differentiation marker (myogenin), and a contractile apparatus protein (MLC-2). Gene expression analysis revealed that resveratrol promoted entry into cell cycle arrest but extended the myogenic differentiation progress. These results have implications for the role of resveratrol in modulating cell cycle control and differentiation in cardiomyoblasts

  17. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  18. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  19. Planck-suppressed operators

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10 5 H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10 2 H

  20. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8

    Directory of Open Access Journals (Sweden)

    Helen L. Hayden

    2018-05-01

    Full Text Available The soilborne fungus Rhizoctonia solani anastomosis group (AG 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs and many cold shock proteins (csp. Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF and its transcriptional activator protein (phzR. A large number of genes involved in detoxifying reactive oxygen species (ROS and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat

  1. Rotatory and collic vestibular evoked myogenic potential testing in normal-hearing and hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-01-01

    Vertigo and imbalance are often underestimated in the pediatric population, due to limited communication abilities, atypical symptoms, and relatively quick adaptation and compensation in children. Moreover, examination and interpretation of vestibular tests are very challenging, because of difficulties with cooperation and maintenance of alertness, and because of the sometimes nauseatic reactions. Therefore, it is of great importance for each vestibular laboratory to implement a child-friendly test protocol with age-appropriate normative data. Because of the often masked appearance of vestibular problems in young children, the vestibular organ should be routinely examined in high-risk pediatric groups, such as children with a hearing impairment. Purposes of the present study were (1) to determine age-appropriate normative data for two child-friendly vestibular laboratory techniques (rotatory and collic vestibular evoked myogenic potential [cVEMP] test) in a group of children without auditory or vestibular complaints, and (2) to examine vestibular function in a group of children presenting with bilateral hearing impairment. Forty-eight typically developing children (mean age 8 years 0 months; range: 4 years 1 month to 12 years 11 months) without any auditory or vestibular complaints as well as 39 children (mean age 7 years 8 months; range: 3 years 8 months to 12 years 10 months) with a bilateral sensorineural hearing loss were included in this study. All children underwent three sinusoidal rotations (0.01, 0.05, and 0.1 Hz at 50 degrees/s) and bilateral cVEMP testing. No significant age differences were found for the rotatory test, whereas a significant increase of N1 latency and a significant threshold decrease was noticeable for the cVEMP, resulting in age-appropriate normative data. Hearing-impaired children demonstrated significantly lower gain values at the 0.01 Hz rotation and a larger percentage of absent cVEMP responses compared with normal-hearing children

  2. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Dunham, Ian [EMBL-European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Murai, Kasumi [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Jones, Philip H., E-mail: phj20@cam.ac.uk [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom)

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  3. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    International Nuclear Information System (INIS)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.

    2011-01-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  4. Ammonia differentially suppresses the cAMP chemotaxis of anterior ...

    Indian Academy of Sciences (India)

    Unknown

    ring sealed with high vacuum stopcock grease to the bottom of a 15 × 35 ..... membrane proton pump inhibition and stalk cell differentia- tion in Dictyostelium ... Genet. 1 13–20. Siegert F and Weijer C J 1992 Three-dimensional scroll waves.

  5. High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis

    CSIR Research Space (South Africa)

    Van den Berg, N

    2004-11-01

    Full Text Available Efficient construction of cDNA libraries enriched for differentially expressed transcripts is an important first step in many biological investigations. We present a quantitative procedure for screening cDNA libraries constructed by suppression...

  6. Screening for suppression in young children: the Polaroid Suppression test

    NARCIS (Netherlands)

    Pott, J.W.R.; Oosterveen, DK; Van Hof-van Duin, J

    1998-01-01

    Background: Assessment of monocular visual impairment during screening of young children is often hampered by lack of cooperation. Because strabismus, amblyopia, or anisometropia may lead to monocular suppression during binocular viewing conditions, a test was developed to screen far suppression in

  7. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

  8. Differential manifolds

    CERN Document Server

    Kosinski, Antoni A

    2007-01-01

    The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

  9. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Directory of Open Access Journals (Sweden)

    Sara Romanazzo, Giancarlo Forte, Mitsuhiro Ebara, Koichiro Uto, Stefania Pagliari, Takao Aoyagi, Enrico Traversa and Akiyoshi Taniguchi

    2012-01-01

    Full Text Available To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  10. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  11. Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression?

    Directory of Open Access Journals (Sweden)

    Timo eStein

    2011-12-01

    Full Text Available Until recently, it has been thought that under interocular suppression high-level visual processing is strongly inhibited if not abolished. With the development of continuous flash suppression (CFS, a variant of binocular rivalry, this notion has now been challenged by a number of reports showing that even high-level aspects of visual stimuli, such as familiarity, affect the time stimuli need to overcome CFS and emerge into awareness. In this breaking CFS (b-CFS paradigm, differential unconscious processing during suppression is inferred when (a speeded detection responses to initially invisible stimuli differ, and (b no comparable differences are found in non-rivalrous control conditions supposed to measure general threshold differences between stimuli. To critically evaluate these assumptions was the aim of the present study. In six experiments we compared the time upright and inverted faces needed to be detected. We found that not only under CFS, but also in control conditions upright faces were detected faster and more accurately than inverted faces, although the effect was larger during CFS. However, reaction time (RT distributions indicated critical differences between the CFS and the control condition. When RT distributions were matched, similar effect sizes were obtained in both conditions. Moreover, subjective ratings revealed that CFS and control conditions are not perceptually comparable. These findings cast doubt on the usefulness of non-rivalrous control conditions to rule out mere detection threshold differences as a cause of shorter detection latencies during CFS. In conclusion, we acknowledge that the b-CFS paradigm can be fruitfully applied as a highly sensitive device to probe differences between stimuli in their potency to gain access to awareness. However, our current findings suggest that such differences can not unequivocally be attributed to differential unconscious processing under interocular suppression.

  12. Evaluation of vestibular evoked myogenic potentials (VEMP) and electrocochleography for the diagnosis of Ménière's disease.

    Science.gov (United States)

    Lamounier, Pauliana; de Souza, Thiago Silva Almeida; Gobbo, Debora Aparecida; Bahmad, Fayez

    Ménière's disease (MD) is an inner ear disorder characterized by episodic vertigo, tinnitus, ear fullness, and fluctuating hearing. Its diagnosis can be especially difficult in cases where vestibular symptoms are present in isolation (vestibular MD). The definitive diagnosis is made histologically and can only be performed post-mortem, after analysis of the temporal bone. Endolymphatic hydrops is a histopathological finding of the disease and occurs more often in the cochlea and saccule, followed by the utricle and semicircular canals. Vestibular evoked myogenic potentials (VEMP) emerged as the method of assessment of vestibular function in 1994. Until then, there was no unique way of assessing saccular function and the inferior vestibular nerve. Given that the saccule is responsible for most cases of severe hydrops, VEMP appears as a new tool to assist in the diagnosis of MD. To evaluate the sensitivity and specificity of VEMP and electrocochleography (EcochG) in the diagnosis of definite MD compared with clinical diagnosis. The study includes 12 patients (24 ears) diagnosed with definite MD defined according to the clinical criteria proposed by the American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) in 1995, as well as 12 healthy volunteers allocated to the control group (24 ears). A clinical diagnosis by the AAO-HNS criteria was considered as the gold standard. All patients underwent an otoneurological examination, including pure tone and speech audiometry, VEMP, and extratympanic EcochG. The sensitivity and specificity to detect the presence or absence of disease were calculated, as well as their 95% confidence intervals. The reliability of VEMP and EcochG in both ears was assessed using the kappa index. In both tests and in both ears, the ability to diagnose healthy cases was high, with specificity ranging from 84.6% to 100%. Moreover, the ability of the tests to diagnose the disease varied from low to moderate sensitivity, with values

  13. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  14. Suppression background device in neutron detection by a scintillation detector

    International Nuclear Information System (INIS)

    Degtyarev, A.P.; Kozyr', Yu.E.; Prokopets, G.A.

    1980-01-01

    A pulse shape discriminator for suppression of cosmic and gamma background as well as for suppression of intrinsic noises of a photomultiplier is described. Identification of signals of background and neutrons is performed by means of comparison of relative intensity of fast and slow components of scintillator luminescence. Basic discriminator flowsheet which contains integrating and differential RC circuits and time-to-amplitude converter is given. The discriminator provides minimum energy of detected neutrons equal to 500 keV when using a FEhU-36 neutron detector with a stilbene crystal [ru

  15. Potencial evocado miogênico vestibular: novas perspectivas diagnósticas em esclerose múltipla Vestibular evoked myogenic potential: new perspectives in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Renata Chade Aidar

    2005-02-01

    Full Text Available OBJETIVO: Avaliar o potencial evocado miogênico vestibular em pacientes com esclerose múltipla, como método de auxílio diagnóstico. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: Estudamos um grupo-controle (n=15 de indivíduos normais e um grupo experimental (n=15 que foi composto por pacientes com diagnóstico de esclerose múltipla. Ambos os grupos foram submetidos ao exame de potencial evocado miogênico vestibular. Em cada orelha foram aplicados 200 estímulos na forma de cliques e repetidos por 2 ciclos consecutivos com objetivo de avaliar a reprodutibilidade. Os eletrodos ativos de superfície foram colocados no S‡superior do músculo esternocleidomastoideo e de referência na borda anterior da clavícula ipsilateral. Os indivíduos foram instruídos à rotação lateral da cabeça em direção contralateral à orelha estimulada. RESULTADOS: Obtivemos no potencial evocado miogênico vestibular respostas rápidas, reprodutíveis e bifásicas. A latência das ondas P1 e N2 e amplitude P1-N2 apresentaram um maior valor no grupo experimental quando comparada com o grupo-controle. Não observamos diferença significativa nas respostas das ondas P1 e N2 e amplitude P1-N2 quando comparamos as orelhas. Verificamos que os indivíduos com esclerose múltipla apresentaram ausência de respostas em 30% dos casos. Ao avaliarmos os indivíduos do grupo experimental com sintomas otoneurológicos e compararmos com os pacientes sem sintomas, observamos que a latência da onda P1, N2 e amplitude P1-N2 estiveram maiores nos casos sintomáticos. CONCLUSÃO: O potencial evocado miogênico vestibular foi considerado um bom método de auxílio diagnóstico da via vestíbulo-espinal nos casos de esclerose múltipla.AIM: To evaluate vestibular evoked myogenic potentials in patients with multiple sclerosis as method of diagnostic support. STUDY DESIGN: Case-control. MATERIAL AND METHOD: We studied a group of normal individuals (n=15 and a Studied group

  16. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    Science.gov (United States)

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  17. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Moriyama, Hideki; Yamaoka, Kaoru

    2017-07-01

    It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Differential games

    CERN Document Server

    Friedman, Avner

    2006-01-01

    This volume lays the mathematical foundations for the theory of differential games, developing a rigorous mathematical framework with existence theorems. It begins with a precise definition of a differential game and advances to considerations of games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, and games with restricted phase coordinates. Final chapters cover selected topics (including capturability and games with delayed information) and N-person games.Geared toward graduate students, Differential Games will be of particular interest

  19. Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Škugor Stanko

    2010-01-01

    Full Text Available Abstract Background Excessive fat deposition is one of the largest problems faced by salmon aquaculture industries, leading to production losses due to high volume of adipose tissue offal. In addition, increased lipid accumulation may impose considerable stress on adipocytes leading to adipocyte activation and production and secretion of inflammatory mediators, as observed in mammals. Results Microarray and qPCR analyses were performed to follow transcriptome changes during adipogenesis in the primary culture of adipose stromo-vascular fraction (aSVF of Atlantic salmon. Cellular heterogeneity decreased by confluence as evidenced by the down-regulation of markers of osteo/chondrogenic, myogenic, immune and vasculature lineages. Transgelin (TAGLN, a marker of the multipotent pericyte, was prominently expressed around confluence while adipogenic PPARγ was up-regulated already in subconfluent cells. Proliferative activity and subsequent cell cycle arrest were reflected in the fluctuations of pro- and anti-mitotic regulators. Marked regulation of genes involved in lipid and glucose metabolism and pathways producing NADPH and glycerol-3-phosphate (G3P was seen during the terminal differentiation, also characterised by diverse stress responses. Activation of the glutathione and thioredoxin antioxidant systems and changes in the iron metabolism suggested the need for protection against oxidative stress. Signs of endoplasmic reticulum (ER stress and unfolded protein response (UPR occured in parallel with the increased lipid droplet (LD formation and production of secretory proteins (adipsin, visfatin. The UPR markers XBP1 and ATF6 were induced together with genes involved in ubiquitin-proteasome and lysosomal proteolysis. Concurrently, translation was suppressed as evidenced by the down-regulation of genes encoding elongation factors and components of the ribosomal machinery. Notably, expression changes of a panel of genes that belong to different

  20. The thyroid axis 'setpoints' are significantly altered after long-term suppressive LT4 therapy

    NARCIS (Netherlands)

    Verburg, F.A.; Mader, U.; Grelle, I.; Visser, T.J.; Peeters, R.P.; Smit, J.W.A.; Reiners, C.

    2014-01-01

    The aim of the study was to investigate the changes in the thyroid axis setpoint after long-term suppressive levothyroxine therapy for differentiated thyroid carcinoma and the resulting changes in levothyroxine requirement. Ninety-nine differentiated thyroid cancer patients were reviewed. All

  1. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Carlo A Rossi

    2010-01-01

    Full Text Available Satellite cells (SCs represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC present in major proportion (approximately 75% and the high proliferative clones (HPC, present instead in minor amount (approximately 25%. LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m, ATP balance and Reactive Oxygen Species (ROS generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.

  2. Differential Geometry

    CERN Document Server

    Stoker, J J

    2011-01-01

    This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

  3. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  4. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  5. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro

    2011-01-01

    This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891

  6. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. G protein-mediated signaling in the myogenic response – role of Rho-kinase and aging

    DEFF Research Database (Denmark)

    Björling, Karl; Joseph, Philomeena Daphne; Egebjerg, Kristian

    2017-01-01

    . Aim: 1) to investigate the signaling events from Gq/11 and/or G12 activation to MT development; 2) to elucidate the impact of aging. We used pressure myography, calcium imaging, Q-PCR and immunofluorescence to study small (lumen D ...M) suppressed MT development. The Phosholipase C inhibitors U73122 (0.5 µM) and ET18-OCH3 (10 µM) robustly inhibited MT, and the TRPC channel blocker SKF 96365 (10 µM) slightly reduced MT. There was a significant effect of age (P

  8. G protein-mediated signaling in the myogenic response – role of Rho-kinase and aging

    DEFF Research Database (Denmark)

    Björling, Karl; Joseph, Philomeena Daphne; Egebjerg, Kristian

    . Aim: 1) to investigate the signaling events from Gq/11 and/or G12 activation to MT development; 2) to elucidate the impact of aging. We used pressure myography, calcium imaging, Q-PCR and immunofluorescence to study small (lumen D ...M) suppressed MT development. The Phosholipase C inhibitors U73122 (0.5 µM) and ET18-OCH3 (10 µM) robustly inhibited MT, and the TRPC channel blocker SKF 96365 (10 µM) slightly reduced MT. There was a significant effect of age (P

  9. Age-dependent impact of CaV3.2 T-type calcium channel deletion on myogenic tone and flow-mediated vasodilatation in small arteries

    DEFF Research Database (Denmark)

    Mikkelsen, Miriam F.; Björling, Karl; Jensen, Lars Jørn

    2016-01-01

    , structural remodeling, and mRNA + protein expression in small mesenteric arteries from CaV3.2 knock-out vs. wild-type mice at young vs. mature adult age. In young mice, only, deletion of CaV3.2 led to enhanced myogenic response and ∼50 % reduction of flow-mediated vasodilatation. Ni(2+) had both CaV3...

  10. Potenciais miogênicos evocados vestibulares: metodologias de registro em homens e cobaias Vestibular evoked myogenic potential: recording methods in humans and guinea pigs

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2008-10-01

    Full Text Available O potencial miogênico evocado vestibular (VEMP é um teste clínico que avalia a função vestibular através de um reflexo vestíbulo-cervical inibitório captado nos músculos do corpo em resposta à estimulação acústica de alta intensidade. OBJETIVO: Verificar e analisar os diversos métodos de registro dos potenciais miogênicos evocados vestibulares no homem e em cobaias. MATERIAL E MÉTODO: Realizou-se busca eletrônica nas bases de dados MEDLINE, LILACS, SCIELO e COCHRANE. RESULTADOS: Foram verificadas divergências quanto às formas de registro dos potenciais miogênicos evocados vestibulares, relacionadas com os seguintes fatores: posição do paciente no momento do registro, tipo de estímulo sonoro utilizado (clicks ou tone bursts, parâmetros para a promediação dos estímulos (intensidade, freqüência, tempo de apresentação, filtros, ganho de amplificação das respostas e janelas para captação dos estímulos, tipo de fone utilizado e forma de apresentação dos estímulos (monoaural ou binaural, ipsi ou contralateral. CONCLUSÃO: Não existe consenso na literatura quanto ao melhor método de registro dos potenciais evocados miogênicos vestibulares, havendo necessidade de pesquisas mais específicas para comparação entre estes registros e a definição de um modelo padrão para a utilização na prática clínica.The vestibular evoked myogenic potential (VEMP is a clinical test that assess the vestibular function by means of an inhibitory vestibulo-neck reflex, recorded in body muscles in response to high intensity acoustic stimuli. AIM: To check and analyze the different methods used to record VEMPs in humans and in guinea pigs. MATERIALS AND METHODS: We researched the following databases: MEDLINE, LILACS, SCIELO and COCHRANE. RESULTS: we noticed discrepancies in relation to the ways used to record the vestibular evoked myogenic potentials in relation to the following factors: patient position at the time of recording

  11. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  12. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  13. Accentuation-suppression and scaling

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Bundesen, Claus

    2012-01-01

    The limitations of the visual short-term memory (VSTM) system have become an increasingly popular field of study. One line of inquiry has focused on the way attention selects objects for encoding into VSTM. Using the framework of the Theory of Visual Attention (TVA; Bundesen, 1990 Psychological...... a scaling mechanism modulating the decision bias of the observer and also through an accentuation-suppression mechanism that modulates the degree of subjective relevance of objects, contracting attention around fewer, highly relevant objects while suppressing less relevant objects. These mechanisms may...

  14. Differential discriminator

    International Nuclear Information System (INIS)

    Dukhanov, V.I.; Mazurov, I.B.

    1981-01-01

    A principal flowsheet of a differential discriminator intended for operation in a spectrometric circuit with statistical time distribution of pulses is described. The differential discriminator includes four integrated discriminators and a channel of piled-up signal rejection. The presence of the rejection channel enables the discriminator to operate effectively at loads of 14x10 3 pulse/s. The temperature instability of the discrimination thresholds equals 250 μV/ 0 C. The discrimination level changes within 0.1-5 V, the level shift constitutes 0.5% for the filling ratio of 1:10. The rejection coefficient is not less than 90%. Alpha spectrum of the 228 Th source is presented to evaluate the discriminator operation with the rejector. The rejector provides 50 ns time resolution

  15. Differential topology

    CERN Document Server

    Margalef-Roig, J

    1992-01-01

    ...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

  16. Differential belongings

    DEFF Research Database (Denmark)

    Oldrup, Helene

    2014-01-01

    This paper explores suburban middle-class residents’ narratives about housing choice, everyday life and belonging in residential areas of Greater Copenhagen, Denmark, to understand how residential processes of social differentiation are constituted. Using Savage et al.’s concepts of discursive...... and not only to the area itself. In addition, rather than seeing suburban residential areas as homogenous, greater attention should be paid to differences within such areas....

  17. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  18. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs.

    Science.gov (United States)

    Lo, Wu-Chia; Chang, Chih-Ming; Liao, Li-Jen; Wang, Chi-Te; Young, Yi-Ho; Chang, Yih-Leong; Cheng, Po-Wen

    2015-01-01

    To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (potolith dysfunction. D-Met attenuated the reduced ATPase activities and increased oxidative stress induced by cisplatin toxicity in the otolith organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. [The importance of vestibular evoked myogenic potentials for the assessment of the otolith function in the patients presenting with benign paroxysmal positional vertigo].

    Science.gov (United States)

    Kunel'skaya, N L; Baybakova, E V; Guseva, A L; Chugunova, M A; Manaenkova, E A

    The objective of the present study was to evaluate the otolith function in the patients presenting with idiopathic benign paroxysmal positional vertigo (pBPPV) attributable to the occlusion of the posterior semicircular canal (PSCC) of the inner ear with the use of vestibular evoked myogenic potentials (VEMP). Cervical (cVEMP) and ocular VEMP (oVEMP) were measured in 34 patients with idiopathic pBPPV before and 7 days after the treatment by means of reposition maneuvers. The results of the repeated Dix-Hallpike test performed 7 days after the repositioning maneuver were negative in 27 patients and positive in 7 patients. There was no statistically significant difference in the amplitude of cervical VEMP between the healthy and affected ears either before or after the repositioning treatment. The measurement of oVEMP revealed a reduction of the response amplitude on the affected side. The average values of the plnl on the healthy side were 12.84±1.09 and those on the affected side 4.62±0.69 (potolith function.

  20. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration.

    Science.gov (United States)

    Gürkov, Robert; Speierer, Guillaume; Wittwer, Luis; Kalla, Roger

    Recently, it could be demonstrated that an increased intracranial pressure causes a modulation of the air conducted sound evoked ocular vestibular evoked myogenic potential (oVEMP). The mechanism for this modulation is not resolved and may depend on a change of either receptor excitability or sound energy transmission. oVEMPs were elicited in 18 healthy subjects with a minishaker delivering 500 and 1000 Hz tone bursts, in supine and tilted positions. The study could confirm the frequency tuning of oVEMP. However, at neither stimulus frequency could a modulating effect of increased intracranial pressure be observed. These data suggest that the observed modulation of the oVEMP response by an increased intracranial pressure is primarily due to the effect of an increased intralabyrinthine pressure onto the stiffness of the inner ear contents and the middle ear-inner ear junction. Future studies on the effect of intracranial pressure on oVEMP should use air-conducted sound and not bone-conducted vibration.

  1. Ocular vestibular evoked myogenic potentials in response to air-conducted 500 Hz short tones: Effect of stimulation procedure (monaural or binaural), age and gender.

    Science.gov (United States)

    Versino, Maurizio; Colnaghi, Silvia; Ranzani, Marina; Alloni, Roberto; Bolis, Carlotta; Sacco, Simone; Moglia, Arrigo; Callieco, Roberto

    2015-01-01

    The ocular vestibular myogenic potentials (oVEMP) can be elicited by monaural air-conducted sound stimulation, and are usually recorded from the contralateral eye. In clinical setting a binaural stimulation would save time and require less effort from the subjects. We evaluated the differences between monaural and binaural stimulation, and the possible effect of age and gender on oVEMP parameters. Air-conducted oVEMP were recorded by binaural and by monaural stimulation in a group of 54 normal subjects, aged from 12 to 83 years, and in 50 vestibular patients. From each side, we measured the latency of the N1 component, and the peak-to-peak N1-P1 amplitude. For both parameters we also computed the asymmetry ratio. In normal subjects binaural stimulation produced slightly larger responses than monaural stimulation; detectability, latency and amplitude ratio were the same for the two techniques. We found no differences related to gender, and the age-induced amplitude decline was likely to be negligible.oVEMP recorded not in an acute phase of their disorder, proved to be abnormal in about 20% of the patients, and the normal or abnormal findings obtained either with monaural or with binaural stimulation were always concordant. The oVEMP obtained after binaural and monaural stimulation are very similar, and they are largely independent from age and gender.

  2. β-Hydroxy-β-Methylbutyrate Did Not Enhance High Intensity Resistance Training-Induced Improvements in Myofiber Dimensions and Myogenic Capacity in Aged Female Rats

    Science.gov (United States)

    Kim, Jeong-Su; Park, Young-Min; Lee, Sang-Rok; Masad, Ihssan S.; Khamoui, Andy V.; Jo, Edward; Park, Bong-Sup; Arjmandi, Bahram H.; Panton, Lynn B.; Lee, Won Jun; Grant, Samuel C.

    2012-01-01

    Older women exhibit blunted skeletal muscle hypertrophy following resistance training (RT) compared to other age and gender cohorts that is partially due to an impaired regenerative capacity. In the present study, we examined whether β-hydroxy-β-methylbutyrate (HMB) provision to aged female rodents would enhance regenerative mechanisms and facilitate RT-induced myofiber growth. Nineteen-month old female Sprague-Dawley rats were randomly divided into three groups: HMB (0.48 g/kg/d; n = 6), non-HMB (n = 6), and control (n = 4). HMB and non-HMB groups underwent RT every third day for 10 weeks using a ladder climbing apparatus. Whole body strength, grip strength, and body composition was evaluated before and after RT. The gastrocnemius and soleus muscles were analyzed using magnetic resonance diffusion tensor imaging, RT-PCR, and immunohistochemistry to determine myofiber dimensions, transcript expression, and satellite cells/myonuclei, respectively. ANOVAs were used with significance set at p HMB group (+33%) whereas MGF and myogenin increased significantly in both groups (+32–40%). Our findings suggest that HMB did not further enhance intense RT-mediated myogenic mechanisms and myofiber CSA in aged female rats. PMID:23149873

  3. Function of caspase-14 in trophoblast differentiation

    Directory of Open Access Journals (Sweden)

    Charles Adrian K

    2009-09-01

    Full Text Available Abstract Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.

  4. Distinguishing among potential mechanisms of singleton suppression.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  6. Study of mesanchymal stem cells derived from human umbilical cord vein wall and determining the Process of differentiation to cartilage and bone

    Directory of Open Access Journals (Sweden)

    MohammadAli Zare

    2015-01-01

    Full Text Available Background: Mesenchymal stem cells (MSCs comprise a rare population of multipotent progenitors capable of supporting hematopoiesis and differentiating into three (osteogenic, adipogenic, and chondrogenic or more (myogenic, cardiomyogenic, etc. lineages. Due to this ability, MSCs appear to be an attractive tool in the context of tissue engineering and cell-based therapy. Currently, bone marrow represents the main source of MSCs for both experimental and clinical studies. The purpose of this study was isolation and quantitative comparison of mesenchymal stem cells derived from umbilical vein. Materials and Methods: In this study, 35 samples of umbilical cord of healthy full- term newborn were studied. Results: The cells had fibroblastoid like appearance and had revealed the potential to differentiate into three linage of bone, Adipose and cartilage. Surface markers for mesenchymal nature were their demonstratives. Conclusion: Based on our findings the mesenchymal stem cells, from umbilical vein wall can be isolated, cultured and differentiated into three categories of bone, cartilage and adipose.

  7. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  8. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  9. Differential topology

    CERN Document Server

    Guillemin, Victor

    2010-01-01

    Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea-transversality-the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main

  10. TGF-β's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    International Nuclear Information System (INIS)

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-01-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner

  11. Interocular suppression in amblyopia for global orientation processing.

    Science.gov (United States)

    Zhou, Jiawei; Huang, Pi-Chun; Hess, Robert F

    2013-04-22

    We developed a dichoptic global orientation coherence paradigm to quantify interocular suppression in amblyopia. This task is biased towards ventral processing and allows comparison with two other techniques-global motion processing, which is more dorsally biased, and binocular phase combination, which most likely reflects striate function. We found a similar pattern for the relationship between coherence threshold and interocular contrast curves (thresholds vs. interocular contrast ratios or TvRs) in our new paradigm compared with those of the previous dichoptic global motion coherence paradigm. The effective contrast ratios at balance point (where the signals from the two eyes have equal weighting) in our new paradigm were larger than those of the dichoptic global motion coherence paradigm but less than those of the binocular phase combination paradigm. The measured effective contrast ratios in the three paradigms were also positively correlated with each other, with the two global coherence paradigms having the highest correlation. We concluded that: (a) The dichoptic global orientation coherence paradigm is effective in quantifying interocular suppression in amblyopia; and (b) Interocular suppression, while sharing a common suppression mechanism at the early stage in the pathway (e.g., striate cortex), may have additional extra-striate contributions that affect both dorsal and ventral streams differentially.

  12. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  13. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  14. Chk1 suppressed cell death

    Directory of Open Access Journals (Sweden)

    Meuth Mark

    2010-09-01

    Full Text Available Abstract The role of Chk1 in the cellular response to DNA replication stress is well established. However recent work indicates a novel role for Chk1 in the suppression of apoptosis following the disruption of DNA replication or DNA damage. This review will consider these findings in the context of known pathways of Chk1 signalling and potential applications of therapies that target Chk1.

  15. In-Flight Suppressant Deployment Temperatures

    National Research Council Canada - National Science Library

    Bein, Donald

    2006-01-01

    .... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

  16. Overnight Dexamethasone Suppression Test in the Diagnosis of Cushing's Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Esfahanian

    2010-08-01

    Full Text Available Realizing the cause of Cushing's Syndrome (CS is one of the most challenging processes in clinical endocrinology. The long high dose dexamethasone suppression test (standard test is costly and need an extended inpatient stay. In this study we want to show the clinical utility of the overnight 8 mg dexamethasone suppression test (DST for differential diagnosis of CS in a referral center. Retrospectively from 2002-2005 we selected the patients of endocrinology ward in Imam hospital who were admitted with the diagnosis of Cushing syndrome and had 8 mg DST (modified test along with classic DST. In modified test a decrease in an 8 AM serum cortisol level of 50% or more is thought to indicate suppression and we compared the results of modified test with standard test. This test had been done on 42 patients: 10 male (23% and 32 female (76%. The mean age of patients was 31.39 (15-63, 32 with proven pituitary Cushing's disease, 7 with primary adrnal tumors and 3 with ectopic ACTH syndrome. The standard test according to 50% suppression of UFC had 90.62% sensitivity, and according to 90% suppression had 43.75% sensitivity. The sensitivity of this test was 71.85% for serum cortisol suppression. The modified test (8 mg overnight DST had 78% sensitivity. All of these tests had 100% specificity for the diagnosis of Cushing's disease. The positive predictive vale (PPV of all of these tests was 100%. The negative predictive value (NPV of modified test for the diagnosis of Cushing's disease was 58.82%. In standard test the NPV of serum cortisol was 52.6%, UFC 50% had 76.9% NPV and UFC 90% had 35.7% NPV. The results of serum cortisol suppression in modified test is better than standard test. Although 50% suppression of UFC in standard test had greater sensitivity than modified test, collecting of urine is difficult, time consuming and needing hospitalization, so we advice modified test that is much simpler and more convenient instead of standard test in the first

  17. Suppression and repression: A theoretical discussion illustrated by a movie

    Directory of Open Access Journals (Sweden)

    Maria Lucia de Souza Campos Paiva

    2012-02-01

    Full Text Available The first translations of Freud's work into Portuguese have presented problems because they were not translated from the German language. More than a hundred years after the beginning of Psychoanalysis, there are still many discussions on Freud's metapsychology and a considerable difficulty in obtaining a consensus on the translation of some concepts. This paper refers back to Freud's concepts of primal repression, repression and suppression. In order to discuss such concepts, we have made use of a film, co-produced by Germans and Argentineans, which is named "The Song in me" (Das Lied in mir, released to the public in 2011 and directed by Florian Micoud Cossen. Through this motion picture, the following of Freud's concepts are analyzed, and the differentiation between them is discussed: suppression and repression, as well as the importance of their precise translation.

  18. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  19. Influence of gender on the vestibular evoked myogenic potential Influência do gênero no potencial miogênico evocado vestibular

    Directory of Open Access Journals (Sweden)

    Aline Tenório Lins Carnaúba

    2011-04-01

    Full Text Available There is no consensus on the relevance of factors that influence gender differences in the behavior of muscles. Some studies have reported a relationship between muscle tension and amplitude of the vestibular evoked myogenic potential; others, that results depend on which muscles are studied or on how much load is applied. AIMS: This study aims to compare vestibular evoked myogenic potential parameters between genders in young individuals. METHODS: Eighty young adults were selected - 40 men and 40 women. Stimuli were averaged tone-bursts at 500 Hz, 90 dBHL intensity, and a 10-1000 Hz bandpass filter with amplification of 10-25 microvolts per division. The recordings were made in 80 ms windows. STUDY TYPE: An experimental and prospective study. RESULTS: No significant gender differences were found in wave latency - p = 0.19 and p = 0.50 for waves P13 and N23, respectively. No differences were found in amplitude values - p = 0.28 p = 0.40 for waves P13 and N23, respectively. CONCLUSION: There were no gender differences in latency and amplitude factors; the sternocleidomastoid muscle strain was monitored during the examination.Não existe consenso sobre a relevância dos fatores que influenciam as diferenças entre gêneros no comportamento dos músculos. Alguns estudos relatam existir uma relação entre tensão muscular e amplitude do potencial miogênico evocado vestibular, outros apenas que os resultados dependem dos músculos estudados ou do aumento da carga imposta. OBJETIVOS: Este estudo tem como objetivo comparar os parâmetros do potencial miogênico evocado vestibular, entre os gêneros, em indivíduos jovens. MATERIAL E MÉTODO: Selecionaram-se 80 adultos jovens, sendo 40 homens e 40 mulheres. Foram promediados estímulos tone burts na frequência de 500Hz, na intensidade de 90 dBNA, utilizando-se um filtro passa banda de 10 a 1000 Hz, com amplificação de 10 a 25 microvolts por divisão. Os registros foram realizados em janelas de 80

  20. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  1. Myeloma cells suppress osteoblasts through sclerostin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, S; Brunetti, G; Oranger, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Mori, G [Department of Biomedical Science, University of Foggia, Foggia (Italy); Sardone, F [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, G; Rinaldi, E; Curci, P; Liso, V [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Passeri, G [Department of Internal Medicine and Biomedical Sciences, Center for Metabolic Bone Diseases, University of Parma, Parma (Italy); Zallone, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Rizzi, R [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Grano, M [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2011-06-01

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.

  2. Practice guideline: Cervical and ocular vestibular evoked myogenic potential testing: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.

    Science.gov (United States)

    Fife, Terry D; Colebatch, James G; Kerber, Kevin A; Brantberg, Krister; Strupp, Michael; Lee, Hyung; Walker, Mark F; Ashman, Eric; Fletcher, Jeffrey; Callaghan, Brian; Gloss, David S

    2017-11-28

    To systematically review the evidence and make recommendations with regard to diagnostic utility of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP, respectively). Four questions were asked: Does cVEMP accurately identify superior canal dehiscence syndrome (SCDS)? Does oVEMP accurately identify SCDS? For suspected vestibular symptoms, does cVEMP/oVEMP accurately identify vestibular dysfunction related to the saccule/utricle? For vestibular symptoms, does cVEMP/oVEMP accurately and substantively aid diagnosis of any specific vestibular disorder besides SCDS? The guideline panel identified and classified relevant published studies (January 1980-December 2016) according to the 2004 American Academy of Neurology process. Level C positive: Clinicians may use cVEMP stimulus threshold values to distinguish SCDS from controls (2 Class III studies) (sensitivity 86%-91%, specificity 90%-96%). Corrected cVEMP amplitude may be used to distinguish SCDS from controls (2 Class III studies) (sensitivity 100%, specificity 93%). Clinicians may use oVEMP amplitude to distinguish SCDS from normal controls (3 Class III studies) (sensitivity 77%-100%, specificity 98%-100%). oVEMP threshold may be used to aid in distinguishing SCDS from controls (3 Class III studies) (sensitivity 70%-100%, specificity 77%-100%). Level U: Evidence is insufficient to determine whether cVEMP and oVEMP can accurately identify vestibular function specifically related to the saccule/utricle, or whether cVEMP or oVEMP is useful in diagnosing vestibular neuritis or Ménière disease. Level C negative: It has not been demonstrated that cVEMP substantively aids in diagnosing benign paroxysmal positional vertigo, or that cVEMP or oVEMP aids in diagnosing/managing vestibular migraine. © 2017 American Academy of Neurology.

  3. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    Science.gov (United States)

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. © 2016 Anatomical Society.

  4. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  5. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  6. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis.

    Science.gov (United States)

    Rønning, Sissel B; Carlson, Cathrine R; Stang, Espen; Kolset, Svein O; Hollung, Kristin; Pedersen, Mona E

    2015-01-01

    The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.

  7. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis.

    Directory of Open Access Journals (Sweden)

    Sissel B Rønning

    Full Text Available The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.

  8. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Watanabe, Tomonobu M.; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-01-01

    Highlights: ► Change in the epigenetic landscape during myogenesis was optically investigated. ► Mobility of nuclear proteins was used to state the epigenetic status of the cell. ► Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. ► Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  9. Pressure suppression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-01-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  10. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Science.gov (United States)

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  11. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  13. The role of suppression in amblyopia.

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  14. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Science.gov (United States)

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce ...

  15. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  16. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues

    DEFF Research Database (Denmark)

    Milićević, Novica M; Nohroudi, Klaus; Schmidt, Friederike

    2016-01-01

    LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size...

  17. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  18. NT-proBNP is increased in differentiated thyroid carcinoma patients and may predict cardiovascular risk

    NARCIS (Netherlands)

    Klein Hesselink, Esther N; Horst-Schrivers, van der Anouk; van der Horst, Iwan C C; Bakker, Stephan J L; Muller Kobold, Anneke C.; Brouwers, Adrienne H; de Bock, Geertruida H; Gietema, Jourik A; Dullaart, Robin P F; Links, Thera P; Lefrandt, Joop D

    INTRODUCTION: Chronic suppression of TSH in patients treated for differentiated thyroid carcinoma (DTC) may induce cardiac damage and increase risk for cardiovascular events and premature mortality. We aimed to compare circulating concentrations of N-terminal pro Brain Natriuretic Peptide

  19. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  20. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  1. The Cervical Vestibular-Evoked Myogenic Potentials (cVEMPs) Recorded Along the Sternocleidomastoid Muscles During Head Rotation and Flexion in Normal Human Subjects.

    Science.gov (United States)

    Ashford, Alexander; Huang, Jun; Zhang, Chunming; Wei, Wei; Mustain, William; Eby, Thomas; Zhu, Hong; Zhou, Wu

    2016-08-01

    Tone burst-evoked myogenic potentials recorded from tonically contracted sternocleidomastoid muscles (SCM) (cervical VEMP or cVEMP) are widely used to assess the vestibular function. Since the cVEMP response is mediated by the vestibulo-collic reflex (VCR) pathways, it is important to understand how the cVEMPs are determined by factors related to either the sensory components (vestibular end organs) or the motor components (SCM) of the VCR pathways. Compared to the numerous studies that have investigated effects of sound parameters on the cVEMPs, there are few studies that have examined effects of SCM-related factors on the cVEMPs. The goal of the present study is to fill this knowledge gap by testing three SCM-related hypotheses. The first hypothesis is that contrary to the current view, the cVEMP response is only present in the SCM ipsilateral to the stimulated ear. The second hypothesis is that the cVEMP response is not only dependent on tonic level of the SCM, but also on how the tonic level is achieved, i.e., by head rotation or head flexion. The third hypothesis is that the SCM is compartmented and the polarity of the cVEMP response is dependent on the recording site. Seven surface electrodes were positioned along the left SCMs in 12 healthy adult subjects, and tone bursts were delivered to the ipsilateral or contralateral ear (8 ms plateau, 1 ms rise/fall, 130 dB SPL, 50-4000 Hz) while subjects activated their SCMs by head rotation (HR condition) or chin downward head flexion (CD condition). The first hypothesis was confirmed by the finding that the contralateral cVEMPs were minimal at all recording sites for all the tested tones during both HR and CD conditions. The second hypothesis was confirmed by the finding that the ipsilateral cVEMPs were larger in HR condition than in CD condition at recording sites above and below the SCM midpoint. Finally, the third hypothesis was confirmed by the finding that the cVEMPs exhibit reversed polarities at the sites

  2. Suppression of autoimmune retinal inflammation by an antiangiogenic drug.

    Directory of Open Access Journals (Sweden)

    Takeru Yoshimura

    Full Text Available Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4(+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17 which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2 inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4(+ T cells, and a general normalization of the systemic immune reaction.

  3. Suppression of Autoimmune Retinal Inflammation by an Antiangiogenic Drug

    Science.gov (United States)

    Bazinet, Lauren; D’Amato, Robert J.

    2013-01-01

    Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17) which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2) inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR) mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU) by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4+ T cells, and a general normalization of the systemic immune reaction. PMID:23785488

  4. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Li

    2015-10-01

    Full Text Available In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression, the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature and divisive normalization contribute to interocular suppression.

  5. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Science.gov (United States)

    Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J

    2015-10-01

    In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.

  6. The omega-3 fatty acid, eicosapentaenoic acid (EPA, prevents the damaging effects of tumour necrosis factor (TNF-alpha during murine skeletal muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Pearson Stephen

    2008-07-01

    Full Text Available Abstract Background Eicosapentaenoic acid (EPA is a ώ-3 polyunsaturated fatty acid with anti-inflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p p p p p p Conclusion In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury.

  7. Staphylococcal enterotoxin C2 promotes osteogenesis and suppresses osteoclastogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Fu, Wei-ming; Zhu, Xiao; Wang, Hua; Wei-Mao Wang; Chen, Ju-yu; Liang, Yan; Zhang, Jin-fang; Kung, Hsiang-fu

    2014-03-10

    As a super-antigen, staphylococcal enterotoxin C2 (SEC2) stimulates the release of massive inflammatory cytokines such as interferon-gamma (IFN-γ), interleukin-1 (IL-1) and interleukin-2 (IL-2) which are documented to implicate osteoblast differentiation. In the present study, SEC2 was found to significantly improve the osteoblast differentiation by up-regulating BMP2 and Runx2/Cbfa1 expression. Interferon (IFN)-inducible gene IFI16, a co-activator of Runx2/Cbfa1, was also activated by SEC2 in the osteoblast differentiation. In addition, exogenous introduction of SEC2 stimulated OPG expression and suppressed RANKL, suggesting suppression of osteoclastogenesis in hMSCs. Therefore, our results displayed that SEC2 plays an important role in the commitment of MSC to the osteoblast and it might be a potential new therapeutic candidate for bone regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  9. Concentrated Differential Privacy

    OpenAIRE

    Dwork, Cynthia; Rothblum, Guy N.

    2016-01-01

    We introduce Concentrated Differential Privacy, a relaxation of Differential Privacy enjoying better accuracy than both pure differential privacy and its popular "(epsilon,delta)" relaxation without compromising on cumulative privacy loss over multiple computations.

  10. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming

    2015-08-26

    The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/gene profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of