WorldWideScience

Sample records for suppressed uvb-induced cox-2

  1. Orange peel extract, containing high levels of polymethoxyflavonoid, suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells through PPAR-γ activation.

    Science.gov (United States)

    Yoshizaki, Norihiro; Fujii, Takahiro; Masaki, Hitoshi; Okubo, Takeshi; Shimada, Kunio; Hashizume, Ron

    2014-10-01

    Ultraviolet light (UV) induces an inflammatory response in the skin by cyclooxygenase (COX)-2 expression and prostaglandin (PG) E2 production. Citrus peel has been used as a natural medicine. It contains polymethoxyflavonoids (PMFs) as a major ingredient, which have anti-inflammatory activity. We obtained orange peel extract containing high levels of PMFs. The extract suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells. Furthermore, it was found that this extract acted as a peroxisome proliferator-activated receptor (PPAR)-γ agonist. The suppression of UVB-induced COX-2 expression by this extract was inhibited by GW 9662 and T0070907, which are both PPAR-γ antagonists. It is therefore suggested that orange peel extract, containing high levels of PMFs, suppresses UVB-induced COX-2 expression and PGE2 production through PPAR-γ. Hence, these extracts could provide useful protection against or alleviation of UV damage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    Science.gov (United States)

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  3. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes.

    Directory of Open Access Journals (Sweden)

    MinJeong Kim

    Full Text Available Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin.

  4. 1,8-cineole prevents UVB-induced skin carcinogenesis by targeting the aryl hydrocarbon receptor

    Science.gov (United States)

    Park, Joon; Kim, Yong Ho; Lee, Nam Hyouck; Kim, Young Eon; Kim, Yoonsook; Song, Kyung-Mo; Jung, Sung Keun

    2017-01-01

    1,8-cineole is a natural monoterpene cyclic ether present in Eucalyptus, and has been reported to exhibit anti-inflammatory and antioxidant effects. However, the preventive effect of 1,8-cineole on skin carcinogenesis and the molecular mechanism of action responsible remains unknown. In the present study, we investigated the effect of 1,8-cineole on UVB-induced skin carcinogenesis. 1,8-cineole inhibited UVB-induced cyclooxygenase-2 (COX-2) protein and mRNA expression and prostaglandin E2 (PGE2) generation in HaCaT cells. 1,8-cineole also inhibited phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and phosphorylation of its upstream kinases, c-Src and epidermal growth factor receptor (EGFR). Quantitative real-time RT-PCR (qRT-PCR) and drug affinity responsive target stability (DARTS) assay results showed that 1,8-cineole suppressed UVB-induced expression of a target gene of the aryl hydrocarbon receptor (AhR), cyp1a1, and directly binds to AhR. Knockdown of AhR suppressed COX-2 expression as well as phosphorylation of ERK1/2 in HaCaT cells. Furthermore, topical treatment of 1,8-cineole on mouse skin delayed tumor incidence and reduced tumor numbers, while inhibiting COX-2 expression in vivo. Taken together, these results suggest that 1,8-cineole is a potent chemopreventive agent that inhibits UVB-induced COX-2 expression by targeting AhR to suppress UVB-induced skin carcinogenesis. PMID:29285309

  5. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice.

    Science.gov (United States)

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yao, Ruiquing; Nabeshima, Kazumi; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2016-07-01

    This study reports the effects of oral Aloe vera gel powder (AVGP) containing Aloe sterols on skin elasticity and the extracellular matrix in ultraviolet B (UVB)-irradiated hairless mice. Ten-week-old hairless mice were fed diets containing 0.3% AVGP for 8 weeks and irradiated UVB for 6 weeks. Mice treated with AVGP showed significant prevention of the UVB-induced decrease in skin elasticity. To investigate the mechanism underlying this suppression of skin elasticity loss, we measured the expression of matrix metalloproteinase (MMP)-2, -9, and -13. AVGP prevented both the UVB-induced increases in MMPs expressions. Moreover, we investigated hyaluronic acid (HA) content of mice dorsal skin and gene expression of HA synthase-2 (Has2). In the results, AVGP oral administration prevented UVB-induced decreasing in skin HA content and Has2 expression and attenuates the UVB-induced decrease in serum adiponectin, which promotes Has2 expression. These results suggested that AVGP has the ability to prevent the skin photoaging.

  6. Combination therapy of PKCζ and COX-2 inhibitors synergistically suppress melanoma metastasis.

    Science.gov (United States)

    Zhou, Ping; Qin, Jiaqi; Li, Yuan; Li, Guoxia; Wang, Yinsong; Zhang, Ning; Chen, Peng; Li, Chunyu

    2017-09-02

    Metastatic malignant melanoma is one of the most aggressive malignancies and its treatment remains challenging. Recent studies demonstrate that the melanoma metastasis has correlations with the heightened activations of protein kinase C ζ (PKCζ) and cyclooxygenase-2 (COX-2) signaling pathways. Targeted inhibitions for PKCζ and COX-2 have been considered as the promising strategies for the treatment of melanoma metastasis. Thus, the PKCζ inhibitor J-4 and COX-2 inhibitor Celecoxib were combined to treat melanoma metastasis in this study. The Transwell assay, Wound-healing assay and Adhesion assay were used to evaluate the inhibition of combined therapy of J-4 and Celecoxib on melanoma cells invasion, migration and adhesion in vitro, respectively. The impaired actin polymerization was observed by confocal microscope and inactivated signal pathways about PKCζ and COX-2 were confirmed by the Western blotting assay. The B16-F10/C57BL mouse melanoma model was used to test the inhibition of combined therapy of J-4 and Celecoxib on melanoma metastasis in vivo. The in vitro results showed that the combination of J-4 and Celecoxib exerted synergistic inhibitory effects on the migration, invasion and adhesion of melanoma B16-F10 and A375 cells with combination index less than 1. The actin polymerization and phosphorylation of Cofilin required in cell migration were severely impaired, which is due to the inactivation of PKCζ related signal pathways and the decrease of COX-2. The combined inhibition of PKCζ and COX-2 induced Mesenchymal-Epithelial Transition (MET) in melanoma cells with the expression of E-Cadherin increasing and Vimentin decreasing. The secretion of MMP-2/MMP-9 also significantly decreased after the combination treatment. In C57BL/6 mice intravenously injected with B16-F10 cells (5 × 10 4 cells/mouse), co-treatment of J-4 and Celecoxib also severely suppressed melanoma lung metastasis. The body weight monitoring and HE staining results indicated the

  7. TGF-β Suppresses COX-2 Expression by Tristetraprolin-Mediated RNA Destabilization in A549 Human Lung Cancer Cells

    Science.gov (United States)

    Kang, Soyeong; Min, Ahrum; Im, Seock-Ah; Song, Sang-Hyun; Kim, Sang Gyun; Kim, Hyun-Ah; Kim, Hee-Jun; Oh, Do-Youn; Jong, Hyun-Soon; Kim, Tae-You; Bang, Yung-Jue

    2015-01-01

    Purpose Overexpression of cyclooxygenase 2 (COX-2) is thought to promote survival of transformed cells. Transforming growth factor β (TGF-β) exerts anti-proliferative effects on a broad range of epithelial cells. In the current study, we investigated whether TGF-β can regulate COX-2 expression in A549 human lung adenocarcinoma cells, which are TGF-β-responsive and overexpress COX-2. Materials and Methods Western blotting, Northern blotting, and mRNA stability assays were performed to demonstrate that COX-2 protein and mRNA expression were suppressed by TGF-β. We also evaluated the effects of tristetraprolin (TTP) on COX-2 mRNA using RNA interference. Results We demonstrated that COX-2 mRNA and protein expression were both significantly suppressed by TGF-β. An actinomycin D chase experiment demonstrated that COX-2 mRNA was more rapidly degraded in the presence of TGF-β, suggesting that TGF-β–induced inhibition of COX-2 expression is achieved via decreased mRNA stability. We also found that TGF-β rapidly and transiently induced the expression of TTP, a well-known mRNA destabilizing factor, before suppression of COX-2 mRNA expression was observed. Using RNA interference, we confirmed that increased TTP levels play a pivotal role in the destabilization of COX-2 mRNA by TGF-β. Furthermore, we showed that Smad3 is essential to TTP-dependent down-regulation of COX-2 expression in response to TGF-β. Conclusion The results of this study show that TGF-β down-regulated COX-2 expression via mRNA destabilization mediated by Smad3/TTP in A549 cells. PMID:25544576

  8. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation

    Directory of Open Access Journals (Sweden)

    Thanh Sang Vo

    2018-01-01

    Full Text Available UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.

  9. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression[S

    Science.gov (United States)

    Hotta, Mariko; Nakata, Rieko; Katsukawa, Michiko; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2010-01-01

    Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin biosynthesis, plays a key role in inflammation and circulatory homeostasis. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor superfamily and are involved in the control of COX-2 expression, and vice versa. Here, we show that COX-2 promoter activity was suppressed by essential oils derived from thyme, clove, rose, eucalyptus, fennel, and bergamot in cell-based transfection assays using bovine arterial endothelial cells. Moreover, from thyme oil, we identified carvacrol as a major component of the suppressor of COX-2 expression and an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to carvacrol treatment. In human macrophage-like U937 cells, carvacrol suppressed lipopolysaccharide-induced COX-2 mRNA and protein expression, suggesting that carvacrol regulates COX-2 expression through its agonistic effect on PPARγ. These results may be important in understanding the antiinflammatory and antilifestyle-related disease properties of carvacrol. PMID:19578162

  10. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  11. Piper retrofractum Vahl. Extract, as a PPARδ and AMPK Activator, Suppresses UVB-Induced Photoaging through Mitochondrial Biogenesis and MMPs Inhibition in Human Dermal Fibroblasts and Hairless Mice

    Directory of Open Access Journals (Sweden)

    Jungon Yun

    2018-01-01

    Full Text Available Photoaging occurs by UVB-irradiation and involves production of reactive oxygen species (ROS and overexpression of matrix metalloproteinases (MMPs, leading to extracellular matrix damage. Piper retrofractum Vahl. is used as a traditional medicine for antiflatulence, expectorant, sedative, and anti-irritant; however, its antiphotoaging effect has not yet been studied. The current study investigated the antiphotoaging effect of standardized Piper retrofractum extract (PRE on UVB-damaged human dermal fibroblasts and hairless mouse skin. PRE treatment activated the peroxisome proliferator-activated receptor delta (PPARδ and the adenosine monophosphate-activated protein kinase (AMPK, consequently upregulating mitochondrial synthesis and reducing ROS production. Additionally, PRE inhibited MMPs expression via suppressing mitogen-activated protein kinase (MAPK and activator protein-1 (AP-1. PRE downregulated UVB-induced inflammatory reactions by inhibiting the nuclear factor-kappa B (NF-κB activity. PRE also enhanced transforming growth factor-beta (TGF-β and the Smad signaling pathway, thereby promoting procollagen gene transcription. Furthermore, oral administration of PRE (300 mg/kg/day similarly regulated the signaling pathways and increased antioxidant enzyme expression, thus attenuating physiological deformations, such as wrinkle formation and erythema response. Collectively, these results suggest that PRE acts as a potent antiphotoaging agent via PPARδ and AMPK activation.

  12. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses

    Science.gov (United States)

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Park, Chan-Ik; Jang, Jung-Hee

    2013-01-01

    Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators. Sargassum fulvellum is a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract of Sargassum fulvellum (SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60 mJ/cm2) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2 (PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200 mJ/cm2) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-α and subsequently attenuated generation of PGE2 and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages. PMID:23935680

  13. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Shi, Xianglin [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion.

  14. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    International Nuclear Information System (INIS)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm 2 ) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E 2 (PGE 2 ), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry

  15. COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro

    Directory of Open Access Journals (Sweden)

    Petasis Nicos A

    2008-05-01

    Full Text Available Abstract Background An increasing number of reports is challenging the notion that the antitumor potential of the selective COX-2 inhibitor celecoxib (Celebrex® is mediated primarily via the inhibition of COX-2. We have investigated this issue by applying two different analogs of celecoxib that differentially display COX-2-inhibitory activity: the first analog, called unmethylated celecoxib (UMC, inhibits COX-2 slightly more potently than its parental compound, whereas the second analog, 2,5-dimethyl-celecoxib (DMC, has lost the ability to inhibit COX-2. Results With the use of glioblastoma and pancreatic carcinoma cell lines, we comparatively analyzed the effects of celecoxib, UMC, and DMC in various short-term (≤48 hours cellular and molecular studies, as well as in long-term (≤3 months focus formation assays. We found that DMC exhibited the most potent antitumor activity; celecoxib was somewhat less effective, and UMC clearly displayed the overall weakest antitumor potential in all aspects. The differential growth-inhibitory and apoptosis-stimulatory potency of these compounds in short-term assays did not at all correlate with their capacity to inhibit COX-2, but was closely aligned with their ability to trigger endoplasmic reticulum stress (ERS, as indicated by the induction of the ERS marker CHOP/GADD153 and activation of the ERS-associated caspase 7. In addition, we found that these compounds were able to restore contact inhibition and block focus formation during long-term, chronic drug exposure of tumor cells, and this was achieved at sub-toxic concentrations in the absence of ERS or inhibition of COX-2. Conclusion The antitumor activity of celecoxib in vitro did not involve the inhibition of COX-2. Rather, the drug's ability to trigger ERS, a known effector of cell death, might provide an alternative explanation for its acute cytotoxicity. In addition, the newly discovered ability of this drug to restore contact inhibition and

  16. (UVB)-induced DNA damage

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... E-mail: renu2498@hotmail.com. Abbreviations: POE, Pandanus ordoratissimus extract; KSCs, keratinocyte stem cells; AAG, ascorbyl glucoside. as the major cause of human skin cancer. It is well established that UVB induced DNA damage by photoi- somerization, resulting in the formation of the 6-4 photo-.

  17. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    Klenke, Frank Michael; Gebhard, Martha-Maria; Ewerbeck, Volker; Abdollahi, Amir; Huber, Peter E; Sckell, Axel

    2006-01-01

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  18. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX-2 expression in murine macrophages.

    Science.gov (United States)

    Shao, Qin; Shen, Ling-Hong; Hu, Liu-Hua; Pu, Jun; Jing, Qing; He, Ben

    2012-02-01

    Macrophages crosstalk with oxidized low-density lipoprotein (oxLDL), play a critical role in the initiation, progression, and subsequently stability of atherosclerotic plaques. Statins, inhibitors of HMG CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, reduce the expression of inflammatory proteins in addition to their lipid-lowering action. However, the effect and detailed anti-inflammation mechanisms of statins in macrophages induced by oxLDL remain unclearly. In the present study, we investigated the effect of atorvastatin on inflammatory response upon oxLDL stimulation in murine macrophages and analyzed the underlying mechanisms. Tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were assayed by real-time PCR. The expression of cyclooxygenases-2 (COX-2) was detected by real-time PCR and Western blotting. While mitogen-activated protein kinase (MAPK) phosphorylation and IκBα degradation were determined by Western blotting. Our results showed that exposure of RAW264.7 cells to oxLDL, substantially changed the morphology of the cells and increased TNFα and MCP-1 secretion. While pretreatment with atorvastatin resulted in a significant inhibition of oxLDL-induced morphological alteration and inflammatory cytokines expression in a dose-dependent fashion. Further investigation of the molecular mechanism revealed that oxLDL upregulated the transcription and protein expression of COX-2 in a time-dependent manner. Whereas, pretreatment with atorvastatin suppressed COX-2 expression, MAPK activation and IκBα degradation. Thus, we conclude that the anti-inflammatory effect of atorvastatin is mediated through the inhibition of proinflammatory COX-2. Furthermore, suppression of ERK phosphorylation and IκBα degradation is involved in this regulation. Our findings provide a novel evidence that statins suppress inflammatory response, exert its anti-atherogenic actions via against inflammation beyond cholesterol-lowing effect

  19. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO

  20. Licochalcone A, a Polyphenol Present in Licorice, Suppresses UV-Induced COX-2 Expression by Targeting PI3K, MEK1, and B-Raf

    Directory of Open Access Journals (Sweden)

    Nu Ry Song

    2015-02-01

    Full Text Available Licorice is a traditional botanical medicine, and has historically been commonly prescribed in Asia to treat various diseases. Glycyrrhizin (Gc, a triterpene compound, is the most abundant phytochemical constituent of licorice. However, high intake or long-term consumption of Gc has been associated with a number of side effects, including hypertension. However, the presence of alternative bioactive compounds in licorice with anti-carcinogenic effects has long been suspected. Licochalcone A (LicoA is a prominent member of the chalcone family and can be isolated from licorice root. To date, there have been no reported studies on the suppressive effect of LicoA against solar ultraviolet (sUV-induced cyclooxygenase (COX-2 expression and the potential molecular mechanisms involved. Here, we show that LicoA, a major chalcone compound of licorice, effectively inhibits sUV-induced COX-2 expression and prostaglandin E2 PGE2 generation through the inhibition of activator protein 1 AP-1 transcriptional activity, with an effect that is notably more potent than Gc. Western blotting analysis shows that LicoA suppresses sUV-induced phosphorylation of Akt/ mammalian target of rapamycin (mTOR and extracellular signal-regulated kinases (ERK1/2/p90 ribosomal protein S6 kinase (RSK in HaCaT cells. Moreover, LicoA directly suppresses the activity of phosphoinositide 3-kinase (PI3K, mitogen-activated protein kinase kinase (MEK1, and B-Raf, but not Raf-1 in cell-free assays, indicating that PI3K, MEK1, and B-Raf are direct molecular targets of LicoA. We also found that LicoA binds to PI3K and B-Raf in an ATP-competitive manner, although LicoA does not appear to compete with ATP for binding with MEK1. Collectively, these results provide insight into the biological action of LicoA, which may have potential for development as a skin cancer chemopreventive agent.

  1. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    International Nuclear Information System (INIS)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.; Wheeler-Jones, Caroline P.D.

    2008-01-01

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE 2 on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure of ECs to PGE 2 increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF 1α release and EC proliferation. In contrast, PGE 2 attenuated VEGF 165 -induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE 2 restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH 2 (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling

  2. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice.

    Science.gov (United States)

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Kim, Bo-Ae; Park, Chan-Ik; Jang, Jung-Hee

    2013-04-01

    Acute exposure to ultraviolet (UV) radiation causes pro-inflammatory responses via diverse mechanisms including oxidative stress. Codium fragile is a green alga of Codiales family and has been reported to exhibit anti-edema, anti-allergic, anti-protozoal and anti-mycobacterial activities. In this study, we have investigated a novel anti-inflammatory potential of C. fragile using in vitro cell culture as well as in vivo animal models. In HaCaT cells, buthanol and ethylacetate fractions of 80% methanol C. fragile extract (CFB or CFE) and a single compound, clerosterol (CLS) isolated from CFE attenuated UVB (60 mJ/cm(2))-induced cytotoxicity and reduced expression of pro-inflammatory proteins including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF- α). Moreover, CFB, CFE and CLS effectively suppressed UVB-induced production of pro-inflammatory mediators such as prostaglandin E2 (PGE2) and nitric oxide (NO). In another experiment, topical application of CFB, CFE or CLS prior to UVB irradiation (200 mJ/cm(2)) on BALB/c mice, inhibited the UVB-elevated protein levels of COX-2, iNOS, and TNF-α. Furthermore, CFB, CFE and CLS suppressed oxidative damages caused by UVB irradiation for example lipid peroxidation and/or protein carbonylation, which seemed to be mediated by up-regulation of antioxidant defense enzymes. These results suggest that C. fragile could be an effective therapeutic agent providing protection against UVB-induced inflammatory and oxidative skin damages. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Joseph, Binoy [Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536-0509 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Yin, Yuanqin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Lu, Jian [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); and others

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G

  4. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao

    2014-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE 2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE 2 production. • C3G inhibited

  5. Tempol reduces injury area in rat model of spinal cord contusion injury through suppression of iNOS and COX-2 expression.

    Science.gov (United States)

    Quan, Hong-Hua; Kang, Ku-Seong; Sohn, Yoon-Kyung; Li, Ming

    2013-09-01

    The present study focused on the biologic effects of tempol on anti-inflammatory and nitric oxide generation in contusion spinal cord injury (SCI). The animal model of SCI was induced by dropping a 10-g rod (2.0 mm in diameter) at a height of 25 mm. Tempol was injected intraperitoneally a dose of 100 mg/kg at 15 min before SCI. Controls was injected with saline. The contused spinal segments were removed according to time courses, and the expression level of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was analyzed along with the size of irreversibly damaged region. After SCI, the relative amounts of COX-2 and iNOS mRNA were peaked at 8 h after post-injury, and then decreased up to 7 days post-injury, and normal level at 14 days. Expression of COX-2 protein was peaked at 8 h post-injury. With the tempol pre-treatment, the immunoreactivity of COX-2 and nitrotyrosine in paraffin-embedded tissue slices was profoundly decreased. The irreversibly damaged area of the spinal cord was peaked at 3 days after SCI. With tempol pre-treatment, the irreversibly damaged area shows a statistically significant decrease at 3 days after SCI. These evidences indicate that tempol pre-treatment reduces irreversibly damaged area on the contusion SCI in rat. The mechanisms of biologic reactions of tempol might be related to the decreased expressions of COX-2 and iNOS in spinal cord cells, neurons and glia. It is expected that the tempol effect on the SCI is not only antioxidant activity but also anti-inflammatory reaction.

  6. Madecassoside suppresses proliferation and invasiveness of HGF-induced human hepatocellular carcinoma cells via PKC-cMET-ERK1/2-COX-2-PGE2 pathway.

    Science.gov (United States)

    Li, Zexin; You, Kun; Li, Jian; Wang, Ying; Xu, Hongwei; Gao, Baoqin; Wang, Jianguo

    2016-04-01

    Recent studies showed that Madecassoside (MAD), a pentacyclic triterpene isolated from Centella asitica (L.), was used as a therapeutic agent in wound healing and also as an anti-inflammatory, anti-oxidative activities and anti-aging agent. However, its role in cancer has not been elucidated. In our present study, hepatocyte growth factor (HGF) induced the phosphorylation of its corresponding receptor cMET, increased expression of cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in human hepatocellular carcinoma (HCC) cells lines (HepG2 and SMMC-77), and this effect was inhibited by MAD in a dose-dependent manner. In addition, MAD exhibited significant anti-proliferative and anti-invasive effect in HGF-induced HepG2 and SMMC-77 cells. Moreover, MAD inhibited the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and the protein kinase C (PKC) activity in HGF-induced HepG2 and SMMC-77 cells. This conclusion was consistent with the effect of selective COX-2 inhibitor (NS-398) and knockdown of COX-2 by siRNA on attenuating the proliferation and invasiveness potential, and over-expression of COX-2 on abolishing the effects of MAD on proliferation and invasiveness potential, and was also in parallel with the effect of PKC inhibitor (Bisindolylmaleimide) on inhibiting PKC activity, MEK/ERK1/2 inhibitor (PD98059) inhibited MEK/ERK1/2 pathways in HGF-induced HepG2 and SMMC-77 cells. Collectively, MAD could inhibit the HGF-activated proliferation and invasiveness of HCC cells via regulating the activation of cMET-PKC-ERK1/2-COX-2-PGE2 cascade, which indicated that MAD might help control HGF-linked HCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    Science.gov (United States)

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  8. t10c12 conjugated linoleic acid suppresses HER2 protein and enhances apoptosis in SKBr3 breast cancer cells: possible role of COX2.

    Science.gov (United States)

    Flowers, Margaret; Thompson, Patricia A

    2009-01-01

    HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin) has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2)). Conjugated linoleic acid (CLA) has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2) levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2) levels (p = 0.05). Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2).

  9. t10c12 conjugated linoleic acid suppresses HER2 protein and enhances apoptosis in SKBr3 breast cancer cells: possible role of COX2.

    Directory of Open Access Journals (Sweden)

    Margaret Flowers

    Full Text Available BACKGROUND: HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2. Conjugated linoleic acid (CLA has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. METHODS: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2 levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT, and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. RESULTS/CONCLUSIONS: We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2 levels (p = 0.05. Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively. These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2.

  10. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, S N

    2011-09-01

    Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac. Copyright ©2011 Wiley-Liss, Inc.

  11. Inhibitory effects of dietary Spirulina platensis on UVB-induced skin inflammatory responses and carcinogenesis.

    Science.gov (United States)

    Yogianti, Flandiana; Kunisada, Makoto; Nakano, Eiji; Ono, Ryusuke; Sakumi, Kunihiko; Oka, Sugako; Nakabeppu, Yusaku; Nishigori, Chikako

    2014-10-01

    Reactive oxygen species produced in response to UVR are important in skin tumor development. We have previously reported that deficiency of the Ogg1 gene, encoding the repair enzyme for 8-oxo-7,8-dihydroguanine (8-oxoG), increases skin tumor incidence in mice upon repetitive UVB exposure and modulation of UVB-induced inflammatory response. Spirulina platensis is used as a human food supplement because it contains abundant nutritional and antioxidant components. Therefore, we investigated the inhibitory effects of S. platensis on UVB-induced skin tumor development in Ogg1 knockout-(KO) mice and the wild-type (WT) counterpart. Dietary S. platensis suppressed tumor induction and development in both genotypes compared with our previous data without S. platensis. Induction of erythema and ear swelling, one of the hallmarks of UVB-induced inflammatory responses, was suppressed in the skin of Ogg1-KO mice and albino hairless mice fed with dietary S. platensis. Compared with untreated mice, S. platensis-administered mice showed significantly reduced 8-oxoG formation in the skin after UVB exposure. Moreover, we found that S. platensis effectively downregulated the signal proteins p38 mitogen-activated protein kinase, stress-activated protein kinase/c-Jun N-terminal kinase, and extracellular signal-regulated kinase after UVB exposure especially in Ogg1-KO mice. Our results suggest that S. platensis exerts antitumor effects against UVB irradiation in the skin through its anti-inflammatory and antioxidant effects.

  12. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation.

    Science.gov (United States)

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-03-01

    We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE(2) production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  14. Chafuroside B, an Oolong tea polyphenol, ameliorates UVB-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Tatsuya Hasegawa

    Full Text Available Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK. Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD, in NHEK exposed to UVB (20 mJ/cm2. In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL-10, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2, as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.

  15. Pomegranate fruit extract inhibits UVB-induced inflammation and proliferation by modulating NF-κB and MAPK signaling pathways in mouse skin†

    Science.gov (United States)

    Khan, Naghma; Syed, Deeba N.; Pal, Harish Chandra; Mukhtar, Hasan; Afaq, Farrukh

    2012-01-01

    There is considerable interest in the identification of natural agents capable of affording protection to skin from the adverse effects of solar ultraviolet B (UVB) radiation. Pomegranate (Punica granatum L) fruit possess strong anti-oxidant, anti-inflammatory and anti-proliferative properties. Recently, we have shown that oral feeding of pomegranate fruit extract (PFE) to mice afforded substantial protection from the adverse effects of single UVB radiation via modulation in early biomarkers of photocarcinogenesis. This study was designed to investigate the photochemopreventive effects of PFE (0.2%, w/v) after multiple UVB irradiations (180 mJ/cm2; on alternative day; for a total of seven treatments) to the skin of SKH-1 hairless mice. Oral feeding of PFE to SKH-1 mice inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, protein oxidation and lipid peroxidation. Immunoblot analysis demonstrated that oral feeding of PFE to mice inhibited UVB-induced (i) nuclear translocation and phosphorylation of NF-κB/p65, (ii) phosphorylation and degradation of IκBα, (iii) activation of IKKα/IKKβ, and (iv) phosphorylation of MAPK proteins and c-Jun. PFE consumption also inhibited UVB-induced protein expression of (i) COX-2 and iNOS, (ii) PCNA and cyclin D1, and (iii) matrix metalloproteinases-2,-3 and -9 in mouse skin. Taken together, these data show that PFE consumption afforded protection to mouse skin against the adverse effects of UVB radiation by modulating UVB-induced signaling pathways. PMID:22181855

  16. HNE as an inducer of COX-2.

    Science.gov (United States)

    Uchida, Koji

    2017-10-01

    Cyclooxygenase-2 (COX-2), an inducible isoform responsible for high levels of prostaglandin (PG) production during inflammation and immune responses, mediate a variety of biological actions involved in vascular pathophysiology. COX-2 is induced by various stimuli, including proinflammatory cytokines, to result in PG synthesis associated with inflammation and carcinogenesis. 4-Hydroxy-2-nonenal (HNE) is one of a group of small molecules that can induce COX-2 expression. The mechanistic studies have revealed that the HNE-induced COX-2 expression results from the stabilization of COX-2 mRNA mediated by the p38 mitogen-activated protein kinase signaling pathway and uniquely requires a serum component, which is eventually identified to be modified low-density lipoproteins (LDLs), such as the oxidized form of LDLs. It has also been shown that HNE-induced COX-2 expression is mechanistically linked to the expression of transcription factor p53 and that the overexpression of COX-2 is associated with down-regulation of a proteasome subunit, leading to the enhanced accumulation of p53 and ubiquitinated proteins and to the enhanced sensitivity toward HNE. Thus, the overall mechanism and pathophysiological role of the COX-2 induction by HNE have become increasingly evident. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A comparative study of baby immature and adult shoots of Aloe vera on UVB-induced skin photoaging in vitro.

    Science.gov (United States)

    Hwang, Eunson; Kim, Su Hyeon; Lee, Sarah; Lee, Choong Hwan; Do, Seon-Gil; Kim, Jinwan; Kim, Sun Yeou

    2013-12-01

    Ultraviolet (UV) irradiation induces photo-damage of the skin, which in turn causes depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkle formations are associated with collagen synthesis and matrix metalloproteinase (MMP) expression. The production of type I procollagen is regulated by transforming growth factor-β1 (TGF-β1) expression; the activation of MMP is also correlated with an increase of interleukin-6 (IL-6). Aloe barbadensis M. (Aloe vera) is widely used in cosmetic and pharmaceutical products. In this study, we examined whether baby aloe shoot extract (BAE, immature aloe extract), which is from the one-month-old shoots of Aloe vera, and adult aloe shoot extract (AE), which is from the four-month-old shoots of Aloe vera, have a protective effect on UVB-induced skin photoaging in normal human dermal fibroblasts (NHDFs). The effects of BAE and AE on UVB-induced photoaging were tested by measuring the levels of reactive oxygen species, MMP-1, MMP-3, IL-6, type I procollagen, and TGF-β1 after UVB irradiation. We found that NHDF cells treated with BAE after UVB-irradiation suppressed MMP-1, MMP-3, and IL-6 levels compared to the AE-treated cells. Furthermore, BAE treatment elevated type I procollagen and TGF-β1 levels. Our results suggest that BAE may potentially protect the skin from UVB-induced damage more than AE. Copyright © 2013 John Wiley & Sons, Ltd.

  18. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  19. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Heinemann, Katharina; Merkord, Jutta; Rohde, Helga; Salamon, Achim; Linnebacher, Michael; Hinz, Burkhard

    2013-01-01

    The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.

  20. COX-2 Inhibitors for Cancer Treatment in Dogs

    Directory of Open Access Journals (Sweden)

    Andrigo Barboza De Nardi*, Talita Mariana Morata Raposo1, Rafael Ricardo Huppes1, Carlos Roberto Daleck2 and Renée Laufer Amorim3

    2011-10-01

    Full Text Available Cancer is one of the main causes of death in canines and felines, and this fact is probably related to the increase in the longevity of these species. The longer the animals live, the higher the exposure to carcinogenic agents will be. With the high incidence of cancer in companion animals, new studies are currently being performed with the aim of finding therapeutic options which make the complete inhibition of the development of neoplasms in animals possible in the future. The correlation of cyclooxygenase-2 (COX-2 whith the development of cancer opens the way for the use of new therapeutic approaches. This relationship has been suggested based on various studies which established an association between the chronic use of nonsteroidal anti-inflammatory drugs (NSAID and a decrease in the incidence of colon carcinoma. As cancer progresses, COX-2 participates in the arachidonic acid metabolism by synthesizing prostaglandins which can mediate various mechanisms related to cancer development such as: increase in angiogenesis, inhibition of apoptosis, suppression of the immune response, acquisition of greater invasion capacity and metastasis. Accordingly, overexpression of this enzyme in tumors has been associated with the most aggressive, poor-prognosis cancer types, especially carcinomas. Therefore, treatments which use COX-2 inhibitors such as coxibs, whether administered as single agents or in combination with conventional antineoplastic chemotherapy, are an alternative for extending the survival of our cancer patients.

  1. Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma

    Science.gov (United States)

    Oberyszyn, Tatiana M.

    2013-01-01

    Ultraviolet B (UVB) light is the major environmental carcinogen contributing to non-melanoma skin cancer (NMSC) development. There are over 3.5 million NMSC diagnoses in two million patients annually, with men having a 3-fold greater incidence of squamous cell carcinoma (SCC) compared with women. Chronic inflammation has been linked to tumorigenesis, with a key role for the cyclooxygenase-2 (COX-2) enzyme. Diclofenac, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, currently is prescribed to patients as a short-term therapeutic agent to induce SCC precursor lesion regression. However, its efficacy as a preventative agent in patients without evidence of precursor lesions but with significant UVB-induced cutaneous damage has not been explored. We previously demonstrated in a murine model of UVB-induced skin carcinogenesis that when exposed to equivalent UVB doses, male mice had lower levels of inflammation but developed increased tumor multiplicity, burden and grade compared with female mice. Because of the discrepancy in the degree of inflammation between male and female skin, we sought to determine if topical treatment of previously damaged skin with an anti-inflammatory COX-2 inhibitor would decrease tumor burden and if it would be equally effective in the sexes. Our results demonstrated that despite observed sex differences in the inflammatory response, prolonged topical diclofenac treatment of chronically UVB-damaged skin effectively reduced tumor multiplicity in both sexes. Unexpectedly, tumor burden was significantly decreased only in male mice. Our data suggest a new therapeutic use for currently available topical diclofenac as a preventative intervention for patients predisposed to cutaneous SCC development before lesions appear. PMID:23125227

  2. Randomized controlled trials of COX-2 inhibitors

    DEFF Research Database (Denmark)

    Stefansdottir, Gudrun; De Bruin, Marie L; Knol, Mirjam J

    2011-01-01

    BACKGROUND: Naproxen, ibuprofen and diclofenac are frequently used as comparators in randomized controlled trials (RCTs) on the safety and efficacy of cyclooxygenase (COX)-2 inhibitors. Different comparator doses may influence the results of RCTs. It has been hypothesized that RCTs of COX-2...... 1995 and 2009 in which celecoxib or rofecoxib were compared with naproxen, ibuprofen or diclofenac. All articles labelled as RCTs mentioning rofecoxib or celecoxib and one or more of the comparator drugs in the title and/or abstract were included. We extracted information on doses of both non...... dose trends in the case of rofecoxib. CONCLUSIONS: Although the dose trends over time differed for RCTs comparing rofecoxib and celecoxib with diclofenac, ibuprofen or naproxen, the results of our study do not support the hypothesis that dose trends influenced the decision to continue marketing...

  3. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  4. Transcriptome analysis for UVB-induced phototoxicity in mouse retina.

    Science.gov (United States)

    An, Mi-Jin; Kim, Chul-Hong; Nam, Gyu-You; Kim, Dae-Hyun; Rhee, Sangmyung; Cho, Sung-Jin; Kim, Jung-Woong

    2018-01-01

    Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases. © 2017 Wiley Periodicals, Inc.

  5. Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention.

    Science.gov (United States)

    McCarty, Mark F

    2012-01-01

    A recent meta-analysis examining long-term mortality in subjects who participated in controlled studies evaluating the impact of daily aspirin on vascular risk, has concluded that aspirin confers substantial protection from cancer mortality. Remarkably, low-dose aspirin was as effective as higher-dose regimens; hence this protection may be achievable with minimal risk. There is reason to believe that this protection stems primarily from inhibition of cox-2 in pre-neoplastic lesions. Since safe aspirin regimens can only achieve a partial and transitory inhibition of cox-2, it may be feasible to complement the cancer-protective benefit of aspirin with other measures which decrease cox-2 expression or which limit the bioactivity of cox-2-derived PGE2. Oxidative stress boosts cox-2 expression by up-regulating activation of NF-kappaB and MAP kinases; NADPH oxidase activation may thus promote carcinogenesis by increasing cox-2 expression while also amplifying oxidant-mediated mutagenesis. A prospective cohort study has observed that relatively elevated serum bilirubin levels are associated with a marked reduction in subsequent cancer mortality; this may reflect bilirubin's physiological role as a potent inhibitor of NADPH oxidase. It may be feasible to mimic this protective effect by supplementing with spirulina, a rich source of a phycobilin which shares bilirubin's ability to inhibit NADPH oxidase. Ancillary antioxidant measures - phase 2 inducing phytochemicals, melatonin, N-acetylcysteine, and astaxanthin - may also aid cox-2 down-regulation. The cancer protection often associated with high-normal vitamin D status may be attributable, in part, to the ability of the activated vitamin D receptor to decrease cox-2 expression while promoting PGE2 catabolism and suppressing the expression of PGE2 receptors. Diets with a relatively low ratio of omega-6 to long-chain omega-3 fats may achieve cancer protection by antagonizing the production and bioactivity of PGE2. Growth

  6. Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2

    Science.gov (United States)

    Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang

    2013-01-01

    Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505

  7. COX-2 and p53 in human sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Cyr, Diane; Luce, Danièle

    2008-01-01

    to development of cancer. Many signals that activate COX-2 also induce tumor suppressor p53, a transcription factor central in cellular stress response. We investigated COX-2 and p53 expressions by immunohistochemistry in 50 SNCs (23 adenocarcinomas, and 27 squamous cell carcinomas (SCC); 48 analyzed for COX-2......The causal role of wood-dust exposure in sinonasal cancer (SNC) has been established in epidemiological studies, but the mechanisms of SNC carcinogenesis are still largely unknown. Increased amounts of COX-2 are found in both premalignant and malignant tissues, and experimental evidence link COX-2...

  8. Overcoming paclitaxel resistance in uterine endometrial cancer using a COX-2 inhibitor.

    Science.gov (United States)

    Hasegawa, Kiyoshi; Ishikawa, Kunimi; Kawai, Satoshi; Torii, Yutaka; Kawamura, Kyoko; Kato, Rina; Tsukada, Kazuhiko; Udagawa, Yasuhiro

    2013-12-01

    Cyclooxygenase (COX)-2 inhibitors have been reported to potentially modulate the resistance of cancer cells to chemotherapeutic drugs by affecting multidrug resistance 1 (MDR1) expression. In the present study, we investigated the association between COX-2 and MDR1 expression in endometrial cancers and evaluated the effects of the COX-2 inhibitor, etodolac, in combination with paclitaxel on paclitaxel-resistant endometrial cancer cells. The relationship between COX-2 and MDR1 mRNA expression was examined by quantitative PCR in 36 endometrial cancer specimens. The paclitaxel-resistant cell line OMC-2P was established from OMC-2 cells. Paclitaxel (1 µg/ml) with or without etodolac (10 µg/ml) was added to OMC-2 and OMC-2P cells, and COX-2 and MDR1 mRNA expression levels were examined. The concentration of prostaglandin E2 (PGE2) in the supernatant of each cell line was examined by enzyme-linked immunosorbent assay. The function of MDR1 was determined by intracellular accumulation of rhodamine 123 using flow cytometry, and the concentration of intracellular paclitaxel was determined by high-performance liquid chromatography. We found a positive relationship between COX-2 and MDR1 mRNA expression in endometrial cancer. Both COX-2 mRNA expression and PGE2 production were elevated in resistant OMC-2P cells when compared to non-resistant OMC-2 cells. Additionally, MDR1 mRNA expression was markedly upregulated in OMC-2P cells. In OMC-2 cells, COX-2 and MDR1 mRNA levels were significantly upregulated by paclitaxel treatment and downregulated by co-administration with etodolac. In OMC-2P cells, COX-2 mRNA expression was also significantly upregulated by paclitaxel treatment and tended to be downregulated by co-administration with etodolac. Moreover, co-administration of paclitaxel and etodolac suppressed the induction of MDR1 mRNA. Rhodamine 123 efflux was increased in OMC-2P cells when compared to the efflux in the OMC-2 cells and was increased in response to paclitaxel

  9. Acute upregulation of COX-2 by renal artery stenosis

    DEFF Research Database (Denmark)

    Mann, Birgitte; Hartner, A; Jensen, B L

    2001-01-01

    This study aimed to characterize the influence of acute renal artery stenosis on cyclooxygenase-2 (COX-2) and renin expression in the juxtaglomerular apparatus. For this purpose, male Sprague-Dawley rats received a left renal artery clip, and COX-2 mRNA, COX-2 immunoreactivity, plasma renin...... activity, and renin mRNA levels were determined. COX-2 mRNA and COX-2 immunoreactivity in the macula densa region in the clipped kidneys increased as early as 6 h after clipping and reached a maximal expression 1-2 days after clipping. Although values for plasma renin activity were elevated markedly at all...... time points examined, remaining renin mRNA levels were unchanged after 6 h and then increased to reach a maximum value 1-2 days after clipping. In the contralateral intact kidney, renin mRNA and COX-2 immunoreactivity decreased to approximately 50% of their normal values. To investigate a possible...

  10. Recall of UVB-induced erythema in breast cancer patient receiving multiple drug chemotherapy

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Lindskov, R

    1984-01-01

    One day after sunbathing, a breast cancer patient received intravenous methotrexate, cyclophosphamide and 5-fluorouracil and had a recall of her UV erythema over the following week. Phototesting with UVA and UVB prior to and after a subsequent chemotherapy treatment showed a UVB-induced recall...

  11. Pinus densiflora extract protects human skin fibroblasts against UVB-induced photoaging by inhibiting the expression of MMPs and increasing type I procollagen expression

    Directory of Open Access Journals (Sweden)

    Hoe-Yune Jung

    2014-01-01

    Full Text Available Exposure to ultraviolet (UV light can cause skin photoaging, which is associated with upregulation of matrix metalloproteinases (MMPs and downregulation of collagen synthesis. It has been reported that MMPs, especially MMP-1, MMP-3 and MMP-9, decrease the elasticity of the dermis by degrading collagen. In this study, we assessed the effects of Pinus densiflora extract (PDE on photoaging and investigated its mechanism of action in human skin fibroblast (Hs68 cells after UVB exposure using real-time polymerase chain reaction, Western blot analysis, and enzymatic activity assays. PDE exhibited an antioxidant activity and inhibited elastase activities in vitro. We also found that PDE inhibited UVB-induced cytotoxicity, MMP-1 production and expression of MMP-1, -3 and -9 mRNA in Hs68 cells. In addition, PDE decreased UVB-induced MMP-2 activity and MMP-2 mRNA expression. Moreover, PDE prevented the decrease of type I procollagen mediated by exposure to UVB irradiation, an effect that is linked to the upregulation and downregulation of Smad3 and Smad7, respectively. Another effect of UV irradiation is to stimulate activator protein 1 (AP-1 activity via overexpression of c-Jun/c-Fos, which, in turn, upregulates MMP-1, -3, and -9. In this study, we found that PDE suppressed UV-induced c-Jun and c-Fos mRNA expression. Taken together, these results demonstrate that PDE regulates UVB-induced expression of MMPs and type I procollagen synthesis by inhibiting AP-1 activity and restoring impaired Smad signaling, suggesting that PDE may be useful as an effective anti-photoaging agent.

  12. MicroRNA-128 inhibits proliferation and invasion of glioma cells by targeting COX-2.

    Science.gov (United States)

    Lin, Yihai; Wu, Zhangyi

    2018-03-07

    MicroRNAs (miRNA), a class of small noncoding RNAs, regulates message RNA (mRNA) by targeting the 3'-untranslated region (3'-UTR) resulting in suppression of gene expression. In this study, we identified the expression and function of miR-128, which was found to be downregulated in glioma tissues and glioma cells by real time PCR. Overexpression of miR-128 mimics into LN229 and U251 cells could inhibit proliferation and invasion of glioma cells. However, the inhibitory effects of miR-128 mimics on the invasion and proliferation of glioma cells were reversed by overexpression of cyclooxygenase-2 (COX-2). Our data showed that COX-2 was a candidate target of miR-128. Luciferase activity of 3'-UTR of COX-2 was reduced in the presence of miR-128. Additionally, miR-128 obviously decreased COX-2 mRNA stability determined by real time PCR. Contrarily, we found that miR-128 inhibitor significantly increased the COX-2 mRNA expression, and elevated the protein expression of MMP9 and ki67, and promoted the proliferation of glioma cells. Furthermore, luciferase activity of the 3'-UTR was upregulated by miR-128 inhibitor. All of these results supported that miR-128 was a direct regulator of COX-2. Further studies proved that COX-2 was elevated in glioma tissues and its expression was negatively correlated with the levels of miR-128. These findings may establish miR-128 as a new potential target for the treatment of patients with gliomas. Copyright © 2017. Published by Elsevier B.V.

  13. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huimin, E-mail: huiminchen.jq@gmail.com [Department of Geratology, Liaoning Jinqiu Hospital, Shenyang 110015 (China); Ma, Feng [Institute of Immunology, Zhejiang University of Medicine, Hangzhou 310058 (China); Hu, Xiaona; Jin, Ting; Xiong, Chuhui [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China); Teng, Xiaochun, E-mail: tengxiaochun@126.com [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  14. COX-2 is associated with periodontitis in Europeans

    NARCIS (Netherlands)

    Schaefer, A.S.; Richter, G.M.; Nothnagel, M.; Laine, M.L.; Noack, B.; Glas, J.; Schrezenmeir, J.; Groessner-Schreiber, B.; Jepsen, S.; Loos, B.G.; Schreiber, S.

    2010-01-01

    COX-2 plays an important role in periodontitis by mediating inflammatory reactions in periodontal tissues, and the COX-2 polymorphisms rs20417 and rs689466 have been reported to be associated with periodontitis in populations of Taiwanese and Chinese ethnicity. To test whether these variants were

  15. COX-2 expression in papillary thyroid carcinoma (PTC in cytological material obtained by fine needle aspiration biopsy (FNAB

    Directory of Open Access Journals (Sweden)

    Krawczyk-Rusiecka Kinga

    2011-01-01

    Full Text Available Abstract Background COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Methods Twenty three (23 patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit, and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. Results COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG. Conclusions The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis.

  16. Lonicera caerulea and Vaccinium myrtillus fruit polyphenols protect HaCaT keratinocytes against UVB-induced phototoxic stress and DNA damage.

    Science.gov (United States)

    Svobodová, Alena; Zdarilová, Adéla; Vostálová, Jitka

    2009-12-01

    Sunlight is a very potent environmental factor in skin pathogenesis and can induce skin cancer. UVB irradiation is known to cause oxidative stress, inflammation and especially DNA damage. Topical application of agents with UV absorbing, antioxidant and anti-inflammatory activities is a successful strategy in the protection of the skin against UV-caused damage. To examine the ability of the phenolic fraction of Lonicera caerulea and Vaccinum myrtillus fruits to moderate UVB-induced damage. HaCaT keratinocytes, a well-established in vitro system for investigations on UV radiation induced cell damage, were used to assess the effects of pre- and post-treatment with L. caerulea (LCE) and V. myrtillus (VME) phenolic fractions (5-50 mg/l) on keratinocyte damage induced by a solar simulator (295-315 nm). In this study, a model of UVB-induced damage to HaCaT was established. LCE and VME efficiently reduced the extent of DNA breakage (especially at concentrations of 25 and 10 mg/l) together with caspase-3 and -9 activity and DNA laddering induced by UVB (100 or 200 mJ/cm(2)). LCE and VME significantly decreased RONS generation and partially diminished IL-6 expression. LCE pre-treatment also prevented keratinocytes proliferation. The results suggest that the phenolic fraction of L. caerulea and V. myrtillus fruits suppress UVB-caused injury to keratinocytes. These results now need to be demonstrated in vivo.

  17. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    Directory of Open Access Journals (Sweden)

    Deokhoon Park

    2013-05-01

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs formation, glutathione (GSH depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  18. Antagonist effects of veratric acid against UVB-induced cell damages.

    Science.gov (United States)

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  19. Cytotoxic of Ganoderma lucidum in Colon Cancer through Cyclooxygenase 2 (COX-2 as Its Molecular Target

    Directory of Open Access Journals (Sweden)

    Agustina Setiawati

    2017-05-01

    Full Text Available Many studies were designed explore chemopreventive activity of natural products on colon cancer especially addressing COX-2 as molecular target. Another promising source of natural product that potentially exhibit anticancer activity on colon cancer is Ganoderma lucidum. This study assessed selectivity of cytotoxic effect of G. lucidum extract on WiDr to Vero cells and investigated molecular mechanism on COX-2. G. lucidum ex-tract was prepared by reflux extraction method; in vitro anticancer was assayed by MTT method on WiDr and Vero cell line. This study applied apoptosis induction assay to observe cell death mechanism using double staining method; further COX-2 expression was stained by immunocytochemistry method. G. lucidum extract has cytotoxic effect on WiDr cells with IC50 135 µg/mL. However, the cytotoxic effect had low selectivity to-wards Vero cells with Selectivity Index (SI 3.66. The extract induced apoptosis and suppressed COX-2 ex-pression in WiDr cells. G. lucidum extract was potential to be developed as anticancer agent towards colon cancer.

  20. Salt supplementation ameliorates developmental kidney defects in COX-2-/- mice.

    Science.gov (United States)

    Slattery, Patrick; Frölich, Stefanie; Goren, Itamar; Nüsing, Rolf M

    2017-06-01

    Deficiency of cyclooxygenase-2 (COX-2) activity in the early postnatal period causes impairment of kidney development leading to kidney insufficiency. We hypothesize that impaired NaCl reabsorption during the first days of life is a substantial cause for nephrogenic defects observed in COX-2 -/- mice and that salt supplementation corrects these defects. Daily injections of NaCl (0.8 mg·g -1 ·day -1 ) for the first 10 days after birth ameliorated impaired kidney development in COX-2 -/- pups resulting in an increase in glomerular size and fewer immature superficial glomeruli. However, impaired renal subcortical growth was not corrected. Increasing renal tubular flow by volume load or injections of KCl did not relieve the renal histomorphological damage. Administration of torsemide and spironolactone also affected nephrogenesis resulting in diminished glomeruli and cortical thinning. Treatment of COX-2 -/- pups with NaCl/DOCA caused a stronger mitigation of glomerular size and induced a slight but significant growth of cortical tissue mass. After birth, renal mRNA expression of NHE3, NKCC2, ROMK, NCCT, ENaC, and Na + /K + -ATPase increased relative to postnatal day 2 in wild-type mice. However, in COX-2 -/- mice, a significantly lower expression was observed for NCCT, whereas NaCl/DOCA treatment significantly increased NHE3 and ROMK expression. Long-term effects of postnatal NaCl/DOCA injections indicate improved kidney function with normalization of pathologically enhanced creatinine and urea plasma levels; also, albumin excretion was observed. In summary, we present evidence that salt supplementation during the COX-2-dependent time frame of nephrogenesis partly reverses renal morphological defects in COX-2 -/- mice and improves kidney function. Copyright © 2017 the American Physiological Society.

  1. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: design, synthesis, cytotoxicity and enzyme-inhibitory activity.

    Science.gov (United States)

    Farzaneh, Shabnam; Zainalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2017-10-03

    Background Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anti-cancer activities. Method Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti

  2. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  3. Effects of the estrous cycle, pregnancy and interferon tau on expression of cyclooxygenase two (COX-2 in ovine endometrium

    Directory of Open Access Journals (Sweden)

    Bazer Fuller W

    2003-08-01

    Full Text Available Abstract In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL. These PGF pulses are produced by the endometrial lumenal epithelium (LE and superficial ductal glandular epithelium (sGE in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1 and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ, produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα (directly and OTR (indirectly genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus.

  4. Cox-2 inhibitors and the risk of cardiovascular thrombotic events.

    LENUS (Irish Health Repository)

    Khan, M

    2012-04-01

    In 1971, Vane showed that the analgesic action of traditional NSAIDs relies on inhibition of the cyclo-oxygenase (COX) enzyme, which in turn results in reduced synthesis of proalgesic prostaglandins. Two decades later COX was shown to exist as two distinct isoforms. The constitutive isoform COX-1, supports the beneficial homeostatic functions whereas the inducible isoform, COX-2 becomes up regulated by inflammatory mediators and its products cause many of the symptoms of inflammatory diseases such as rheumatoid and osteoarthritis. Despite the benefits of NSAIDs for acute and chronic pain one of the most clinically significant and well characterized adverse effect is on GI mucosa. The search for NSAIDs with less gastrointestinal toxicity led to the introduction of the selective cyclo-oxygenase-2 (COX-2) inhibitors. The COX-2 selective (COX-1 sparing) inhibitors are associated with reduced GI mucosal damage as demonstrated in several trials. In light of the overwhelming and sometimes contradictory information for patients and physicians regarding the safety of COX-2 agents this article will summarize the available evidence regarding cardiovascular (CV) safety data and contemporary recommendations for prescribing of COX-2-selective NSAIDs.

  5. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2.

    Science.gov (United States)

    Zhang, Ping; Luo, He-Sheng; Li, Ming; Tan, Shi-Yun

    2015-01-01

    Artesunate, a derivative of artemisinin isolated from Artemisia annua L., has been traditionally used to treat malaria, and artesunate has demonstrated cytotoxic effects against a variety of cancer cells. However, there is little available information about the antitumor effects of artesunate on human gastric cancer cells. In the present study, we investigated the antitumor effect of artesunate on human gastric cancer cells and whether its antitumor effect is associated with reduction in COX-2 expression. The effects of artesunate on the growth and apoptosis of gastric cancer cells were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis of annexin V-fluorescein isothiocyanate/propidium iodide staining, rhodamine 123 staining, and Western blot analysis. Results indicate that artesunate exhibits antiproliferative effects and apoptosis-inducing activities. Artesunate markedly inhibited gastric cancer cell proliferation in a time- and dose-dependent manner and induced apoptosis in gastric cancer cells a dose-dependent manner, which was associated with a reduction in COX-2 expression. Treatment with the selective COX-2 inhibitor celecoxib, or transient transfection of gastric cancer cells with COX-2 siRNA, also inhibited cell proliferation and induced apoptosis. Furthermore, the treatment with artesunate promoted the expression of proapoptotic factor Bax and suppressed the expression of antiapoptotic factor Bcl-2. In addition, caspase-3 and caspase-9 were activated, and artesunate induced loss of mitochondrial membrane potential, suggesting that the apoptosis is mediated by mitochondrial pathways. These results demonstrate that artesunate has an effect on anti-gastric cancer cells. One of the antitumor mechanisms of artesunate may be that its inhibition of COX-2 led to reduced proliferation and induction of apoptosis, connected with mitochondrial dysfunction. Artesunate might be a potential therapeutic

  6. Improvement effect of corn silk, perilla leaf and grape stem extract mixture against UVB-induced skin damage and compound 48/80-induced pruritus

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byoung Ok; Shin, Jae Young; Che, Denis Nchang; Hwang, Young Min; Lee, Hyun Seo; Choi, Ji Won; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of); Ryu, Cheol [Hyangmiwon Corporation, Gimje (Korea, Republic of)

    2017-02-15

    This study was conducted to evaluate the synergistic protective effects of mixtures of corn silk, perilla leaf and grape stem extract (CPG mixture) against UVB-induced skin damage and compound 48/80-induced pruritus in mice. The results showed that treatment with CPG mixture exhibited much stronger suppressive effect on erythema and melanin index as well as melanin formation than treatment with ascorbic acid (AA) in UVB-irradiated mice. Moreover, the treatment with CPG mixture showed ameliorative effect on immune cell infiltration and collagen fiber destruction in UV-irradiated mice. The treatment with CPG mixture inhibited glutathione (GSH) depletion, lipid peroxidation and production of pro-inflammatory cytokines in UVB-irradiated mice. Furthermore, the treatment with CPG mixture inhibited compound 48/80-induced scratching behavior and histological changes in mice. Taken together, these results indicated that CPG mixture has potentials as functional and therapeutic materials against skin damage and itch-related skin diseases.

  7. Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage.

    Directory of Open Access Journals (Sweden)

    Seoung Woo Shin

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT, afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities.

  8. Cyclooxygenase-2 (COX-2 Inhibition Constrains Indoleamine 2,3-Dioxygenase 1 (IDO1 Activity in Acute Myeloid Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Sergio Rutella

    2013-08-01

    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1 metabolizes L-tryptophan to kynurenines (KYN, inducing T-cell suppression either directly or by altering antigen-presenting-cell function. Cyclooxygenase (COX-2, the rate-limiting enzyme in the synthesis of prostaglandins, is over-expressed by several tumours. We aimed at determining whether COX-2 inhibitors down-regulate the IFN-g-induced expression of IDO1 in acute myeloid leukaemia (AML cells. IFN-γ at 100 ng/mL up-regulated COX-2 and IDO1 in HL-60 AML cells, both at mRNA and protein level. The increased COX-2 and IDO1 expression correlated with heightened production of prostaglandin (PGE2 and kynurenines, respectively. Nimesulide, a preferential COX-2 inhibitor, down-regulated IDO1 mRNA/protein and attenuated kynurenine synthesis, suggesting that overall IDO inhibition resulted both from reduced IDO1 gene transcription and from inhibited IDO1 catalytic activity. From a functional standpoint, IFN-g-challenged HL-60 cells promoted the in vitro conversion of allogeneic CD4+CD25− T cells into bona fide CD4+CD25+FoxP3+ regulatory T cells, an effect that was significantly reduced by treatment of IFN-γ-activated HL-60 cells with nimesulide. Overall, these data point to COX-2 inhibition as a potential strategy to be pursued with the aim at circumventing leukaemia-induced, IDO-mediated immune dysfunction.

  9. Immunohistochemical Expression of COX-2 in Uterine Serous Carcinoma Tissue

    Directory of Open Access Journals (Sweden)

    Joseph Menczer

    2016-03-01

    Material and methods. Cox-2 expression assessment by immunohistochemistry was performed on deparaffinized sections of paraffin-embedded tissue blocks of consecutive available USC uterine specimens of patients diagnosed from 2000 to 2014. Staining of more than 10% of the cells was considered positive. Staining intensity was graded on a 0 and ndash;3 scale. A scoring index was calculated by multiplying the intensity grade by the percentage of stained cells and considered low when it was equal to 1 or less and high when it was more than 1. Clinicopathological data were retrospectively abstracted from the records of the study group patients Results. The study comprised uterine specimens of 31 USC patients. Positive immunohistochemical staining was observed in 25 (80.6% USC specimens and a high score in 6 (19.4% of them. No association between immunohistochemical staining parameters and clinicopathological prognostic factors was observed. Conclusion. Although our findings should be verified in larger series, it seems that in view of the lack of association between immunohistochemical Cox-2 staining parameters in USC tissue and clinicopathological prognostic factors, this aggressive tumor is not a candidate for the use of selective Cox-2 inhibitors. Key words: Cox-2 expression, uterine carcinosarcoma, clinicopathological prognostic factors [J Interdiscipl Histopathol 2016; 4(1.000: 9-12

  10. Intravenous glutamine enhances COX-2 activity giving cardioprotection.

    LENUS (Irish Health Repository)

    McGuinness, Jonathan

    2009-03-01

    Preconditioning, a highly evolutionary conserved endogenous protective response, provides the most powerful form of anti-infarct protection known. We investigated whether acute intravenous glutamine, through an effect on cyclooxygenase (COX)-2 and heat shock protein (HSP) 72, might induce preconditioning.

  11. TNF-R1 and FADD mediate UVB-Induced activation of K+ channels in corneal epithelial cells

    Science.gov (United States)

    Boersma, Peter M.; Haarsma, Loren D.; Schotanus, Mark P.; Ubels, John L.

    2017-01-01

    The goal of this study was to elucidate the role of Fas, TNF-R1, FADD and cytochrome c in UVB-induced K+ channel activation, an early step in UVB-induced apoptosis, in human corneal limbal epithelial (HCLE) cells. HCLE cells were treated with Fas, TNF-R1 or FADD siRNA and exposed to 80 or 150 mJ/cm2 UVB. K+ channel activation and loss of intracellular K+ were measured using whole-cell patch-clamp recording and ion chromatography, respectively. Cytochrome c was measured with an ELISA kit. Cells in which Fas was knocked down exhibited identical UVB-induced K+ channel activation and loss of intracellular K+ to control cells. Cells in which TNF-R1 or FADD were knocked down demonstrated reduced K+ channel activation and decreased loss of intracellular K+ following UVB, relative to control cells. Application of TNF-α, the natural ligand of TNF-R1, to HCLE cells induced K+ channel activation and loss of intracellular K+. Cytochrome c was translocated to the cytosol by 2 h after exposure to 150 mJ/cm2 UVB. However, there was no release by 10 min post-UVB. The data suggest that UVB activates TNF-R1, which in turn may activate K+ channels via FADD. This conclusion is supported by the observation that TNF-α also causes loss of intracellular K+. This signaling pathway appears to be integral to UVB-induced K+ efflux, since knockdown of TNF-R1 or FADD inhibits the UVB-induced K+ efflux. The lack of rapid cytochrome c translocation indicates cytochrome c does not play a role in UVB-induced K+ channel activation. PMID:27818316

  12. Xenoestrogens modulate genotoxic (UVB)-induced cellular responses in estrogen receptors positive human breast cancer cells.

    Science.gov (United States)

    Cargouët, Maëlle; Bimbot, Maya; Levi, Yves; Perdiz, Daniel

    2006-07-01

    Human populations and wildlife are exposed to mixtures of both anthropogenic and natural chemicals. Some of these compounds are known to interact principally with the endocrine function, whereas others act mainly on genomic DNA. Given this evidence, we wanted to address the question of whether concomitant exposure of such chemicals was able to interact at the cellular level. We have previously shown that 17β-Estradiol (E(2)) modulates the DNA repair capacity of cells. In this work, we wanted to examine if other xenoestrogens (i.e. industrial compounds, pesticides or pharmaceuticals) were able to interact with the UVB-induced cellular response as E(2) does. Here, we show that xenoestrogens modulate the capacity of cells to repair their DNA damage according to the type of compounds. For example, the oral contraceptive 17α-Ethinylestradiol down-regulated the repair of UVB-induced DNA damage whereas the UV filter Eusolex 6007 up-regulated this pathway. The notion that xenoestrogens could interact with a genotoxic stress is reinforced by the modulation of the estrogens-dependent luciferase reporter gene expression when cells are UVB-irradiated. Finally, these observations suggested the potential role of xenoestrogens in carcinogenesis by their capacity to modulate cells responses to genotoxic stress.

  13. UVB-induced mutagenesis in hairless λlacZ-transgenic mice

    International Nuclear Information System (INIS)

    Frijhoff, A.F.W.; Rebel, H.; Mientjes, E.J.

    1997-01-01

    UVB-induced mutagenesis was studied in hairless 40.6 transgenic mice (Muta trademark Mouse), which contain the λgt1OlacZ shuttle vector as a target for mutagenesis. Mice were exposed at the dorsal side to either single doses of 200, 500, 800, or 1000 J/m 2 UVB or to two successive irradiations of either 200 and 800 J/m 2 UVB, with intervals of 1,3, or 5 days, or to 800 and 200 J/m 2 UVB with a 5-day interval. At 23 days after the last exposure, lacZ mutant frequencies (MF) were determined in the epidermis. The lacZ MF increased linearly with increasing dose of UVB. The mutagenic effect of two successive irradiations appeared to be additive. The UV-induced mutation spectrum was dominated by G:C→A:T transitions at dipyrimidine sites. DNA-sequence analysis of spontaneously mutated phages showed a diverse spectrum consisting of insertions, deletions and G:C → A:T transitions at CpG sites. the results indicate that the hairless λlacZ-transgenic mouse is a suitable in vivo model for studying UVB-induced mutations. 29 refs., 5 tabs

  14. Saponins from Tribulus terrestris L. protect human keratinocytes from UVB-induced damage.

    Science.gov (United States)

    Sisto, Margherita; Lisi, Sabrina; D'Amore, Massimo; De Lucro, Raffaella; Carati, Davide; Castellana, Donatello; La Pesa, Velia; Zuccarello, Vincenzo; Lofrumento, Dario D

    2012-12-05

    Chronic exposure to solar UVB radiation damages skin, increasing the risk to develop cancer. Hence the identification of compounds with a photoprotective efficacy is essential. This study examined the role of saponins derived from Tribulus terrestris L. (TT) on the modulation of apoptosis in normal human keratinocytes (NHEK) exposed to physiological doses of UVB and to evaluate their antitumoral properties. In NHEK, TT saponins attenuate UVB-induced programmed cell death through inhibition of intrinsic apoptotic pathway. In squamous cell carcinomas (SCC) TT saponins do not make the malignant keratinocytes more resistant to UVB and determine an enhanced apoptotic response. The photoprotective effect of TT saponins is tightly correlated to the enhancement of NER genes expression and the block of UVB-mediated NF-κB activation. Collectively, our study shows experimental evidence that TT has a preventive efficacy against UVB-induced carcinogenesis and the molecular knowledge on the mechanisms through which TT saponins regulate cell death suggests great potential for TT to be developed into a new medicine for cancer patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Physiological COX-2 Expression in Breast Epithelium Associates with COX-2 Levels in Ductal Carcinoma in Situ and Invasive Breast Cancer in Young Women

    Science.gov (United States)

    Fornetti, Jaime; Jindal, Sonali; Middleton, Kara A.; Borges, Virginia F.; Schedin, Pepper

    2015-01-01

    Cyclooxygenase-2 (COX-2) overexpression is implicated in increased risk and poorer outcomes in breast cancer in young women. We investigated COX-2 regulation in normal premenopausal breast tissue and its relationship to malignancy in young women. Quantitative COX-2 immunohistochemistry was performed on adjacent normal and breast cancer tissues from 96 premenopausal women with known clinical reproductive histories, and on rat mammary glands with distinct ovarian hormone exposures. COX-2 expression in the normal breast epithelium varied more than 40-fold between women and was associated with COX-2 expression levels in ductal carcinoma in situ and invasive cancer. Normal breast COX-2 expression was independent of known breast cancer prognostic indicators, including tumor stage and clinical subtype, indicating that factors regulating physiological COX-2 expression may be the primary drivers of COX-2 expression in breast cancer. Ovarian hormones, particularly at pregnancy levels, were identified as modulators of COX-2 in normal mammary epithelium. However, serial breast biopsy analysis in nonpregnant premenopausal women suggested relatively stable baseline levels of COX-2 expression, which persisted independent of menstrual cycling. These data provide impetus to investigate how baseline COX-2 expression is regulated in premenopausal breast tissue because COX-2 levels in normal breast epithelium may prove to be an indicator of breast cancer risk in young women, and predict the chemopreventive and therapeutic efficacy of COX-2 inhibitors in this population. PMID:24518566

  16. RhoB promotes cancer initiation by protecting keratinocytes from UVB-induced apoptosis but limits tumor aggressiveness.

    Science.gov (United States)

    Meyer, Nicolas; Peyret-Lacombe, Alexis; Canguilhem, Bruno; Médale-Giamarchi, Claire; Mamouni, Kenza; Cristini, Agnese; Monferran, Sylvie; Lamant, Laurence; Filleron, Thomas; Pradines, Anne; Sordet, Olivier; Favre, Gilles

    2014-01-01

    The role of UVB-induced apoptosis in the formation of squamous cell carcinoma (SCC) is recognized. We previously identified the small RhoB (Ras homolog gene family, member B) GTPase, an early response gene to cellular stress, as a critical protein controlling apoptosis of human keratinocytes after UVB exposure. Here we generated SKH1 (hairless immunocompetent mouse) mice invalidated for RhoB to evaluate its role in UVB-induced skin carcinogenesis in vivo. We show that rhob-/- mice have a lower risk of developing UVB-induced keratotic tumors and actinic keratosis that is associated with a higher sensitivity of UVB-exposed keratinocytes to apoptosis. We extend this observation to primary cultures of normal human keratinocytes in which RhoB was downregulated with small interfering RNA (siRNA) and further show that the hypersensitivity to apoptosis depends on B-cell lymphoma 2 (Bcl-2) downregulation. In rhob-/- mice, the UVB-induced tumors were preferentially undifferentiated and highly proliferative. Finally, we show in humans an almost constant loss of RhoB expression in undifferentiated SCCs. These undifferentiated and RhoB-deficient tumors have elevated phosphorylated histone H2AX (γH2AX) and 53BP1, two markers of DNA double-strand breaks. Together, our results indicate that UVB-induced RhoB expression participates in in vivo SCC initiation by increasing keratinocyte survival. Conversely, RhoB may limit tumor aggressiveness as loss of RhoB expression in tumor cells is associated with tumor progression.

  17. Photoprotection of Buddleja cordata extract against UVB-induced skin damage in SKH-1 hairless mice.

    Science.gov (United States)

    Avila Acevedo, José Guillermo; Espinosa González, Adriana Montserrat; De Maria y Campos, Diana Matamoros; Benitez Flores, José del Carmen; Hernández Delgado, Tzasna; Flores Maya, Saul; Campos Contreras, Jorge; Muñoz López, José Luis; García Bores, Ana María

    2014-08-03

    In recent years, there has been considerable interest in using botanical agents to prevent skin damage resulting from solar UV-irradiation. Buddleja cordata is a plant that is known as "tepozan". Some people in Mexico use the leaves of this plant to treat tumours, abscesses, sores and burns. The purpose of this study is to investigate the photoprotective properties of Buddleja cordata methanolic extract (BCME) against UVB-induced skin damage in SKH-1 hairless mice at the macroscopic and histological levels. BCME was characterised to determine its spectroscopic, chromatographic and antioxidant (DPPH, superoxide and hydroxyl radicals) properties. To conduct the photoprotection studies, BCME was applied topically to the skin of SKH-1 mice before acute exposure to UVB for 10 minutes. The murine skin samples were used for macroscopic and histological studies to assess tissue damage. Penetration of active components of BCME into stratum corneum on the dorsal area of mice was investigated in vivo by the tape stripping method. Moreover, genotoxicity of BCME was evaluated in a Vicia faba cell root micronucleus model. BCME displayed absorbance over the entire UVB spectrum, and its principal components included verbascoside and linarin. BCME exhibited antioxidant activity and significantly scavenged hydroxyl radicals. BCME reduced erythema, sunburn cell production, vessel congestion and epidermal thickening of UVB irradiated mouse skin. BCME penetrate the skin of mice. BCME did not exhibit genotoxic activity in the micronucleus test. The topical administration of BCME protected against acute UVB-induced damage in mouse SKH-1 skin, and our results suggest that BCME may potentially prevent photodamage.

  18. YAP transcriptionally regulates COX-2 expression and GCCSysm-4 (G-4), a dual YAP/COX-2 inhibitor, overcomes drug resistance in colorectal cancer.

    Science.gov (United States)

    Li, Wei; Cao, Yuanyuan; Xu, Jinling; Wang, Ying; Li, Weijie; Wang, Qian; Hu, Ziwei; Hao, Yaping; Hu, Li; Sun, Yawen; Xu, Guanglin; Ao, Guizhen

    2017-10-16

    Chemotherapy resistance remains a major challenge in cancer treatment. COX-2 (cyclooxygenase 2) is involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. However, investigations identifying new modulators of COX-2 pathway and searching for new chemicals targeting these valid resistant biomarkers are still greatly needed. HCT15, HCT-116, HT-29, COLO205, FHC, IMCE, SW480 cell lines were used to detect the expression of YAP and COX-2. Site-directed mutagenesis, luciferase reporter analysis and ChIP assay were used to test whether YAP activated COX-2 transcription through interaction with TEAD binding sites in the promoter of COX-2. Cell line models exhibiting overexpression or knockdown of some genes were generated using transfection agents. Coimmunoprecipitation was used to detect protein mutual interaction. mRNA and protein levels were measured by qRT-PCR and western blot respectively. Here, we reported that both YAP and COX-2 were overexpressed in colorectal cancer cells. YAP increased COX-2 expression at the level of transcription requiring intact TEAD binding sites in the COX-2 promoter. YAP conferred drug resistance through COX-2 and its related effectors such as MCL, MDR, Survivin. GCCSysm-4 (G-4), a YAP and COX-2 inhibitor, effectively inhibited both YAP and COX-2 activation, induced apoptosis and decreased viability in Taxol-resistant cells. Inhibition of YAP and COX-2 acted synergistically and more efficiently reduced the resistance of CRC cells than either of them alone. Our data provide new mechanisms that YAP is a new upstream regulator of COX-2 pathway and plays an important role in conferring resistance in CRC cells. G-4, targeting YAP-COX-2, may be a novel valuable strategy to combat resistance in CRC.

  19. Differential effects of immunosuppressive drugs on COX-2 activity in vitro and in kidney transplant patients in vivo

    DEFF Research Database (Denmark)

    Jespersen, Bente; Thiesson, Helle C; Henriksen, Charlotte

    2009-01-01

    to suppress vascular COX-2 expression in vitro was studied in cultured human vascular smooth muscle cells. Blood and urine samples were collected from 28 renal transplant patients before and 2, 4 and 6 h after intake of immunosuppressives and from 11 controls. ELISA was used to measure (1) plasma 6-keto-PGF1......alpha and TxB2; (2) urine excretion of PGI-M and TxB(2); (3) 6-keto-PGF1alpha in the whole-blood COX-2 assay; and (4) TxB2 in the whole-blood COX-1 assay. Platelet aggregation was measured optically. RESULTS: COX-2 in cultured vascular smooth muscle cells was suppressed by cyclosporine A (Cs......A); tacrolimus and rapamycin had no effect. Human renal arteries and vascular smooth muscle expressed calcineurin Abeta and Agamma isoforms. CsA had no effect on plasma 6-keto-PGF1alpha, whole-blood COX-2 activity or PGI-M urine excretion; after rapamycin intake, the former two increased. Plasma TxB2 did...

  20. NSAIDs diclofenac, indomethacin, and meloxicam highly upregulate expression of ICAM-1 and COX-2 induced by X-irradiation in human endothelial cells.

    Science.gov (United States)

    Uehara, Yoshihiko; Murata, Yasuhiko; Shiga, Soichiro; Hosoi, Yoshio

    2016-10-28

    It is well known that radiation exposure to the heart and the use of non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of myocardial infarction (MI). Some NSAIDs are also known to act synergistically with ionizing radiation and have radio-sensitizing effects in radiotherapy. These evidences suggest that NSAIDs may affect the risk of MI after radiation exposure to the heart. In the present study, we investigated effects of NSAIDs on radiation-induced expression of cell adhesion molecules and COX-2, which are associated with inflammation and an increased risk of MI, in human endothelial cells. Effects of NSAIDs on radiation-induced expression of ICAM-1, VCAM-1, E-selectin, and COX-2 were investigated in human umbilical vein endothelial cells (HUVECs). As NSAIDs, diclofenac, etodolac, indomethacin, ketoprofen, meloxicam, and rofecoxib were used. Irradiation with 10 Gy increased expression of ICAM-1 and COX-2, but it did not affect expression of VCAM-1 or E-selectin. All the NSAIDs upregulated radiation-induced expression of ICAM-1 and COX-2. The extent of upregulation varied depending on the types of NSAIDs. Indomethacin, diclofenac, and meloxicam highly upregulated radiation-induced expression of ICAM-1 and COX-2. The extent of upregulation was not related to the degree of COX-2 selectivity. An NF-κB inhibitor BAY 11-7082 suppressed radiation-induced expression of ICAM-1, but it did not suppress upregulated expression of ICAM-1 or COX-2 by combination treatment with X-irradiation and meloxicam, suggesting the existence of NF-κB-independent pathways for ICAM-1 and COX-2 induction. Indomethacin, diclofenac, and meloxicam highly upregulated radiation-induced expression of ICAM-1 and COX-2 in HUVECs, which suggests that use of these NSAIDs may increase the effects of ionizing radiation and affect the risk of MI after radiation exposure to the heart. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. An increased CD25-positive intestinal regulatory T lymphocyte population is dependent upon Cox-2 activity in the Apcmin/+ model.

    Science.gov (United States)

    Faluyi, O O; Fitch, P; Howie, S E M

    2018-01-01

    Only mismatch repair (MMR)-deficient colorectal cancer (CRC) appears to respond well to programmed death (PD)-1 inhibition at the present time. Emerging evidence suggests a role for micro-environmental factors such as CD25 + cells modulating response to PD-1 inhibition. In the Apc Min/+ model of familial adenomatous polyposis (MMR-proficient CRC), increased Cyclooxygenase-2 (Cox-2) expression by cells which include alternatively activated mononuclear phagocytes promotes intestinal tumorigenesis by mechanisms which may include immune suppression. To gain insight into this, we compared regulatory T cell (T reg ) populations between Apc Min/+ and wild-type mice prior to and after the phase of increased intestinal Cox-2-dependent prostaglandin E 2 (PGE 2 ) production. There was no difference in systemic T reg function or numbers between Apc Min/+ and wild-type mice. However, increased numbers of small intestinal CD25 + T regs were observed with increased Cox-2 activity in the absence of any difference in the expression of Tgf-β or Tslp between Apc Min/+ and wild-type mice. Cox-2 inhibitor therapy (Celecoxib) reversed the increase in Apc Min/+ intestinal CD25 + T reg numbers, without decreasing numbers of CD25 + systemic T regs . Forkhead box protein 3 (FoxP3 + ) and Cox-2 + cells were co-localized to the interstitium of adenomas of Apc min/+ mice. These results suggest selective dependence of an 'activated T reg ' phenotype on paracrine Cox-2 activity in Apc Min/+ small intestine. For therapeutic potential, further studies are required to evaluate the relevance of these findings to human cancer as well as the functional significance of CD25 + intestinal T regs in cancer. © 2017 British Society for Immunology.

  2. Mechano-transcription of COX-2 is a common response to lumen dilation of the rat gastrointestinal tract

    Science.gov (United States)

    Lin, You-Min; Li, Feng; Shi, Xuan-Zheng

    2014-01-01

    Background In obstructive bowel disorders (OBDs) such as achalasia, pyloric stenosis, and bowel obstruction, the lumen of the affected segments is markedly dilated and the motility function is significantly impaired. We tested the hypothesis that mechanical stress in lumen dilation leads to induction of cyclo-oxygenase-2 (COX-2) in smooth muscle throughout the gastrointestinal (GI) tract, contributing to motility dysfunction. Methods Lumen dilation was induced in vivo with obstruction bands (12 × 3 mm) applied over the lower esophageal sphincter (LES), the pyloric sphincter, and the ileum in rats for 48 hr. Mechanical stretch in vivo was also emulated by balloon distension of the distal colon. Direct stretch of muscle strips from the esophagus, gastric fundus, and ileum was mimicked in an in vitro tissue culture system. Key Results Partial obstruction in the LES, pylorus, and ileum significantly increased expression of COX-2 mRNA and protein in the muscularis externae of the dilated segment oral to the occlusions, but not in the aboral segment. Direct stretch of the lumen in vivo or of muscle strips in vitro markedly induced COX-2 expression. The smooth muscle contractility was significantly suppressed in the balloon distended segments. However, treatment with COX-2 inhibitor NS-398 restored the contractility. Furthermore, in vivo administration of NS-398 in gastric outlet obstruction significantly improved gastric emptying. Conclusions & Inferences Mechanical dilation of the gut lumen by occlusion or direct distension induces gene expression of COX-2 throughout the GI tract. Mechanical stress-induced COX-2 contributes to motility dysfunction in conditions with lumen dilation. PMID:22489918

  3. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model.

    Science.gov (United States)

    Tietz, Ole; Wuest, Melinda; Marshall, Alison; Glubrecht, Darryl; Hamann, Ingrit; Wang, Monica; Bergman, Cody; Way, Jenilee D; Wuest, Frank

    2016-12-01

    Cyclooxygenase-2 (COX-2) is the inducible isoform of the cyclooxygenase enzyme family. COX-2 is involved in tumor development and progression, and frequent overexpression of COX-2 in a variety of human cancers has made COX-2 an important drug target for cancer treatment. Non-invasive imaging of COX-2 expression in cancer would be useful for assessing COX-2-mediated effects on chemoprevention and radiosensitization using COX-2 inhibitors as an emerging class of anti-cancer drugs, especially for colorectal cancer. Herein, we describe the radiopharmacological analysis of [(18)F]Pyricoxib, a novel radiolabeled COX-2 inhibitor, for specific PET imaging of COX-2 in colorectal cancer. Uptake of [(18)F]Pyricoxib was assessed in human colorectal cancer cell lines HCA-7 (COX-2 positive) and HCT-116 (COX-2 negative). Standard COX-2 inhibitors were used to test for specificity of [(18)F]Pyricoxib for COX-2 binding in vitro and in vivo. PET imaging, biodistribution, and radiometabolite analyses were included into radiopharmacological evaluation of [(18)F]Pyricoxib. Radiotracer uptake in COX-2 positive HCA-7 cells was significantly higher than in COX-2 negative HCT-116 cells (P COX-2 inhibitors, celecoxib, rofecoxib, and SC58125, blocked uptake of [(18)F]Pyricoxib in HCA-7 cells in a concentration-dependent manner. The radiotracer was slowly metabolized in mice, with approximately 60 % of intact compound after 2 h post-injection. Selective COX-2-mediated tumor uptake of [(18)F]Pyricoxib in HCA-7 xenografts was confirmed in vivo. Celecoxib (100 mg/kg) selectively blocked tumor uptake by 16 % (PET image analysis; P COX-2 expression in cancer in vivo.

  4. COX-2 Protects against Atherosclerosis Independently of Local Vascular Prostacyclin: Identification of COX-2 Associated Pathways Implicate Rgl1 and Lymphocyte Networks

    Science.gov (United States)

    Kirkby, Nicholas S.; Lundberg, Martina H.; Wright, William R.; Warner, Timothy D.; Paul-Clark, Mark J.; Mitchell, Jane A.

    2014-01-01

    Cyxlo-oxygenase (COX)-2 inhibitors, including traditional nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with increased cardiovascular side effects, including myocardial infarction. We and others have shown that COX-1 and not COX-2 drives vascular prostacyclin in the healthy cardiovascular system, re-opening the question of how COX-2 might regulate cardiovascular health. In diseased, atherosclerotic vessels, the relative contribution of COX-2 to prostacyclin formation is not clear. Here we have used apoE−/−/COX-2−/− mice to show that, whilst COX-2 profoundly limits atherosclerosis, this protection is independent of local prostacyclin release. These data further illustrate the need to look for new explanations, targets and pathways to define the COX/NSAID/cardiovascular risk axis. Gene expression profiles in tissues from apoE−/−/COX-2−/− mice showed increased lymphocyte pathways that were validated by showing increased T-lymphocytes in plaques and elevated plasma Th1-type cytokines. In addition, we identified a novel target gene, rgl1, whose expression was strongly reduced by COX-2 deletion across all examined tissues. This study is the first to demonstrate that COX-2 protects vessels against atherosclerotic lesions independently of local vascular prostacyclin and uses systems biology approaches to identify new mechanisms relevant to development of next generation NSAIDs. PMID:24887395

  5. Post-exposure therapeutic efficacy of COX-2 inhibition against Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Saja Asakrah

    Full Text Available Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus and the etiologic agent of melioidosis, a severe disease in Southeast Asia and Northern Australia. Like other multidrug-resistant pathogens, the inherent antibiotic resistance of B. pseudomallei impedes treatment and highlights the need for alternative therapeutic strategies that can circumvent antimicrobial resistance mechanisms. In this work, we demonstrate that host prostaglandin E2 (PGE2 production plays a regulatory role in the pathogenesis of B. pseudomallei. PGE2 promotes B. pseudomallei intracellular survival within macrophages and bacterial virulence in a mouse model of pneumonic melioidosis. PGE2-mediated immunosuppression of macrophage bactericidal effector functions is associated with increased arginase 2 (Arg2 expression and decreased nitric oxide (NO production. Treatment with a commercially-available COX-2 inhibitor suppresses the growth of B. pseudomallei in macrophages and affords significant protection against rapidly lethal pneumonic melioidosis when administered post-exposure to B. pseudomallei-infected mice. COX-2 inhibition may represent a novel immunotherapeutic strategy to control infection with B. pseudomallei and other intracellular pathogens.

  6. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  7. Forskolin protects keratinocytes from UVB-induced apoptosis and increases DNA repair independent of its effects on melanogenesis.

    Science.gov (United States)

    Passeron, Thierry; Namiki, Takeshi; Passeron, Hélène J; Le Pape, Elodie; Hearing, Vincent J

    2009-01-01

    Melanin pigments provide efficient protection against ultraviolet B (UVB) radiation but DNA repair also plays a key role in eliminating UV-induced damage and preventing the development of skin cancers. In this study, we demonstrate that forskolin (FSK), an agent that increases intracellular levels of cAMP, protects keratinocytes from UVB-induced apoptosis independently from the amount of melanin in the skin. FSK enhances the removal of the two major types of UVB-induced DNA damage, cyclobutane pyrimidine dimers and 6,4-photoproducts, by facilitating DNA repair. These findings suggest new preventive approaches with topical formulations of FSK or other bioactive agents that could be applied to the skin before sun exposure to increase its ability to repair DNA damage.

  8. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    Science.gov (United States)

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.

  9. WIN 55,212-2 Inhibits the Epithelial Mesenchymal Transition of Gastric Cancer Cells via COX-2 Signals

    Directory of Open Access Journals (Sweden)

    Xiangshu Xian

    2016-11-01

    Full Text Available Background: Cannabinoids (the active components of Cannabis sativa and their derivatives have received considerable interest due to reports that they can affect the tumor growth, migration, and metastasis. Previous studies showed that the cannabinoid agonist WIN 55,212-2 (WIN was associated with gastric cancer (GC metastasis, but the mechanisms were unknown. Methods: The effects of WIN on GC cell migration and invasion were analyzed by the wound-healing assay and Transwell assay. Quantitative real-time PCR and Western blot were used to evaluate changes in expression of COX-2 and EMT associated markers in SGC7901 and AGS cells. Results: WIN inhibited cell migration, invasion, and epithelial to mesenchymal transition (EMT in GC. WIN treatment resulted in the downregulation of cyclooxygenase-2 (COX-2 expression and decreased the phosphorylation of AKT, and inhibited EMT in SGC7901 cells. Decreased expression of COX-2 and vimentin, and increased expression of E-cadherin, which was induced by WIN, were normalized by overexpression of AKT, suggesting that AKT mediated, at least partially, the WIN suppressed EMT of GC cells. Conclusion: WIN can inhibit the EMT of GC cells through the downregulation of COX-2.

  10. RhoB protects human keratinocytes from UVB-induced apoptosis through epidermal growth factor receptor signaling.

    Science.gov (United States)

    Canguilhem, Bruno; Pradines, Anne; Baudouin, Caroline; Boby, Céline; Lajoie-Mazenc, Isabelle; Charveron, Marie; Favre, Gilles

    2005-12-30

    Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.

  11. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  12. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio, E-mail: toshio_n@cc.tuat.ac.jp

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  13. Chimyl Alcohol Suppresses PGE2Synthesis by Human Epidermal Keratinocytes through the Activation of PPAR-γ.

    Science.gov (United States)

    Yokota, Mariko; Yahagi, Shoichi; Tokudome, Yoshihiro; Masaki, Hitoshi

    2018-03-09

    Alkyl glyceryl ethers (AKGs) are widely used as emulsion stabilizers, and their anti-inflammatory effects are well known. Daily exposure to environmental stresses, such as chemicals, low humidity and ultraviolet light (UV), can initiate and promote the development of various skin problems. Among those stresses, it has been established that UV induces skin pigmentation and accelerates premature skin aging due to the inflammation that results. Here, we investigated whether chimyl alcohol (CA), which is an AKG, suppresses the inflammatory process. The suppression of cell damage and the reduction of intracellular levels of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEKs) after UVB exposure was evaluated using the Neutral red (NR) and the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assays, respectively. Moreover, the expression levels of mRNAs and proteins related to inflammation were evaluated by Realtime RT-PCR and ELISA assays, respectively. CA suppressed prostaglandin E 2 (PGE 2 ) production in UVB-exposed NHEKs according to the down-regulated expression level of cyclooxygenase-2 (COX-2) mRNA. Furthermore, CA up-regulated the mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-γ, nuclear factor E2-related factor 2 (Nrf2) and γ-glutamyl cysteine synthase (γ-GCS) in NHEKs. Finally, we examined the effects of CA on siPPAR-γtransfected NHEKs. siPPAR-γ transfection of NHEKs abolished the mRNA expression levels of Nrf2 and UVB-stimulated PGE 2 secretion that were regulated by CA. Hence, CA suppresses the UVB-induced COX-2 mRNA expression and PGE 2 production through PPAR-γ as an agonist. We conclude that CA provides useful protection and/or alleviation against UV damage.

  14. COX-2 Forms Regulatory Loop with YAP to Promote Proliferation and Tumorigenesis of Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Xu, Guanglin; Wang, Ying; Li, Weijie; Cao, Yuanyuan; Xu, Jinling; Hu, Ziwei; Hao, Yaping; Hu, Li; Sun, Yawen

    2018-04-01

    COX-2 and YAP are shown to be highly associated with hepatocellular carcinoma (HCC) and frequently upregulated during tumor formation. However, despite their importance, whether there is a mutual interaction between COX-2 and YAP and how they regulate each other are not clear. In this paper, we showed that COX-2 overexpression in HCC cell lines resulted in increased levels of YAP mRNA, protein, and its target genes. COX-2 promoted proliferation of HCC cell lines, and knockdown of YAP antagonized this effect. In addition, our results indicated that EP2 and Wnt/β-Catenin mediate the transcriptional induction of YAP by COX-2. On the other hand, YAP increased COX-2 expression at the level of transcription requiring intact TEAD binding sites in the COX-2 promoter. Collectively, these findings indicated that COX-2 is not only a stimulus of YAP but also a target of Hippo-YAP pathway, thus forming a positive feedback circuit, COX-2-PGE 2 -EP2-Gαs-β-catenin-YAP-COX-2. In a further study, we showed that inhibition of YAP and COX-2 acted synergistically and more efficiently reduced the growth of HCC cells and tumor formation than either of them alone, suggesting that dual governing of YAP and COX-2 may lead to the discovery of promising therapeutic strategies for HCC patients via blocking this positive feedback loop. Copyright © 2018. Published by Elsevier Inc.

  15. Neoadjuvant selective COX-2 inhibition down-regulates important oncogenic pathways in patients with esophageal adenocarcinoma

    NARCIS (Netherlands)

    Tuynman, Jurriaan B.; Buskens, Christianne J.; Kemper, Kristel; ten Kate, Fiebo J. W.; Offerhaus, G. Johan A.; Richel, Dirk J.; van Lanschot, J. Jan B.

    2005-01-01

    OBJECTIVES: To evaluate the effects of neoadjuvant therapy with the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib in vitro and in patients with esophageal adenocarcinoma on COX-2 and MET expression. SUMMARY BACKGROUND DATA: High COX-2 and/or MET expression levels are negative prognostic

  16. COX-2 Forms Regulatory Loop with YAP to Promote Proliferation and Tumorigenesis of Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Guanglin Xu

    2018-04-01

    Full Text Available COX-2 and YAP are shown to be highly associated with hepatocellular carcinoma (HCC and frequently upregulated during tumor formation. However, despite their importance, whether there is a mutual interaction between COX-2 and YAP and how they regulate each other are not clear. In this paper, we showed that COX-2 overexpression in HCC cell lines resulted in increased levels of YAP mRNA, protein, and its target genes. COX-2 promoted proliferation of HCC cell lines, and knockdown of YAP antagonized this effect. In addition, our results indicated that EP2 and Wnt/β-Catenin mediate the transcriptional induction of YAP by COX-2. On the other hand, YAP increased COX-2 expression at the level of transcription requiring intact TEAD binding sites in the COX-2 promoter. Collectively, these findings indicated that COX-2 is not only a stimulus of YAP but also a target of Hippo-YAP pathway, thus forming a positive feedback circuit, COX-2-PGE2-EP2-Gαs-β-catenin-YAP-COX-2. In a further study, we showed that inhibition of YAP and COX-2 acted synergistically and more efficiently reduced the growth of HCC cells and tumor formation than either of them alone, suggesting that dual governing of YAP and COX-2 may lead to the discovery of promising therapeutic strategies for HCC patients via blocking this positive feedback loop.

  17. Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice.

    Science.gov (United States)

    Hirota, Ayako; Kawachi, Yasuhiro; Yamamoto, Masayuki; Koga, Tsutomu; Hamada, Kazuhiko; Otsuka, Fujio

    2011-08-01

    Ultraviolet (UV) radiation is one of the most important environmental factors involved in the pathogenesis of premature skin ageing, termed photoageing. The harmful effects of UV in photoageing are associated with the generation of reactive oxygen species, and cellular antioxidants act to prevent the occurrence and reduce the severity of UV-induced photoageing. The transcription factor Nrf2 and its cytoplasmic anchor protein, Keap1, are central regulators of the cellular antioxidant response. Here, we investigated the role of the Nrf2-Keap1 pathway in photoageing using nrf2 gene-deficient (nrf2(-/-)) mice. Our results indicated that UVB-irradiated nrf2(-/-) mice showed accelerated photoageing, such as coarse wrinkle formation, loss of skin flexibility, epidermal thickening and deposition of extracellular matrix in the upper dermis. In addition, nrf2(-/-) mice also showed an increase in cutaneous reactivity for the lipid peroxidation product 4-hydroxy-2-nonenal and a significant decrease in cutaneous glutathione level. These findings indicate that Nrf2 plays the important role in the protection against UVB-induced photoageing. © 2011 John Wiley & Sons A/S.

  18. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts.

    Science.gov (United States)

    Bravo, Karent; Duque, Luisa; Ferreres, Federico; Moreno, Diego A; Osorio, Edison

    2017-03-01

    Skin aging is a complex process that is strongly affected by UV radiation, which stimulates the production of reactive oxygen species (ROS) in the epidermis and dermis and subsequently causes skin damage. Among the major consequences are increased collagen degradation and reduced collagen synthesis. Previous reports have demonstrated the beneficial effects of polyphenols for healthy skin. Passiflora tarminiana Coppens & V.E. Barney, a species of the Passifloraceae family, is widely distributed in South America and is rich in flavonoids. We show that UVB radiation increases metalloproteinase 1 (MMP-1) and reduces procollagen production in human dermal fibroblast (HDF) cells in a dose- and time-dependent manner. We examined the antioxidant and antiaging effects of the extract and fractions of P. tarminiana fruits. The fractions showed high polyphenol content (620mg EAG/g) and antioxidant activity, as measured by ORAC (4097μmol ET/g) and ABTS (2992μmol ET/g) assays. The aqueous fraction drastically inhibited the collagenase enzyme (IC 50 0.43μg/mL). The extract and fractions presented photoprotective effects by reducing UVB-induced MMP-1 production, increasing UVB-inhibited procollagen production, and decreasing ROS production after UVB irradiation in HDF. Finally, the polyphenol contents of the extracts and fractions from P. tarminiana were analyzed by HPLC-DAD-ESI-MS n , and procyanidins and glycosylated flavonoids were identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice.

    Science.gov (United States)

    Song, Jae Hyoung; Bae, Eun Young; Choi, Goya; Hyun, Jin Won; Lee, Mi Young; Lee, Hye Won; Chae, Sungwook

    2013-04-01

    Mangifera indica L. (Anacardiaceae) is a medicinal plant whose extracts have been described as an antioxidant with anti-inflammatory and immunomodulatory activities. Skin aging is a consequence of chronic sun exposure to the sun and therefore ultraviolet (UV) radiation. Naturally occurring antioxidants are known to reduce skin aging. Therefore, the aim of the present study was to evaluate the protective role of mango extract against UVB-induced skin aging in hairless mice. HR-1 hairless male mice (6 weeks old) were divided into three groups: control (n = 5), UVB-treated vehicle (n = 5), and UVB-treated mango extract (n = 5) groups. UVB-irradiated mice from the mango extract group were orally administered 0.1 ml of water containing 100 mg of mango extract/kg body weight per day. The inhibitory activity of mango extract on wrinkle formation was determined by the analysis of the skin replica, epidermal thickness based on histological examination, and damage to collagen fiber. The mean length of wrinkles in UVB-treated vehicle group significantly improved after the oral administration of mango extract, which significantly inhibited the increase in epidermal thickness and epidermal hypertrophy (P mango extract by Masson's trichrome staining. These results indicate that mango extract showed anti-photoaging activity in UVB-irradiated hairless mice. © 2013 John Wiley & Sons A/S.

  20. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes.

    Science.gov (United States)

    Vostálová, Jitka; Zdarilová, Adéla; Svobodová, Alena

    2010-04-01

    Solar radiation is a very important exogenous factor in skin pathogenesis and can lead to the development of a number of skin disorders. UVB irradiation is known to induce oxidative stress, inflammation and especially DNA lesions in exposed cells. It is important, therefore, to identify agents that can offer protection against UVB-caused skin damage. Natural compounds have been studied for their possible ability to control/modulate various lifestyle-related diseases. The application of plant compounds/extracts with screening, antioxidant and anti-inflammatory activities may also successfully protect the skin against UV-caused injury. We assessed the potency of Prunella vulgaris extract (PVE) and its main phenolic acid component, rosmarinic acid (RA), to suppress UVB-induced (295-315 nm) alterations to human keratinocytes HaCaT using a solar simulator. Pre- and post-treatment of HaCaT cells with PVE (5-50 mg/l) and RA (0.18-1.8 mg/l) reduced breakage together with the apoptotic process. PVE and RA also significantly eliminated ROS production and diminished IL-6 release. Taken together, both PVE and RA prevent UVB-caused injury to keratinocytes. However their efficacy needs to be demonstrated in vivo.

  1. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice

    Science.gov (United States)

    Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders. PMID:27750221

  2. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Madsen, Kirsten; Hansen, Pernille B L

    2011-01-01

    RNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma......-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity......It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP m...

  3. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  4. Expression of beta-catenin, COX-2 and iNOS in colorectal cancer: relevance of COX-2 adn iNOS inhibitors for treatment in Malaysia.

    Science.gov (United States)

    Hong, Seok Kwan; Gul, Yunus A; Ithnin, Hairuszah; Talib, Arni; Seow, Heng Fong

    2004-01-01

    Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS. A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral. COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores. the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  5. Introduction of β-d-mannuronic acid (M2000) as a novel NSAID with immunosuppressive property based on COX-1/COX-2 activity and gene expression.

    Science.gov (United States)

    Mirshafiey, Abbas; Taeb, Mahsa; Mortazavi-Jahromi, Seyed Shahabeddin; Jafarnezhad-Ansariha, Fahimeh; Rehm, Bernd H A; Esposito, Emanuela; Cuzzocrea, Salvatore; Matsuo, Hidenori

    2017-10-01

    The NSAIDs which inhibit the cyclooxygenase (COX) enzymes are among medications widely used to treat pain and inflammation. These drugs cause digestive complications resulting in inhibition of the COX-1 enzyme, while the inhibition of the COX-2 enzyme has therapeutic effects. Therefore research focuses on the production of medications that specifically inhibit the COX-2 enzyme. This study aimed to study the effects of β-d-mannuronic (M2000) acid on the gene expression and activity of COX-1/COX-2 enzymes in order to introduce a novel NSAID for treating inflammatory diseases. The mRNA expression levels of COXs were analyzed with qRT-PCR. Prostaglandin E 2 (PGE 2 ) concentration in culture media was determined using ELISA method. Our results indicated that the M2000 at low and high dose could significantly reduce the gene expression level of COX-2 compared to the LPS group (pCOX-1 compared to the LPS group. Moreover, it was noticed that this drug strongly and significantly reduced the activity of COX-1/COX-2 enzymes at the three concentrations of 5, 50 and 500 mMol/ml compared to the LPS and arachidonic acid groups (pCOX-1/COX-2 enzymes, with suppressing the gene expression of COX-2 specifically. Therefore, based on gene expression findings this drug might be categorized and introduced as a novel NSAID with selective COX-2 inhibitory effect. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Inhibition of UV-B induced apoptosis in corneal epithelial cells by potassium channel modulators.

    Science.gov (United States)

    Ubels, John L; Schotanus, Mark P; Bardolph, Susan L; Haarsma, Loren D; Koetje, Leah R; Louters, Julienne R

    2010-02-01

    The goal of this study was to determine whether prevention of K(+) loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150-200 mJ/cm(2) UV-B demonstrated induction of apoptosis 6 h after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K(+). If this protection is due to a reduction of UV-induced K(+) loss then K(+) channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm(2) was significantly reduced when the cells were incubated in 0.3 microM BDS-I or 0.05-1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1-0.3 microM BDS-I and 0.1-1 mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 microM BDS-I and 0.01-0.05 mM quinidine. Patch-clamp recording showed activation of K(+) channels after exposure to UV-B and a decrease in outward K(+) current was observed following application of BDS-I. Quinidine did not block K(+) currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K(+) channels. The effect of the K(+) channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K(+) efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K(+)] in tears may protect the corneal epithelium from effects of ambient UV-B. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Inhibition of UV-B Induced Apoptosis in Corneal Epithelial Cells by Potassium Channel Modulators

    Science.gov (United States)

    Ubels, John L.; Schotanus, Mark P.; Bardolph, Susan L.; Haarsma, Loren D.; Koetje, Leah R.; Louters, Julienne R.

    2009-01-01

    The goal of this study was to determine whether prevention of K+ loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150 – 200 mJ/cm2 UV-B demonstrated induction of apoptosis 6 hrs after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K+. If this protection is due to a reduction of UV induced K+ loss then K+ channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm2 was significantly reduced when the cells were incubated in 0.3 µM BDS-I or 0.05–1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1–0.3 µM BDS-I and 0.1–1mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 µM BDS-I and 0.01–0.05 mM quinidine. Patch-clamp recording showed activation of K+ channels after exposure to UV-B and a decrease in outward K+ current was observed following application of BDS-I. Quinidine did not block K+ currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K+ channels. The effect of the K+ channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K+ efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K+] in tears may protect the corneal epithelium from effects of ambient UV-B. PMID:19874821

  8. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  9. Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice

    International Nuclear Information System (INIS)

    Conney, Allan H.; Zhou, Sherry; Lee Maojung; Xie Jianguo; Yang, Chung S.; Lou Yourong; Lu Yaoping

    2007-01-01

    Oral administration of green tea or a caffeine solution, but not decaffeinated green tea, inhibits UVB-induced complete carcinogenesis in SKH-1 mice. Oral administration of green tea, coffee or a caffeine solution for 2 weeks enhanced UVB-induced increases in apoptosis in the epidermis, but these treatments had no effect in non-UVB treated normal epidermis. Our results suggest that administration of green tea, coffee and caffeine may inhibit UVB-induced carcinogenesis - at least in part - by enhancing UVB-induced apoptosis. Plasma levels of caffeine observed after its oral administration at cancer-preventive dose levels were within the range observed in moderate coffee drinkers. Topical applications of caffeine to mice previously treated with UVB for 20 weeks (high risk mice without tumors) inhibited the formation of tumors and stimulated apoptosis in the tumors but not in areas of the epidermis away from tumors. The selective effects of caffeine administration to stimulate UVB-induced apoptosis or apoptosis in tumors but not in normal epidermis or in areas of the epidermis away from tumors is of considerable interest, but the reasons for the selective effects of caffeine on apoptosis in DNA damaged tissues are unknown. Further studies are needed to determine mechanisms of these effects of caffeine and to determine the effects of caffeine administration on sunlight-induced actinic keratoses and squamous cell carcinomas in humans

  10. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    International Nuclear Information System (INIS)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-01-01

    Highlights: ► UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. ► NAC inhibits UVB induced Cyp-D expression, while H 2 O 2 facilitates it. ► Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. ► Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H 2 O 2 ) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H 2 O 2 -induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H 2 O 2 -induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D’s critical role in UVB/oxidative stress-induced skin cell death.

  11. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  12. COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Jensen, Boye L; Topcu, Sukru Oguzkan

    2007-01-01

    and urine and IM tissue osmolality were decreased. There were inverse changes of COX-1 and COX-2 in the IM: COX-2 mRNA, protein, and activity increased, while COX-1 mRNA and protein decreased. Parecoxib reduced urine output 1 day after release of BUO, but sodium excretion and glomerular filtration rate were...... unchanged. Parecoxib normalized urinary PGE(2) and PGI(2) excretion and attenuated downregulation of AQP2 and AQP3, while phosphorylated AQP2 and NKCC2 remained suppressed. Parecoxib did not improve urine-concentrating capacity in response to 24 h of water deprivation. We conclude that decreased NKCC2...

  13. The flavonoid luteolin increases the resistance of normal, but not malignant keratinocytes, against UVB-induced apoptosis.

    Science.gov (United States)

    Verschooten, Lien; Smaers, Katrien; Van Kelst, Sofie; Proby, Charlotte; Maes, Daniel; Declercq, Lieve; Agostinis, Patrizia; Garmyn, Marjan

    2010-09-01

    Adequate protection of skin against the carcinogenic effects of UVB irradiation is essential. Flavonoids may have a conspicuous role in cancer prevention because of their antioxidant, anti-inflammatory, and growth-inhibitory effects. Therefore, we tested the effects of the flavone luteolin (LUT) on selected parameters of the sunburn response in normal human keratinocytes, exposed to physiological doses of UVB. LUT attenuated UVB-induced cell death through delay and inhibition of intrinsic apoptotic signaling. Moreover, LUT not only predominantly affected the mitochondrial apoptosis pathway through its antioxidant capacity, but also changed the balance of Bcl2 (B-cell leukemia/lymphoma 2)-family members. Furthermore, LUT had inhibitory effects on the UVB-induced release of the inflammatory mediators, IL-1alpha and prostaglandin-E(2). Using different cell lines derived from squamous cell carcinomas, we showed that LUT did not increase the resistance of malignant keratinocytes to UVB. Our data suggest that LUT inhibits different aspects of the sunburn response, which results ultimately in an increased survival of normal keratinocytes, whereas the sensitivity of malignant cells to UVB remain unchanged. Hence, LUT might have value in new photoprotective applications or improve existing ones.

  14. Protective Effects of a New Phloretin Derivative against UVB-Induced Damage in Skin Cell Model and Human Volunteers

    Directory of Open Access Journals (Sweden)

    Seoungwoo Shin

    2014-10-01

    Full Text Available The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS, a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs formation, glutathione (GSH depletion and apoptosis induced by ultraviolet B (UVB. The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection.

  15. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  16. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.

    Science.gov (United States)

    Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın

    2017-10-01

    Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.

  17. COX-2 expression in ovarian cancer: an updated meta-analysis.

    Science.gov (United States)

    Sun, Haiming; Zhang, Xuelong; Sun, Donglin; Jia, Xueyuan; Xu, Lidan; Qiao, Yuandong; Jin, Yan

    2017-10-20

    The prognostic role of COX-2 expression in ovarian cancer patients has been studied for years, while results remain controversial. Thus we performed a meta-analysis to evaluate the prognostic impact of COX-2 expression on survival of ovarian cancer patients. The databases PubMed, Embase and CNKI were searched. Summary hazard ratio (HR) and 95% confidence intervals (CIs) were calculated to analyze the correlations between COX-2 expression and overall survival (OS), and disease-free survival (DFS). A total of 1,867 patients from 18 studies were enrolled in the final analysis. The results showed that patients with higher COX-2 expression had a poor OS (HR: 1.48; 95% CI: 1.19-1.85) and DFS (HR: 1.81, 95% CI: 1.28-2.55). Subgroup analysis showed that there had significant associations between COX-2 expression and survival rate in most of the subgroups. Furthermore, there were significant associations between COX-2 expression and several clinical parameters such as FIGO stage, histological type and age. These results showed the patients with higher COX-2 expression had a significantly poorer survival rate, COX-2 expression had the potential to be a prognostic marker of ovarian cancer.

  18. Over-expression of COX-2 mRNA in colorectal cancer

    NARCIS (Netherlands)

    Roelofs, H.M.J.; Morsche, R.H.M. te; Heumen, B.W.H van; Nagengast, F.M.; Peters, W.H.M.

    2014-01-01

    BACKGROUND: Cyclooxygenase-2 (COX-2, PTGS2) is an enzyme involved in the synthesis of prostaglandins and thromboxanes, which are regulators of biologic processes such as inflammation, cell proliferation and angiogenesis. COX-2 over-expression was reported in many (pre) malignant tissues, but data

  19. Prognostic significance of COX-2 and b-catenin in colorectal ...

    African Journals Online (AJOL)

    Both COX-2 and b-catenin expression correlated with a higher incidence of shorter disease free survival. Conclusion: Both b-catenin and COX-2 expression may play an important role in the evolution of colon carcinogenesis. Increased expression of both could be used as a marker of tumor progression and poor prognosis.

  20. Protective effect of NSAIDs on cancer and influence of COX-2 C-765G genotype

    NARCIS (Netherlands)

    C. Siemes (Claire); L.E. Visser (Loes); J.W.W. Coebergh (Jan Willem); A. Hofman (Albert); A.G. Uitterlinden (André); B.H.Ch. Stricker (Bruno)

    2008-01-01

    textabstractPurpose: Inhibition of COX-2 enzymes is a frequently suggested mechanism for the beneficial effects of NSAIDs on carcinogenesis. The aim of this study was to explore the role of cumulative NSAID use on four common non-skin related cancers and modification by COX-2 G-765C genotype.

  1. Secretory phospholipase A(2) induces delayed neuronal COX-2 expression compared with glutamate

    DEFF Research Database (Denmark)

    Kolko, Miriam; Nielsen, Marianne; Bazan, Nicolas G

    2002-01-01

    and immunohistochemistry. An up-regulation of COX-2, c-fos, and c-jun, but not COX-1, was observed around the lesion as well as in the neocortex 4 hr after the injection. Hippocampal up-regulation of COX-2 was seen in dentate gyrus 8 hr after injection. When glutamate was injected, up-regulation of the early...

  2. Expression of COX-2 and HER-2 in colorectal cancer and their correlation.

    Science.gov (United States)

    Wu, Qi-Bing; Sun, Guo-Ping

    2015-05-28

    To detect the expression of COX-2 and HER-2 in colorectal cancer and to analyze their correlation and clinical significance. A total of 1026 colorectal cancer surgical specimens were collected from patients treated from December 2002 to December 2007 at the First Affiliated Hospital of Anhui Medical University. All specimens were made into 4-μm slices. The expression of COX-2 and HER-2 were detected by immunohistochemistry using the streptavidin-biotin-peroxidase method. The correlations between COX-2 and HER-2 expression and colorectal cancer clinical features were analyzed. The positive rates of COX-2 and HER-2 expression in colorectal cancer were 77.97% (800/1026) and 46.20% (474/1026), respectively. There was a significant correlation between COX-2 and HER-2 expression in colorectal cancer (P colorectal cancer, the positive COX-2 and HER-2 expression rates were 82.80% (443/535) and 57.94% (310/535), respectively. In patients with poorly differentiated colorectal cancer, the positive expression rates were 74.49% (210/282) and 52.84% (149/282), respectively (P colorectal cancer. COX-2 and HER-2 expression had no significant correlation with sex, age, or tumor location. COX-2 and HER-2 are important markers for invasion and metastasis of colorectal cancer, and they act together to regulate the invasion and metastasis of colorectal cancer.

  3. Transactivation of EGFR by LPS induces COX-2 expression in enterocytes.

    Directory of Open Access Journals (Sweden)

    Steven J McElroy

    Full Text Available Necrotizing enterocolitis (NEC is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2, which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC.

  4. Comparison of COX2 expression between oral squamous cell carcinoma, leukoplakia and normal mucosa.

    Science.gov (United States)

    Amirchaghmaghi, Maryam; Mohtasham, Nooshin; Mozaffari, Pegah Mosannen

    2012-03-01

    To compare cyclooxygenase 2 expression (COX2-E) between normal, oral leukoplakia lesions and different grades of oral squamous cell carcinoma (SCC). Around 90 paraffin embedded blocks consisting of 45 SCC, 15 leukoplakia and 17 controls were selected for immunohistochemistry (IHC) for detection of COX2- E. COX2-E was divided in four grades, as A (0-10%), B (11- 40%), C (41-70%) and D (leukoplakia (p > 0.05). COX2-E in spinous layer of normal tissue was significantly lower than SCC (p = 0.000). COX2-E was significantly different in SCC grade 3 and leukoplakia (p = 0.001) and normal tissue (p = 0.000). COX2-E was significantly higher in SCC grade 3 compared to leukoplakia (basal layer) (p = 0.000). We showed a significant higher COX2-E in SCC lesions compared to leukoplakias and normal controls. In our study COX2-E was not significantly different in SCC grades 1, 2 and 3 (p < 0.05).

  5. [Mechanism of inhibition OF COX-2 and COX-3 in gastrointestinal damage induced by NSAID in rats ].

    Science.gov (United States)

    Laudanno, O M; San Miguel, P; Aramberry, L J; Cesolari, J A

    2003-01-01

    In randomized groups of Wistar rats, the effect inhibitor of selective NASAID over the COX-1, COX-2 and COX-3 the synchronizes inhibition of COX-1 and COX-2, COX-1 and COX-3, COX-2 and COX-3, and COX-1, COX-2 and COX-3 were studied. The conclusions were that the selective inhibition of COX-1, COX-2 and COX-3 no given gastrointestinal damage; the synchronizes inhibition of COX-1 and COX-2 given preferential gastric damage; in contrast the inhibition of COX-2 and COX-3 given massive necrosis preferential in small intestine.

  6. Loss of keratinocytic RXRα combined with activated CDK4 or oncogenic NRAS generates UVB-induced melanomas via loss of p53 and PTEN in the tumor microenvironment.

    Science.gov (United States)

    Coleman, Daniel J; Chagani, Sharmeen; Hyter, Stephen; Sherman, Anna M; Löhr, Christiane V; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup K

    2015-01-01

    Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRAS(Q61K) (constitutively active RAS) or mutant activated CDK4(R24C/R24C) (prevents binding of CDK4 by kinase inhibitor p16(INK4A)) with an epidermis-specific knockout of the nuclear retinoid X receptor alpha (RXRα(ep-/-)) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared with control mice with functional RXRα. Melanomas from both groups of bigenic RXRα(ep-/-) mice are larger in size with higher proliferative capacity, and exhibit enhanced angiogenic properties and increased expression of malignant melanoma markers. Analysis of tumor adjacent normal skin from these mice revealed altered expression of several biomarkers indicative of enhanced melanoma susceptibility, including reduced expression of tumor suppressor p53 and loss of PTEN, with concomitant increase in activated AKT. Loss of epidermal RXRα in combination with UVB significantly enhances invasion of melanocytic cells to draining lymph nodes in bigenic mice expressing oncogenic NRAS(Q61K) compared with controls with functional RXRα. These results suggest a crucial role of keratinocytic RXRα to suppress formation of UVB-induced melanomas and their progression to malignant cancers in the context of driver mutations such as activated CDK4(R24C/R24C) or oncogenic NRAS(Q61K). These findings suggest that RXRα may serve as a clinical diagnostic marker and therapeutic target in melanoma progression and metastasis. ©2014 American Association for Cancer Research.

  7. Prescribing COX-2s for patients new to cyclo-oxygenase inhibition therapy.

    Science.gov (United States)

    Cox, Emily R; Motheral, Brenda; Frisse, Mark; Behm, Andrew; Mager, Doug

    2003-11-01

    To profile the pattern of cyclo-oxygenase 2 inhibitor (COX-2) use, including length of therapy, medical conditions treated, and gastrointestinal (GI) risk profile of users. Descriptive retrospective analysis of medical and prescription claims data from a large preferred provider organization in the Midwest. During an index period of January through May 31, 2000, patients new to COX-2 therapy were evaluated 365 days before and after their first prescription. Among the inclusion criteria, patients had to have no previous use of COX-2 therapy, be at least 18 years of age, and be continuously eligible during the entire study period. Of the more than 300 000 members with at least 1 day of coverage in the index window, 1312 members met the inclusion criteria. The average age of COX-2 users was 49.5 years (SD = 11.4) and 60% were female. The number of days' supply of COX-2 agent obtained by members was highly skewed, with a mean of 116 days (SD = 119.5) and a median of 60 days. The medical conditions associated with COX-2 use included a variety of musculoskeletal conditions, the most common being low back pain (22%) and osteoarthritis (18%). Approximately 19% of members did not have a diagnosis associated with COX-2 use. Sixty-five percent of those new to COX-2 therapy did not have an indication of being at risk for GI events, and 68% had no indication for trying a lower-cost nonselective nonsteroidal anti-inflammatory drug (NSAID) prescription prior to beginning COX-2 therapy. Taken together, 45% did not have a GI risk factor or prior use of nonselective NSAID prescription therapy. These findings suggest that opportunities exist to encourage the cost-effective prescribing of COX-2 therapy. Possible methods include implementation of step therapy, academic detailing, and physician education programs, among others.

  8. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity

    Directory of Open Access Journals (Sweden)

    II Kim Jae

    2010-10-01

    Full Text Available Abstract Background Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. Methods In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB. Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Results Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight and histological analysis of the lung metastasis (gross analysis and histological staining. Reduced expression of Cox-2 (mRNA and protein from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Conclusions Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.

  9. MiR-203 is involved in the laryngeal carcinoma pathogenesis via targeting VEGFA and Cox-2

    Directory of Open Access Journals (Sweden)

    Xu L

    2016-07-01

    Full Text Available Lin Xu,1 Bin Shen,2 Tingting Chen,3 Pin Dong2 1Department of Otolaryngology, Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 2Department of Otolaryngology-Head & Neck Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, Shanghai, 3Lishui Central Hospital, Lishui, Zhejiang Province, People’s Republic of China Abstract: The development of laryngeal squamous cell carcinoma (LSCC is a multistep process involving multiple factors. MicroRNAs, a group of important negative regulators of gene expression, have also been confirmed to be involved in the LSCC pathogenesis. In the present study, we compared the expression of nine selected microRNAs in the LSCC tissues and adjacent nontumor tissues. We found that the expression of miR-203 was significantly reduced in the LSCC tissues. Predicted by using bioinformatics tools, we found that VEGFA and cyclooxygenase-2 (Cox-2 may be direct targets of miR-203. By subsequent determination through dual-luciferase assay and Western blot, we confirmed that miR-203 suppresses the expression of VEGFA and Cox-2 by directly targeting 3'-untranslated region. Meanwhile, by analyzing the relationship between miR-203 and VEGFA in clinical tissue samples, we found that a negative correlation existed in the expression of miR-203 and VEGFA (P=0.0096, r=-0.33. Similarly, the expression of miR-203 and Cox-2 also has a negative correlation (P=0.0019, r=-0.46. Subsequently, in vitro functional study indicated that miR-203 played as a tumor suppressor by repressing proliferation, migration, and invasion of Hep-2 cells. The overexpression of VEGFA partially rescued the effect of overexpressed miR-203. Overexpressed Cox-2 partially rescued the effect of miR-203 on Hep-2 cell proliferation but not on the cell migration and invasion capacity. These findings suggest that miR-203 plays as a tumor suppressor in LSCC, partially by regulating VEGFA and Cox-2, and may serve as a potential

  10. COX-2 as a determinant of lower disease-free survival for patients affected by ameloblastoma.

    Science.gov (United States)

    Montezuma, Marco Aurélio Petroni; Fonseca, Felipe Paiva; Benites, Bernar Monteiro; Soares, Ciro Dantas; do Amaral-Silva, Gleyson Kleber; de Almeida, Oslei Paes; Soares, Fernando Augusto; Pagano, Rosana Lima; Fregnani, Eduardo Rodrigues

    2018-03-15

    Ameloblastoma is a locally aggressive neoplasm with a poorly understood pathogenesis. Therefore, the aim of this study is to investigate whether COX-2 expression is associated with ameloblastoma microvascular density (MVD) and with tumor aggressiveness. Sixty-three cases of primary ameloblastomas arranged in tissue microarray were submitted to immunohistochemistry against cyclooxigenase-2 (COX-2) and CD34. Clinicopathological parameters regarding sex, age, tumour size, tumour duration, tumour location, treatment, recurrences, radiographic features, vestibular/lingual and basal cortical disruption and follow-up data were obtained from patients' medical records and correlated with the proteins expression. The results on BRAF-V600E expression were obtained from our previous study and correlated with COX-2 and CD34 expressions. Log-rank univariate analysis and multivariate Cox regression model were done to investigate the prognostic potential of the molecular markers. Twenty-eight cases (44.4%) exhibited cytoplasmic positivity for COX-2, predominantly in the columnar peripheral cells, with a mean MVD of 2.2 vessels/mm 2 . COX-2 was significantly associated with recurrences (p COX-2 was significantly associated with a lower 5-year disease-free survival (DFS) rate (p COX-2 expression in ameloblastomas is not associated with MVD, but it is significantly associated with recurrences and with a lower DFS. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Teriparatide (human PTH1-34) compensates for impaired fracture healing in COX-2 deficient mice.

    Science.gov (United States)

    Yukata, Kiminori; Xie, Chao; Li, Tian-Fang; Brown, Matthew L; Kanchiku, Tsukasa; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M; Beck, Christopher A; Jonason, Jennifer H; O'Keefe, Regis J

    2018-05-01

    Genetic ablation of cyclooxygenase-2 (COX-2) in mice is known to impair fracture healing. To determine if teriparatide (human PTH 1-34 ) can promote healing of Cox-2-deficient fractures, we performed detailed in vivo analyses using a murine stabilized tibia fracture model. Periosteal progenitor cell proliferation as well as bony callus formation was markedly reduced in Cox-2 -/- mice at day 10 post-fracture. Remarkably, intermittent PTH 1-34 administration increased proliferation of periosteal progenitor cells, restored callus formation on day 7, and enhanced bone formation on days 10, 14 and 21 in Cox-2-deficient mice. PTH 1-34 also increased biomechanical torsional properties at days 10 or 14 in all genotypes, consistent with enhanced bony callus formation by radiologic examinations. To determine the effects of intermittent PTH 1-34 for callus remodeling, TRAP staining was performed. Intermittent PTH 1-34 treatment increased the number of TRAP positive cells per total callus area on day 21 in Cox-2 -/- fractures. Taken together, the present findings indicate that intermittent PTH 1-34 treatment could compensate for COX-2 deficiency and improve impaired fracture healing in Cox-2-deficient mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  13. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    International Nuclear Information System (INIS)

    Meng, Zhen; Gan, Ye-Hua

    2015-01-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN

  14. COX-2 verexpression in pretreatment biopsies predicts response of rectal cancers to neoadjuvant radiochemotherapy

    International Nuclear Information System (INIS)

    Smith, Fraser M.; Reynolds, John V.; Kay, Elaine W.; Crotty, Paul; Murphy, James O.; Hollywood, Donal; Gaffney, Eoin F.; Stephens, Richard B.; Kennedy, M. John

    2006-01-01

    Purpose: To determine the utility of COX-2 expression as a response predictor for patients with rectal cancer who are undergoing neoadjuvant radiochemotherapy (RCT). Methods and Materials: Pretreatment biopsies (PTB) from 49 patients who underwent RCT were included. COX-2 and proliferation in PTB were assessed by immunohistochemistry (IHC) and apoptosis was detected by TUNEL stain. Response to treatment was assessed by a 5-point tumor-regression grade (TRG) based on the ratio of residual tumor to fibrosis. Results: Good response (TRG 1 + 2), moderate response (TRG 3), and poor response (TRG 4 + 5) were seen in 21 patients (42%), 11 patients (22%), and 17 patients (34%), respectively. Patients with COX-2 overexpression in PTB were more likely to demonstrate moderate or poor response (TRG 3 + 4) to treatment than were those with normal COX-2 expression (p = 0.026, chi-square test). Similarly, poor response was more likely if patients had low levels of spontaneous apoptosis in PTBs (p = 0.0007, chi-square test). Conclusions: COX-2 overexpression and reduced apoptosis in PTB can predict poor response of rectal cancer to RCT. As COX-2 inhibitors are commercially available, their administration to patients who overexpress COX-2 warrants assessment in clinical trials in an attempt to increase overall response rates

  15. [p53, p16 E COX-2 expression in esophageal squamous cell carcinoma and histopathological association].

    Science.gov (United States)

    Felin, Izabella Paz Danezi; Grivicich, Ivana; Felin, Carlos Roberto; Regner, Andrea; Rocha, Adriana Brondani da

    2008-01-01

    The esophageal carcinoma represents about 2% of malignant tumors and is the third most common cause of gastrointestinal cancer. The correlation between immunohistochemistry markers, such as p53, p16 and COX-2 proteins and cancer esophageal prognosis has been suggested. To Investigate whether the expression of p53, p16 and COX-2 proteins are associated to tumor staging. For this purpose we proceeded immunohistochemistry assays and TMN in 31 esophageal tumor and normal tissue samples. The p53 nuclear expression was considered positive when it appears in 10.00% or more cells. COX-2 expression was scored according to intensity in three scores (1+, 2+, 3+). On the tumor samples the results presented 48.38% positivity for p53, 16.12% for p16 and 100% with 1+, 2+ or 3+ scores for COX-2. However, when we investigated whether the expression of p53, p16 and COX-2 proteins are related to tumor staging, only COX-2 expression, score 3+, had shown statistical significant association. Therefore, in the present study we could see positive correlation between COX-2 protein and high grade tumor as well as advanced tumor staging in esophageal carcinoma.

  16. Nucleobindin co-localizes and associates with cyclooxygenase (COX-2 in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Patrick Leclerc

    2008-05-01

    Full Text Available The inducible cyclooxygenase isoform (COX-2 is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc, a ubiquitous Ca(2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.

  17. Divergent responses of chondrocytes and endothelial cells to shear stress: Cross-talk among COX-2, the phase 2 response, and apoptosis

    Science.gov (United States)

    Healy, Zachary R.; Lee, Norman H.; Gao, Xiangqun; Goldring, Mary B.; Talalay, Paul; Kensler, Thomas W.; Konstantopoulos, Konstantinos

    2005-01-01

    Fluid shear exerts anti-inflammatory and anti-apoptotic effects on endothelial cells by inducing the coordinated expression of phase 2 detoxifying and antioxidant genes. In contrast, high shear is pro-apoptotic in chondrocytes and promotes matrix degradation and cartilage destruction. We have analyzed the mechanisms regulating shear-mediated chondrocyte apoptosis by cDNA microarray technology and bioinformatics. We demonstrate that shear-induced cyclooxygenase (COX)-2 suppresses phosphatidylinositol 3-kinase (PI3-K) activity, which represses antioxidant response element (ARE)/NF-E2 related factor 2 (Nrf2)-mediated transcriptional response in human chondrocytes. The resultant decrease in antioxidant capacity of sheared chondrocytes contributes to their apoptosis. Phase 2 inducers, and to a lesser extent COX-2-selective inhibitors, negate the shear-mediated suppression of ARE-driven phase 2 activity and apoptosis. The abrogation of shear-induced COX-2 expression by PI3-K activity and/or stimulation of the Nrf2/ARE pathway suggests the existence of PI3-K/Nrf2/ARE negative feedback loops that potentially interfere with c-Jun N-terminal kinase 2 activity upstream of COX-2. Reconstructing the signaling network regulating shear-induced chondrocyte apoptosis may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic strategies for arthritic disorders. PMID:16172382

  18. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    Directory of Open Access Journals (Sweden)

    Chilampalli Chandeshwari

    2011-10-01

    Full Text Available Abstract Background Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. Methods UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Results Magnolol pretreated groups (30, 60 μ g before UVB treatments (30 mJ/cm2, 5 days/week resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose polymerase (PARP, increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705, B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Conclusions Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing

  19. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    International Nuclear Information System (INIS)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Zhang, Xiaoying; Kaushik, Radhey S; Young, Alan; Zeman, David; Hildreth, Michael B; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-01-01

    Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm 2 , 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr 705 ), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various

  20. COX-2 inhibition attenuates lung injury induced by skeletal muscle ischemia reperfusion in rats.

    Science.gov (United States)

    Wang, Liangrong; Shan, Yuanlu; Ye, Yuzhu; Jin, Lida; Zhuo, Qian; Xiong, Xiangqing; Zhao, Xiyue; Lin, Lina; Miao, JianXia

    2016-02-01

    Skeletal muscle ischemia reperfusion accounts for high morbidity and mortality, and cyclooxygenase (COX)-2 is implicated in causing muscle damage. Downregulation of aquaporin-1 (AQP-1) transmembrane protein is implicated in skeletal muscle ischemia reperfusion induced remote lung injury. The expression of COX-2 in lung tissue and the effect of COX-2 inhibition on AQP-1 expression and lung injury during skeletal muscle ischemia reperfusion are not known. We investigated the role of COX-2 in lung injury induced by skeletal muscle ischemia reperfusion in rats and evaluated the effects of NS-398, a specific COX-2 inhibitor. Twenty-four Sprague Dawley rats were randomized into 4 groups: sham group (SM group), sham+NS-398 group (SN group), ischemia reperfusion group (IR group) and ischemia reperfusion+NS-398 group (IN group). Rats in the IR and IN groups were subjected to 3h of bilateral ischemia followed by 6h of reperfusion in hindlimbs, and intravenous NS-398 8 mg/kg was administered in the IN group. In the SM and SN groups, rubber bands were in place without inflation. At the end of reperfusion, myeloperoxidase (MPO) activity, COX-2 and AQP-1 protein expression in lung tissue, PGE2 metabolite (PGEM), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in bronchoalveolar lavage (BAL) fluid were assessed. Histological changes in lung and muscle tissues and wet/dry (W/D) ratio were also evaluated. MPO activity, COX-2 expression, W/D ratio in lung tissue, and PGEM, TNF-α and IL-1β levels in BAL fluid were significantly increased, while AQP-1 protein expression downregulated in the IR group as compared to that in the SM group (Pinjury. COX-2 protein expression was upregulated in lung tissue in response to skeletal muscle ischemia reperfusion. COX-2 inhibition may modulate pulmonary AQP-1 expression and attenuate lung injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    International Nuclear Information System (INIS)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-01-01

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling

  2. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Serour, Francis [Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon (Israel); Chaouat, Malka [Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem (Israel); Gonen, Pinhas [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Tommasino, Massimo [International Agency for Research on Cancer, World Health Organization, Lyon (France); Sherman, Levana [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-11-15

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.

  3. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE2/β-catenin signalling pathway.

    Science.gov (United States)

    Che, Dehai; Zhang, Shuai; Jing, Zihan; Shang, Lihua; Jin, Shi; Liu, Fang; Shen, Jing; Li, Yue; Hu, Jing; Meng, Qingwei; Yu, Yan

    2017-10-01

    Infiltration of macrophages plays a critical role in the connection between inflammation and cancer invasion; however, the molecular mechanism that enables this crosstalk remains unclear. This paper investigates a molecular link between infiltration of macrophages and metastasis of lung cancer cells. In this study, the macrophage density and cyclooxygenase-2 (COX-2) protein were examined in surgical specimens by immunohistochemistry (IHC), and the prostaglandin E 2 (PGE 2 ) levels were determined in the blood of 30 non-small cell lung cancer (NSCLC) patients using enzyme-linked immunosorbent assay (ELISA). We demonstrated that macrophage infiltration was significantly associated with elevated tumour COX-2 expression and serum PGE 2 levels in NSCLC patients. Interestingly, the COX-2 and PGE 2 levels as well as macrophages were poor predictors of NSCLC patient survival. THP-1-derived macrophages were co-cultured in vitro with A549 and H1299 lung cancer cells. In the co-culture process, interleukin-6 (IL-6) induced the COX-2/PGE 2 pathway in lung cancer cells, which subsequently promoted β-catenin translocation from the cytoplasm to the nucleus, resulting in epithelial-mesenchymal transition (EMT) and lung cancer cell invasion. Our findings show that the IL-6-dependent COX-2/PGE 2 pathway induces EMT to promote invasion of tumour cells through β-catenin activation during the interaction between macrophages and lung cancer cells, which suggests that inhibition of COX-2/PGE 2 or macrophages has the potential to suppress metastasis of lung cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Hung [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States); Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073 (United States); Ekaterina Rodriguez, C.; Donald, Graham W.; Hertzer, Kathleen M.; Jung, Xiaoman S.; Chang, Hui-Hua; Moro, Aune; Reber, Howard A.; Hines, O. Joe [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States); Eibl, Guido, E-mail: geibl@mednet.ucla.edu [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States)

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.

  5. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1

    Science.gov (United States)

    Cyclooxygenase-2 (COX-2) plays an important role in the inflammatory response induced by physiologic and stress stimuli. Exposure to diesel exhaust particulate matter (DEP) has been shown to induce pulmonary inflammation and exacerbate asthma and chronic obstructive pulmonary dis...

  6. Do the COX-2 inhibitors still have a role to play?

    African Journals Online (AJOL)

    Adele

    rofecoxib caused an approximate doubling of risk). The drug was immediately withdrawn from the market. The study was published in 2005. Several questioned ... (by coxibs or NSNSAIDs) reduces urine output and renal func- tion further. COX-2 ...

  7. Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer.

    LENUS (Irish Health Repository)

    Barry, M

    2009-06-01

    Cyclo-oxygenase-2 (COX-2) is up-regulated in malignant tumours rendering it an attractive target for cancer therapeutics. However, whether long-term antagonism maintains its initial efficacy on established tumours is unclear.

  8. Acid-degradable Dextran as an Image Guided siRNA Carrier for COX-2 Downregulation.

    Science.gov (United States)

    Chen, Zhihang; Krishnamachary, Balaji; Penet, Marie-France; Bhujwalla, Zaver M

    2018-01-01

    Purpose: Effective in vivo delivery of siRNA to silence genes is a highly sought-after goal in the treatment of multiple diseases. Cyclooxygenase-2 (COX-2) is a major mediator of inflammation and its effective and specific downregulation has been of major interest to treat conditions ranging from auto-immune diseases to gastric inflammation and cancer. Here we developed a novel and efficient method to produce a multiple imaging reporter labeled cationic dextran nanopolymer with cleavable positive charge groups for COX-2 siRNA delivery. Methods: Small molecules containing amine groups were conjugated to the dextran scaffold through acetal bonds that were cleaved in weak acid conditions. With multiple imaging reporters located on different regions of the nanopolymer, cleavage of acetal bonds was visualized and quantified by imaging, for the first time, in cancer cells and tumors. Results: The biocompatibility of dextran and the rapid cleavage and release of amine groups minimized proinflammatory side effects and COX-2 induction observed with other siRNA carriers, to successfully achieve COX-2 downregulation in cancer cells and tumors. Imaging results confirmed that this nanoplex, consisting of the dextran nanopolymer with COX-2 siRNA, accumulated in tumors, and the amine functional groups were rapidly cleaved in cancer cells and tumors. Along with effective downregulation of COX-2, we also demonstrated, for the first time, effective downregulation of its major product prostaglandin E 2 (PGE 2 ). Conclusions: We successfully developed an efficient method to produce an acid-degradable dextran nanopolymer containing cleavable amine groups as the siRNA carrier. Because of its biocompatibility, this degradable dextran delivered COX-2 siRNA within tumors and efficiently downregulated COX-2 expression.

  9. COX-2 in Radiotherapy; a potential target for radioprotection and radiosensitization.

    Science.gov (United States)

    Cheki, Mohsen; Yahyapour, Rasoul; Farhood, Bagher; Rezaeyan, Abolhassan; Shabeeb, Dheyauldeen; Amini, Peyman; Rezapoor, Saeed; Najafi, Masoud

    2018-02-18

    Each year, millions of people die from cancer. Radiotherapy is one of the main treatment strategies for cancer patients. Despite the beneficial roles of treatment with radiation, several side effects may threaten normal tissues of patients in the years after treatment. Moreover, high incidences of second primary cancers may reduce therapeutic ratio of radiotherapy. The search for appropriate targets of radiosensitization of tumor cells as well as radioprotection of normal tissues is one of the most interesting aims in radiobiology. Cyclooxygenase-2 (COX-2), as an inflammatory mediator has attracted interests for both aims. COX-2 activity is associated with ROS production and inflammatory signs in normal tissues. These effects further amplify radiation toxicity in irradiated cells as well as adjacent cells through a phenomenon known as Bystander effect. Increased COX-2 expression in distant non-irradiated tissues causes oxidative DNA damage and elevated cancer risk. Moreover, in tumors, the activation of this enzyme can increase resistance of malignant cells to radiotherapy. Hence, the inhibition of COX-2 has been proposed for better therapeutic response and amelioration of normal tissues. Celecoxib is one of the most studied COX-2 inhibitor for radiosensitization and radioprotection, while some other inhibitors have shown interesting results. In this review, we describe the role of COX-2 in radiation normal tissue injury as well as irradiated bystander and non-targeted cells. In addition, mechanisms of COX-2 induced tumor resistance to radiotherapy and the potential role of COX-2 inhibition are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Leptin upregulates COX-2 and its downstream products in aortic endothelial cells.

    Science.gov (United States)

    Chen, Yuelin; Shen, Yuechun; Nie, Ya; Chen, Zhongxin; Wang, Huang; Liao, Huang; Li, Jun

    2017-11-01

    The adipocyte-derived hormone leptin is associated with hypertension. The involvement of cyclooxygenase-2 (COX-2) and its downstream vasomotor products prostaglandin (PG) and thromboxane (TX)A 2 in the mechanisms of action of leptin have remained elusive. The aim of the present study was to investigate the effects of leptin on the expression of COX-2 by rat aortic endothelial cells (RAECs) and the concentration of its products, represented by 6-keto PGF 1α and TXB 2 , in the culture media. RAECs were isolated, cultured and identified by immunofluorescence staining. The RAECs were incubated with different concentrations of leptin (10 -10 , 10 -9 and 10 -8 M) for various durations (36 or 48 h). COX-2 mRNA and protein expression in the cells was detected by reverse-transcription quantitative PCR and western blot analysis, respectively. The vasodilator 6-keto PGF 1α and the vasoconstrictor TXB 2 were detected in the supernatant by ELISA. The cultured cells displayed specific factor VIII expression in the cytoplasm. Compared with the PBS-treated control group, leptin significantly increased the expression of COX-2 mRNA and protein in a time- and dose-dependent manner (P0.05). In conclusion, leptin significantly increased the expression of inflammatory marker COX-2 and its downstream product 6-keto PGF 1α , while also decreasing the TXB 2 /6-keto PGF 1α ratio in vitro . These observations suggested that COX-2 may have an important role in the effects of leptin on inflammation, such as the low-inflammatory disease hypertension. However, selective COX-2 inhibitors may increase the risk of hypertension due to inhibiting 6-keto PGF 1α , the vasodilator product of COX-2.

  11. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates.

    Science.gov (United States)

    McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M

    2013-12-01

    Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive.

  12. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury

    Directory of Open Access Journals (Sweden)

    An Y

    2014-05-01

    Full Text Available Ying An,1,2 Natalya Belevych,1,2 Yufen Wang,1,2 Hao Zhang,1 Jason S Nasse,3 Harvey Herschman,4 Qun Chen,1,2 Andrew Tarr,1,2 Xiaoyu Liu,1,2 Ning Quan1,21Institute for Behavior Medicine Research, 2Department of Oral Biology, College of Dentistry, 3Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; 4Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USAAbstract: In a previous study, we found that intracerebral administration of excitotoxin (RS-(tetrazole-5yl glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2flox/flox. In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2 in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.Keywords: neural injury, prostaglandins, neutrophil, conditional COX-2 deletion, PGI2

  13. Hepatic Ischemia and Reperfusion Injury in the Absence of Myeloid Cell-Derived COX-2 in Mice

    Science.gov (United States)

    Duarte, Sergio; Kato, Hiroyuki; Kuriyama, Naohisa; Suko, Kathryn; Ishikawa, Tomo-o; Busuttil, Ronald W.; Herschman, Harvey R.; Coito, Ana J.

    2014-01-01

    Cyclooxygenase-2 (COX-2) is a mediator of hepatic ischemia and reperfusion injury (IRI). While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2−M/−M) to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2−M/−M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2−M/−M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2−M/−M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2−M/−M and WT mice. COX-2−M/−M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9) expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2−M/−M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s) other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype. PMID:24819536

  14. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    Science.gov (United States)

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  15. DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB

    International Nuclear Information System (INIS)

    Morris, R.H.K.; Tonks, A.J.; Jones, K.P.; Ahluwalia, M.K.; Thomas, A.W.; Tonks, A.; Jackson, S.K.

    2008-01-01

    The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE 2 (P < 0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-κB activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also show that changing the fatty acid groups of PC (e.g. using L-α-phosphatidylcholine β-arachidonoyl-γ-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2

  16. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells.

    Science.gov (United States)

    Aravindan, Sheeja; Ramraj, Satishkumar; Kandasamy, Kathiresan; Thirugnanasambandan, Somasundaram S; Somasundaram, Dinesh Babu; Herman, Terence S; Aravindan, Natarajan

    2017-01-24

    Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.

  17. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  18. Expressions and clinical significance of COX-2, VEGF-C, and EFGR in endometrial carcinoma.

    Science.gov (United States)

    Cai, Shengnan; Zhang, Yue-Xiang; Han, Ke; Ding, Yi-Qian

    2017-07-01

    The article is to study the expressions of COX-2, VEGF-C, and EGFR in endometrial carcinoma as well as its clinical significances. Clinical data of 183 patients with endometrial carcinoma who received surgery as initial treatment in the Nanjing Drum Tower Hospital Affiliated to the Nanjing University Medical School and the Nantong Maternal and Child Health Hospital Affiliated to the Nantong University from January 2005 to December 2010 were retrospectively investigated; 152 out of the 183 patients were closely followed up. Expressions of COX-2, VEGF-C, and EGFR proteins in 152 endometrial carcinoma samples were detected by immunohistochemical S-P assay. A 5-year survival rate of 152 patients was 81.56% (124/152). Positive COX-2 expression rate was 67.76% (103/152), and its positive expression was related to FIGO stage, differentiation degree, and myometrial invasion depth of patients (P  0.05). Positive expression rates of VEGF-C and EGFR were 64.47% (98/152) and 82.24% (125/152), respectively, and their positive expression was associated with FIGO stage, differentiation degree, myometrial invasion depth, and lymphatic metastasis (P COX-2 with VEGF-C and of EGFR found that COX-2 was positively correlated with both VEGF-C and EGFR (P  0). Patient prognosis was associated with the FIGO stage, differentiation degree, and myometrial invasion depth of tumors, as well as the presence or absence of lymph node metastasis (P  0.05). COX-2, VEGF-C, and EGFR are of significance for determining the FIGO stage, differentiation degree, and myometrial invasion depth of endometrial carcinoma, of which VEGF-C and EGFR are important in determining whether tumors metastasize to lymph nodes. Combined detection of COX-2, EGFR, and VEGF-C can be used as the indices for early diagnosis, recurrence prediction, and outcome evaluation for patients with endometrial carcinoma.

  19. CONVERGENT SYNTHESIS AND EVALUATION OF 18F-LABELED AZULENIC COX2 PROBES FOR CANCER IMAGING

    Directory of Open Access Journals (Sweden)

    Donald D. Nolting

    2013-01-01

    Full Text Available The overall objectives of this research are to (i develop azulene-based PET probes and (ii image COX2 as a potential biomarker of breast cancer. Several lines of research have demonstrated that COX2 is overexpressed in breast cancer and that its presence correlates with poor prognoses. While other studies have reported that COX2 inhibition can be modulated and used beneficially as a chemopreventive strategy in cancer, no viable mechanism for achieving that approach has yet been developed. This shortfall could be circumvented through in vivo imaging of COX2 activity, particularly using sensitive imaging techniques such as PET. Toward that goal, our laboratory focuses on the development of novel 18F-labled COX2 probes. We began the synthesis of the probes by transforming tropolone into a lactone, which was subjected to an [8+2] cycloaddition reaction to yield 2-methylazulene as the core ring of the probe. After exploring numerous synthetic routes, the final target molecule and precursor PET compounds were prepared successfully using convergent synthesis. Conventional 18F labeling methods caused precursor decomposition, which prompted us to hypothesize that the acidic protons of the methylene moiety between the azulene and thiazole rings were readily abstracted by a strong base such as potassium carbonate. Ultimately, this caused the precursors to disintegrate. This observation was supported after successfully using an 18F labeling strategy that employed a much milder phosphate buffer. The 18F-labeled COX2 probe was tested in a breast cancer xenograft mouse model. The data obtained via successive whole-body PET/CT scans indicated probe accumulation and retention in the tumor. Overall, the probe was stable in vivo and no defluorination was observed. A biodistribution study and Western blot analysis corroborate with the imaging data. In conclusion, this novel COX2 PET probe was shown to be a promising agent for cancer imaging and deserves further

  20. Association of COX-2 Promoter Polymorphisms -765G/C and -1195A/G with Migraine.

    Science.gov (United States)

    Mozaffari, Elahe; Doosti, Abbas; Arshi, Asghar; Faghani, Mostafa

    2016-12-01

    Migraine is a common debilitating primary headache disorder with current head pain attacks, which contributes to physical activity dysfunctions in chronic pain phase. PGE2 and PGI2 are two important prostaglandins synthesised by COX-2 enzymes, involved in migraine pain signals. COX-2 modulation is essential in treatment and pathogenesis of migraine. This study aimed to investigating the association between COX-2 gene polymorphisms with the risk of migraine susceptibility in migraine patients with related and unrelated parents. This case- control study was based on 100 migraine patients and 100 non-migraine subjects in Bushehr province, Iran in 2013. Genomic DNA of blood samples was extracted and genotyping of COX-2-765G>C (rs20417) and COX-2-1195A>G (rs689466) gene variants was investigated by PCR-RFLP method. Statistical analyses were accomplished using the SPSS software package. There was a significant differences in the frequencies of the COX-2-765G>C and COX-2-1195A>G genotypes between migraine patients and controls ( P ≤0.05). COX-2-765CC , COX-2-765CG , COX-2-1195GG and COX-2-1195AG genotypes can increase the risk of migraine significantly. As the first study in Iran, we are hopeful to achieve greater results about the relevancy of COX-2 gene, migraine and pain signals pathway by repeating these experiments on more samples.

  1. COX-1 and COX-2 polymorphisms in susceptibility to cerebral palsy in very preterm infants.

    Science.gov (United States)

    Kapitanović Vidak, Helena; Catela Ivković, Tina; Vidak, Zoran; Kapitanović, Sanja

    2017-03-01

    Cerebral palsy (CP) is a nonprogressive motor disorder caused by white matter damage in the developing brain. Recent epidemiological and clinical data suggest intrauterine infection/inflammation as the most common cause of preterm delivery and neonatal complications, including CP. Cyclooxygenases are key enzymes in the conversion of arachidonic acid to prostaglandins. The COX family consists of two isoforms, COX-1 and COX-2. In the brain, COX-2 is constitutively expressed at high levels on pyramidal neurons, while COX-1 is predominantly expressed by microglia and can be upregulated in pathological conditions, such as infection, ischemia and traumatic brain injury. Single nucleotide polymorphisms in the COX-1 and COX-2 gene could have profound effects on COX-1 and COX-2 expression and, directly or indirectly, influence the pathogenesis, development and severity of CP. In this study we investigated the association between single nucleotide polymorphisms of the COX-1 and COX-2 gene and susceptibility to cerebral palsy in very preterm infants. The results of our study showed the association between COX-1 high expression genotype (-842 AA) and COX-1 high expression allele -842A and risk of CP in infants with cystic periventricular leucomalacia (cPVL). Our results support an important role of COX-1 enzyme on microglial activation during neuroinflammation resulting in huge neuroinflammatory response and the proinflammatory mediator overproduction, with the serious white matter damage and CP development as a consequence.

  2. COX-1 vs. COX-2 as a determinant of basal tone in the internal anal sphincter.

    Science.gov (United States)

    de Godoy, Márcio A F; Rattan, Neeru; Rattan, Satish

    2009-02-01

    Prostanoids, produced endogenously via cyclooxygenases (COXs), have been implicated in the sustained contraction of different smooth muscles. The two major types of COXs are COX-1 and COX-2. The COX subtype involved in the basal state of the internal anal sphincter (IAS) smooth muscle tone is not known. To identify the COX subtype, we examined the effect of COX-1- and COX-2-selective inhibitors, SC-560 and rofecoxib, respectively, on basal tone in the rat IAS. We also determined the effect of selective deletion of COX-1 and COX-2 genes (COX-1(-/-) and COX-2(-/-) mice) on basal tone in murine IAS. Our data show that SC-560 causes significantly more efficacious and potent concentration-dependent decreases in IAS tone than rofecoxib. In support of these data, significantly higher levels of COX-1 than COX-2 mRNA were found in the IAS. In addition, higher levels of COX-1 mRNA and protein were expressed in rat IAS than rectal smooth muscle. In wild-type mice, IAS tone was decreased 41.4 +/- 3.4% (mean +/- SE) by SC-560 (1 x 10(-5) M) and 5.4 +/- 2.2% by rofecoxib (P IAS from wild-type mice and significantly less (0.080 +/- 0.015 mN/mg) in the IAS from COX-1(-/-) mice (P IAS tone.

  3. Effects of progesterone on iNOS, COX-2, and collagen expression in the cervix.

    Science.gov (United States)

    Marx, Stephen G; Wentz, Melissa J; Mackay, Lynette B; Schlembach, Dietmar; Maul, Holger; Fittkow, Cordula; Given, Randal; Vedernikov, Yurij; Saade, George R; Garfield, Robert E

    2006-06-01

    This study examines the relationship between inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the control of cervical ripening and parturition under normal (normal term pregnancy) and abnormal (preterm labor and prolongation of pregnancy) conditions by (a) measuring changes in the collagen both visually and quantitatively, (b) localizing and characterizing iNOS and COX-2 under normal conditions, and (c) characterizing the changes in iNOS and COX-2 under abnormal conditions. Cervices are obtained from estrus and timed pregnant Sprague-Dawley rats (n=4-10 per group). Preterm labor is induced with Onapristone (3 mg/rat; progesterone antagonist) and the prolongation of pregnancy with progesterone (2.5 mg, twice daily). Collagen changes are measured and visualized with the picrosirius polarization method. RT-PCR is used to characterize the mRNA expression (plabor, increasing the iNOS and COX-2 mRNA (p<0.05). The increase demonstrated a positive correlation (Spearman r = 0.456; p=0.03). Progesterone prolonged pregnancy, decreasing the iNOS and COX-2 mRNA (p=0.036). In conclusion, there may be an interaction between the nitric oxide and prostaglandin pathways in cervical ripening and parturition.

  4. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    Science.gov (United States)

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-11-04

    Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.

  5. Is Australia's national medicines policy failing? The case of COX-2 inhibitors.

    Science.gov (United States)

    Vitry, Agnes; Lexchin, Joel; Mansfield, Peter R

    2007-01-01

    Australia has a National Medicines Policy with aims that include quality use of medicines, but policy stakeholders failed to protect Australia from the COX-2 (cyclo-oxygenase-2) inhibitor disaster. Drug regulators did not warn prescribers appropriately about potential cardiovascular risks. The Pharmaceutical Benefits Scheme did not limit unjustified drug expenditures on COX-2 inhibitors. Drug companies ran intense and misleading promotional campaigns on COX-2 inhibitors without adequate controls. Independent drug information was insufficient to counter the effects of the millions of dollars spent on advertising. Core elements of the National Medicines Policy--in particular the drug approval process, the post-marketing surveillance system, the control of drug promotion, and the quality of independent drug information--require major reappraisal if we want to avoid similar disasters in the future.

  6. Improvement effect of gamma-irradiated complex leaf extract of date plum, persimmon and mulberry on UVB-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Cho, Byoung Ok; Che, Denis Nchang; Shin, Jae Young; Fang, Chong Zhou; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of)

    2016-11-15

    This study was conducted to evaluate the improvement effect of gamma-irradiated complex leaf extract of Date Plum, Persimmon and Mulberry (γ-DPME) on UVB induced skin damage. The samples were gamma irradiated at doses of 10 kGy. γ-DPME treatment tended to decrease UVB-induced immune cell infiltration and erthyderma index than the groups treated with non-gamma-irradiated DPME (n-DPME) and L-ascobic acid (AA). In addition, γ-DPME treatment significantly decreased skin thickness, melanin index and mast cell infiltration in UVB-irradiated skin. Moreover, γ-DPME treatment significantly decreased the compound 48/80-induced scratching behavior and immune cell infiltration than n-DPME group. These results show that gamma irradiation can be used to increase the physiological activities of DPME.

  7. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  8. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen

    2009-06-01

    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  9. Effect of bee venom on IL-6, COX-2 and VEGF levels in polycystic ovarian syndrome induced in Wistar rats by estradiol valerate.

    Science.gov (United States)

    Karimzadeh, Latifeh; Nabiuni, Mohammad; Kouchesfehani, Homa Mohseni; Adham, Hamed; Bagheri, Amir; Sheikholeslami, Azar

    2013-12-12

    Polycystic ovarian syndrome (PCOS) is a low-grade inflammatory disease characterized by hyperandrogenemia, hirsutism, chronic anovulation and vascular disorder. Interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are triggered by inflammatory stimuli and lead to angiogenesis and pathogenesis of the ovary. Honeybee venom (HBV) contains an array of biologically active components possessing various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent to suppress levels of the main inflammatory mediators IL-6, COX-2 and VEGF.To induce PCOS, 1 mg of estradiol valerate (EV) per 100 g of body weight was subcutaneously (SC) injected into eight-week-old rats. After 60 days, 0.5 mg/kg of HBV was administered Intraperitoneal (IP) for 14 consecutive days, and the results of PCOS treatment were investigated. Rats were then anesthetized with CO2, and the ovaries were surgically removed. Serum IL-6 was detected by the ELISA kit. Immunoexpression of COX-2 and VEGF were examined in three groups: EV-induced PCOS, HBV-treated PCOS and control animals. Thickness of theca layer, number and diameter of cysts and levels of IL-6 significantly decreased in HBV group relative to PCOS group. The immunohistochemical analysis showed an increase in COX-2 and VEGF expression in PCOS group whereas HBV-treated rats presented weak and irregular immunostaining. Our results suggest that the beneficial effect of HBV may be mediated through its inhibitory effect on serum IL-6 level and ovarian COX-2 and VEGF expression.

  10. Design, Synthesis, and Biological Evaluation of New Peptide Analogues as Selective COX-2 Inhibitors.

    Science.gov (United States)

    Ahmaditaba, Mohammad A; Shahosseini, Soraya; Daraei, Bahram; Zarghi, Afshin; Houshdar Tehrani, Mohammad H

    2017-10-01

    A new class of peptide derivatives possessing SO 2 Me and N 3 pharmacophores at the para position of a phenyl ring bound to different aromatic amino acids were synthesized based on solid-phase synthesis methodology, and evaluated as selective cyclooxygenase-2 (COX-2) inhibitors. One of the analogues, i.e., compound 2a as the representative of this series, was recognized as the highest selective COX-2 inhibitor with a COX-2 selectivity index of >500. The structure-activity relationships (SARs) acquired indicated that compound 2a containing a 4-(methylsulfonyl)benzoyl group as a pharmacophore and tyrosine as a ring bearing amino acid in the second position and glutamic acid as the C-terminal amino acid can give the essential geometry to provide selective COX-2 inhibitory activity. Antiproliferative activity of the synthesized peptides (1a-7b) was also determined against four different human cancer cell lines, including MCF-7, HepG2, A549, and HeLa. According to our results, A549, HepG2, and MCF7 seemed to be more sensitive cell lines than HeLa cells encountering these compounds, which gave inhibitory action with IC 50 values from 4.8 to 64.4 µM. In this regard, compounds 3a and 2b displayed the best inhibitory activity against the cell lines. Moreover, a good correlation was observed between the antiproliferative potency and the COX-2 inhibitory activity of compounds 1a, 2a, 2b, and 5b. Such findings suggest that one of the mechanism of anticancer activity of these peptides may be through the COX-2 inhibitory action. © 2017 Deutsche Pharmazeutische Gesellschaft.

  11. Expression of VEGF and Cox-2 in Patients with Esophageal Squamous Cell Carcinoma

    Science.gov (United States)

    Luz, Caio Cesar Floriano; Noguti, Juliana; Araújo, Leandro; Simão Gomes, Thiago; Mara, Gianni; Silva, Marcelo De Souza; Artigiani Neto, Ricardo

    2018-01-27

    Esophageal cancer is a highly aggressive neoplasm. In Brazil, it is the sixth most frequent among men and fifteenth among women. The most common type is squamous cell carcinoma (SCC), responsible for 96% of cases. Twenty-eight specimens of Esophael squamous cell carcinoma (ESCC) were obtained by surgery procedures.The tissues were fixed in formalin and embedded in paraffin. In each case, all available hematoxylin and eosin stained sections were examined and a representative block was selected. The ages of these patients ranged from 40 to 93 years, with a mean age of 60 years. Results: The histological grade of tumors was 4 well-differentiated, 19 moderately differentiated and 5 poorly differentiated. Expression of Cox-2 and VEGF in ESCC was demonstrated in 23 (82,14%) and 13 (44,43%) cases, respectively. Adjacent normal mucosa was positive in 11 (39,29%) samples and 9 (32,15%) samples for Cox-2 and VEGF, respectively. No relationship between the expression of Cox-2 and VEGF with the clinicopathological parameters, including gender, age, surgical margin, lymph node status and tumor differentiation. The median follow-up period was 60 months. Survival analysis of patients with ESCC showed no relationship with the expression of Cox-2 and VEGF. Conclusion: VEGF and Cox-2 are expressed in ESCC. Cox-2, VEGF, play a significant role in the origin and development of ESCC and the inhibitors of these proteins could prove to be an important therapeutic tool in the control of this disease. Creative Commons Attribution License

  12. COX-2 mediates PM2.5-induced apoptosis and inflammation in vascular endothelial cells.

    Science.gov (United States)

    Yin, Jie; Xia, Weiwei; Li, Yuanyuan; Guo, Chuchu; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2017-01-01

    Emerging evidence demonstrated that particulate matter 2.5 (PM2.5) exposure served as an important risk factor of cardiovascular diseases. Some studies also reported that COX-2/mPGES-1/PGE2 cascade played a pathogenic role in vascular injury. However, the relationship between the PM2.5 exposure and the activation of COX-2/mPGES-1/PGE2 cascade in endothelial cells is still unknown. In the present study, mouse aorta endothelial cells were exposed to PM2.5. Strikingly, following the PM2.5 treatment, we observed dose- and time-dependent upregulation of COX-2 at both protein and mRNA levels as determined by Western blotting and qRT-PCR, respectively. However, COX-1 mRNA expression was not affected by PM2.5 treatment. Next, we examined mPGES-1 expression. As expected, mPGES-1 protein was markedly increased by PM2.5 exposure in line with a significant increment of PGE2 release in medium. At the same time, we observed a dose-dependent upregulation of another two PGE2 synthases of mPGES-2 and cPGES determined by qRT-PCR. Inhibition of COX-2 by using a specific COX-2 inhibitor NS-398 markedly blocked cell apoptosis, inflammation, and PGE2 secretion. Taken together, these results suggested that PM2.5 could activate inflammatory axis of COX-2/PGES/PGE2 in vascular endothelial cells to promote cell apoptosis and inflammatory response.

  13. TCDD Induced Pericardial Edema and Relative COX-2 Expression in Medaka (Oryzias Latipes) Embryos

    Science.gov (United States)

    Dong, Wu; Matsumura, Fumio; Kullman, Seth W.

    2010-01-01

    Exposure to dioxin and other aryl hydrocarbon receptor (AhR) ligands results in multiple, specific developmental cardiovascular phenotypes including pericardial edema and circulatory failure in small aquarium fish models. Although phenotypes are well described, mechanistic underpinnings for such toxicities remain elusive. Here we suggest that AhR activation results in stimulation of inflammation and “eicosanoid” pathways, which contribute to the observed developmental, cardiovascular phenotypes. We demonstrate that medaka embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.05–1 ppb) during early development result in a dose-related increase in the prevalence of pericardial edema and that this phenotype correlates with an increase in cyclooxygenase-2 (COX-2) gene expression. Those individuals exhibiting the edema phenotype had significantly greater COX-2 mRNA than their nonedematous cohort. Selective pharmacological inhibition of COX-2, with NS-398, and genetic knock down of COX-2 with a translation initiation morpholino significantly attenuated prevalence and severity of edema phenotype. Subsequently, exposures of medaka embryos to arachidonic acid (AA) resulted in recapitulation of the pericardial edema phenotype and significantly increased COX-2 expression only in those individuals exhibiting the edema phenotype compared with their nonedematous cohort. AA exposure does not result in significant induction of cytochrome P450 1A expression, suggesting that pericardial edema can be induced independent of AhR/aryl hydrocarbon receptor nuclear translocator/dioxin response element interactions. Results from this study demonstrate that developmental exposure to TCDD results in an induction of inflammatory mediators including COX-2, which contribute to the onset, and progression of heart dysmorphogenesis in the medaka model. PMID:20801906

  14. Associations between COX-2 polymorphisms, blood cholesterol and risk of acute coronary syndrome

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Segel, Stine; Dethlefsen, Claus

    2010-01-01

    the enzyme levels of COX-2, were associated with risk of ACS and if alcohol intake, smoking, and use of NSAID would modify the associations. We also wanted to investigate associations with blood lipid levels. Methods: A case–cohort study including 1031 ACS cases and a sub-cohort of 1703 persons was nested...... significant interactions between genotypes and alcohol intake, smoking and NSAID use in relation to risk of ACS. Among males, there was interaction between COX-2 T8473C and alcohol in relation to total cholesterol, non-HDL cholesterol and LDL levels (p for interaction: 0.003, 0.007 and 0.01, respectively...

  15. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    Science.gov (United States)

    Lu, Jing; Guo, Jia-Hui; Tu, Xue-Liang; Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced.

  16. Anti-inflammatory and antioxidant effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats.

    Science.gov (United States)

    Silva, Mariane Arnoldi; Trevisan, Gabriela; Hoffmeister, Carin; Rossato, Mateus Fortes; Boligon, Aline Augusti; Walker, Cristiani Isabel Banderò; Klafke, Jonatas Zeni; Oliveira, Sara Marchesan; Silva, Cássia Regina; Athayde, Margareth Linde; Ferreira, Juliano

    2014-04-05

    Ultraviolet B (UVB) irradiation mainly affects biological tissues by inducing an increase in reactive oxygen species (ROS) production which leads to deleterious outcomes for the skin, including pain and inflammation. As a protective strategy, many studies have focused on the use of natural products. The aim of this study was to investigate the effects of Aloe saponaria on nociceptive, inflammatory, and oxidative parameters in a model of UVB-induced sunburn in adult male Wistar rats. Sunburned animals were topically treated with vehicle (base cream), 1% silver sulfadiazine (positive control) or A. saponaria (10%) once a day for 6days. UVB-induced nociception (allodynia and hyperalgesia), inflammation (edema and leukocyte infiltration) and oxidative stress (increases in H2O2, protein carbonyl levels and lipid peroxidation and a decrease in non protein thiol content) were reduced by both A. saponaria and sulfadiazine topical treatment. Furthermore, A. saponaria or its constituents aloin and rutin reduced the oxidative stress induced by H2O2 in skin homogenates in vitro. Our results demonstrate that topical A. saponaria treatment displayed anti-nociceptive and anti-inflammatory effects in a UVB-induced sunburn model, and these effects seem to be related to its antioxidant components. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB) Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes

    Science.gov (United States)

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-01-01

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280–320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components. PMID:23242204

  18. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    Directory of Open Access Journals (Sweden)

    Qingyu Ma

    2018-03-01

    Full Text Available A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB-induced mouse embryonic fibroblasts (MEFs. UVB irradiation significantly increased the intercellular reactive oxygen species (ROS production and matrix metalloproteinases (MMPs activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD activity and the increase of malondiaidehyde (MDA content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  19. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    Science.gov (United States)

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF V600E/V600K and NRAS Q61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines. COX-2 expression correlates

  20. Liver Kinase B1 (LKB1) in the Pathogenesis of UVB-induced Murine Basal Cell Carcinoma

    Science.gov (United States)

    Byekova, Yevgeniya A.; Herrmann, Jennifer L.; Xu, Jianmin; Elmets, Craig A.; Athar, Mohammad

    2011-01-01

    LKB1, a known tumor suppressor, is mutated in Peutz-Jeghers Syndrome (PJS). It is responsible for the enhanced cancer risk in patients with PJS. Dysregulation of LKB1-dependent signaling also occurs in various epithelial cancers. UVB alters the expression of LKB1, though its role in the pathogenesis of skin cancer is unknown. Here we describe upregulation of LKB1 expression in UVB-induced murine basal cell carcinoma (BCC) and in human skin tumor keratinocytes. AMP-kinase and acetyl Co-A carboxylase, the downstream LKB1 targets, are also enhanced in this neoplasm. In addition, p-Akt, a kinase which inactivates GSK3β by its phosphorylation, is enhanced in BCCs. Consistently, an accumulation of p-GSK3β and an increase in activated nuclear β-catenin are found. mTOR signaling, which is also inhibited by LKB1, remains upregulated in BCCs. However, a marked decrease in the expression of sestrins, which function as potent negative regulators of mTOR is observed. Metformin, a known chemical inducer of this pathway, was found effective in immortalized HaCaT keratinocytes, but failed to activate the LKB1-dependent signaling in human carcinoma A431 cells. Thus, our data show that the LKB1/AMPK axis fails to regulate mTOR pathway, and a complex regulatory mechanism exists for the persistent mTOR activation in murine BCCs. PMID:21272562

  1. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  2. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles.

    Science.gov (United States)

    Matsuura-Hachiya, Yuko; Arai, Koji Y; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-09-07

    UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Photoprotection by Cichorum endivia extracts: prevention of UVB-induced erythema, pyrimidine dimer formation and IL-6 expression.

    Science.gov (United States)

    Enk, C D; Hochberg, M; Torres, A; Lev, O; Dor, I; Srebnik, M; Dembitsky, V M

    2004-01-01

    In the gradual process of evolution, plants have developed natural sun protecting substances that enable continuous survival under direct and intense ultraviolet (UV) radiation. As part of our studies of plant-derived pigments that might constitute an alternative to conventional sunscreens, we have tested the ethanolic extracts of roots, stalks, and inflorescences of populations of wild Cichorum endivia subsp. Divaricatum (Asteraceae) in terms of protection against sunburn, and in prevention of UVB-induced pyrimidine dimer formation and IL-6 mRNA expression in the human keratinocyte cell line, HaCaT. Using ELISA technique for detection of pyrimidine dimers and RT-PCR for detection of IL-6, we found that the ethanolic extract of C. endivia roots absorbs radiation in the UVB spectrum and partially prevents induction of pyrimidine dimers and IL-6 expression. Application of the root extract on the skin prior to UVB irradiation totally prevented erythema. Our findings suggest that C. endivia extracts might possess sun-protective qualities that make them useful as sunscreens. Copyright 2004 S. Karger AG, Basel

  5. Ultraviolet C Irradiation Induces Different Expression of Cyclooxygenase 2 in NIH 3T3 Cells and A431 Cells: The Roles of COX-2 Are Different in Various Cell Lines

    Directory of Open Access Journals (Sweden)

    Ming-Hsiu Wu

    2012-04-01

    Full Text Available Ultraviolet C (UVC is a DNA damage inducer, and 20 J/m2 of UVC irradiation caused cell growth inhibition and induced cell death after exposure for 24–36 h. The growth of NIH 3T3 cells was significantly suppressed at 24 h after UVC irradiation whereas the proliferation of A431 cells was inhibited until 36 h after UVC irradiation. UVC irradiation increased COX-2 expression and such up-regulation reached a maximum during 3–6 h in NIH 3T3 cells. In contrast, UVC-induced COX-2 reached a maximum after 24–36 h in A431 cells. Measuring prostaglandin E2 (PGE2 level showed a biphasic profile that PGE2 release was rapidly elevated in 1–12 h after UVC irradiation and increased again at 24 h in both cell lines. Treatment with the selective COX-2 inhibitor, SC-791, during maximum expression of COX-2 induction, attenuated the UVC induced-growth inhibition in NIH 3T3 cells. In contrast, SC-791 treatment after UVC irradiation enhanced death of A431 cells. These data showed that the patterns of UVC-induced PGE2 secretion from NIH 3T3 cells and A431 cells were similar despite the differential profile in UVC-induced COX-2 up-regulation. Besides, COX-2 might play different roles in cellular response to UVC irradiation in various cell lines.

  6. Dual Regulating Effect of Shaoyao-Gangcao-Tang on COX- 2 ...

    African Journals Online (AJOL)

    through the differential regulation of cell adhesion molecules and chemokines expression [9]. These data indicate that 15d-PGJ2 can tightly regulate the resolution of acute inflammation. As the key enzyme of regulating PGE2 generation, COX-2 has been thought to be a pro- inflammatory mediator. However, Gilroy et al [10].

  7. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Its underlying biological mechanism remains unclear and no well-documented drug and ... Objectives: To explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi. (GST-Pi) in the ..... in an animal model of Parkinson's disease: Therapeutic perspectives. Nutri-.

  8. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    Objectives: This study was performed to explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi (GST-Pi) in the pathogenesis of HCC risk. Methods: 120 Wistar rats were divided into three groups at random: normal control group (control group), HCC risk group without ...

  9. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    Science.gov (United States)

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?*CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  10. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    Cox-2) and glutathione S-transferase Pi. (GST-Pi) in the pathogenesis of HCC. Methods: 120 Wistar rats were divided into three groups at random: normal control group (control group), HCC risk group without treatment (HCC risk group), HCC risk ...

  11. Clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues.

    Science.gov (United States)

    Ma, Xiaoping; Hui, Yuzuo; Lin, Li; Wu, Yu; Zhang, Xian; Liu, Peishu

    2015-01-01

    To analyze the clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues. One hundred and eight tissue samples from the patients with endometrial cancer enrolled in our hospital from August 2011 to July 2014 were selected, including 60 normal tissue samples (normal group), 60 neoplastic tissue samples (neoplastic group) and 60 cancer tissue samples (cancer group). All the samples were subjected to immunohistochemical assay to detect the expressions of COX-2, GLUT-1 and VEGF. The clinical data were also investigated for correlation analysis. The positive rates of COX-2 in normal group, neoplastic group and cancer groups were 3.3%, 21.7% and 55.0% respectively. The positive rates of GLUT-1 in normal group, neoplastic group and cancer groups were 3.3%, 25.0% and 70.0% respectively. The positive rates of VEGF in normal group, neoplastic group and cancer groups were 1.7%, 23.3% and 63.3% respectively. With increasing stage of such cancer, decreasing degree of differentiation and lymphatic metastasis, the positive expression rates of COX-2, GLUT-1 and VEGF proteins were raised significantly (PGLUT-1 (r=0.207, PGLUT-1 and VEGF (r=0.758, PGLUT-1 and VEGF were highly prominent in endometrial cancer, especially in the patients with low degree of differentiation, late stage and metastasis. They functioned synergistically in the onset and progression of this cancer.

  12. Do the COX-2 inhibitors still have a role to play? : guest editorial ...

    African Journals Online (AJOL)

    Do the COX-2 inhibitors still have a role to play? : guest editorial. A Beeton. Abstract. No Abstract Available Southern African Journal of Anaesthesia & Analgesia Vol.11(2) 2005: 55-60. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics ...

  13. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

    NARCIS (Netherlands)

    Gorissen, Ben M C|info:eu-repo/dai/nl/372825788; Uilenreef, Joost J|info:eu-repo/dai/nl/30483095X; Bergmann, Willie|info:eu-repo/dai/nl/36275585X; Meijer, Ellen|info:eu-repo/dai/nl/375288015; van Rietbergen, Bert; van der Staay, Franz Josef|info:eu-repo/dai/nl/074262653; Weeren, P René van; Wolschrijn, Claudia F|info:eu-repo/dai/nl/271539496

    2017-01-01

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term

  14. Targeted Deletion and Lipidomic Analysis Identify Epithelial Cell COX-2 as a Major Driver of Chemically-induced Skin Cancer

    Science.gov (United States)

    Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.

    2014-01-01

    Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587

  15. Differential usage of COX-1 and COX-2 in prostaglandin production by mast cells and basophils.

    Science.gov (United States)

    Bando, Tomoyuki; Fujita, Setsuko; Nagano, Naoko; Yoshikawa, Soichiro; Yamanishi, Yoshinori; Minami, Masashi; Karasuyama, Hajime

    2017-07-01

    Basophils have been erroneously considered as minor relatives of mast cells, due to some phenotypic similarity between them. While recent studies have revealed non-redundant roles for basophils in various immune responses, basophil-derived effector molecules, including lipid mediators, remain poorly characterized, compared to mast cell-derived ones. Here we analyzed and compared eicosanoids produced by mouse basophils and mast cells when stimulated with IgE plus allergens. The production of 5-LOX metabolites such as LTB4 and 5-HETE was detected as early as 0.5 h post-stimulation in both cell types, even though their amounts were much smaller in basophils than in mast cells. In contrast, basophils and mast cells showed distinct time course in the production of COX metabolites, including PGD2, PGE2 and 11-HETE. Their production by mast cells was detected at both 0.5 and 6 h post-stimulation while that by basophils was detectable only at 6 h. Of note, mast cells showed 8-9 times higher levels of COX-1 than did basophils at the resting status. In contrast to unaltered COX-1 expression with or without stimulation, COX-2 expression was up-regulated in both cell types upon activation. Importantly, when activated, basophils expressed 4-5 times higher levels of COX-2 than did mast cells. In accordance with these findings, the late-phase production of the COX metabolites by basophils was completely ablated by COX-2 inhibitor whereas the early-phase production by mast cells was blocked by COX-1 but not COX-2 inhibitor. Thus, the production of COX metabolites is differentially regulated by COX-1 and COX-2 in basophils and mast cells.

  16. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Marianne Houssier

    2008-02-01

    Full Text Available BACKGROUND: In the Western world, a major cause of blindness is age-related macular degeneration (AMD. Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD. METHODS AND FINDINGS: We here show that deficiency of CD36, which participates in outer segment (OS phagocytosis by the retinal pigment epithelium (RPE in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR and CD36-/- mice. Furthermore, these animals developed significant age related choroidal involution reflected in a 100%-300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF expression upon OS or antibody stimulation in vitro. CD36-/- mice express reduced levels of COX2 and VEGF in vivo, and COX2-/- mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency. CONCLUSIONS: CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.

  17. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  18. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    International Nuclear Information System (INIS)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness; Cook-Moreau, Jeanne; Beneytout, Jean-Louis; Liagre, Bertrand

    2013-01-01

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression

  19. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study.

    Science.gov (United States)

    Carvalho, M I; Pires, I; Prada, J; Raposo, T P; Gregório, H; Lobo, L; Queiroga, F L

    2017-06-01

    COX-2 expression affects mammary tumourigenesis by promoting angiogenesis and cell proliferation, encouraging metastatic spread and tumour-associated inflammation. Samples of canine mammary tumours (n = 109) were submitted to immunohistochemistry to detect COX-2, CD31, VEGF, Ki-67, CD3 and MAC387 expression. Concurrent high expression of COX-2/CD31, COX-2/VEGF, COX-2/Ki-67, COX-2/CD3 and COX-2/MAC was associated with elevated grade of malignancy, presence of intravascular emboli and presence of lymph node metastasis. Tumours with high COX-2 (P COX-2 and high CD31 (P = 0.008); high VEGF (P COX-2/CD31 and high COX-2/VEGF retained their significance after multivariate analysis arising as independent predictors of OS. Present data highlight the importance of COX-2 in canine mammary tumourigenesis. © 2016 John Wiley & Sons Ltd.

  20. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats.

    Science.gov (United States)

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-06-15

    /2 and COX-2, and over-production of PGE2 induced by CFA, were suppressed by TENS administration. TENS may be an effective therapy in controlling inflammatory pain induced by CFA. Its analgesic effect may be associated with the inhibition of activation of the spinal ERK1/2-COX-2 pathway.

  1. Activated human B cells stimulate COX-2 expression in follicular dendritic cell-like cells via TNF-α.

    Science.gov (United States)

    Kim, Jini; Lee, Seungkoo; Jeoung, Dooil; Kim, Young-Myeong; Choe, Jongseon

    2018-02-01

    In spite of the potential importance of cyclooxygenase (COX)-2 expression in the germinal center, its underlying cellular and molecular mechanisms are largely unknown. COX-2 is the key enzyme generating pleiotropic prostaglandins. Based on our previous findings, we hypothesized that lymphocytes would stimulate COX-2 expression in follicular dendritic cell (FDC) by liberating cytokines. In this study, we examined the effect of tonsillar lymphocytes on COX-2 expression in FDC-like cells by immunoblotting. B but not T cells induced COX-2 protein in a time- and dose-dependent manner. Sub-fractionation analysis of B cell subsets revealed that activated but not resting B cells were responsible for the COX-2 induction. Confocal microscopy of frozen tonsils demonstrated that FDCs indeed express COX-2 in situ, in line with the in vitro results. To identify the stimulating molecule, we added neutralizing antibodies to the coculture of FDC-like cells and B cells. COX-2 induction in FDC-like cells was markedly inhibited by TNF-α neutralizing antibody. Finally, the actual production of TNF-α by activated B cells was confirmed by an enzyme immunoassay. The current study implies an unrecognized cellular interaction between FDC and B cells leading to COX-2 expression during immune inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Role of COX-2/mPGES-1/Prostaglandin E2 Cascade in Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zhanjun Jia

    2015-01-01

    Full Text Available COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.

  3. NSAIDs and serious cardiovascular disorders: especially cox-2 inhibitors and diclofenac.

    Science.gov (United States)

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) used as analgesics expose patients to cardiovascular risks that can be predicted from their pharmacological properties. As of mid-2015, what is known about the cardiovascular harms of the NSAIDs of choice, ibuprofen and naproxen? Most of the data from comparative trials of NSAIDs concern cox-2 inhibitors, diclofenac, ibuprofen and naproxen. Few studies have addressed the serious cardiovascular effects of other NSAIDs. In 2013, a U.K. team published a large meta-analysis of hundreds of randomised trials comparing NSAIDs with placebo or one NSAID with another NSAID. Compared with placebo, a statistically significant increase in the risk of serious cardiovascular adverse effects was demonstrated with cox-2 inhibitors and with diclofenac (about +40%). This risk is mainly due to an increase in myocardial infarctions and vascular deaths. Another meta-analysis found similar results in terms of cardiovascular deaths. The results of epidemiological studies are consistent with those of randomised clinical trials. According to meta-analyses of randomised trials, high-dose ibuprofen increases cardiovascular risks to the same degree as diclofenac or cox-2 inhibitors. The risk seems to mainly apply to daily doses of 2400 mg, a finding borne out by epidemiological studies that showed no increased risk with ibuprofen 1200 mg. Two meta-analyses of clinical trials showed that all NSAIDs roughly double the risk of heart failure. One meta-analysis showed a small, statistically significant increase in the risk of atrial fibrillation. In practice, from a cardiovascular perspective, the NSAIDs of choice are ibuprofen, on condition that the dose does not exceed 1200 mg per day, and naproxen. In contrast, it would appear from the study data that cox-2 inhibitors, diclofenac and high-dose ibuprofen (2400 mg per day) are best avoided. As for other NSAIDs, the clinical data are too sparse to allow a meaningful comparison with the better studied

  4. Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice.

    Directory of Open Access Journals (Sweden)

    Michelle A Carey

    Full Text Available BACKGROUND: We previously demonstrated that cyclooxygenase (COX-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560, a COX-2 inhibitor (celecoxib or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-alpha and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control. CONCLUSIONS/SIGNIFICANCE: Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.

  5. [Effects of polydatin on ALT, AST, TNF-alpha, and COX-2 in sepsis model mice].

    Science.gov (United States)

    Li, Xiao-Hui; Wu, Meng-Jiao; Zhang, Li-Na; Zheng, Jia-Jia; Zhang, Li; Wan, Jing-Yuan

    2013-02-01

    To investigate the protective effects of polydatin on sepsis-induced acute liver injury (ALI) in mice, and to preliminarily study its mechanisms. The sepsis model was established using cecal ligation and puncture (CLP).A sham-operation control group was also set up. Polydatin (50, 100, and 300 mg/kg, respectively) was administrated to mice 1 h before CLP. The survival and liver injury were evaluated subsequently per 6 h after CLP. The survived mice were scarified 24 h later. The serum and the liver tissue sample were collected. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by colorimetric method. The content of tumor necrosis factor-alpha (TNF-alpha) was assayed by ELISA. The cyclooxygenase-2 (COX-2) expression in the liver tissue was detected by Western blot. The pathological changes of the hepatic tissue were analyzed by hematoxylin and eosin stain. The mortality of mice reached as high as 50% at 24 h after CLP. The biochemical indices and the pathological changes of the liver tissue showed obvious lesion. The success rate of modeling was 90%. Compared with the sham-operation control group, the serum ALT,AST activity, the TNF-alpha content, and the hepatic COX-2 protein expression markedly increased in the CLP group (P < 0.01). Polydatin improved the sepsis-induced mortality dose-dependently, inhibited increased ALT, AST activity and TNF-alpha, decreased the hepatic COX-2 protein expression, and attenuated the pathological injury of the liver (P < 0.05). Polydatin could effectively protect sepsis-induced ALI, which might be achieved possibly through inhibiting serum TNF-alpha production and hepatic COX-2 expression.

  6. Chemoprevention of glandular stomach carcinogenesis through duodenogastric reflux in rats by a COX-2 inhibitor.

    OpenAIRE

    Oba, Masaru; Miwa, Koichi; Fujimura, Takashi; Harada, Shin-ichi; Sasaki, Shozo; Hattori, Takanori

    2008-01-01

    Duodenogastric reflux (DGR) causes glandular stomach carcinogenesis in rats without carcinogens. We aimed to investigate how this carcinogenesis might be prevented by a selective COX-2 inhibitor, meloxicam. A series of 188 Fisher 344 rats underwent a surgical DGR procedure and were divided into 2 groups. One group was given commercial chow (control group), and the other an experimental chow containing meloxicam [0.3 mg/kg bw/day] (meloxicam group). The animals were sequentially sacrificed at ...

  7. microRNA-142-3p inhibits apoptosis and inflammation induced by bleomycin through down-regulation of Cox-2 in MLE-12 cells

    Directory of Open Access Journals (Sweden)

    F. Guo

    Full Text Available microRNA (miR-142-3p is implicated in malignancy and has been identified as a biomarker for aggressive and recurrent lung adenocarcinomas. This study aimed to evaluate the inhibitory effect of miR-142-3p on apoptosis and inflammation induced by bleomycin in MLE-12 cells. MLE-12 cells were first transfected either with miR-142-3p mimic or miR-142-3p inhibitor and then the cells were exposed to 50 μg/mL of bleomycin. Thereafter, cell viability, apoptosis and the expression of pro-inflammatory cytokines were assessed using CCK-8, flow cytometry, RT-PCR and western blot analyses. Cox-2, PI3K, AKT and mTOR expressions were detected by western blotting after bleomycin was administered together with NS-398 (an inhibitor of Cox-2. As a result, cell viability was significantly decreased, as well as apoptosis and the expression of IL-1 and TNF-α were remarkably increased after 50 and 100 μg/mL of bleomycin administration. miR-142-3p overexpression alleviated bleomycin-induced apoptosis and overproduction of these two pro-inflammatory cytokines, while miR-142-3p suppression exhibited completely opposite results. Up-regulation of Cox-2 and inactivation of PI3K/AKT/mTOR were found in bleomycin-pretreated cells, while these abnormal regulations were partially abolished by miR-142-3p overexpression and NS-398. In conclusion, this study demonstrated that miR-142-3p overexpression protected bleomycin-induced injury in lung epithelial MLE-12 cells, possibly via regulating Cox-2 expression and PI3K/AKT/mTOR signaling pathway. These findings provide evidence that miR-142-3p may be a therapeutic strategy for idiopathic pulmonary fibrosis (IPF treatment.

  8. Eupatolide inhibits lipopolysaccharide-induced COX-2 and iNOS expression in RAW264.7 cells by inducing proteasomal degradation of TRAF6.

    Science.gov (United States)

    Lee, Jongkyu; Tae, Nara; Lee, Jung Joon; Kim, Taeho; Lee, Jeong-Hyung

    2010-06-25

    Inula britannica is a traditional medicinal plant used to treat bronchitis, digestive disorders, and inflammation in Eastern Asia. Here, we identified eupatolide, a sesquiterpene lactone from I. britannica, as an inhibitor of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Eupatolide inhibited the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) as well as iNOS and COX-2 protein expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Eupatolide dose-dependently decreased the mRNA levels and the promoter activities of COX-2 and iNOS in LPS-stimulated RAW264.7 cells. Moreover, eupatolide significantly suppressed the LPS-induced expression of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) reporter genes. Pretreatment of eupatolide inhibited LPS-induced phosphorylation and degradation of I kappaB alpha, and phosphorylation of RelA/p65 on Ser-536 as well as the activation of mitogen-activated protein kinases (MAPKs) and Akt in LPS-stimulated RAW264.7 cells. Eupatolide induced proteasomal degradation of tumor necrosis factor receptor-associated factor-6 (TRAF6), and subsequently inhibited LPS-induced TRAF6 polyubiquitination. These results suggest that eupatolide blocks LPS-induced COX-2 and iNOS expression at the transcriptional level through inhibiting the signaling pathways such as NF-kappaB and MAPKs via proteasomal degradation of TRAF6. Taken together, eupatolide may be a novel anti-inflammatory agent that induces proteasomal degradation of TRAF6, and a valuable compound for modulating inflammatory conditions. (c) 2010 Elsevier B.V. All rights reserved.

  9. Enantioresolution and stereochemical characterization of two chiral sulfoxides endowed with COX-2 inhibitory activity.

    Science.gov (United States)

    Sardella, Roccaldo; Ianni, Federica; Di Michele, Alessandro; Di Capua, Angela; Carotti, Andrea; Anzini, Maurizio; Natalini, Benedetto

    2017-09-01

    The capacity of nonsteroidal antiinflammatory drugs (NSAIDs) to prevent prostanoids biosynthesis through the inhibition of COX-2 enzyme is related to their structural backbone, based on the fusion of a cis-stilbene unit with a variety of heterocyclic and carbocyclic rings. By this route, a series of new selective COX-2 inhibitors was developed, by maintaining the 4-methylsulfone or 4-methylsulfonamide substituent on the phenyl moiety, essential for their activity. In this frame, two novel propyl sulfoxide derivatives were synthesized, which proved selective and sufficiently potent COX-2 inhibition activity when tested as racemates. In the present study, the use of a cellulose tris(3,5-dichlorophenylcarbamate)-based chiral stationary phase, in a polar-organic mode of elution, enabled the successful enantioseparation of the investigated compounds. The developed chromatography method reveals a useful tool of monitoring in view of a proper forthcoming enantioselective synthetic protocol. Moreover, the optimized chromatographic conditions allowed the isolation of appropriate amounts of single enantiomers for the electronic circular dichroism studies that, coupled with in silico simulations, allowed assessing the absolute configuration of each species. © 2017 Wiley Periodicals, Inc.

  10. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines.

    Science.gov (United States)

    Seo, Kyoung-Won; Coh, Ye-Rin; Rebhun, Robert B; Ahn, Jin-Ok; Han, Sei-Myung; Lee, Hee-Woo; Youn, Hwa-Young

    2014-06-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. Copyright © 2014. Published by Elsevier Ltd.

  11. Pregnancy induced changes in Cox-1, Cox-2 and NOSIII vascular and renal expression.

    Science.gov (United States)

    Bobadilla, Rosa A; Bracho, Ismael; Alvarez, Victor M Pérez; Anguiano, Liliana; López, Pedro

    2004-01-01

    In order to establish if there is a mutual regulation between COX and NOS in vascular and renal tissue during pregnancy, we measured the protein expression of COX-1, COX-2 and NOSIII by Western blot comparing the thoracic and abdominal aorta and the renal cortex and medulla of non pregnant and pregnant (21st day) Wistar rats. We found there was no difference in the quantity of protein of any of the two isoforms of COX between the two segments of the aorta of non pregnant animals while an increased expression of both COX-1 And COX-2 was found in the abdominal compared to the thoracic segment of the pregnant rats. An increased expression of NOS III was found in the abdominal segment of the aorta form pregnant rats. No changes were found between pregnant and no pregnant animals in the expression of COX-1 and COX-2 in the renal cortex or medulla while an increased expression of NOS III was found in the cortex from pregnant compared to non pregnant animals. These results suggest the influence of pregnancy is not homogeneous along the aorta and also that a balance between prostaglandins and nitric oxide is responsible of the blunted vascular reactivity during pregnancy in the rat.

  12. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway.

    Science.gov (United States)

    Markworth, James F; Cameron-Smith, David

    2013-01-01

    Arachidonic acid (AA) is the metabolic precursor to a diverse range of downstream bioactive lipid mediators. A positive or negative influence of individual eicosanoid species [e.g., prostaglandins (PGs), leukotrienes, and hydroxyeicosatetraenoic acids] has been implicated in skeletal muscle cell growth and development. The collective role of AA-derived metabolites in physiological states of skeletal muscle growth/atrophy remains unclear. The present study aimed to determine the direct effect of free AA supplementation and subsequent eicosanoid biosynthesis on skeletal myocyte growth in vitro. C2C12 (mouse) skeletal myocytes induced to differentiate with supplemental AA exhibited dose-dependent increases in the size, myonuclear content, and protein accretion of developing myotubes, independent of changes in cell density or the rate/extent of myogenic differentiation. Nonselective (indomethacin) or cyclooxygenase 2 (COX-2)-selective (NS-398) nonsteroidal anti-inflammatory drugs blunted basal myogenesis, an effect that was amplified in the presence of supplemental free AA substrate. The stimulatory effects of AA persisted in preexisting myotubes via a COX-2-dependent (NS-389-sensitive) pathway, specifically implying dependency on downstream PG biosynthesis. AA-stimulated growth was associated with markedly increased secretion of PGF(2α) and PGE(2); however, incubation of myocytes with PG-rich conditioned medium failed to mimic the effects of direct AA supplementation. In vitro AA supplementation stimulates PG release and skeletal muscle cell hypertrophy via a COX-2-dependent pathway.

  13. FosB transcription factor regulates COX-2 expression in colorectal cancer cells without affecting PGE2 expression.

    Science.gov (United States)

    Cervantes-Madrid, Diana Lizeth; Nagi, Sabah; Asting Gustafsson, Annika

    2017-03-01

    The expression levels of cyclooxygenase (COX)-2 and the prostaglandin E2 (PGE2) content have been associated with poor prognosis in patients with colorectal cancer (CRC). There is a strong correlation between COX-2 expression and PGE2 production in tissues from CRC patients, suggesting an important role for COX-2 on the regulation of PGE2 production. Previous studies by the present authors, where CRC patients were divided into high- or low-COX-2 expressing tumors, displayed important differences in the expression levels of several transcription factors involved in carcinogenesis. Among them, FBJ murine osteosarcoma viral oncogene homolog B (FosB), which is a member of the activator protein-1 complex, was the highest upregulated transcription factor in patients with high expression levels of COX-2. The present study aimed to investigate the role of FosB on the COX-2/PGE2 axis in CRC cells with high COX-2 expression levels. Interference RNA technology was used to knockdown FosB expression in HCA-7 cells, and 72 h later the messenger (m)RNA expression levels of COX-1 and COX-2, as well as the PGE2 content, were measured. The results indicated that FosB knockdown decreased the expression levels of COX-2 but did not affect the PGE2 content or the mRNA expression levels of COX-1. The present findings suggest an important role for FosB on the regulation of COX-2 expression, but no effect on the regulation of the PGE2 levels. In addition, the present results imply independent regulatory mechanisms for COX-2 expression and PGE2 content.

  14. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    Highlights: ► Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE 2 . ► The fibroblasts interact with human colonic epithelial cancer cells. ► Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. ► Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  15. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer

    International Nuclear Information System (INIS)

    Glynn, Sharon A; Ambs, Stefan; Prueitt, Robyn L; Ridnour, Lisa A; Boersma, Brenda J; Dorsey, Tiffany M; Wink, David A; Goodman, Julie E; Yfantis, Harris G; Lee, Dong H

    2010-01-01

    Inducible cyclooxgenase-2 (COX-2) is commonly overexpressed in breast tumors and is a target for cancer therapy. Here, we studied the association of COX-2 with breast cancer survival and how this association is influenced by tumor estrogen and HER2 receptor status and Akt pathway activation. Tumor COX-2, HER2 and estrogen receptor α (ER) expression and phosphorylation of Akt, BAD, and caspase-9 were analyzed immunohistochemically in 248 cases of breast cancer. Spearman's correlation and multivariable logistic regression analyses were used to examine the relationship between COX-2 and tumor characteristics. Kaplan-Meier survival and multivariable Cox proportional hazards regression analyses were used to examine the relationship between COX-2 and disease-specific survival. COX-2 was significantly associated with breast cancer outcome in ER-negative [Hazard ratio (HR) = 2.72; 95% confidence interval (CI), 1.36-5.41; comparing high versus low COX-2] and HER2 overexpressing breast cancer (HR = 2.84; 95% CI, 1.07-7.52). However, the hazard of poor survival associated with increased COX-2 was highest among patients who were both ER-negative and HER2-positive (HR = 5.95; 95% CI, 1.01-34.9). Notably, COX-2 expression in the ER-negative and HER2-positive tumors correlated significantly with increased phosphorylation of Akt and of the two Akt targets, BAD at Ser136 and caspase-9 at Ser196. Up-regulation of COX-2 in ER-negative and HER2-positive breast tumors is associated with Akt pathway activation and is a marker of poor outcome. The findings suggest that COX-2-specific inhibitors and inhibitors of the Akt pathway may act synergistically as anticancer drugs in the ER-negative and HER2-positive breast cancer subtype

  16. Wine polyphenols exert antineoplasic effect on androgen resistant PC-3 cell line through the inhibition of the transcriptional activity of COX-2 promoter mediated by NF-kβ.

    Science.gov (United States)

    Ferruelo, A; de Las Heras, M M; Redondo, C; Ramón de Fata, F; Romero, I; Angulo, J C

    2014-09-01

    Mediterranean diet may play a role in the prevention of prostate cancer (PCa) development and progression. Cyclooxygenase-2 (COX-2) expression is associated with increased cellular proliferation, prevents apoptosis and favors tumor invasion. We intend to clarify whether resveratrol and other polyphenols effectively inhibit COX-2 activity and induce apoptosis in hormone-resistant PC-3 cell line. PC-3 cells were cultured and treated with different concentrations of gallic acid, tannic acid, quercetin, and resveratrol in presence of phorbol myristate acetate (PMA; 50 μg/ml) that induces COX-2 expression. Total RNA was extracted and COX-2 expression was analyzed by relative quantification real-time PCR (ΔΔCt method). COX-2 activity was determined by PGE-2 detection using ELISA. Caspase 3/7 luminescence assay was used to disclose apoptosis. Transitory transfection with short human COX-2 (phPES2 -327/+59) and p5xNF-kβ-Luc plasmids determined COX-2 promoter activity and specifically that dependant of NF-kβ. COX-2 expression was not modified in media devoid of PMA. However, under PMA induction tannic acid (2.08 ±.21), gallic acid (2.46 ±.16), quercetin (1.78 ±.14) and resveratrol (1.15 ±.16) significantly inhibited COX-2 mRNA with respect to control (3.14 ±.07), what means a 34%, 23%, 46% and 61% reduction, respectively. The inhibition in the levels of PGE-2 followed a similar pattern. All compounds studied induced apoptosis at 48 h, although at a different rate. PMA caused a rise in activity 7.4 ±.23 times phPES2 -327/+59 and 2.0 ±.1 times p5xNF-kβ-Luc at 6h compared to basal. Resveratrol suppressed these effects 17.1 ±.21 and 32.4 ±.18 times, respectively. Similarly, but to a lesser extent, the rest of evaluated polyphenols diminished PMA inductor effect on the activity of both promoters. Polyphenols inhibit transcriptional activity of COX-2 promoter mediated by NF-kβ. This effect could explain, at least in part, the induction of apoptosis in vitro by

  17. Efek ekstrak daun singkong (Manihot utilissima terhadap ekspresi COX-2 pada monosit yang dipapar LPS E.coli (The effect of Manihot utilissima extracts on COX-2 expression of monocytes induced by LPS E. coli

    Directory of Open Access Journals (Sweden)

    Zahara Meilawaty

    2013-12-01

    Full Text Available Background: Periodontal disease is a common and widespread disease in the community. Gram negative bacteria have a role inperiodontitis. These bacteria secrete a variety of products such as endotoxin lipopolysaccharide (LPS, which causes the occurrenceof inflammation or infection. The body defense responses are neutrophils and mononuclear cells (monocytes and macrophages. Inresponse to defense mechanism, the body will be expressed enzyme cyclooxygenase (COX which functions convert arachidonic acidto prostaglandins. Cassava leaf cells known to play a role in reducing inflammation, but the mechanism for inhibiting COX-2, is notknown. Purpose: The study was aimed to determine the effect of cassava leaf extract (Manihot utilissima on expression of enzyme COX-2 in monocytes which were exposed by LPS E. coli. Methods: This study was in vitro experimental studies with the design of posttestonly control group design. The sample was the cassava leaves extract (Manihot utilissima at concentration of 12.5 % and 25 %. Theexpression of COX-2 was determined by immunocytochemistry method. Isolated monocytes were incubated in cassava leaf extract, andthen exposed to LPS, after washing imunostaning procedure was performed using a monoclonal antibody (MAb anti-human COX-2.The research data was the number of monocytes that express COX-2. Results: Expression of COX-2 in the group cassava leaf extractwas higher than the group that induced by LPS E. coli only. Conclusion: Cassava leaf extract did not inhibit the expression of COX-2in monocytes which were exposed by LPS E. coli.Latar belakang: Penyakit periodontal merupakan penyakit umum dan tersebar luas di masyarakat. Bakteri yang banyak berperanpada periodontitis adalah Gram negatif. Bakteri ini mengeluarkan berbagai produk antara lain endotoksin lipopolisakarida (LPS yangmenyebabkan inflamasi atau infeksi. Respon pertahanan tubuh pertama adalah netrofil dan sel mononuklear (monosit dan makrofag.Pada respon

  18. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Kang, Ju-Hee; Song, Ki-Hoon; Jeong, Kyung-Chae; Kim, Sunshin; Choi, Changsun; Lee, Chang Hoon; Oh, Seung Hyun

    2011-01-01

    A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX). We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells. We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. In vitro invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells. We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in

  19. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3σ axis inhibits keratinocyte survival and proliferation.

    Science.gov (United States)

    Kim, Mihwa; Morales, Liza D; Baek, Minwoo; Slaga, Thomas J; DiGiovanni, John; Kim, Dae Joon

    2017-10-31

    Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation.

  20. Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice

    OpenAIRE

    Lou, You-Rong; Peng, Qing-Yun; Li, Tao; Medvecky, Christopher M.; Lin, Yong; Shih, Weichung Joe; Conney, Allan H.; Shapses, Sue; Wagner, George C.; Lu, Yao-Ping

    2011-01-01

    Our previous studies reported that caffeine or voluntary exercise decreased skin tumor multiplicity, in part, by decreasing fat levels in the dermis. These data suggest that tissue fat may play an important role in regulating ultraviolet light (UV) B-induced skin tumor development. In the present study, we explored the effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis. SKH-1 mice were irradiated with 30 mJ/cm2 of UVB once a day, two tim...

  1. Combined activity of COX-1 and COX-2 is increased in non-neoplastic colonic mucosa from colorectal neoplasia patients.

    Science.gov (United States)

    Jensen, Thorbjørn Søren Rønn; Mahmood, Badar; Damm, Morten Bach; Backe, Marie Balslev; Dahllöf, Mattias Salling; Poulsen, Steen Seier; Hansen, Mark Berner; Bindslev, Niels

    2018-02-27

    Cyclooxygenase (COX) activity is increased in endoscopic normal colonic mucosa from patients with colorectal neoplasia (CRN). COX-2 is thought to be the predominant COX isozyme involved in neoplasia. Meanwhile, relative contributions of COX-1 and COX-2 isoforms are unknown. Knowledge about their mutual activity in colonic mucosa is important for diagnostics and targeted therapy for CRN. The aim of this study was to assess the relative function, expression and localization of COX-1 and COX-2 enzymes in colonic non-neoplastic human mucosa and thereby to potentially reveal a mucosal disease predisposition for better treatment. Biopsies were pinched from normal appearing colonic mucosa in patients undergoing endoscopy. Ussing chamber technique was applied for an indirect assessment of epithelial activity, RT-qPCR for expression and immunohistochemistry for localization of COX-1 and COX-2 enzymes in patients without (ctrls) and with a history of CRN (CRN-pts). Combined COX-1 and COX-2 activity was higher in CRN-pts, p = 0.036. COX-2 was primarily localized in absorptive cells, while COX-1 appeared to be restricted to nonenteroendocrine tuft cells of the colonic epithelium. In biopsies from endoscopic normal appearing colonic mucosa, combined activity of COX-1 and COX-2 enzymes is increased in CRN-pts compared with ctrls. This indicates that COX-1 and COX-2 together contribute to an increased proliferation process. Of note, in colonic epithelial cell lining, the COX-1 enzyme seems localized in tuft cells.

  2. Resveratrol induces sumoylated COX-2-dependent anti-proliferation in human prostate cancer LNCaP cells.

    Science.gov (United States)

    Cheng, Tsai-Mu; Chin, Yu-Tang; Ho, Yih; Chen, Yi-Ru; Yang, Yung-Ning; Yang, Yu-Chen; Shih, Ya-Jang; Lin, Ting-I; Lin, Hung-Yun; Davis, Paul J

    2018-02-01

    Cyclooxygenase (COX)-2 has been implicated in cancer development. However, resveratrol-induced nuclear accumulation of COX-2 enhances p53-dependent anti-proliferation in different types of cancers. Treatment with resveratrol leads to phosphorylation and nuclear translocation of mitogen-activated protein kinase (ERK1/2), and accumulation of nuclear COX-2 to complex with pERK1/2 and p53. The consequence is Ser-15 phosphorylation of p53 (pSer15-p53), and induction of anti-proliferation in cancer cells. We investigated the mechanisms by which resveratrol-inducible COX-2 facilitates p53-dependent anti-proliferation in prostate cancer LNCaP cells. Resveratrol treatment caused nuclear accumulation and complexing of ERK1/2, pSer15-p53 and COX-2 which was activated ERK1/2-dependent. Knockdown of SUMO-1 by shRNA also reduced nuclear accumulation of COX-2. Inhibition of nuclear accumulation by the COX-2 specific inhibitor, NS-398, inhibited co-localization of nuclear COX-2 and SUMO-1. Similar results were observed in the PD98059-treated cells. Finally, inhibition of SUMO-1 expression also reduced resveratrol-induced expression of pro-apoptotic genes but increased the expression of proliferative genes. In summary, these results demonstrate that inducible COX-2 associates with phosphorylated ERK1/2 to induce the phosphorylation of Ser-15 in p53 and then complexes with p53 and SUMO-1 which binds to p53-responsive pro-apoptotic genes to enhance their expression. The inhibition of COX-2 expression and activity significantly blocks the pro-apoptotic effect of resveratrol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2-/- Lung Fibroblasts.

    Science.gov (United States)

    Dave, Mandar; Islam, Abul B M M K; Jensen, Roderick V; Rostagno, Agueda; Ghiso, Jorge; Amin, Ashok R

    2017-12-01

    The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF) in lung fibroblasts derived from COX-2 -/- but not wild-type (WT) or COX-1 -/- mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2 -/- fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2 -/- was "prostaglandin-independent." GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2 -/- cells. Furthermore, COX-2 -/- fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen) analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  4. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2−/− Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Mandar Dave

    2017-12-01

    Full Text Available The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF in lung fibroblasts derived from COX-2−/− but not wild-type (WT or COX-1−/− mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2−/− fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2−/− was “prostaglandin-independent.” GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2−/− cells. Furthermore, COX-2−/− fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.

  5. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E 2 , directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  6. Investigations on Antioxidant, Antiproliferative and COX-2 Inhibitory Potential of Alkaloids from Anthocephalus cadamba (Roxb.) Miq. Leaves.

    Science.gov (United States)

    Chandel, Madhu; Kumar, Manish; Sharma, Upendra; Singh, Bikram; Kaur, Satwinderjeet

    2017-04-01

    In the present study, an ayurvedic medicinal plant, Anthocephalus cadamba (Roxb.) Miq. commonly known as 'Kadamb' was explored for its potential against oxidative stress and cancer. The fractions namely AC-4 and ACALK (alkaloid rich fraction) were isolated from A. cadamba leaves by employing two different isolation methods and evaluated for their in vitro antioxidant and antiproliferative activity. The structure of the isolated AC-4 was characterized tentatively as dihydrocadambine by using various spectroscopic techniques such as ESI-QTOF-MS, 1 H- and 13 C-NMR, DEPT, COSY, HMQC, and HMBC. Results of various antioxidant assays viz. 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS cation radical, superoxide anion radical scavenging, and plasmid nicking assay demonstrated that both the fractions viz. AC-4 and ACALK possess ability to scavenge DPPH, ABTS radicals and effectively protected plasmid pBR322 DNA from damage caused by hydroxyl radicals. Further, when both fractions were evaluated for their potential to suppress growth of HeLa and COLO 205 cells, only ACALK fraction showed antiproliferative effects. ACALK exhibited GI 50 of 205.98 and 99.54 μg/ml in HeLa and COLO 205 cell lines, respectively. Results of Hoechst staining in cervical carcinoma (HeLa) cells confirmed that ACALK induced cell death in HeLa cells via apoptotic mode. Both the fractions also inhibited COX-2 enzyme activity. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. COX-2 induces oncogenic micro RNA miR655 in human breast cancer.

    Science.gov (United States)

    Majumder, Mousumi; Dunn, Leanna; Liu, Ling; Hasan, Asma; Vincent, Krista; Brackstone, Muriel; Hess, David; Lala, Peeyush K

    2018-01-10

    We show that Cyclooxygenase-2 over-expression induces an oncogenic microRNA miR655 in human breast cancer cells by activation of EP4. MiR655 expression positively correlated with COX-2 in genetically disparate breast cancer cell lines and increased in all cell lines when grown as spheroids, implicating its link with stem-like cells (SLCs). Ectopic miR655 over-expression in MCF7 and SKBR3 cells resulted in increased proliferation, migration, invasion, spheroid formation and Epithelial to Masenchymal transition (EMT). Conversely, knocking down miR655 in aggressive MCF7-COX2 and SKBR3-COX2 cells reverted these phenotypes. MCF7-miR655 cells displayed upregulated NOTCH/WNT genes; both pathway inhibitors abrogated miR655-induced spheroid formation, linking miR655 with SLC-related pathways. MiR655 expression was dependent on EP4 activity and EP4 downstream signaling pathways PI3K/AKT, ERK and NF-kB and led to TGFβ resistance for Smad3 phosphorylation. Tail vein injection of MCF7-miR655 and SKBR3-miR655 cells in NOD/SCID/GUSB-null mice revealed increased lung colony growth and micrometastases to liver and spleen. MiR655 expression was significantly high in human breast tumors (n = 105) compared to non-tumor tissues (n = 20) and associated with reduced patient survival. Thus miR655 could serve as a prognostic breast cancer biomarker.

  8. Food Polyphenols Fail to Cause a Biologically Relevant Reduction of COX-2 Activity.

    Directory of Open Access Journals (Sweden)

    Ina Willenberg

    Full Text Available Epidemiologic studies show a correlation between the dietary intake of food polyphenols and beneficial health effects. Several in vitro studies indicate that the anti-inflammatory potential of polyphenols is, at least in part, mediated by a modulation of the enzymes of the arachidonic acid cascade, such as the prostaglandin forming cyclooxygenases (COXs. Evidence that this mode of action can be transferred to the situation in vivo is scarce. This study characterized effects of a subset of polyphenols on COX-2 expression and activity in vitro and compared the potency with known drugs. Next, the in vivo relevance of the observed in vitro effects was tested. Enzyme assays and incubations of polyphenols with the cancer cell line HCA-7 and lipopolysaccharide (LPS stimulated primary monocytes support the hypothesis that polyphenols can effect COX-2 expression and activity in vitro. The effects were most pronounced in the monocyte assay for wogonin, apigenin, resveratrol and genistein with IC50 values of 1.5 μM, 2.6 μM, 2.8 μM and 7.4 μM. However, these values are 100- to 1000-fold higher in comparison to those of the known pharmaceuticals celecoxib, indomethacin and dexamethasone. In an animal model of LPS induced sepsis, pretreatment with polyphenols (i. p. 100 mg/kg bw did not result in decreased plasma or tissue prostaglandin levels, whereas the positive control celecoxib effectively attenuated LPS induced prostaglandin formation. These data suggest that despite the moderate potency in vitro, an effect of polyphenols on COX-2 during acute inflammation is unlikely, even if a high dose of polyphenols is ingested.

  9. Role of COX-2 in the regulation of the metastatic potential of human breast tumor cells

    Directory of Open Access Journals (Sweden)

    M. A. Taipov

    2014-01-01

    Full Text Available The expression of СOX-2, VEGF, VEGFR-1, VEGFR-2, VEGFR-3, EGFR, endoglin (СD105, and IL-6 was analyzed in the human breast tumor cells having a varying metastatic potential. The role of these factors in the regulation of the metastatic potential of breast cancer cells, as well as that of COX-2 in the regulation of metastatic processes at the cellular level were examined. The potential capacity of human breast tumor cells to elaborate factors that stimulate tumor growth, angiogenesis, and metastasis was evaluated.

  10. GROWTH FACTORS AND COX2 IN WOUND HEALING: AN EXPERIMENTAL STUDY WITH EHRLICH TUMORS.

    Science.gov (United States)

    Salgado, Flávio L L; Artigiani-Neto, Ricardo; Lopes-Filho, Gaspar de Jesus

    2016-01-01

    Healing is an innate biological phenomenon, and carcinogenesis acquired, but with common humoral and cellular elements. Carcinogenesis interferes negatively in healing. To evaluate the histological changes in laparotomy scars of healthy Balb/c mice and with an Ehrlich tumor in its various forms of presentation. Fifty-four mice were divided into three groups of 18 animals. First group was the control; the second had Ehrlich tumor with ascites; and the third had the subcutaneous form of this tumor. Seven days after tumor inoculation, all 54 mice were submitted to laparotomy. All of the animals in the experiment were operated on again on 7th day after surgery, with resection of the scar and subsequent euthanasia of the animal. The scars were sent for histological assessment using immunohistochemical techniques to evaluate Cox-2 (cyclooxygenase 2), VEGF (vascular endothelial growth factor) and FGF (fibroblast growth factor). Semi-quantitatively analysis was done in the laparotomy scars and in the abdominal walls far away from the site of the operation. Assessing the weight of the animals, the correct inoculation of the tumor and weight gain in the group with tumoral ascites was observed. The histological studies showed that groups with the tumor showed a statistically significant higher presence of Cox-2 compared to the control. In the Cox-2 analysis of the abdominal wall, the ascites group showed the most significant difference. VEGF did not present any significant differences between the three groups, regardless of the site. The FGF showed a significant increase in animals with the tumor. Histological findings in both laparotomy scar and the abdominal wall showed that with Ehrlich's neoplasia there was an exacerbated inflammatory response, translated by more intense expression of Cox-2 and greater fibroblast proliferation, translated by more intense expression of FGF, that is, it stimulated both the immediate inflammatory reactions, observed with Cox-2 reactions, and

  11. A polypeptide from Chlamys farreri inhibits UVB-induced HaCaT cells apoptosis via the Apaf-1/caspase-9 and Smac/XIAP signaling pathway

    Science.gov (United States)

    Liu, Xiaojin; Wang, Wencheng; Wang, Hongjiang; Zhang, Lanlan; Liu, Leqian; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    A novel marine active polypeptide (PCF), isolated from the gonochoric Chinese scallop, Chlamys farreri, has potential antioxidant and anti-apoptotic activity against ultraviolet irradiation. We investigated whether UVB-induced HaCaT cell apoptosis occurs via the mitochondrial pathways Apaf-1/caspase-9 and Smac/XIAP/caspase-3. We then investigated the molecular mechanisms controlling the anti-apoptotic effect of PCF. Pre-treatment with PCF and caspase-9 inhibitor significantly inhibited UVB-induced apoptosis in HaCaT cells based on a DNA fragmentation assay and Hoechst 33258 staining. The expression of Apaf-1 and the cleavage of procaspase-9 were dose-dependently reduced by 1.42-5.96 mmol/L PCF pretreatment in UVB-irradiated HaCaT cells. This was followed by inhibition of cleavage of procaspase-3, whose activation induced cell apoptosis. Meanwhile, PCF significantly and dose-dependently enhanced the activation of ATPase. Furthermore, we demonstrated that PCF strongly inhibited the release of Smac from the mitochondria to cytosol by reducing the degradation of XIAP dose-dependently. We conclude that the protective effect of PCF against UVB irradiation in HaCaT cells may be attributed to the inhibition of the Apaf-1/caspase-9 and Smac/XIAP/caspase-3 apoptotic signaling pathways.

  12. A Class I (Senofilcon A) Soft Contact Lens Prevents UVB-Induced Ocular Effects, Including Cataract, in the Rabbit In Vivo

    Science.gov (United States)

    Lin, Li-Ren; Leverenz, Victor R.; Dang, Loan

    2011-01-01

    Purpose. UVB radiation from sunlight is known to be a risk factor for human cataract. The purpose in this study was to investigate the ability of a class I UV-blocking soft contact lens to protect against UVB-induced effects on the ocular tissues of the rabbit in vivo. Methods. Eyes of rabbits were exposed to UVB light for 30 minutes (270–360 nm, peak at 310 nm, 1.7 mW/cm2 on the cornea). Eyes were irradiated in the presence of either a UV-blocking senofilcon A contact lens, a minimally UV-blocking lotrafilcon A contact lens, or no contact lens at all. Effects on the cornea and lens were evaluated at various times after exposure. Results. Eyes irradiated with no contact lens protection showed corneal epithelial cell loss plus lens epithelial cell swelling, vacuole formation, and DNA single-strand breaks, as well as lens anterior subcapsular opacification. The senofilcon A lens protected nearly completely against the UVB-induced effects, whereas the lotrafilcon A lens showed no protection. Conclusions. The results indicate that use of a senofilcon A contact lens is beneficial in protecting ocular tissues of the rabbit against the harmful effects of UVB light, including photokeratitis and cataract. PMID:21421866

  13. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    DEFF Research Database (Denmark)

    Bernhard, C.; Wang, C. N.; Nuccio, L.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsu......Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity...... caused by the randomly distributed Co atoms. A different kind of magnetic order that was also previously identified [C. Bernhard et al., New J. Phys. 11, 055050 (2009)] occurs at 0.055 magnetic order develops here only in parts of the sample volume...... and it seems to cooperate with superconductivity since its onset temperature coincides with Tc. Even in the strongly overdoped regime at x = 0.11, where the static magnetic order has disappeared, we find that the low-energy spin fluctuations are anomalously enhanced below Tc. These findings point toward...

  14. COX-2, mPGES-1 and EP2 receptor immunohistochemical expression in canine and feline malignant mammary tumours.

    Science.gov (United States)

    Millanta, F; Asproni, P; Canale, A; Citi, S; Poli, A

    2016-09-01

    Prostaglandin (PG) signalling is involved in human and animal cancer development. PG E2 (PGE2 ) tumour-promoting activity has been confirmed and its production is controlled by Cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Evidence suggests that mPGES-1 and COX-2 contribute to carcinogenesis through the EP2 receptor. The aim of our study was to detect by immunohistochemistry COX-2, mPGES-1 and EP2 receptor expression in canine (n = 46) and feline (n = 50) mammary tumours and in mammary non-neoplastic tissues. COX-2 positivity was observed in 83% canine and 81% feline mammary carcinomas, mPGES-1 in 75% canine and 66% feline mammary carcinomas and the EP2 receptor expression was observed in 89% canine and 54% feline carcinomas. The frequency of COX-2, EP2 receptor and mPGES-1 expression was significantly higher in carcinomas than in non-neoplastic tissues and adenomas. COX-2, mPGES-1 and EP2 receptor expression was strongly associated. These findings support a role of the COX-2/PGE2 pathway in the pathogenesis of these tumours. © 2014 John Wiley & Sons Ltd.

  15. High COX-2 expression in canine mast cell tumours is associated with proliferation, angiogenesis and decreased overall survival.

    Science.gov (United States)

    Gregório, H; Raposo, T; Queiroga, F L; Pires, I; Pena, L; Prada, J

    2017-12-01

    COX-2 overexpression is associated with several hallmarks of carcinogenesis such as proliferation, angiogenesis, invasion and metastasis. Fifty cases of canine mast cell tumours (MCT) were retrospectively evaluated and submitted to immunohistochemistry for COX-2, CD31, Ki-67, MAC-387 and CD3. Furthermore its relationship with clinicopathological variables and overall survival (OS) was analysed. COX-2 intensity (P = 0.016), but not COX-2 extension nor score was associated with decreased OS and higher grades of malignancy according to Patnaik (P = 0.002) and Kiupel (P Cox-2 intensity was also associated with higher Ki-67 scores (P = 0.009), higher mitotic index (P = 0.022) and higher microvascularization density (P = 0.045). No association was observed for COX-2 intensity and CD3-T lymphocyte (P = 0.377) and macrophage infiltration (P = 0.261) by MAC-387 immunollabelling, suggesting an active role of COX-2 in MCT oncogenesis mainly through proliferation and angiogenesis stimulation making it a potentially clinical relevant prognosis marker and therapeutic target. © 2016 John Wiley & Sons Ltd.

  16. Screening of Missense SNPs in Coding Regions of COX-2 as a Key Enzyme Involved in Cancer

    Directory of Open Access Journals (Sweden)

    Sodabeh Jahanbakhsh-Godehkahriz

    2013-09-01

    Full Text Available Background & Objectives: Non-synonymous single nucleotide polymorphism (nsSNPs which results in disruption of protein function are used as markers in linkage and association of human proteins that might be involved in diseases and cancers .   Methods: To study the functional effect of nsSNP in cyclooxygenase-2 (COX2 amino acids, the nucleotide sequences encoding COX-2 gene in cancers were extracted from the NCBI (gi|223941909 data bank (283 cases and analyzed by SIFT, I-Mutant 2.0, SNP and GO, PANTHER and FASTSNP servers. These servers involve programs that predict the effects of amino acid substitution on protein function, stability and missense .   Results: COX-2 is an essential enzyme for the production of pro-inflammatory prostaglandins which are relevant to cancer development and progression. The substitutions in some positions such as R228H and S428A of COX-2 in most of cancers linked to reformed protein function through disruption in enzyme active site.   Conclusion: Amino acid substitutions as a consequence of COX-2 nsSNPs have important role in human disease. Substitutions which are located in catalytic domain are important for the enzymatic function of COX-2 and associated with higher expression of COX-2.

  17. COX-2 expression and effects of celecoxib in addition to standard chemotherapy in advanced non-small cell lung cancer.

    Science.gov (United States)

    Gulyas, Miklos; Mattsson, Johanna Sofia Margareta; Lindgren, Andrea; Ek, Lars; Lamberg Lundström, Kristina; Behndig, Annelie; Holmberg, Erik; Micke, Patrick; Bergman, Bengt

    2018-02-01

    Inhibition of cyclooxygenase-2 (COX-2) is proposed as a treatment option in several cancer types. However, in non-small cell lung cancer (NSCLC), phase III trials have failed to demonstrate a benefit of adding COX-2 inhibitors to standard chemotherapy. The aim of this study was to analyze COX-2 expression in tumor and stromal cells as predictive biomarker for COX-2 inhibition. In a multicenter phase III trial, 316 patients with advanced NSCLC were randomized to receive celecoxib (400 mg b.i.d.) or placebo up to one year in addition to a two-drug platinum-based chemotherapy combination. In a subset of 122 patients, archived tumor tissue was available for immunohistochemical analysis of COX-2 expression in tumor and stromal cells. For each compartment, COX-2 expression was graded as high or low, based on a product score of extension and intensity of positively stained cells. An updated analysis of all 316 patients included in the original trial, and of the 122 patients with available tumor tissue, showed no survival differences between the celecoxib and placebo arms (HR 1.01; 95% CI 0.81-1.27 and HR 1.12; 95% CI 0.78-1.61, respectively). High COX-2 scores in tumor (n = 71) or stromal cells (n = 55) was not associated with a superior survival outcome with celecoxib vs. placebo (HR =0.96, 95% CI 0.60-1.54; and HR =1.51; 95% CI 0.86-2.66), and no significant interaction effect between COX-2 score in tumor or stromal cells and celecoxib effect on survival was detected (p = .48 and .25, respectively). In this subgroup analysis of patients with advanced NSCLC treated within the context of a randomized trial, we could not detect any interaction effect of COX-2 expression in tumor or stromal cells and the outcome of celecoxib treatment in addition to standard chemotherapy.

  18. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Suemasu, Shintaro; Ishihara, Tomoaki; Tasaka, Yuichi; Arai, Yasuhiro; Mizushima, Tohru

    2009-01-28

    A number of clinical studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs) exacerbate inflammatory bowel disease; however the molecular mechanism whereby this occurs remains unclear. NSAIDs inhibit cyclooxygenase (COX), which has subtypes COX-1 and COX-2. In this study, we have examined the effect of various types of NSAIDs on the development of dextran sulfate sodium (DSS)-induced colitis, an animal model of inflammatory bowel disease. The DSS-induced colitis was worsened by administration of non-selective NSAIDs but not by COX-1 or COX-2 selective inhibitors. However, administration of a combination of both COX-1- and COX-2-selective inhibitors exacerbated the colitis. The intestinal level of PGE(2) dramatically decreased in response to administration of COX-1- and COX-2-selective inhibitors, and exogenously administered PGE(2) suppressed the exacerbation of colitis by NSAIDs. The expression of mucin proteins, which protect the intestinal mucosa, was suppressed by non-selective NSAIDs and this expression was restored by PGE(2), both in vivo and in vitro. Intestinal mucosal cell growth was inhibited by non-selective NSAIDs and this cell growth was restored by PGE(2), both in vivo and in vitro. This study provides evidence that inhibition of both COX-1 and COX-2 and the resulting dramatic decrease in the intestinal level of PGE(2) is responsible for NSAID-dependent exacerbation of DSS-induced colitis. Furthermore, expression of mucin proteins and intestinal mucosal cell growth seems to be involved in this exacerbation and its suppression by PGE(2).

  19. QSAR analysis of furanone derivatives as potential COX-2 inhibitors: kNN MFA approach

    Directory of Open Access Journals (Sweden)

    Ruchi Bhatiya

    2014-12-01

    Full Text Available A series of thirty-two furanone derivatives with their cyclooxygenase-2 inhibitory activity were subjected to quantitative structural–activity relationship analysis to derive a correlation between biological activity as a dependent variable and various descriptors as independent variables by using V-LIFE MDS3.5 software. The significant 2D QSAR model showed correlation coefficient (r2 = 0.840, standard error of estimation (SEE = 0.195, and a cross-validated squared correlation coefficient (q2 = 0.773. The descriptors involved in the building of 2D QSAR model are retention index for six membered rings, total number of oxygen connected with two single bonds, polar surface area excluding P and S plays a significant role in COX-2 inhibition. 3D-QSAR performed via Step Wise K Nearest Neighbor Molecular Field Analysis [(SW kNN MFA] with partial least-square (PLS technique showed high predictive ability (r2 = 0.7622, q2 = 0.7031 and standard error = 0.3660 explaining the majority of the variance in the data with two principle components. The results of the present study may be useful in the design of more potent furanone derivatives as COX-2 inhibitors.

  20. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  1. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells.

    Science.gov (United States)

    Lee, Jung Yeon; Choi, A-Young; Oh, Young Taek; Choe, Wonchae; Yeo, Eui-Ju; Ha, Joohun; Kang, Insug

    2012-06-01

    AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, is known to be activated during T cell activation. T cell activation by T cell receptor (TCR) engagement or its pharmacological mimics, PMA plus ionomycin (PMA/Io), induces immunomodulatory FasL and cyclooxygenase-2 (COX-2) expression. In this study, we examined the role and mechanisms of AMPK in PMA/Io-induced expression of FasL and COX-2 in Jurkat T human leukemic cells. Inhibition of AMPK by a pharmacological agent, compound C, or AMPKα1 siRNA suppressed expression of FasL and COX-2 mRNAs and proteins in PMA/Io-activated Jurkat cells. It also reduced secretion of FasL protein and prostaglandin E2, a main product of COX-2, in Jurkat cells and peripheral blood lymphocytes activated with PMA/Io or monoclonal anti-CD3 plus anti-CD28. Consistently, inhibition of AMPK blocked promoter activities of FasL and COX-2 in activated Jurkat cells. As protein kinase C theta (PKCθ) is a central molecule for TCR signaling, we examined any possible cross-talk between AMPK and PKCθ in activated T cells. Of particular importance, we found that inhibition of AMPK blocked phosphorylation and activation of PKCθ, suggesting that AMPK is an upstream kinase of PKCθ. Moreover, we showed that AMPK was directly associated with PKCθ and phosphorylated Thr538 of PKCθ in PMA/Io-stimulated Jurkat cells. We also showed that inhibition of PKCθ by rottlerin or dominant negative PKCθ reduced AMPK-mediated transcriptional activation of NF-AT and AP-1 in activated Jurkat cells. Taken together, these results suggest that AMPK regulates expression of FasL and COX-2 via the PKCθ and NF-AT and AP-1 pathways in activated Jurkat cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A Controlled Trial of Chemoprevention Using COX-2 Inhibitors in an Avian Model of Spontaneous Ovarian Carcinogesis

    National Research Council Canada - National Science Library

    Barnes, Mack N

    2007-01-01

    The objective of this study was to determine in a controlled chemoprevention trial the ability of a COX-2 inhibitor to inhibit the development of spontaneously arising genital tract adenocarcinoma in the laying hen (Gall us Domesticus...

  3. The Effects of Interfering COX-2 Gene Expression on Malignant Proliferation of Human Lung Adenocarcinoma A2 Cell in vitro

    Directory of Open Access Journals (Sweden)

    Weiying LI

    2009-02-01

    Full Text Available Background and objective COX-2 was highly expressed in many tumor tissues and was involved in the initiation and development of tumors. The RNAi technique is a method to inhibit gene expression economically, quickly, efficiently and specifically. This study used RNAi technique to explore the interfering effect of COX-2 geneexpression and the influence on the malignant proliferation of A2 cells after quenching COX-2 in vitro . Methods Three COX-2 siRNA expression vectors with human U6 promoter were constructed. The COX-2 siRNA vectors and the vacant vector (pEGFP were transfected into A2 cells with lipofectamine respectively. The cell strains transfected were selected. The change of COX-2 expression levels was examined by Western blot and RT-PCR. The effects on the proliferationof A2 cells after silencing COX-2 were detected by cell growth curve and clonogenic assay in vitro . Results The three siRNA and U6 promoter cloned into pEGFP plasmid were validated by PCR, restriction endonucleases identification, DNA sequencing and BLAST alignment. The cell strains transfected were coded as A2-3, A2-7, A2-10 and A2-p respectively. Green fluorescence was seen in A2-p cells and not in A2-3, A2-7 and A2-10 cells in 24 h, 48 h and 72 hafter transfected. The results of RT-PCR and Western blot showed the three siRNA expression vectors acted effectively and the expression of COX-2 was inhibited in different extent. In contrast to A2 cells, COX-2 mRNA levels of A2-3, A2-7 and A2-10 cells were reduced 15.6%, 20.4% and 64.2% respectively, and COX-2 protein expressions of them were reduced 23.7%, 36.7% and 60.2% respectively. The results of cell growth curve and clonogenic assay showed the growth of A2-10 cell slowed and the clonal formation rate was reduced. However the growth of A2-3 and A2-7 cells had no obvious changes vs controls (A2 and A2-p. Conclusion Silencing COX-2 gene in vitro by RNAi technique can significantly inhibit the malignant proliferation of A2

  4. Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids.

    Science.gov (United States)

    García-Redondo, Ana B; Esteban, Vanesa; Briones, Ana M; Díaz Del Campo, Lucía S; González-Amor, María; Méndez-Barbero, Nerea; Campanero, Miguel R; Redondo, Juan M; Salaices, Mercedes

    2018-01-05

    Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1 +/+ ) and Rcan1-deficient (Rcan1 -/- ) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA 2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1 -/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1 -/- compared to Rcan1 +/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA 2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1 +/+ mice. TXA 2 levels were greater in Rcan1 -/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1 -/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Towards a universal barcode of oomycetes--a comparison of the cox1 and cox2 loci.

    Science.gov (United States)

    Choi, Young-Joon; Beakes, Gordon; Glockling, Sally; Kruse, Julia; Nam, Bora; Nigrelli, Lisa; Ploch, Sebastian; Shin, Hyeon-Dong; Shivas, Roger G; Telle, Sabine; Voglmayr, Hermann; Thines, Marco

    2015-11-01

    Oomycetes are a diverse group of eukaryotes in terrestrial, limnic and marine habitats worldwide and include several devastating plant pathogens, for example Phytophthora infestans (potato late blight). The cytochrome c oxidase subunit 2 gene (cox2) has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. The cox1 locus has been used in some studies of Pythium and Phytophthora, but has rarely been used for other oomycetes, as amplification success of cox1 varies with different lineages and sample ages. To determine which out of cox1 or cox2 is best suited as a universal oomycete barcode, we compared these two genes in terms of (i) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (ii) sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding-type material. Sequence data for several historic type specimens exist for cox2, but there are none for cox1. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. The cox2-1 spacer could be a useful marker below species level. Improved protocols and universal primers are presented for all genes to facilitate future barcoding efforts. © 2015 John Wiley & Sons Ltd.

  6. Towards a universal barcode of oomycetes – a comparison of the cox1 and cox2 loci

    Science.gov (United States)

    Choi, Young-Joon; Beakes, Gordon; Glockling, Sally; Kruse, Julia; Nam, Bora; Nigrelli, Lisa; Ploch, Sebastian; Shin, Hyeon-Dong; Shivas, Roger G.; Telle, Sabine; Voglmayr, Hermann; Thines, Marco

    2017-01-01

    Oomycetes are a diverse group of eukaryotes in terrestrial, limnic and marine habitats worldwide and include several devastating plant pathogens, for example Phytophthora infestans (potato late blight). The cytochrome c oxidase subunit 2 gene (cox2) has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. The cox1 locus has been used in some studies of Pythium and Phytophthora, but has rarely been used for other oomycetes, as amplification success of cox1 varies with different lineages and sample ages. To determine which out of cox1 or cox2 is best suited as a universal oomycete barcode, we compared these two genes in terms of (i) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (ii) sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding-type material. Sequence data for several historic type specimens exist for cox2, but there are none for cox1. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. The cox2-1 spacer could be a useful marker below species level. Improved protocols and universal primers are presented for all genes to facilitate future barcoding efforts. PMID:25728598

  7. The expression of COX-2 in VEGF-treated endothelial cells is mediated through protein tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Pravit Akarasereenont

    2002-01-01

    Full Text Available Cyclooxygenase (COX, existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC. The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX2 was assessed by measuring the production of 6-keto-prostaglandin F1α in the presence of exogenous arachidonic acids (10 μM, 10 min by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml, COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 μg/ml, but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml. Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.

  8. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Jensen, Boye L; Topcu, Sukru Oguzkan

    2010-01-01

    of all five primary prostanoids was obtained by mass spectrometric determination of PGE(2), PGF(2alpha), 6-keto-PGF(1alpha), PGD(2), and thromboxane (Tx) B(2) concentrations in kidney cortex/outer medulla and IM fractions. IM concentration of PGE(2), 6-keto-PGF(1alpha), and PGF(2alpha) was increased at 6...... contributes to the transient increase in prostacyclin metabolite 6-keto-PGF(1alpha) and TxB(2) concentration in the kidney IM, and COX-2 is the predominant isoform that is responsible for accumulation of PGE(2) and PGF(2alpha) with minor, but significant, contributions from COX-1. PGD(2) synthesis is mediated...

  9. Simultaneous silencing of TGF-β1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis.

    Science.gov (United States)

    Zhou, Jia; Zhao, Yixuan; Simonenko, Vera; Xu, John J; Liu, Kai; Wang, Deling; Shi, Jingli; Zhong, Tianyi; Zhang, Lixia; Zeng, Lun; Huang, Bin; Tang, Shenggao; Lu, Alan Y; Mixson, A James; Sun, Yangbai; Lu, Patrick Y; Li, Qingfeng

    2017-10-06

    Excessive skin scars due to elective operations or trauma represent a challenging clinical problem. Pathophysiology of hypertrophic scars entails a prolonged inflammatory and proliferative phase of wound healing. Over expression of TGF-β1 and COX-2 play key regulatory roles of the aberrant fibrogenic responses and proinflammatory mediators. When we silenced TGF-β1 and COX-2 expression simultaneously in primary human fibroblasts, a marked increase in the apoptotic cell population occurred in contrast to those only treated with either TGF-β1 or COX-2 siRNA alone. Furthermore, using human hypertrophic scar and skin graft implant models in mice, we observed significant size reductions of the implanted tissues following intra-scar administration of TGF-β1/COX-2 specific siRNA combination packaged with Histidine Lysine Polymer (HKP). Gene expression analyses of those treated tissues revealed silencing of the target gene along with down regulations of pro-fibrotic factors such as α-SMA, hydroxyproline acid, Collagen 1 and Collagen 3. Using TUNEL assay detection, we found that the human fibroblasts in the implanted tissues treated with the TGF-β1/COX-2 siRNAs combination exhibited significant apoptotic activity. Therefore we conclude that a synergistic effect of the TGF-β1/COX-2siRNAs combination contributed to the size reductions of the hypertrophic scar implants, through activation of fibroblast apoptosis and re-balancing between scar tissue deposition and degradation.

  10. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX.

    Science.gov (United States)

    Shen, Fa-Qian; Wang, Zhong-Chang; Wu, Song-Yu; Ren, Shen-Zhen; Man, Ruo-Jun; Wang, Bao-Zhong; Zhu, Hai-Liang

    2017-08-15

    In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC 50 =0.23±0.16μM for COX-2, IC 50 =0.87±0.07μM for 5-LOX, IC 50 =4.48±0.57μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC 50 =0.41±0.28μM for COX-2, IC 50 =7.68±0.55μM against A549) and Zileuton (IC 50 =1.35±0.24μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation.

    Directory of Open Access Journals (Sweden)

    Lisa Y Pang

    Full Text Available Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs, which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05, and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.

  12. Resveratrol raisesin vitroanticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression.

    Science.gov (United States)

    Kong, Fanhua; Zhang, Runqi; Zhao, Xudong; Zheng, Guanlin; Wang, Zhou; Wang, Peng

    2017-09-01

    The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

  13. COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP

    Science.gov (United States)

    Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G

    2012-01-01

    Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v

  14. Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Sauerschnig, Martin; Stolberg-Stolberg, Josef; Schmidt, Carmen; Wienerroither, Valerie; Plecko, Michael; Schlichting, Karin; Perka, Carsten; Dynybil, Christian

    2018-01-05

    Non-steroidal anti-inflammatory drugs are commonly used to reduce pain and inflammation in orthopaedic patients. Selective cyclooxygenase-2 (COX-2) inhibitors have been developed to minimize drug-specific side effects. However, they are suspected to impair both bone and tendon healing. The objective of this study is to evaluate the effect of COX-2 inhibitor administration on tendon-to-bone healing and prostaglandin E (PGE2) concentration. Thirty-two New Zealand white rabbits underwent reconstructions of the anterior cruciate ligaments and were randomized into four groups: Two groups postoperatively received a selective COX-2 inhibitor (Celecoxib) on a daily basis for 3 weeks, the two other groups received no postoperative COX-2 inhibitors at all and were examined after three or 6 weeks. The PGE2 concentration of the synovial fluid, the osseous integration of the tendon graft at tunnel aperture and midtunnel section, as well as the stability of the tendon graft were examined via biomechanic testing. After 3 weeks, the PGE2 content of the synovial fluid in the COX-2 inhibitor recipients was significantly lower than that of the control group (p = 0.018). At the same time, the COX-2 inhibitor recipients had a significantly lower bone density and lower amount of new bone formation than the control group (p = 0.020; p = 0.028) in the tunnel aperture. At the 6-week examination, there was a significant increase in the PGE2 content within synovial fluid of the COX-2 inhibitor recipients (p = 0.022), whose treatment with COX-2 inhibitors had ended 3 weeks earlier; in contrast, the transplant stability decreased and was reduced by 37% compared to the controls. Selective COX-2 inhibitors cause impaired tendon-to-bone healing, weaken mechanical stability and decrease PGE2 content of the synovial fluid. The present study suggests a reluctant use of COX-2 inhibitors when tendon-to-bone healing is intended.

  15. IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells.

    Science.gov (United States)

    Neeb, Lars; Hellen, Peter; Boehnke, Carsten; Hoffmann, Jan; Schuh-Hofer, Sigrid; Dirnagl, Ulrich; Reuter, Uwe

    2011-03-04

    Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE(2)) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE(2) and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE(2) (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the

  16. Germacrane sesquiterpenes isolated from the rhizome of Curcuma xanthorrhiza Roxb. inhibit UVB-induced upregulation of MMP-1, -2, and -3 expression in human keratinocytes.

    Science.gov (United States)

    Park, Ji-Hae; Mohamed, Mohamed Antar Aziz; Jung, Ye-Jin; Shrestha, Sabina; Lee, Tae Hoon; Lee, Chang-Ho; Han, Daeseok; Kim, Jiyoung; Baek, Nam-In

    2015-10-01

    Four sesquiterpenes were isolated from the rhizome of Curcuma xanthorrhiza Roxb.: furanodiene (1), germacrone (2), furanodienone (3), and 13-hydroxygermacrone (4). Importantly, this was the first time compounds 1 and 4 were isolated from this plant. The chemical structures of these compounds were determined using 1D- and 2D-nuclear magnetic resonance, infrared spectroscopy, and electron ionization mass spectrometry analyses. Among the isolated compounds, compounds 2 and 4 inhibited UVB-induced upregulation of the mRNA and protein expression levels of MMP-1, MMP-2, and MMP-3 in human keratinocytes (HaCaT). Moreover, this upregulation occurred in a dose-dependent manner over the range of 1-10 μM for each compound.

  17. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Li, Ying [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Yue, Jiang [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Guo, Austin M., E-mail: Austin_Guo@nymc.edu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr{sup 458}), phospho-PDK (Ser{sup 241}) and phospho-Akt (Thr{sup 308}). Conversely, the exogenous addition of PGE{sub 2}, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE{sub 2}, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE{sub 2}, 20-HETE and phospho-Akt (Thr{sup 308}). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities. - Highlights: • Isoliquiritigenin induces anoikis and suppresses

  18. The effect of the intracervical administration of FSH or LH on the levels of hyaluronan, COX2, and COX2 mRNA in the cervix of the nonpregnant ewe.

    Science.gov (United States)

    Leethongdee, Sukanya; Khalid, Muhammad; Scaramuzzi, Rex J

    2016-12-01

    During the periovulatory period, the cervix relaxes in response to changes in circulating concentrations of reproductive hormones. The present study investigated the role of gonadotrophins in cervical function by examining the expression of cyclooxygenase-2 (COX2) and COX2 mRNA and the concentration of hyaluronan (HA) in the cervix, after intracervical treatment with either FSH or LH. Eighteen ewes were assigned to four groups. They were then treated with commercial intravaginal progestagen sponges and eCG to synchronize their estrous cycles. Intracervical treatments were given 24 hours after removal of the sponges as follows: group 1: FSH, 2 mg; group 2: LH, 2 mg; group 3: vehicle; and group 4: control. Cervices were collected 54 hours after sponge removal and then divided into three regions. The expression of COX2 and COX2 mRNA was determined by immunohistochemistry and in situ hybridization and those of HA by ELISA. The levels of expression of COX2, COX2 mRNA, and HA were compared in six tissue layers (luminal epithelium, subepithelial stroma, circular, longitudinal and transverse muscle, and serosa) and in three cervical regions (vaginal, mid, and uterine). The results showed that both FSH and LH significantly increased the levels the COX2 mRNA and COX2 in the cervix, but the effects of the gonadotrophins were selective. The effects of both FSH and LH were most evident at the vaginal end of the cervix and least at the uterine end of the cervix. Furthermore, their effects were confined to the stroma and smooth muscle layers of the cervix in the case of FSH and to smooth muscle only in the case of LH. Neither FSH nor LH affected the concentration of HA in the cervix although FSH but not LH reduced the concentration of HA in cervical mucus. These findings suggest that the gonadotrophins regulate the expression of COX2 in the cervix and that they may have a role facilitating relaxation of the cervix during estrus in the ewe. Copyright © 2016 Elsevier Inc. All

  19. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  20. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung-Hoon; Kim, Do-Hee [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Na, Hye-Kyung [Department of Food and Nutrition, Sungshin Women' s University, Seoul (Korea, Republic of); Kim, Jung-Hwan; Kim, Ha-Na [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Haegeman, Guy [LEGEST, University of Gent (Belgium); Surh, Young-Joon, E-mail: surh@snu.ac.kr [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  1. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells.

    Science.gov (United States)

    Gyenis, Akos; Umlauf, David; Ujfaludi, Zsuzsanna; Boros, Imre; Ye, Tao; Tora, Làszlò

    2014-07-01

    Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2-4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5-6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.

  2. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells.

    Directory of Open Access Journals (Sweden)

    Akos Gyenis

    2014-07-01

    Full Text Available Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2-4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5-6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes, where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.

  3. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes.

    Science.gov (United States)

    Park, Sunyoung; Kim, Kyuhan; Bae, Il-Hong; Lee, Sung Hoon; Jung, Jiyong; Lee, Tae Ryong; Cho, Eun-Gyung

    2018-03-01

    As the outermost physical barrier of an organism, the skin is diurnally exposed to UV radiation (UVR). Recent studies have revealed that the skin exhibits a circadian rhythm in various functions, and this oscillation is disturbed and reset via a strong environmental cue, the UVR. However, a molecular link between circadian perturbation by UVR and UVR-induced cellular responses has not been investigated. We identified tissue inhibitor of metalloproteinase ( TIMP)- 3 as a novel circadian locomotor output cycles kaput (CLOCK)-dependent diurnal gene by using a CLOCK-knockdown strategy in human keratinocytes. Among dozens of identified transcripts down-regulated by CLOCK knockdown, TIMP3 displayed a rhythmic expression in a CLOCK-dependent manner, in which the expression of matrix metalloproteinase (MMP)-1 and inflammatory cytokines, such as TNF-α, chemokine (C-X-C motif) ligand (CXCL)-1, and IL-8, were inversely regulated. Upon UVB exposure, the expression of CLOCK and TIMP3 was down-regulated, which led to an up-regulation of secretion of MMP1 and TNF-α proteins and in the transcription of CXCL1 and IL-8 via CCAAT-enhancer binding protein (C/EBP)-α. UVB-induced TNF-α secretion increased further or decreased by knockdown or overexpression of TIMP3, respectively, as well as by CLOCK. As a novel CLOCK-dependent diurnal gene, TIMP3 inhibits the expression of inflammatory cytokines that are up-regulated by UV irradiation in human keratinocytes. Thus, our work suggests a molecular link between circadian perturbation by UVR and UVR-induced inflammation.-Park, S., Kim, K., Bae, I.-H., Lee, S. H., Jung, J., Lee, T. R., Cho, E.-G. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes.

  4. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  5. Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis.

    Science.gov (United States)

    Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema

    2016-12-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice.

    Science.gov (United States)

    de Souza, Rebeca Oliveira; de Assis Dias Alves, Geórgia; Aguillera, Ana Luiza Scarano; Rogez, Hervé; Fonseca, Maria José Vieira

    2018-01-01

    Ultraviolet B (UVB) irradiation increases the risk of various skin disorders, leading to inflammation and oxidative stress and thereby increasing the risk of skin photoaging and carcinogenesis. The use of photochemoprotectors such as natural products with antioxidant and anti-inflammatory properties represents a strategy for preventing UVB-induced skin damage. We investigated the photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves (BCF) on fibroblasts and hairless mice exposed to UVB radiation. The mixture of phenolic compounds in BCF prevented the decrease in reduced glutathione (GSH) levels in fibroblast cultures induced by UVB radiation more than some of their individual standards ((+)-catechin (CAT), epigallocatechin gallate and quercetin 3-O-β-d-glucopyranoside). Prepared gel formulations increased skin antioxidant activity, and BCF components and the CAT standard were retained in the HRS/J hairless mice epidermis 2h after application. Topical treatment with the BCF or CAT formulations (1%) significantly reduced the decrease in GSH levels and decreased myeloperoxidase activity and the secretion of pro-inflammatory cytokines IL-1β and IL-6 induced by UVB radiation (P<0.05), indicating that both BCF and CAT had anti-inflammatory effects. BCF inhibited UVB-induced metalloproteinase (MMP)-9 secretion/activity, whereas CAT had no effect on MMP-9 activity in the skin of treated animals. These results therefore suggest that BCF can be used as a photochemoprotective agent and antioxidant in the prevention/treatment of inflammation and oxidative stress of the skin induced by UVB radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. COX2 inhibition during nephrogenic period induces ANG II hypertension and sex-dependent changes in renal function during aging.

    Science.gov (United States)

    Reverte, Virginia; Tapia, Antonio; Loria, Analia; Salazar, Francisco; Llinas, M Teresa; Salazar, F Javier

    2014-03-01

    This study was performed to test the hypothesis that ANG II contributes to the hypertension and renal functional alterations induced by a decrease of COX2 activity during the nephrogenic period. It was also examined whether renal functional reserve and renal response to volume overload and high sodium intake are reduced in 3-4- and 9-11-mo-old male and female rats treated with vehicle or a COX2 inhibitor during nephrogenic period (COX2np). Our data show that this COX2 inhibition induces an ANG II-dependent hypertension that is similar in male and female rats. Renal functional reserve is reduced in COX2np-treated rats since their renal response to an increase in plasma amino acids levels is abolished, and their renal ability to eliminate a sodium load is impaired (P renal excretory ability is similar in both sexes during aging but does not induce the development of a sodium-sensitive hypertension. However, the prolonged high-sodium intake at 9-11 mo of age leads to a greater proteinuria in male than in female (114 ± 12 μg/min vs. 72 ± 8 μg/min; P Renal hemodynamic sensitivity to acute increments in ANG II is unaltered in both sexes and at both ages in COX2np-treated rats. In summary, these results indicate that the reduction of COX2 activity during nephrogenic period programs for the development of an ANG II-dependent hypertension, reduces renal functional reserve to a similar extent in both sexes, and increases proteinuria in males but not in females when there is a prolonged increment in sodium intake.

  8. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.

    Science.gov (United States)

    Kirkby, Nicholas S; Tesfai, Abel; Ahmetaj-Shala, Blerina; Gashaw, Hime H; Sampaio, Walkyria; Etelvino, Gisele; Leão, Nádia Miricéia; Santos, Robson A; Mitchell, Jane A

    2016-12-01

    Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and N G -nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. © The Author(s).

  9. Expressão das proteínas p53 e Cox-2 em adenocarcinoma intestinal e mucosa adjacente Expression of p53 and Cox-2 proteins in intestinal adenocarcinoma and adjacent mucosa

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Felin

    2008-03-01

    Full Text Available Este estudo teve como objetivo verificar se existe associação entre o estadiamento do tumor e a expressão das proteínas p53 e Ciclooxigenase-2 (Cox-2 em adenocarcinoma de intestino. Foi realizado um estudo retrospectivo de 40 blocos de parafina contendo amostras obtidas de ressecção cirúrgica de tecido intestinal anteriormente diagnosticado como adenocarcinoma de intestino humano. O material foi coletado no período entre 1998 e 2003 no Hospital Universitário de Santa Maria, RS, Brasil. Como controle, foram utilizadas amostras de áreas não tumorais de mucosa adjacente, referentes a cada caso (n = 40. Utilizamos a imuno-histoquímica para analisar este material quanto à expressão das proteínas p53 e Cox-2. A expressão das proteínas p53 e Cox-2 foi significativamente maior em tecido tumoral quando comparada com mucosa adjacente. Detectamos positividade total para Cox-2 (100%, e parcial (70% para p53 em tecido tumoral. Foi verificada associação significativa entre expressão da proteína p53 e estadiamento segundo Astler-Coller, mas não com a classificação TNM. Quanto à proteína Cox-2, não foi observada associação significativa com estadiamento do tumor de intestino. Os achados sugerem que existe uma tendência entre a expressão da proteína p53 e Cox-2 com o estadiamento do tumor, sendo necessária comprovação com estudos futuros.The objective of this study is to establish a possible association between staging and the expression of p53 and cyclooxygenase-2 (Cox-2 proteins in intestinal adenocarcinoma. A retrospective study of 40 embedded paraffins with surgical specimens of intestinal Adenocarcinoma was performed. The samples were collected during 1998 and 2003 at Hospital Universitário de Santa Maria, RS, Brasil. Samples of non-tumoral tissues (n = 40 were used as a negative control. The expression of p53 and Cox-2 was immunohistochemically studied. The expression of p53 and Cox-2 proteins was significantly higher in

  10. Involvement of COX2–thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Hiroki, E-mail: hteraoka@rakuno.ac.jp [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Okuno, Yuki; Nijoukubo, Daisuke; Yamakoshi, Ayumi [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Peterson, Richard E. [School of Pharmacy, University of Wisconsin, Madison, WI (United States); Stegeman, John J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Kitazawa, Takio; Hiraga, Takeo [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Kubota, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2014-09-15

    Highlights: • We establish a new indicator of pericardial edema in developing zebrafish (precardiac edema). • Property of precardiac edema by TCDD is similar to that for conventional pericardial edema. • COX2b (but not COX2a)–thromboxane pathway is involved in precardiac edema by TCDD. - Abstract: The cardiovascular system is one of the most characteristic and important targets for developmental toxicity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in fish larvae. However, knowledge of the mechanism of TCDD-induced edema after heterodimerization of aryl hydrocarbon receptor type 2 (AHR2) and AHR nuclear translocator type 1 (ARNT1) is still limited. In the present study, microscopic analysis with a high-speed camera revealed that TCDD increased the size of a small cavity between the heart and body wall in early eleutheroembryos, a toxic effect that we designate as precardiac edema. A concentration–response curve for precardiac edema at 2 days post fertilization (dpf) showed close similarity to that for conventional pericardial edema at 3 dpf. Precardiac edema caused by TCDD was reduced by morpholino knockdown of AHR2 and ARNT1, as well as by an antioxidant (ascorbic acid). A selective inhibitor of cyclooxygenase type 2 (COX2), NS398, also markedly inhibited TCDD-induced precardiac edema. A thromboxane receptor (TP) antagonist, ICI-192,605 almost abolished TCDD-induced precardiac edema and this effect was canceled by U46619, a TP agonist, which was not influential in the action of TCDD by itself. Knockdown of COX2b and thromboxane A synthase 1 (TBXS), but not COX2a, strongly reduced TCDD-induced precardiac edema. Knockdown of COX2b was without effect on mesencephalic circulation failure caused by TCDD. The edema by TCDD was also inhibited by knockdown of c-mpl, a thrombopoietin receptor necessary for thromobocyte production. Finally, induction of COX2b, but not COX2a, by TCDD was seen in eleutheroembryos at 3 dpf. These results suggest a role of the COX2b

  11. Cycloxygenase-2(cox-2) - a potential target for screening of small molecules as radiation countermeasure agents: an in silico study

    International Nuclear Information System (INIS)

    Joshi, Jayadev; Shrivastava, Nitisha; Dimri, Manali; Ghosh, Subhajit; Mandal, Rahul Shubhra; Prem Kumar, I.; Barik, Tapan Kumar

    2012-01-01

    COX-2 is well established for its role in inflammation and cancer, and has also been reported to play a significant role in radiation induced inflammation and by standard effect. It's already reported to have a role in protection against radiation induced damage suggesting it to be an important target for identifying novel radiation countermeasure agents. Present study aims at identifying novel small molecules from pharmacopoeia using COX-2 as target in-silico. Systematic search of the reported molecules exhibiting radiation protection revealed lat around 29 % (40 in 138) of them have a role in inflammation and a small percentage of these molecules (20 %; 8 in 40) are reported to as non steroidal anti-inflammatory drugs (NSAIDS). Docking studies performed further clarified that all these 8 radioprotective molecules shows high binding affinity and inhibit COX-2. Further Johns Hopkins clinical compound library (JHCCL), a collection of small molecule clinical compounds, were screened virtually for COX-2 inhibition by docking approach. Docking of around 1400 small molecules against COX-2 lead to identification of a number of previously unreported molecules which are likely to act as radioprotectors. (author)

  12. Substance P stimulates release of RANKL via COX-2 expression in human dental pulp cells.

    Science.gov (United States)

    Kojima, T; Yamaguchi, M; Kasai, K

    2006-02-01

    Our previous study found that substance P (SP), a sensory neuropeptide, was expressed in the dental pulp of rats during experimental tooth movement. We examined the effects of SP on the production of prostaglandin (PG) E2 and the receptor activator of nuclear factor- B ligand (RANKL) by human dental pulp fi broblast-like (HDPF) cells. SP was added to cultured HDPF cells at concentrations ranging from of 10(-4) to 10(-12) mol/L. PGE2 and soluble RANKL (sRANKL) levels were determined using enzyme-linked immunosorbent assay kits. Gene expression was confi rmed by RT-PCR analysis. Pit formation assays using dentin slices were carried out to examine the effect of SP on osteoclastogenesis. The levels of PGE2 and sRANKL increased in the presence of SP, though the increases were greater in the experimental groups in both a time- and concentration-dependent manner, and the increase of RANKL was partially mediated by PGE2. The gene expression of cyclooxygenase (COX)-2 and RANKL was up-regulated, and conditioned medium samples obtained from HDPF cells treated with SP induced bone resorption. SP stimulated the production of PGE2 and RANKL, and promoted bone resorption. Therefore, SP may be involved in pulpal inflammation and root resorption during orthodontic tooth movement.

  13. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs.

    Science.gov (United States)

    Gorissen, Ben M C; Uilenreef, Joost J; Bergmann, Wilhelmina; Meijer, Ellen; van Rietbergen, Bert; van der Staay, Franz Josef; Weeren, P René van; Wolschrijn, Claudia F

    2017-11-25

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term meloxicam treatment on growing pigs were studied. Twelve piglets (n=6 receiving daily meloxicam 0.4 mg/kg orally from 48 until 110 days of age; n=6 receiving only applesauce (vehicle control)) were subjected to visual and objective gait analysis by pressure plate measurements at several time points. Following euthanasia a complete postmortem examination was performed and samples of the talus and distal tibia, including the distal physis, were collected. Trabecular bone microarchitecture was analysed by microCT scanning, bone stiffness by compression testing and growth plate morphology using light microscopy. Animals were not lame and gait patterns did not differ between the groups. Pathological examination revealed no lesions compatible with known side effects of NSAIDs. Trabecular bone microarchitecture and growth plate morphology did not differ between the two groups. The findings of this in vivo study reduce concerns regarding the long-term use of meloxicam in young, growing piglets. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. COX-2 Gene Promoter Polymorphism and Coronary Artery Disease in Middle-Aged Men: The Helsinki Sudden Death Study

    Directory of Open Access Journals (Sweden)

    Kati H. Huuskonen

    2008-01-01

    Full Text Available Cyclooxygenase (COX catalyzes formation of prostaglandins that contribute to the inflammation in atherosclerosis. Our objective was to study whether the functional C variant of the −765G→C polymorphism in the human COX-2 gene associates with the severity of coronary atherosclerosis measured at the coronary artery level. The Helsinki sudden death study autopsy material (n = 300 comprised of Finnish men who died suddenly. The area of atherosclerotic lesions in the coronary arteries was quantitated, and coronary narrowing was measured. The occurrence of myocardial infarction (MI was assessed. Genotyping was by restriction endonuclease analysis. Men carrying the minor C allele had larger areas of complicated lesions (P = .024 and a higher number of coronary arteries that had over 50% stenosis (P = .036 compared to men representing the common GG genotype. The COX-2 polymorphism was not associated with MI. Our data suggest that COX-2 may be involved in plaque growth.

  15. Low-dose aspirin, non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2016-01-01

    BACKGROUND: Aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. METHODS: We identified incident...... stage I-III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996-2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry. Follow-up began...... on the date of breast cancer primary surgery and continued until the first of recurrence, death, emigration, or 1 January 2013. We used Cox regression models to compute hazard ratios (HR) and corresponding 95% confidence intervals (95% CI) associating prescriptions with recurrence, adjusting for confounders...

  16. Identification and validation of COX-2 as a co-target for overcoming cetuximab resistance in colorectal cancer cells.

    Science.gov (United States)

    Lu, Yang; Shi, Chunmei; Qiu, Songbo; Fan, Zhen

    2016-10-04

    Cetuximab, an epidermal growth factor receptor (EGFR)-blocking antibody, was approved for treatment of metastatic colorectal cancer over a decade ago; however, patients' responses to cetuximab vary substantially due to intrinsic and acquired resistance to cetuximab. Here, we report our findings using Affymetrix HG-U133A array to examine changes in global gene expression between DiFi, a human colorectal cancer cell line that is highly sensitive to cetuximab, and two other cell lines: DiFi5, a DiFi subline with acquired resistance to cetuximab, and DiFi-AG, a DiFi subline with acquired resistance to the EGFR tyrosine kinase inhibitor AG1478 but sensitivity to cetuximab. We identified prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2 (COX-2), as the gene with the greatest difference between the cetuximab-resistant DiFi5 cells and the cetuximab-sensitive DiFi cells and DiFi-AG cells. Reverse transcription polymerase chain reaction and Western blotting validated upregulation of COX-2 in DiFi5 but not in DiFi or DiFi-AG cells. We developed COX-2 knockdown stable clones from DiFi5 cells and demonstrated that genetic knockdown of COX-2 partially re-sensitized DiFi5 cells to cetuximab. We further confirmed that cetuximab in combination with a COX-2 inhibitor led to cell death via apoptosis or autophagy not only in DiFi5 cells but also in another colorectal cancer cell line naturally resistant to cetuximab. Our findings support further evaluation of the strategy of combining cetuximab and a COX-2 inhibitor for treatment of metastatic colorectal cancer.

  17. Effects of enriched environment on COX-2, leptin and eicosanoids in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Rachida Nachat-Kappes

    Full Text Available Cyclooxygenase-2 (COX-2 and adipokines have been implicated in breast cancer. This study investigated a possible link between COX-2 and adipokines in the development of mammary tumors. A model of environmental enrichment (EE, known to reduce tumor growth was used for a syngeneic murine model of mammary carcinoma. 3-week-old, female C57BL/6 mice were housed in standard environment (SE or EE cages for 9 weeks and transplanted orthotopically with syngeneic EO771 adenocarcinoma cells into the right inguinal mammary fat pad. EE housing influenced mammary gland development with a decrease in COX-2 expressing cells and enhanced side-branching and advanced development of alveolar structures of the mammary gland. Tumor volume and weight were decreased in EE housed mice and were associated with a reduction in COX-2 and Ki67 levels, and an increase in caspase-3 levels. In tumors of SE mice, high COX-2 expression correlated with enhanced leptin detection. Non-tumor-bearing EE mice showed a significant increase in adiponectin levels but no change in those of leptin, F(2-isoprostanes, PGF(2α, IL-6, TNF-α, PAI-1, and MCP-1 levels. Both tumor-bearing groups (SE and EE housing had increased resistin, IL-6, TNF-α, PAI-1 and MCP-1 levels irrespective of the different housing environment demonstrating higher inflammatory response due to the presence of the tumor. This study demonstrates that EE housing influenced normal mammary gland development and inhibited mammary tumor growth resulting in a marked decrease in intratumoral COX-2 activity and an increase in the plasma ratio of adiponectin/leptin levels.

  18. Protective Role of Cyclooxygenase (COX)-2 in Experimental Lung Injury: Evidence of a Lipoxin A(4)-Mediated Effect.

    LENUS (Irish Health Repository)

    2012-02-01

    BACKGROUND: Polymorphoneutrophils (PMNs) are activated by inflammatory mediators following splanchnic ischemia\\/reperfusion (I\\/R), potentially injuring organs such as the lung. As a result, some patients develop respiratory failure following abdominal aortic aneurysm repair. Pulmonary cyclooxygenase (COX)-2 protects against acid aspiration and bacterial instillation via lipoxins, a family of potent anti-inflammatory lipid mediators. We explored the role of COX-2 and lipoxin A(4) in experimental I\\/R-mediated lung injury. MATERIALS AND METHODS: Sprague-Dawley rats were assigned to one of the following five groups: (1) controls; (2) aortic cross-clamping for 45 min and reperfusion for 4 h (I\\/R group); (3) I\\/R and SC236, a selective COX-2 inhibitor; (4) I\\/R and aspirin; and (5) I\\/R and iloprost, a prostacyclin (PGI(2)) analogue. Lung injury was assessed by wet\\/dry ratio, myeloperoxidase (MPO) activity, and bronchoalveolar lavage (BAL) neutrophil counts. BAL levels of thromboxane, PGE(2), 6-keto-PGF(1)alpha (a hydrolysis product of prostacyclin), lipoxin A(4), and 15-epi-lipoxin A(4) were analyzed by enzyme immunoassay (EIA). Immunostaining for COX-2 was performed. RESULTS: I\\/R significantly increased tissue MPO, the wet\\/dry lung ratio, and neutrophil counts. These measures were significantly further aggravated by SC236 and improved by iloprost. I\\/R increased COX-2 immunostaining and both PGE(2) and 6-keto-PGF(1alpha) levels in BAL. SC236 markedly reduced these prostanoids and lipoxin A(4) compared with I\\/R alone. Iloprost markedly increased lipoxin A(4) levels. The deleterious effect of SC236 and the beneficial effect of iloprost was associated with a reduction and an increase, respectively, in lipoxin A(4) levels. CONCLUSIONS: Lipoxin A(4) warrants further evaluation as a mediator of COX-2 regulated lung protection.

  19. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Alshafie Galal A

    2008-08-01

    Full Text Available Abstract Background Epidemiologic and laboratory investigations suggest that aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs have chemopreventive effects against colon cancer perhaps due at least in part to their activity against cyclooxygenase-2 (COX-2, the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of colon cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 326 incident colon cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 652 controls with no history of cancer and matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and colon cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors (OR = 0.31, 95% CI = 0.16–0.57, regular aspirin (OR = 0.33, 95% CI = 0.20–0.56, and ibuprofen or naproxen (0.28, 95% CI = 0.15–0.54. Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg produced no significant change in the risk of colon cancer. Conclusion These results suggest that both non-selective and selective COX-2 inhibitors produce significant reductions in the risk of colon cancer, underscoring their strong potential for colon cancer chemoprevention.

  20. Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent

    Directory of Open Access Journals (Sweden)

    Borhane Annabi

    2012-01-01

    Full Text Available The occurrence of a functional relationship between the release of metalloproteinases (MMPs and the expression of cyclooxygenase (COX-2, two inducible pro-inflammatory biomarkers with important pro-angiogenic effects, has recently been inferred. While brain endothelial cells play an essential role as structural and functional components of the blood-brain barrier (BBB, increased BBB breakdown is thought to be linked to neuroinflammation. Chemopreventive mechanisms targeting both MMPs and COX-2 however remain poorly investigated. In this study, we evaluated the pharmacological targeting of Sirt1 by the diet-derived and antiinflammatory polyphenol resveratrol. Total RNA, cell lysates, and conditioned culture media from human brain microvascular endothelial cells (HBMEC were analyzed using qRT-PCR, immunoblotting, and zymography respectively. Tissue scan microarray analysis of grade I–IV brain tumours cDNA revealed increased gene expression of Sirt-1 from grade I–III but surprisingly not in grade IV brain tumours. HBMEC were treated with a combination of resveratrol and phorbol 12-myristate 13-acetate (PMA, a carcinogen known to increase MMP-9 and COX-2 through NF-κB. We found that resveratrol efficiently reversed the PMA-induced MMP-9 secretion and COX-2 expression. Gene silencing of Sirt1, a critical modulator of angiogenesis and putative target of resveratrol, did not lead to significant reversal of MMP-9 and COX-2 inhibition. Decreased resveratrol inhibitory potential of carcinogen-induced IκB phosphorylation in siSirt1-transfected HBMEC was however observed. Our results suggest that resveratrol may prevent BBB disruption during neuroinflammation by inhibiting MMP-9 and COX-2 and act as a pharmacological NF-κB signal transduction inhibitor independent of Sirt1.

  1. Changes in osteoarthritis management by general practitioners in the COX2-inhibitor era-concomitant gastroprotective therapy.

    Science.gov (United States)

    Bouée, Stéphane; Charlemagne, Agnès; Fagnani, Francis; Le Jeunne, Philippe; Sermet, Catherine; Naudin, Florence; Lancry, Pierre-Jean

    2004-05-01

    Two selective COX2 inhibitors, rofecoxib and celecoxib, were introduced on the French market in 2000. We evaluated their use in the treatment of osteoarthritis by general practitioners, with special attention to concomitant prescription of gastroprotective agents. The Thales Epidemiology Observatory is a medical database compiled by a representative sample of 1000 general practitioners in France. We examined the data collected during the year before and the year after the introduction of rofecoxib and celecoxib on the French market (November 1999-October 2001). During each of the 2 years of the study period, about 200,000 visits for 70,000 patients were entered into the database. COX2 inhibitors were prescribed at a rapidly increasing rate during the second year, when they accounted for 38% of the prescription volume for nonsteroidal antiinflammatory drugs (NSAIDs) and 25% of prescribed medication costs. In some patients, COX2 inhibitors were substituted for nonselective NSAIDs, and in others they were used as first-line NSAID therapy. On average over the 2-year study period, 22.1% of prescriptions for conventional NSAIDs included a prescription for a gastroprotective agent; this proportion increased from 18.6% in November 1999 to 24.8% in October 2001. Among prescriptions for COX2 inhibitors, 17.5% included a gastroprotective agent. General practitioners have been prompt to use COX2 inhibitors in the treatment of osteoarthritis. However, they have not decreased their use of concomitant gastroprotective treatment. Thus, they seem aware that proof of a lower long-term risk of gastrointestinal toxicity with COX2 inhibitors is lacking, and that elderly patients such as those with osteoarthritis are at high risk for gastrointestinal side effects of NSAIDs. Copyright 2003 Elsevier SAS

  2. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  3. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  4. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK.

    Science.gov (United States)

    Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2014-08-28

    Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights

  5. Retrospective evaluation of COX-2 expression, histological and clinical factors as prognostic indicators in dogs with renal cell carcinomas undergoing nephrectomy.

    Science.gov (United States)

    Carvalho, S; Stoll, A L; Priestnall, S L; Suarez-Bonnet, A; Rassnick, K; Lynch, S; Schoepper, I; Romanelli, G; Buracco, P; Atherton, M; de Merlo, E M; Lara-Garcia, A

    2017-12-01

    Limited veterinary literature is available regarding prognostic markers for canine renal cell carcinoma (CRCC). We retrospectively evaluated COX-2 expression, histological and clinical features associated with prognosis of CRCC. Sixty-four cases post-nephrectomy were included, 54 had histopathological assessment and 30 had COX-2 immunostaining performed. Eight dogs (13%) had metastatic disease at initial diagnosis. Twenty-seven dogs (42%) received adjuvant therapy after nephrectomy. On univariate analysis, COX-2 expression, mitotic index (MI), histologic type, vascular invasion, neoplastic invasiveness and metastasis at diagnosis were significantly associated with overall median survival time (MST). COX-2 score (COX-2 score > 3 MST 420 days versus 1176 days if COX-2 score  30 MST 120 days versus 540 days for MI COX-2 immunostaining to standard histopathological evaluation would help predicting outcome in CRCC patients. © 2016 John Wiley & Sons Ltd.

  6. A STUDY OF COX-2 INHIBITOR CELECOXIB AND CHEMORADIATION IN PATIENTS WITH LOCALLY ADVANCED CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    Kuppa Prakash

    2016-08-01

    Full Text Available AIMS AND OBJECTIVES To evaluate efficacy of concurrent oral Cox-2 Inhibitor (celecoxib and chemoradiation in locoregional control, distant control, disease free survival and/or overall survival in patients with locally advanced cervical cancer. To determine treatment related toxicity rates in patients with locally advanced cervical cancer treated by oral celecoxib, intravenous cisplatin and concurrent pelvic radiation therapy. MATERIALS AND METHODS Study was done for a period of 2 years in a tertiary care cancer hospital which caters to the cancer patients. Advanced squamous, adenocarcinoma or adenosquamous carcinoma of uterine cervix, Patients with age <70 years, ECOG performance status 0-2, Normal haematological investigations, Normal renal function test, Normal liver function test, No disease outside of pelvis. RESULTS This prospective study consisted 30 patients, 15 patients on either arm. Overall pooled mean age for both study and comparison group was 50.3 years with a probability value P=0.91 for age. 14 patients (93.33% in both the arms had a performance status of ECOG 0 or 1 and 1 patient in both arms had ECOG PS-2. Stage distribution of the patients in study arm was 3 in IB2, 2 in IIA, 5 in IIB, 4 in III and 1 in stage IVA. In control arm, out of the 15 patients 2 are in IB2, 2 in IIA, 5 in IIB, 5 in III and 1 in stage IVA. The mean probability value was P=0.65 for stage distribution. 15 patients in arm-A (study arm received pelvic RT 50Gy 2Gy/Fr 5#/week followed by HDR –ICR 3 Fr. 700 cGy/Fr after pelvic RT on an average of 1 week along with weekly cisplatin 40 mg/m2 (50 mg (D1, D8, D15, D22 and Cox-2 inhibitor oral celecoxib 400 mg twice daily (800 mg/d starting from day 1 to throughout the duration of the chemoradiation. 15 patients in arm-B (Control arm received pelvic RT 50Gy 2Gy/Fr 5#/week followed by HDR –ICR 3 Fr. 700 cGy/Fr on an average of 1 week after pelvic RT along with weekly cisplatin 40 mg/m2 (50 mg (D1, D8, D15, D22

  7. Meloxicam prevents COX-2-mediated post-surgical inflammation but not pain following laparotomy in mice.

    Science.gov (United States)

    Roughan, J V; Bertrand, H G M J; Isles, H M

    2016-02-01

    Inflammation is thought to be a major contributor to post-surgical pain, so non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics. However, compared to rats, considerably less is known as to how successfully these prevent pain in mice. A fluorescent COX-2 selective probe was used for the first time to evaluate the post-surgical anti-inflammatory effects of meloxicam, and automated behaviour analyses (HomeCageScan; HCS), the Mouse Grimace Scale (MGS) and body weight changes to assess its pain-preventative properties. Groups of 8-9 BALB/c mice were subcutaneously injected with saline (0.3 mL) or meloxicam at (1, 5 or 20 mg/kg) 1 h before a 1.5-cm midline laparotomy. The probe or a control dye (2 mg/kg) was injected intravenously 3 h later. Imaging was used to quantify inflammation at 7, 24 and 48 h following surgery. HCS data and MGS scores were respectively obtained from video recordings and photographs before surgery and 24 h later. Post-surgical inflammation was dose dependently reduced by meloxicam; with 5 or 20 mg/kg being most effective compared to saline. However, all mice lost weight, MGS scores increased and behavioural activity was reduced by surgery for at least 24 h with no perceivable beneficial effect of meloxicam on any of these potentially pain-associated changes. Although meloxicam prevented inflammation, even large doses did not prevent post-laparotomy pain possibly arising due to a range of factors, including, but not limited to inflammation. MGS scoring can be applied by very naïve assessors and so should be effective for cage-side use. © 2015 European Pain Federation - EFIC®

  8. Angiotensin-(1-7)-Induced Plasticity Changes in the Lateral Amygdala Are Mediated by COX-2 and NO

    Science.gov (United States)

    Albrecht, Doris

    2007-01-01

    It is known from studies outside the brain that upon binding to its receptor, angiotensin-(1-7) elicits the release of prostanoids and nitric oxide (NO). Cyclooxygenase (COX) is a key enzyme that converts arachidonic acid to prostaglandins. Since there are no data available so far on the role of COX-2 in the amygdala, in a first step we…

  9. ST6Gal1, Cox-2 and HB-EGF mRNA Expression in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Aliakbar Taherian

    2015-01-01

    Full Text Available Background: ST6Gal1, Cox-2 and HB-EGF genes are involved in different tumors and their enhanced expressions often correlate with poor prognosis. In this study we assay the expressions of these genes by reverse transcriptase-PCR in 54 breast cancer samples. Methods: Tissue samples were either formalin-fixed for histopathological examination or frozen for reverse transcriptase-PCR. Image program was used for the densitometry of the image of the gels and the expression of different genes was normalized with beta actin expression. The student's t-test and correlation matrix were used for data analyses. Results: We observed significantly higher expressions of ST6Gal1 (P= 0.040, Cox- 2 (P= 0.001 and HB-EGF (P= 0.009 in the tumor region compared to the margin samples. A significant correlation was found between HB-EGF and Cox-2 expression (P= 0.001. There was a positive correlation between total score, tumor size, histology grade and nuclear grade but there was a reverse correlation between age and tumor size, histology grade and total score. Conclusion: Expressions of ST6Gal1, Cox-2 and HB-EGF in breast tumor samples in this and a number of other studies emphasize their role as important markers in breast cancer. The use of medications to inhibit either their individual expressions or the possible inhibition of all three genes may improve patient survival and prevent metastasis.

  10. Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia

    Directory of Open Access Journals (Sweden)

    Candelario-Jalil Eduardo

    2010-01-01

    Full Text Available Abstract Background Recent studies suggest an important role for neurotransmitters as modulators of inflammation. Neuroinflammatory mediators such as cytokines and molecules of the arachidonic acid pathway are generated and released by microglia. The monoamine norepinephrine reduces the production of cytokines by activated microglia in vitro. However, little is known about the effects of norepinephrine on prostanoid synthesis. In the present study, we investigate the role of norepinephrine on cyclooxygenase- (COX-2 expression/synthesis and prostaglandin (PGE2 production in rat primary microglia. Results Interestingly, norepinephrine increased COX-2 mRNA, but not protein expression. Norepinephrine strongly enhanced COX-2 expression and PGE2 production induced by lipopolysaccharide (LPS. This effect is likely to be mediated by β-adrenoreceptors, since β-, but not α-adrenoreceptor agonists produced similar results. Furthermore, β-adrenoreceptor antagonists blocked the enhancement of COX-2 levels induced by norepinephrine and β-adrenoreceptor agonists. Conclusions Considering that PGE2 displays different roles in neuroinflammatory and neurodegenerative disorders, norepinephrine may play an important function in the modulation of these processes in pathophysiological conditions.

  11. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise

    DEFF Research Database (Denmark)

    Paulsen, G; Egner, I M; Drange, M

    2010-01-01

    The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo-controll...

  12. Expressão da cox-2 e CD105 no câncer de mama e sobrevida livre de doença Cox-2 and CD105 expression in breast cancer and disease-free survival

    Directory of Open Access Journals (Sweden)

    Melina Grudzinski

    2006-08-01

    Full Text Available OBJETIVOS: Correlacionar a presença de recidiva local de câncer de mama com a expressão de CD105 em carcinomas primários de mama, e a expressão da ciclooxigenase-2 nos carcinomas primários de mama e nos respectivos linfonodos axilares. MÉTODOS: Estudo com uma coorte histórica de 72 mulheres entre 29 e 67 anos com diagnóstico de carcinoma ductal infiltrante de mama, estadio II, tipo histológico não especial com seus linfonodos axilares respectivos, que tiveram diagnóstico e tratamento cirúrgico no Hospital Nossa Senhora da Conceição, no período de 2001 a 2002. Análise imunoistoquímica do CD105 e COX-2 no tumor primário, da COX-2 nos linfonodos axilares e da recidiva local. RESULTADOS: Das 72 mulheres analisadas com tumores primários, 40 tinham linfonodos axilares positivos e 32 eram negativos; para cada tumor primário, foi escolhido apenas um linfonodo axilar. O grau histológico dos tumores foi I (n=4, II (n=41 e III (n=27. Quinze pacientes apresentaram recidiva local em um período médio de 26 meses (IC 95% 24-28. A presença da COX-2 nos tumores primários foi verificada em 52 casos, e a presença de CD105 em 34 casos, mas não foram considerados fatores prognósticos independentes para recidiva (p=0,203 e p=0,145, respectivamente. A sobrevida para pacientes com expressão da COX-2 em linfonodos axilares (metastáticos ou não metastáticos foi de 19 meses, contra 28,3 meses para pacientes COX-2 negativa (pOBJECTIVE: To verify the expression of CD105 in primary breast cancer, and the expression of cyclooxygenase-2 in primary breast cancer and in the respective axillary lymph nodes. METHODS: Seventy two women from 18 to 80 years of age, with a diagnosis of Ductal Infiltrative Breast Cancer, stage II, histological type non special, with their respective axillary lymph nodes were submitted to surgical treatment at the "Hospital Nossa Senhora da Conceição" between 2001 and 2002. Immunohistochemical analyses of CD 105 in the

  13. COX-2 and PPARγ expression are potential markers of recurrence risk in mammary duct carcinoma in-situ

    Directory of Open Access Journals (Sweden)

    Wiley Elizabeth L

    2008-01-01

    Full Text Available Abstract Background In women with duct carcinoma in-situ (DCIS receiving breast conservation therapy (BCT, in-breast recurrences are seen in approximately 10%, but cannot be accurately predicted using clinical and histological criteria. We performed a case-control study to identify protein markers of local recurrence risk in DCIS. Methods Women treated for DCIS with BCT, who later developed in-breast recurrence (cases were matched by age and year of treatment to women who remained free of recurrence (controls. Results A total of 69 women were included in the study, 31 cases and 38 controls. Immunohistochemical evaluation of DCIS tissue arrays was performed for estrogen receptor, progesterone receptor, HER-2/neu, cyclin D1, p53, p21, cycloxygenase-2 (COX-2 and peroxisome proliferator activated receptor γ (PPARγ. Two markers were significantly different between cases and controls on univariate analysis: strong COX-2 expression was associated with increased risk of recurrence, with 67% vs. 24% positivity in cases and controls p = 0.006; and nuclear expression of PPARγ was associated with protection from recurrence with 4% vs. 27% positivity in cases and controls, p = 0.024. In a multivariate model which included size, grade, COX-2 and PPARγ positivity, we found COX-2 positivity to be a strong independent risk factor for recurrence (OR 7.90, 95% CI 1.72–36.23., whereas size and grade were of borderline significance. PPARγ expression continued to demonstrate a protective trend, (OR 0.14, 95% CI 0.06–1.84. Conclusion Our findings suggest that COX-2 and PPARγ should be investigated further as biologic markers to predict DCIS recurrence, particularly since they are also potential therapeutic targets.

  14. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Science.gov (United States)

    Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang

    2012-01-01

    The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food

  15. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Directory of Open Access Journals (Sweden)

    Qiang-Song Wang

    Full Text Available The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO and prostaglandin E(2 (PGE(2 were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, interleukin (IL-6, and tumor necrosis factor alpha (TNF-α was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB α, Inhibitor of NF-κB Kinase (IKK α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional

  16. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE.

    Science.gov (United States)

    Giurdanella, Giovanni; Lazzara, Francesca; Caporarello, Nunzia; Lupo, Gabriella; Anfuso, Carmelina Daniela; Eandi, Chiara M; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2017-10-15

    Diabetic retinopathy is characterized by the breakdown of endothelial blood-retinal barrier. We tested the hypothesis that sulodexide (SDX), a highly purified glycosaminoglycan composed of 80% iduronylglycosaminoglycan sulfate and 20% dermatan sulfate, protects human retinal endothelial cells (HREC) from high glucose (HG)-induced damage, through the suppression of inflammatory ERK/cPLA2/COX-2/PGE 2 pathway, by blocking the effect of advanced glycation end-products (AGEs). HREC were treated with HG (25mM) or AGEs (glycated-BSA, 2mg/ml) for 48h, with or without SDX (60μg/ml) or aflibercept (AFL, 40μg/ml), a VEGF-trap. SDX protected HREC from HG-induced damage (MTT and LDH release) and preserved their blood-retinal barrier-like properties (Trans Endothelial Electrical Resistance and junction proteins, claudin-5, VE-cadherin and occludin, immunofluorescence and immunoblot) as well as their angiogenic potential (Tube Formation Assay). Both HG and AGEs increased phosphoERK and phospho-cPLA 2 , an effect counteracted by SDX and, less efficiently, by AFL. Both HG and exogenous VEGF (80ng/ml) increased PGE 2 release, an effect partially reverted by SDX for HG and by AFL for VEGF. Analysis of NFκB activity revealed that HG increased the abundance of p65 in the nuclear fraction (nuclear translocation), an effect entirely reverted by SDX, but only partially by AFL. SDX, AFL and SDX+AFL protected HREC even when added 24h after HG. These data show that SDX protects HREC from HG damage and suggest that it counteracts the activation of ERK/cPLA2/COX-2/PGE 2 pathway by reducing AGE-related signaling and downstream NFκB activity. This mechanism, partially distinct from VEGF blockade, may contribute to the therapeutic effect of SDX. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Comprehensive measurement of UVB-induced non-melanoma skin cancer burden in mice using photographic images as a substitute for the caliper method.

    Science.gov (United States)

    Bazin, Marc; Purohit, Nupur K; Shah, Girish M

    2017-01-01

    The vernier caliper has been used as a gold standard to measure the length, width and height of skin tumors to calculate their total area and volume. It is a simple method for collecting data on a few tumors at a time, but becomes tedious, time-consuming and stressful for the animals and the operator when used for measuring multiple tumors in a large number of animals in protocols such as UVB-induced non-melanoma skin cancer (NMSC) in SKH-1 mice. Here, we show that photographic images of these mice taken within a few minutes under optimized conditions can be subjected to computerized analyses to determine tumor volume and area as accurately and precisely as the caliper method. Unlike the caliper method, the photographic method also records the incidence and multiplicity of tumors, thus permitting comprehensive measurement of tumor burden in the animal. The simplicity and ease of this method will permit more frequent monitoring of tumor burden in long protocols, resulting in the creation of additional data about dynamic changes in progression of cancer or the efficacy of therapeutic intervention. The photographic method can broadly substitute the caliper method for quantifying other skin pathologies.

  18. UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices

    Directory of Open Access Journals (Sweden)

    Ken eYokawa

    2016-01-01

    Full Text Available UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiationon the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  19. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis

    Science.gov (United States)

    Geyfman, Mikhail; Kumar, Vivek; Liu, Qiang; Ruiz, Rolando; Gordon, William; Espitia, Francisco; Cam, Eric; Millar, Sarah E.; Smyth, Padhraic; Ihler, Alexander; Takahashi, Joseph S.; Andersen, Bogi

    2012-01-01

    The role of the circadian clock in skin and the identity of genes participating in its chronobiology remain largely unknown, leading us to define the circadian transcriptome of mouse skin at two different stages of the hair cycle, telogen and anagen. The circadian transcriptomes of telogen and anagen skin are largely distinct, with the former dominated by genes involved in cell proliferation and metabolism. The expression of many metabolic genes is antiphasic to cell cycle-related genes, the former peaking during the day and the latter at night. Consistently, accumulation of reactive oxygen species, a byproduct of oxidative phosphorylation, and S-phase are antiphasic to each other in telogen skin. Furthermore, the circadian variation in S-phase is controlled by BMAL1 intrinsic to keratinocytes, because keratinocyte-specific deletion of Bmal1 obliterates time-of-day–dependent synchronicity of cell division in the epidermis leading to a constitutively elevated cell proliferation. In agreement with higher cellular susceptibility to UV-induced DNA damage during S-phase, we found that mice are most sensitive to UVB-induced DNA damage in the epidermis at night. Because in the human epidermis maximum numbers of keratinocytes go through S-phase in the late afternoon, we speculate that in humans the circadian clock imposes regulation of epidermal cell proliferation so that skin is at a particularly vulnerable stage during times of maximum UV exposure, thus contributing to the high incidence of human skin cancers. PMID:22753467

  20. Supplementing vitamin B6 to a low vitamin B6 diet exaggerates UVB-induced skin tumorigenesis in DMBA-treated hairless mice.

    Science.gov (United States)

    Lu, Tao; Xu, Yonghui; Monttinen, Elise Saiz; Kato, Norihisa

    2008-06-01

    7,12-Dimethylbenz[a]anthracene (DMBA)-treated hairless mice exposed to UVB radiation were used to examine the effect of graded levels of vitamin B(6) [1, 7 or 35 mg pyridoxine (PN) HCl/kg] on skin tumorigenesis for 18 wk. Compared to the 1 mg PN HCl/kg diet, the 35 mg PN HCl/kg diet significantly elevated the incidence and multiplicity of skin tumors, while there was no difference in skin tumorigenesis between the 7 and 35 mg PN HCl/kg diets. Skin levels of oxidative stress markers (lipid peroxides and protein carbonyls) were unaffected by dietary treatment. Compared to the 1 mg PN HCl/kg diet, the 7 and 35 mg PN HCl/kg diets significantly elevated serum pyridoxal 5'-phosphate (PLP) without affecting the skin level of PLP. The results suggest that dietary supplemental vitamin B(6) exaggerates UVB-induced skin tumorigenesis in hairless mice without affecting oxidative stress in the skin.

  1. Crosstalk between osteoprotegerin (OPG), fatty acid synthase (FASN) and, cycloxygenase-2 (COX-2) in breast cancer: implications in carcinogenesis.

    Science.gov (United States)

    Goswami, Sudeshna; Sharma-Walia, Neelam

    2016-09-13

    The crosstalk between malignant and nonmalignant cells in the tumor microenvironment, as maneuvered by cytokines/chemokines, drives breast cancer progression. In our previous study, we discovered Osteoprotegerin (OPG) as one of the cytokines heavily secreted by breast cancer cells. We demonstrated that OPG is expressed and secreted at very high levels from the highly invasive breast cancer cell lines SUM149PT and SUM1315MO2 as compared to normal human mammary epithelial HMEC cells. OPG was involved in modulating aneuploidy, cell proliferation, and angiogenesis in breast cancer. Mass spectrometry analysis performed in this study revealed OPG interacts with fatty acid synthase (FASN), which is a key enzyme of the fatty acid biosynthetic pathway in breast cancer cells. Further, electron microscopy, immunofluorescence, and fluorescence quantitation assays highlighted the presence of a large number of lipid bodies (lipid droplets) in SUM149PT and SUM1315MO2 cells in comparison to HMEC. We recently showed upregulation of the COX-2 inflammatory pathway and its metabolite PGE2 secretion in SUM149PT and SUM1315MO2 breast cancer cells. Interestingly, human breast cancer tissue samples displayed high expression of OPG, PGE2 and fatty acid synthase (FASN). FASN is a multifunctional enzyme involved in lipid biosynthesis. Immunofluorescence staining revealed the co-existence of COX-2 and FASN in the lipid bodies of breast cancer cells. We reasoned that there might be crosstalk between OPG, FASN, and COX-2 that sustains the inflammatory pathways in breast cancer. Interestingly, knocking down OPG by CRISPR/Cas9 gene editing in breast cancer cells decreased FASN expression at the protein level. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 and FASN by recombinant human OPG (rhOPG). Treatment with FASN inhibitor C75 and COX-2 inhibitor celecoxib individually decreased the number of lipid bodies/cell, downregulated phosphorylation of ERK

  2. COX-2-derived prostanoids and oxidative stress additionally reduce endothelium-mediated relaxation in old type 2 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Emilie Vessières

    Full Text Available Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2 derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF and lean (LZ rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats. Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.

  3. Efeito dos anti-inflamatórios não-esteroidais convencionais e seletivos para COX-2 sobre o reparo ósseo Effect of conventional and COX-2 selective non-steroidal antiinflammatory drugs on bone healing

    Directory of Open Access Journals (Sweden)

    Teresa Lúcia Lamano-Carvalho

    2007-01-01

    Full Text Available Na presente revisão de literatura foram relacionados trabalhos experimentais e clínicos dos últimos 15 anos referentes aos efeitos dos antiinflamatórios não-esteroidais (AINEs convencionais e seletivos para COX-2 sobre a formação óssea reparacional. A maioria dos trabalhos mostra que os AINEs convencionais podem atrasar o reparo de fratura de ossos longos e a fusão espinhal, em animais, e interferir negativamente com a taxa de fusão espinhal, em humanos. Apesar da importância comprovada da prostaglandina E2, sintetizada por osteoblastos sob estímulo da enzima ciclooxigenase-2 (COX-2, no controle da formação óssea, os resultados experimentais acerca dos prováveis efeitos inibitórios dos AINEs seletivos sobre o reparo ósseo além de raros são ainda controversos e não há comprovação de que eles interferem com a neoformação óssea reparacional em humanos.In the present literature review, experimental and clinical studies of the last 15 years concerning the effects of conventional and COX-2 selective non-steroidal anti-inflammatory drugs (NSAIDs on bone healing were reported. Most of the data pertaining to conventional NSAIDs have shown to cause delayed fracture healing and impairment of spinal fusion in animal studies, as well as a negative interference on spinal fusion rate in human beings. In spite of the established importance of prostaglandin E2, synthesized by osteoblasts under COX-2 stimulation, in controlling bone formation, the results regarding the potential inhibitory effects of selective NSAIDs on experimental bone healing are still controversial and there is no clinical data to confirm that they interfere negatively with repairing bone formation.

  4. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model

    Science.gov (United States)

    2013-01-01

    Background COX-2 inhibitors have an antitumor potential and have been verified by many researchers. Treatment of cancer cells with external stressors such as irradiation can stimulate the over-expression of COX-2 and possibly confer radiation resistance. In this study, we tested if topical diclofenac, which inhibits both COX-1 and COX-2, administration rendered prostate tumor cells sensitize to the effects of radiation. Methods LNCaP-COX-2 and LNCaP-Neo cells were treated with 0 to 1000 μM diclofenac. Next, a clonogenic assay was performed in which cells were subjected to irradiation (0 to 4 Gy) with or without diclofenac. COX-2 expression and other relevant molecules were measured by real-time PCR and immunohistochemistry after irradiation and diclofenac treatment. In addition, we assessed the tumor volumes of xenograft LNCaP-COX-2 cells treated with topical diclofenac with or without radiation therapy (RT). Results LNCaP-COX-2 and LNCaP-Neo cell lines experienced cytotoxic effects of diclofenac in a dose related manner. Clonogenic assays demonstrated that LNCaP-COX-2 cells were significantly more resistant to RT than LNCaP-Neo cells. Furthermore, the addition of diclofenac sensitized LNCaP-COX-2 not but LNCaP-Neo cells to the cytocidal effects of radiation. In LNCaP-COX-2 cells, diclofenac enhanced radiation-induced apoptosis compared with RT alone. This phenomenon might be attributed to enhancement of RT-induced TRAIL expression as demonstrated by real-time PCR analysis. Lastly, tumor volumes of LNCaP-COX-2 cells xenograft treated with diclofenac or RT alone was >4-fold higher than in mice treated with combined diclofenac and radiation (pdiclofenac enhances the effect of RT on prostate cancer cells that express COX-2. Thus, diclofenac may have potential as radiosensitizer for treatment of prostate cancer. PMID:23289871

  5. Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-γ-linolenic acid peroxidation dependent mechanism.

    Science.gov (United States)

    Xu, Yi; Yang, Xiaoyu; Wang, Tao; Yang, Liu; He, Yu-Ying; Miskimins, Keith; Qian, Steven Y

    2018-03-27

    Cyclooxygenase-2 (COX-2), the inducible COX form, is a bi-functional membrane-bound enzyme that typically metabolizes arachidonic acid (downstream ω-6 fatty acid) to form 2-series of prostaglandins known to be involved in cancer development. Overexpression of COX-2 has been found in a majority of breast carcinomas, and has also been associated with increased severity and the development of the metastasis. Our lab recently demonstrated that COX-2 can also metabolize dihomo-γ-linolenic acid (DGLA, a precursor of ω-6 arachidonic acid) to produce an anti-cancer byproduct, 8-hydroxyoctanoic acid (8-HOA) that can inhibit growth and migration of colon and pancreatic cancer cells. We thus tested whether our strategy of knocking down delta-5-desaturase (D5D, the key enzyme that converts DGLA to arachidonic acid) in breast cancer cells overexpressing COX-2 can also be used to promote 8-HOA formation, thereby suppressing cancer growth, migration, and invasion. SiRNA and shRNA transfection were used to knock down D5D expression in MDA-MB 231 and 4 T1 cells (human and mouse breast cancer cell lines expressing high COX-2, respectively). Colony formation assay, FITC Annexin V/PI double staining, wound healing and transwell assay were used to assess the effect of our strategy on inhibition of cancer growth, migration, and invasion. GC/MS was used to measure endogenous 8-HOA, and western blotting was performed to evaluate the altered key protein expressions upon the treatments. We demonstrated that D5D knockdown licenses DGLA to inhibit growth of breast cancer cells via promoting formation of 8-HOA that can inhibit histone deacetylase and activate cell apoptotic proteins, such as procaspase 9 and PARP. Our strategy can also significantly inhibit cancer migration and invasion, associated with altered expression of MMP-2/- 9, E-cadherin, vimentin and snail. In addition, D5D knockdown and DGLA supplementation greatly enhanced the efficacy of 5-fluorouracil on breast cancer

  6. QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method.

    Science.gov (United States)

    Akbari, Somaye; Zebardast, Tannaz; Zarghi, Afshin; Hajimahdi, Zahra

    2017-01-01

    COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R 2 ) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q 2 ) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

  7. Cyclooxygenase-2 (COX-2) Polymorphisms and Risk of Inflammatory Bowel Disease in a Scottish and Danish Case–Control Study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Nimmo, Elaine; Krarup, Henrik B.

    2011-01-01

    : Carriers of the COX-2 A-1195G variant allele had increased risk of UC (odds ratio [OR], 95% confidence interval [CI] = 1.25 [1.02–1.54], P = 0.03) and of both UC and IBD among never smokers (OR [95% CI] = 1.47 [1.11–1.96], P = 0.01 and OR [95% CI] = 1.37 [1.06–1.77], P = 0.02, respectively). Furthermore......, this variant genotype was associated with increased risk of diagnosis of UC before age 40 years and with extensive UC (OR [95% CI] = 1.34 [1.11–1.62], P = 0.002 and OR [95% CI] = 1.32 [1.03–1.69], P = 0.03, respectively). Conclusions: COX-2 A-1195G polymorphism was associated with the risk of UC, especially...

  8. [Side effects of COX-2 selective inhibitors. Critic related with its administration in patients with rheumatoid arthritis and osteoarthritis].

    Science.gov (United States)

    Carrillo Gutiérrez, Ofmara Y; Pérez Sánchez, Adriana G; Medina Serriteño, Nicolás; Rodríguez Orozco, Alain R

    2007-01-01

    At the end of 2000 the new age of AINEs was introduced, specially the selective inhibitors of the COX-2, whose main function is to block the production of the prostaglandins and the acute tissue inflammation. These inhibitors have analgesic, antithermal and antiinflammatory effects similar to traditional AINEs; they are prescribed specifically to diminish pain and inflammation in patients with rheumatoid arthritis and osteoarthritis. After them introduction, it was reported that they can produce cardiovascular effects, mainly infarcts. This revision exposes the adverse effects that selective inhibitors of the COX-2 produce when elevated doses are administered, during prolonged time, in patients with rheumatoid arthritis and osteoarthritis; in addition, it comments present recommendations for them prescription.

  9. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Directory of Open Access Journals (Sweden)

    Y Boza

    2010-12-01

    Full Text Available The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM, primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001. HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05. The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip.

  10. -765 G>C POLYMORPHISM OF THE COX-2 GENE AND GASTRIC CANCER RISK IN BRAZILIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Vanessa Maria de Lima Pazine CAMPANHOLO

    2014-04-01

    Full Text Available Context Genomic alterations play important roles in gastric cancer carcinogenesis. Cyclooxygenases (COX are important enzymes in the maintenance of mucosal integrity and in pathological processes, mainly in inflammation and cancer. The -765G>C COX-2 polymorphism has been implicated in gastric cancer risk. Objectives To evaluate the COX-2 gene polymorphism as a predictor of gastric cancer risk. Methods One hundred gastric cancer patients and 150 controls were enrolled from a Brazilian centre. Personal data regarding related risk factors, including alcohol consumption and smoking behavior, were collected via questionnaire. DNA was extracted from peripheral blood and the genotypes were analyzed using PCR-restriction fragment length polymorphism. Results G/G, G/C and C/C genotypes frequencies was 42.7%, 50% and 7.3%, respectively in controls and 59.0%, 34.0% and 7.0% in gastric cancer. The frequency of the genotypes differed between the groups (P = 0.033. A higher risk of gastric cancer was associated with COX-2 -765G/G genotype (P = 0.048; OR:1.98, 95% CI = 1.01-3.90. Alcohol consumption and smoking in patients with -765G/G genotype also increased the risk of gastric cancer. Conclusions The -765G/G genotype and the -765G allele had been associated with an increased risk for gastric cancer. The presence of smoking and alcohol consumption increased the risk for gastric cancer in subjects with -765G/G genotype compared with the control group. Polymorphism of COX-2 gene and gastric cancer risk.

  11. AVALIAÇÃO DA DISPENSAÇÃO DE FÁRMACOS PARCIALMENTE SELETIVOS PARA COX-2

    Directory of Open Access Journals (Sweden)

    Cícero Cardoso VALLE FILHO

    2015-12-01

    Full Text Available Uma pesquisa foi realizada com o objetivo de avaliar um potencial aumento na venda de fármacos anti-inflamatórios não esteroidais (AINEs parcialmente seletivos para a COX-2 durante o período de julho de 2009 a junho de 2011, em uma drogaria localizada no município de Itaperuna, estado do Rio de Janeiro. Durante o período estudado foi dispensado um total de 802 AINEs parcialmente seletivos para a COX-2, dentre os quais 59,85% foram de nimesulida, 5,74% de etodolaco e 34,41% de meloxicam.   No primeiro semestre avaliado a dispensação total de AINEs parcialmente seletivos foi equivalente a 92, no segundo semestre a dispensação total foi equivalente a 159, no terceiro semestre a dispensação total foi de 219 AINEs parcialmente seletivos para COX-2 e no quarto semestre foram dispensados 332.  Os resultados indicaram maior dispensação dos medicamentos desta classe no mês de abril de 2011 sendo que tanto a nimesulida, quanto o meloxicam e o etodolaco foram mais dispensados no último semestre do estudo. De acordo com a metodologia utilizada pode-se concluir que a dispensação dos AINEs parcialmente seletivos vem crescendo a cada ano e que a nimesulida apresenta o maior índice de crescimento; a maior indicação da nimesulida tem sido para crianças; os meses correspondentes ao período de inverno apresentam maior dispensação de AINEs parcialmente seletivos para a COX-2.

  12. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  13. Anti-cancer Effects of a Novel Quinoline Derivative 83b1 on Human Esophageal Squamous Cell Carcinoma through Down-Regulation of COX-2 mRNA and PGE2.

    Science.gov (United States)

    Pun, Ivan Ho Yuen; Chan, Dessy; Chan, Sau Hing; Chung, Po Yee; Zhou, Yuan Yuan; Law, Simon; Lam, Alfred King Yin; Chui, Chung Hin; Chan, Albert Sun Chi; Lam, Kim Hung; Tang, Johnny Cheuk On

    2017-01-01

    83b1 is a novel quinoline derivative that has been shown to inhibit cancer growth in human esophageal squamous cell carcinoma (ESCC). This study was conducted to comprehensively evaluate the cytotoxic effects of 83b1 on a series of ESCC cell lines and investigate the mechanisms by which 83b1 suppresses cancer growth based on molecular docking analysis. A series of ESCC and nontumor immortalized cell lines were exposed to 83b1 and cisplatin (CDDP) in a dose-dependent manner, and the cytotoxicity was examined by a MTS assay kit. Prediction of the molecular targets of 83b1 was conducted by molecular docking analysis. Expression of cyclooxygenase 2 (COX-2) mRNA and COX-2-derived prostaglandin E 2 (PGE 2 ) were measured by quantitative real-time polymerase chain reaction and enzymelinked immuno-sorbent assay, respectively. In vivo anti-tumor effect was determined using a nude mice xenografted model transplanted with an ESCC cell line, KYSE-450. 83b1 showed the significant anti-cancer effects on all ESCC cell lines compared to CDDP; however, 83b1 revealed much lower toxic effects on non-tumor cell lines than CDDP. The predicted molecular target of 83b1 is peroxisome proliferator-activated receptor delta (PPARδ), which is a widely known oncoprotein. Additionally the expression of COX-2 mRNA and COX-2-derived PGE 2 were down-regulated by 83b1 in a dose-dependent manner in ESCC cell lines. Furthermore, 83b1 was shown to significantly reduce the tumor size in nude mice xenograft. The results of this study suggest that the potential anti-cancer effects of 83b1 on human esophageal cancers occur through the possible oncotarget, PPARδ, and down-regulation of the cancer related genes and molecules.

  14. Up-regulation of HB-EGF by the COX-2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC.

    Science.gov (United States)

    Yang, Cheng-Chieh; Tu, Hsi-Feng; Wu, Cheng-Hsien; Chang, Hsiu-Chuan; Chiang, Wei-Fan; Shih, Nai-Chia; Lee, Yong-Syu; Kao, Shou-Yen; Chang, Kuo-Wei

    2016-05-01

    When treating advanced HNSCC, a cisplatin-based systemic regimen benefit patient survival. However, chemoresistance will greatly reduce the effectiveness of this approach. The identification of molecules that contribute to cisplatin resistance may potentially improve the survival. Both HB-EGF and COX-2 have been reported to increase cisplatin-resistance. Here, we have focused on the regulation of HB-EGF/COX-2 and their roles in cisplatin resistance. IHC staining was used to measure the expression levels of HB-EGF and COX-2 on the tissue microarray from 43 tissue samples of patients with advanced HNSCC. siRNA, western blot and qRT-PCR were used to dissect the regulation between EGF, Akt, COX-2, PGE2, and cisplatin sensitivity. The correlation between HB-EGF, COX2 and HNSCC progression was analyzed by the receiver operating characteristic (ROC) curve and Kaplan-Meier disease free survival. Patients of advanced HNSCC patients with increased HB-EGF and COX-2 expression have higher tumor recurrent rates that was related to cisplatin resistance. The resistance was mediated via an increased expression of HB-EGF and COX-2. The activation of Akt by either EGF or areca nut extract were able to upregulate COX-2, which would increase the expression of HB-EGF in a PGE2 dependent manner. Inhibition and knockdown of COX-2 resulted in a decrease in HB-EGF. In the tissue samples from HNSCC patients, there was a significant positive correlation between the expression of COX-2 and HB-EGF. Our results suggested that COX-2 and HB-EGF are important in development of HNSCC cisplatin resistance. These findings may help the development of new strategies for overcoming cisplatin resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2pathway induced during Trypanosoma cruzi infection.

    Science.gov (United States)

    Hernández, Matías; Wicz, Susana; Corral, Ricardo S

    2016-11-15

    Diverse cardiovascular signaling routes have been considered critical for Chagas cardiomyopathy caused by the protozoan parasite Trypanosoma cruzi. Along this line, T. cruzi infection and endothelin-1 (ET-1) have been shown to cooperatively activate the Ca 2+ /NFAT cascade in cardiomyocytes, leading to cyclooxygenase type 2 (COX-2) induction and increased release of prostanoids and prohypertrophic peptides. To determine whether the well-known cardioprotective and anti-inflammatory effects of curcumin (Cur) could be helpful to interfere with this key machinery for pathogenesis of Chagas myocarditis. Cur treatment was evaluated through in vivo studies using a murine model of acute T. cruzi infection and in vitro experiments using ET-1-stimulated and parasite-infected mouse cardiomyocytes. Cur-treated and untreated infected mice were followed-up to estimate survival postinfection and heart tissues from both groups were analyzed for inflammatory infiltration by histopathology, whereas parasite load, induction of arachidonic acid pathway and natriuretic peptide expression were determined by real-time PCR. Molecular analysis of Cur myocardial targets included intracellular calcium measurement, NFAT and COX-2 induction in transfected cells, and assessment of NFAT, COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) levels by immunoblotting, prostaglandin E 2 (PGE 2 ) by ELISA, b-type natriuretic peptide (BNP) by real-time PCR, and PGE 2 /EP4 receptor/BNP interaction by transwell experiments. Cur treatment of acute Chagas mice enhanced survival and proved to hinder relevant inflammatory processes in the heart, including leukocyte recruitment, activation of the eicosanoid pathway and BNP overexpression, without modifying parasite burden in the organ. Cur was capable of blocking Ca 2+ -dependent NFATc1 transcriptional activity, COX-2 and mPGES-1 induction, and subsequent PGE 2 production in ET-1-stimulated and parasite-infected cardiomyocytes. Furthermore, the decline

  16. Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings

    DEFF Research Database (Denmark)

    Stæhr, Mette; Madsen, Kirsten; Vanhoutte, Paul M

    2011-01-01

    (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS(-/-)) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and N(G)-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases...

  17. Coriander Leaf Extract Exerts Antioxidant Activity and Protects Against UVB-Induced Photoaging of Skin by Regulation of Procollagen Type I and MMP-1 Expression

    Science.gov (United States)

    Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook

    2014-01-01

    Abstract Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging. PMID:25019675

  18. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression.

    Science.gov (United States)

    Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook; Kim, Sun Yeou

    2014-09-01

    Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging.

  19. Characterisation of cyclooxygenase 1 and 2 expression in mouse resident peritoneal macrophages in vitro; interactions of non steroidal anti-inflammatory drugs with COX2.

    Science.gov (United States)

    Tordjman, C; Coge, F; Andre, N; Rique, H; Spedding, M; Bonnet, J

    1995-05-17

    Resident peritoneal macrophages exposed to inflammatory stimuli (zymosan, lipopolysaccharide (LPS)) represent a widely used model for studying arachidonic acid metabolism and for screening of prostaglandin (PG) synthesis inhibitors. In the present study, cyclooxygenase 1 (COX1) was shown constitutively expressed in mouse adherent and non-adherent macrophages whereas expression of COX2 was observed only in adherent cells, even when cultured in minimal conditions (Ca-, Mg- and serum-free medium). The COX2 expression was amplified by arachidonic acid cascade stimulating agents (Ca, Mg, zymosan) and by LPS in a time-dependant manner; PGE2 by itself amplified LPS-induced COX2 expression. In well-defined experimental conditions of COX2 expression (LPS-stimulated adherent macrophages), we studied specific interactions of some representative anti-inflammatory drugs with COX2 enzymatic activity and expression. By contrast with dexamethasone, which reduced PGE2 release together with a strong reduction of COX2 expression (protein and mRNA), non steroidal anti-inflammatory drugs (NSAIDs) reduced PGE2 synthesis without any effect at the COX2 mRNA level. This reduction of PGE2 production by NSAIDs resulted from either an exclusive enzymatic inhibition (aspirin, NS398, 6-Methoxy naphtyl acetic acid) or an enzymatic inhibition associated with a slight decrease of COX2 protein level (indomethacin). For paracetamol and salicylic acid, two weak inhibitors of COX enzymatic activity, reduction of PGE2 synthesis appeared to be related to reduced level of COX2. These findings show that the macrophage can be used as a cellular model to study specifically COX1 and COX2. In this cell type, COX2 expression is dependent on adhesion, enhanced by stimulation of arachidonic acid metabolism, and auto amplified by PGE2. Furthermore, the results indicate that known NSAIDs differ in their interaction with cyclooxygenase, being able to inhibit either COX2 enzymatic activity, and/or COX2 expression

  20. La ciclooxigenasa-2 (COX-2 y el factor de crecimiento epidérmico (EFG en lesiones epiteliales orales premalignas Cyclooxygenase-2 (COX-2 and epidermal growth factor (EGF in oral premalignant epithelial lesions

    Directory of Open Access Journals (Sweden)

    S. Díaz Prado

    2009-06-01

    Full Text Available Las lesiones premalignas orales incluyen eritroplasias (manchas rojas y leucoplasias (manchas blancas, las cuales se desarrollan a lo largo de superficies epiteliales. Estas lesiones son considerados marcadores en la "carcinogénesis de campo" ya que pacientes con lesiones premalignas orales pueden desarrollar carcinoma de células escamosas (CCS en el sitio de las lesiones, así como en otros lugares de tracto aerodigestivo superior. Se está haciendo un gran esfuerzo para identificar nuevos biomarcadores SEBs (surrogate endpoint biomarkers para el carcinoma de células escamosas de cabeza y cuello. Los SEBs candidatos para el carcinoma de células escamosas invasivo en el trato aerodigestivo superior deben ser detectables con los cambios moleculares celulares y tisulares que tienen lugar durante la formación del tumor. Entre los diferentes marcadores que se han propuesto hasta la actualidad, la ciclooxigenasa- 2 (COX-2 y el receptor del factor de crecimiento epidérmico (EGFR parecen ser los más prometedores. COX-2 se sobre expresa durante el proceso tumoral, desde hiperplasia temprana a enfermedad metastásica. EGFR también está anormalmente activado en tumores epiteliales, pues las células de casi todas estas neoplasias expresan altos niveles de este receptor, una característica asociada con un peor pronóstico clínico. En este sentido el tracto aerodigestivo superior proporciona un sistema o modelo único para el estudio de CCS y para la investigación de nuevos candidatos SEBs.Oral premalignant lesions include leukoplakia (white patch and erythroplakia (red patch, which develop on epithelial surfaces. These lesions are markers for field cancerization because patients with oral premalignancy can develop squamous cell carcinoma at the site of the lesion(s and at other sites in the upper aerodigestive tract. An effort is being made to identify surrogate endpoint biomarkers (SEBs for head and neck squamous cell carcinoma (HNSCC

  1. The prognostic impact of COX-2 expression in breast cancer depends on oral contraceptive history, preoperative NSAID use, and tumor size.

    Science.gov (United States)

    Simonsson, Maria; Björner, Sofie; Markkula, Andrea; Nodin, Björn; Jirström, Karin; Rose, Carsten; Borgquist, Signe; Ingvar, Christian; Jernström, Helena

    2017-01-01

    The association between tumor cyclooxygenase 2 (COX-2) expression and breast cancer prognosis has been inconsistent. The purpose of this study was to evaluate the prognostic significance of COX-2 tumor expression according to adjuvant treatment, and potential effect modifications of non-steroid anti-inflammatory drug (NSAID) use, and other tumor and lifestyle factors. A prospective cohort of 1,116 patients with primary breast cancer in Lund, Sweden, included 2002-2012 was followed until June 2014 (median 5 years). Tumor-specific COX-2 expression was evaluated on tissue microarrays using immunohistochemistry. Associations between COX-2 intensity (negative, weak-moderate, high) and patient and tumor characteristics as well as prognosis were analyzed. Tumor-specific COX-2 expression was available for 911 patients and was significantly associated with higher age at diagnosis and less aggressive tumor characteristics. Higher COX-2 expression was associated with lower risk for breast cancer events during the first five years of follow-up, adj HR 0.60 (95%CI: 0.37-0.97), per category. The association between COX-2 expression and prognosis was significantly modified by oral contraceptive (OC) use (P interaction  = 0.048), preoperative NSAID use (P interaction  = 0.009), and tumor size (P interaction  = 0.039). COX-2 negativity was associated with increased risk for events during the first five years in ever OC users, adj HR 1.94 (1.01-3.72) and during the 11-year follow-up in preoperative NSAID users, adj HR 4.51 (1.18-11.44) as well as in patients with large tumors, adj HR 2.57 (1.28-5.15). In conclusion, this study, one of the largest evaluating COX-2 expression in breast cancer, indicates that the prognostic impact of COX-2 expression depends on host factors and tumor characteristics. © 2016 UICC.

  2. Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Arendt Thomas

    2005-11-01

    Full Text Available Abstract Neuronal expression of cyclooxygenase-2 (COX-2 and cell cycle proteins is suggested to contribute to neurodegeneration during Alzheimer's disease (AD. The stimulus that induces COX-2 and cell cycle protein expression in AD is still elusive. Activated glia cells are shown to secrete substances that can induce expression of COX-2 and cell cycle proteins in vitro. Using post mortem brain tissue we have investigated whether activation of microglia and astrocytes in AD brain can be correlated with the expression of COX-2 and phosphorylated retinoblastoma protein (ppRb. The highest levels of neuronal COX-2 and ppRb immunoreactivity are observed in the first stages of AD pathology (Braak 0–II, Braak A. No significant difference in COX-2 or ppRb neuronal immunoreactivity is observed between Braak stage 0 and later Braak stages for neurofibrillary changes or amyloid plaques. The mean number of COX-2 or ppRb immunoreactive neurons is significantly decreased in Braak stage C compared to Braak stage A for amyloid deposits. Immunoreactivity for glial markers KP1, CR3/43 and GFAP appears in the later Braak stages and is significantly increased in Braak stage V-VI compared to Braak stage 0 for neurofibrillary changes. In addition, a significant negative correlation is observed between the presence of KP1, CR3/43 and GFAP immunoreactivity and the presence of neuronal immunoreactivity for COX-2 and ppRb. These data show that maximal COX-2 and ppRb immunoreactivity in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia. In contrast to in vitro studies, post mortem data do not support a causal relation between the activation of microglia and astrocytes and the expression of neuronal COX-2 and ppRb in the pathological cascade of AD.

  3. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.

    Science.gov (United States)

    Baskaran, Asweni; Chua, Kek Heng; Sabaratnam, Vikineswary; Ravishankar Ram, Mani; Kuppusamy, Umah Rani

    2017-01-13

    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H 2 O 2 )-induced inflammation on RAW 264.7 macrophages was investigated. The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. EPG (10 μg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H 2 O 2 - induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 μg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H 2 O 2 -induced iNOS and GPx expression by EPG. Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.

  4. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Lee Jong

    2012-05-01

    Full Text Available Abstract Background Carbon nanotubes (CNTs are engineered graphene cylinders with numerous applications in engineering, electronics and medicine. However, CNTs cause inflammation and fibrosis in the rodent lung, suggesting a potential human health risk. We hypothesized that multi-walled CNTs (MWCNTs induce two key inflammatory enzymes in macrophages, cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS, through activation of extracellular signal-regulated kinases (ERK1,2. Methods RAW264.7 macrophages were exposed to MWCNTs or carbon black nanoparticles (CBNPs over a range of doses and time course. Uptake and subcellular localization of MWCNTs was visualized by transmission electron microscopy (TEM. Protein levels of COX-2, iNOS, and ERK1,2 (total ERK and phosphorylated ERK were measured by Western blot analysis. Prostaglandin-E2 (PGE2 and nitric oxide (NO levels in cell supernatants were measured by ELISA and Greiss assay, respectively. Results MWCNTs, but not CBNPs, induced COX-2 and iNOS in a time- and dose-dependent manner. COX-2 and iNOS induction by MWCNTs correlated with increased PGE2 and NO production, respectively. MWCNTs caused ERK1,2 activation and inhibition of ERK1,2 (U0126 blocked MWCNT induction of COX-2 and PGE2 production, but did not reduce the induction of iNOS. Inhibition of iNOS (L-NAME did not affect ERK1,2 activation, nor did L-NAME significantly decrease COX-2 induction by MWCNT. Nickel nanoparticles (NiNPs, which are present in MWCNTs as a residual catalyst, also induced COX-2 via ERK-1,2. However, a comparison of COX-2 induction by MWCNTs containing 4.5 and 1.8% Ni did not show a significant difference in ability to induce COX-2, indicating that characteristics of MWCNTs in addition to Ni content contribute to COX-2 induction. Conclusion This study identifies COX-2 and subsequent PGE2 production, along with iNOS induction and NO production, as inflammatory mediators involved in the macrophage response to

  5. Simvastatin nanoparticles attenuated intestinal ischemia/reperfusion injury by downregulating BMP4/COX-2 pathway in rats

    Directory of Open Access Journals (Sweden)

    Tong F

    2017-03-01

    Full Text Available Fei Tong,1 Bo Dong,1 Rongkui Chai,1 Ke Tong,2,3 Yini Wang,4 Shipiao Chen,1 Xinmei Zhou,1 Daojun Liu5 1Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, 2College of Life Science and Engineering, 3State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan, 4Department of Nursing, Zhejiang Rongjun Hospital, The Third People’s Hospital of Jiaxing, Jiaxing, Zhejiang, 5Department of Pharmacochemistry, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: The purpose of the research was to explore the therapeutic action of simvastatin-loaded poly(ethylene glycol-b-poly(gamma-benzyl l-glutamate (PEG-b-PBLG50 on intestinal ischemia/reperfusion injury (II/RI through downregulating bone morphogenetic protein 4 (BMP4/cyclooxygenase-2 (COX-2 pathway as compared to free simvastatin (Sim. Sprague Dawley rats were preconditioned with 20 mg/kg Sim or simvastatin/PEG-b-PBLG50 (Sim/P compounds, and then subjected to 45 min of ischemia and 1 h of reperfusion. The blood and small intestines were collected, serum levels of interleukin-4 (IL-4, interleukin-6 (IL-6, interleukin-10 (IL-10, tumor necrosis factor-α, and nitric oxide (NO were checked, and the dry/wet intestine ratios, superoxide dismutase activity, myeloperoxidase content, reactive oxygen species, endothelial nitric oxide synthase, protein 47 kDa phagocyte oxidase (p47phox, BMP4, COX-2, and p38 mitogen-activated protein kinase (p38MAPK expressions were measured in intestinal tissues. Both Sim and Sim/P pretreatment reduced intestinal oxidative damnification, restricted inflammatory harm, and downregulated the BMP4 and COX-2 expressions as compared to II/RI groups, while Sim/P remarkably improved this effect. Keywords: PEG-b-PBLG50, II/RI, simvastatin, BMP4, COX-2

  6. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil

    DEFF Research Database (Denmark)

    Harsløf, Laurine B. S.; Damsgaard, Camilla T.; Hellgren, Lars I.

    2014-01-01

    Long-chain n-3 fatty acids (n-3 LCPUFA) improve blood pressure (BP) and lipid profile in adults and improve insulin sensitivity in rodents. We have previously shown that n-3 LCPUFA reduces BP and plasma triacylglycerol (TAG) in infants. Few studies have found effects on glucose homeostasis...... in humans. We explored possible effect modification by FADS, PPARG2, and COX2 genotypes to support potential effects of n-3 LCPUFA on metabolic markers in infants. Danish infants (133) were randomly allocated to daily supplementation with a teaspoon (~5 mL/day) of fish oil (FO) or sunflower oil (SO) from 9...

  7. Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols

    International Nuclear Information System (INIS)

    Katiyar, S.K.; Elmets, C.A.; Agarwal, Rajesh; Mukhtar, Hasan

    1995-01-01

    Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a polyphenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280-320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. (author)

  8. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    Science.gov (United States)

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  9. Correlations of IGF-1R and COX-2 Expressions with Ras and BRAF Genetic Mutations, Clinicopathological Features and Prognosis of Colorectal Cancer Patients.

    Science.gov (United States)

    Jin, Mei; Long, Zi-Wen; Yang, Jing; Lin, Xiang

    2018-01-01

    This case-control study aims to investigate the correlations of insulin-like growth factor receptor 1 (IGF-1R) and cyclooxygenase 2 (COX-2) expressions with Ras and BRAF genetic mutations, clinicopathological features and prognosis of colorectal cancer (CRC) patients. A total of 213 CRC patients (case group) and 200 healthy individuals (control group) were selected from our hospital. Ras (K-Ras/N-Ras) and BRAF genetic mutations were detected by direct sequencing. The positive expression rates of IGF-IR and COX-2 in CRC and normal tissues were detected using immunohistochemistry. RT-qPCR and Western blotting were applied to detect the mRNA and protein expressions of IGF-IR and COX-2 in CRC tissues and normal tissues. Total mutation rate of N-Ras, BRAF and K-Ras in case group were 5.2%, 12.2% and 47.4%, respectively. The expressions of IGF-IR and COX-2 were higher in CRC tissues with Ras and BRAF mutations than in those without. CRC tissues with Ras mutation showed higher COX-2 expression than those with BRAF mutation. IGF-IR and COX-2 expressions were correlated to infiltration degree, lymphatic metastasis (in CRC tissues with and without Ras and BRAF mutations), and Dukes stages (only in CRC tissues with Ras and BRAF mutations). CRC patients with negative expressions of IGF-IR and COX-2 had significantly higher accumulative survival rate and longer mean survival duration than those with positive expressions of IGF-IR and COX-2. These findings indicate that IGF-1R and COX-2 expressions may be associated with Ras and BRAF genetic mutations, clinicopathological feature and prognosis of CRC patients.

  10. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Lin Chih-Chung

    2013-01-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3 cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.

  11. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  12. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.

    Directory of Open Access Journals (Sweden)

    Nicholas S Kirkby

    Full Text Available There are two schools of thought regarding the cyclooxygenase (COX isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.

  13. Aggravation of Alzheimer's disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells.

    Science.gov (United States)

    Wang, Pu; Guan, Pei-Pei; Wang, Tao; Yu, Xin; Guo, Jian-Jun; Wang, Zhan-You

    2014-08-01

    Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β-protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX-2). Although the levels of COX-2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human- or mouse-derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX-2 mediates the reciprocal regulation of interleukin-1β (IL-1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX-2 regulates the synthesis of IL-1β in a PGE2 -dependent manner. Moreover, COX-2-derived PGE2 signals the activation of the PI3-K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF-κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL-1β synthesis. The secretion of IL-1β from glioblastoma cells in turn stimulates the expression of COX-2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX-2 regulation of BACE-1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX-2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX-2-induced AD but also initially define the therapeutic targets of AD. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents

    Science.gov (United States)

    Manohar, Chelli Sai; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Siva Kumar, B.; Reddy, Sabbasani Rajasekhara

    2018-02-01

    Novel QuinolineAcetohydrazide (QAh) derivatives (9a-n) were firstly evaluated in silico to determine their anti-inflammatory and anti-cancer efficacy via the mechanisms of COX1 and COX2 inhibition, and NF-ĸB, HDAC and Human Topoisomerase I pathways respectively. In the studied set, the trifluoro substituted QAh derivatives: (E)-N'-(4-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazid and (E)-N'-(3-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazide are determined to be potential leads, indicated from their best docked scores, relative ligand efficiency, and significant structural attributes evaluated by ab initio simulations. The only setback being their partition co-efficient that retrieved a red flag in the evaluation of their Lipinski parameters. The experimental in vitro studies confirmed the significant enhancement as COX-2 inhibitors and appreciable enhancement in MTT assay of breast and skin cancer cell lines. Significantly, trifluoro substituent in the quinoline scaffold can be reasoned to note the excellent binding affinity to all the evaluated drug targets.

  15. Expression of BMP2, TLR3, TLR4 and COX2 in colorectal polyps, adenoma and adenocarcinoma.

    Science.gov (United States)

    Xiang, Li; Wang, Shiqi; Jin, Xianqing; Duan, Wenjuan; Ding, Xionghui; Zheng, Chang

    2012-11-01

    The initiation and development of colorectal cancer is closely associated with the malignant transformation of colorectal polyps. The aim of this study was to analyze the expression of the bone morphogenetic protein-2 (BMP2), toll-like receptor 3 (TLR3), TLR4 and cyclooxygenase-2 (COX2) proteins in colorectal polyps, adenoma and adenocarcinoma. An immunohistochemical streptavidin-peroxidase (SP) method was used to examine the expression of MBP2, TLR4, TLR3 and COX2 in 20 colorectal juvenile polyps and 15 colorectal polyps of hamartomatous polyposis obtained from children, and 20 colorectal adenomas and 20 colorectal adenocarcinomas obtained from adults. A comparison of the expression levels of TLR3 among the groups revealed a gradual downward trend from the colorectal juvenile polyp group to the colorectal hamartomatous polyposis, adenoma and adenocarcinoma groups, respectively. The expression level of TLR3 was significantly lower in the colorectal adenocarcinoma group (ppolyp, hamartomatous polyposis, adenoma and adenocarcinoma groups. These three protein molecules may be significant in the development and malignant transformation of colorectal polyps.

  16. Effects of nimesulide, a selective COX-2 inhibitor, on cardiovascular function in 2 rat models of diabetes.

    Science.gov (United States)

    Leung, Joanne Y T; Pang, Catherine C Y

    2014-07-01

    Cyclooxygenase-2 (COX-2) has been found to be activated in diabetes. We investigated whether nimesulide (selective COX-2 inhibitor) alters cardiovascular responses to adrenaline in 2 rat models of diabetes. Wistar rats (5-week old) were continuously fed a normal or high-fructose diet (60% of caloric intake). At week 2, half of the rats in each diet regimen were given streptozotocin (STZ) (60 mg/kg, intravenously). At week 6, cardiovascular effects of adrenaline (6 and 16 × 10 mol·kg·min, intravenously) were measured in 4 groups of thiobutabarbital-anesthetized rats (control, fructose, STZ, and fructose-streptozotocin [F-STZ]) before and after the injection of nimesulide (3 mg/kg, intravenously). Both the STZ and F-STZ groups exhibited hyperglycemia and significantly (P < 0.05) reduced left ventricular contractility, mean arterial pressure, arterial and venous resistance, and mean circulatory filling pressure (index of venous tone) responses to adrenaline, relative to the control and fructose groups. Nimesulide did not affect responses in the control and fructose groups but increased the venous and, to a less extent, arterial constriction to adrenaline in both the groups of diabetic rats. The cardiac contractile responses, however, were not altered after nimesulide treatment. The results show that nimesulide partially restored arterial and venous constriction to adrenaline in rats with STZ- and F-STZ-induced diabetes.

  17. Intestinal barrier dysfunction and increased COX-2 gene expression in the gut of elderly rats with acute pancreatitis.

    Science.gov (United States)

    Barbeiro, Denise Frediani; Koike, Marcia Kiyomi; Coelho, Ana Maria Mendonça; da Silva, Fabiano Pinheiro; Machado, Marcel Cerqueira César

    2016-01-01

    The clinical course of acute pancreatitis can vary from mild to severe. In its most severe manifestation, acute pancreatitis is associated with an exacerbated systemic inflammatory response and high mortality rates. The severe form of acute pancreatitis is more frequent in elderly patients than in young patients, but the mechanisms underlying this difference are still under investigation. Rats were divided into two groups as follows: Group 1, young rats; and Group 2, old rats. Acute pancreatitis group was induced by a retrograde injection of a sodium taurocholate solution into the biliopancreatic duct. Using this model of acute pancreatic injury, we designed a study to investigate possible differences in microbial translocation and characteristics of the intestinal barrier between elderly and young rats. There was a significantly higher number of bacterial colonies in the pancreas of elderly rats compared with young rats following pancreas injury, which was associated with a more severe local intestinal inflammatory response that included elevated gene expression of COX-2 and a decreased gene expression of tight junction proteins. We conclude that intestinal damage during acute pancreatitis is exacerbated in elderly rats compared with young rats and that COX-2 inhibition could be a potential therapeutic target to offer tailored treatment for acute pancreatitis in the elderly. Copyright © 2015 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  18. Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels

    DEFF Research Database (Denmark)

    Zaharko, O.; Cervellino, A.; Tsurkan, V.

    2010-01-01

    Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al1−xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J2 is gradually superseded...... by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third......-neighbor exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1−xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher...

  19. Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity

    OpenAIRE

    Duan, Yuzhong; Chen, Fanglin; Zhang, Anmei; Zhu, Bo; Sun, Jianguo; Xie, Qichao; Chen, Zhengtang

    2014-01-01

    Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE2 in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE2 upregulation, IκBα degradation, NFκB activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and PGE2 levels, but the PTP inh...

  20. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion.

    Science.gov (United States)

    Fonseca, Yris Maria; Catini, Carolina Dias; Vicentini, Fabiana T M C; Nomizo, Auro; Gerlach, Raquel Fernanda; Fonseca, Maria José Vieira

    2010-02-17

    Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Firstly, the physico-chemical composition of marigold extract (ME) (hydroalcoholic extract) was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL. However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin

  1. To Investigate the Therapeutic Efforts of the COX-2 Inhibitor NS-398 as a Single Agent, and in Combination with Vitamin D, in Vitro and in Vivo

    National Research Council Canada - National Science Library

    Lee, Yi-Fen

    2008-01-01

    .... We have identified a cross-talk between vitamin D and COX-2 inhibitor, two chemopreventative agents for prostate cancer, and conducted series investigations of their anti-prostate cancer effects...

  2. Cyclooxygenase 2 (COX2 and Peroxisome Proliferator-Activated Receptor Gamma (PPARG Are Stage-Dependent Prognostic Markers of Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Stefanie Meyer

    2010-01-01

    TMA-1 contained normal and tumor tissues (n=3448 from 47 organs including skin neoplasms (n=323; TMA-2 88 primary MM, 101 metastases, and 161 benign nevi. Based on a biomodulatory approach combining COX/PPAR-targeting with metronomic low-dose chemotherapy metastases of 36 patients participating in a randomized trial with metastatic (stage IV melanoma were investigated using TMA-3. COX2/PPARG immunoreactivity significantly increased from nevi to primary MM and metastases; COX2 positivity was associated with advanced Clark levels and shorter recurrence-free survival. Patients with PPARG-positive metastases and biomodulatory metronomic chemotherapy alone or combined with COX2/PPARG-targeting showed a significantly prolonged progression-free survival. Regarding primary MM, COX2 expression indicates an increased risk of tumor recurrence. In metastatic MM, PPARG expression may be a predicitive marker for response to biomodulatory stroma-targeted therapy.

  3. Correlation analysis between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer.

    Science.gov (United States)

    Qiu, Xiaoming; Mei, Jixin; Yin, Jianjun; Wang, Hong; Wang, Jinqi; Xie, Ming

    2017-09-01

    This study investigated expression of proliferating cell nuclear antigen (PCNA), proliferation-associated nuclear antigen (Ki-67) and cyclooxygenase-2 (COX-2) in tissues of breast invasive ductal carcinoma, and analyzed the correlations between these indexes and X-ray features in mammography. A total of 90 patients who were admitted to Huangshi Central Hospital and diagnosed as breast invasive ductal carcinoma from January 2014 to January 2016 were selected. The expression of PCNA, Ki-67 and COX-2 in cancer tissues and cancer-adjacent normal tissues of patients were detected by immunohistochemical staining, and X-ray features in mammography of patients were observed. By using Spearman correlation analysis, the correlations between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer were investigated. As a result, the positive expression rates of PCNA, Ki-67 and COX-2 in cancer tissues of the patient groups were respectively 42.2, 45.6 and 51.1%, which were significantly higher than those in cancer-adjacent normal tissues of the control group (pCOX-2 expression in cancer tissues of the patient group was associated with clinical staging and lymphatic metastasis (p0.05). PCNA, Ki-67 and COX-2 expression in cancer tissues of the patient group had no correlation with the existence of lumps and localized density-increased shadows (p>0.05), but were associated with manifestations of architectural distortion, calcification as well as skin and nipple depression (pCOX-2 in cancer tissues of the patient group (r=0.676, pCOX-2 (r=0.724, p0.05). In conclusion, PCNA, Ki-67 and COX-2 expression is of great significance in the occurrence, invasion and metastasis of breast invasive ductal carcinoma. There is a strong correlation between PCNA, Ki-67 and COX-2 expression levels and X-ray features in mammography in breast invasive ductal carcinoma. The application of X-ray features in mammography can evaluate the expression levels of PCNA, Ki-67 and

  4. The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-Induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Sawako Ikeoka

    2016-05-01

    Full Text Available An in vitro assay method was established to measure the activity of cellular DNA polymerases (Pols in cultured normal human epidermal keratinocytes (NHEKs by modifying Pol inhibitor activity. Ultraviolet (UV irradiation enhanced the activity of Pols, especially DNA repair-related Pols, in the cell extracts of NHEKs. The optimal ultraviolet B (UVB exposure dose and culture time to upregulate Pols activity was 100 mJ/cm2 and 4-h incubation, respectively. We screened eight extracts of medicinal plants for enhancement of UVB-exposed cellular Pols activity using NHEKs, and found that rose myrtle was the strongest Pols enhancer. A Pols’ enhancement compound was purified from an 80% ethanol extract of rose myrtle, and piceatannol was isolated by spectroscopic analysis. Induction of Pol activity involved synergy between UVB irradiation and rose myrtle extract and/or piceatannol. Both the extract and piceatannol reduced UVB-induced cyclobutane pyrimidine dimer production, and prevented UVB-induced cytotoxicity. These results indicate that rose myrtle extract and piceatannol, its component, are potential photo-protective candidates for UV-induced skin damage.

  5. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Verification of a decision analytic model assumption using real-world practice data: implications for the cost effectiveness of cyclo-oxygenase 2 inhibitors (COX-2s).

    Science.gov (United States)

    Cox, Emily R; Motheral, Brenda; Mager, Doug

    2003-12-01

    To verify the gastroprotective agent (GPA) rate assumption used in cost-effectiveness models for cyclo-oxygenase 2 inhibitors (COX-2s) and to re-estimate model outcomes using GPA rates from actual practice. Prescription and medical claims data obtained from January 1, 1999, through May 31, 2001, from a large preferred provider organization in the Midwest, were used to estimate GPA rates within 3 groups of patients aged at least 18 years who were new to nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) and COX-2 therapy: all new NSAID users, new NSAID users with a diagnosis of rheumatoid arthritis (RA) or osteoarthritis (OA), and a matched cohort of new NSAID users. Of the more than 319,000 members with at least 1 day of eligibility, 1900 met the study inclusion criteria for new NSAID users, 289 had a diagnosis of OA or RA, and 1232 were included in the matched cohort. Gastroprotective agent estimates for nonselective NSAID and COX-2 users were consistent across all 3 samples (all new NSAID users, new NSAID users with a diagnosis of OA or RA, and the matched cohort), with COX-2 GPA rates of 22%, 21%, and 20%, and nonselective NSAID GPA rates of 15%, 15%, and 18%, respectively. Re-estimation of the cost-effectiveness model increased the cost per year of life saved for COX-2s from $18,614 to more than $100,000. Contrary to COX-2 cost-effectiveness model assumptions, the rate of GPA use is positive and marginally higher among COX-2 users than among nonselective NSAID users. These findings call into question the use of expert opinion in estimating practice pattern model inputs prior to a product's use in clinical practice. A re-evaluation of COX-2 cost-effectiveness models is warranted.

  7. Suberanilohydroxamic acid prevents TGF-β1-induced COX-2 repression in human lung fibroblasts post-transcriptionally by TIA-1 downregulation.

    Science.gov (United States)

    Pasini, Alice; Brand, Oliver J; Jenkins, Gisli; Knox, Alan J; Pang, Linhua

    2018-03-17

    Cyclooxygenase-2 (COX-2), with its main antifibrotic metabolite PGE 2 , is regarded as an antifibrotic gene. Repressed COX-2 expression and deficient PGE 2 have been shown to contribute to the activation of lung fibroblasts and excessive deposition of collagen in pulmonary fibrosis. We have previously demonstrated that COX-2 expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) is epigenetically silenced and can be restored by epigenetic inhibitors. This study aimed to investigate whether COX-2 downregulation induced by the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in normal lung fibroblasts could be prevented by epigenetic inhibitors. We found that COX-2 protein expression and PGE 2 production were markedly reduced by TGF-β1 and this was prevented by the pan-histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) and to a lesser extent by the DNA demethylating agent Decitabine (DAC), but not by the G9a histone methyltransferase (HMT) inhibitor BIX01294 or the EZH2 HMT inhibitor 3-deazaneplanocin A (DZNep). However, chromatin immunoprecipitation assay revealed that the effect of SAHA was unlikely mediated by histone modifications. Instead 3'-untranslated region (3'-UTR) luciferase reporter assay indicated the involvement of post-transcriptional mechanisms. This was supported by the downregulation by SAHA of the 3'-UTR mRNA binding protein TIA-1 (T-cell intracellular antigen-1), a negative regulator of COX-2 translation. Furthermore, TIA-1 knockdown by siRNA mimicked the effect of SAHA on COX-2 expression. These findings suggest SAHA can prevent TGF-β1-induced COX-2 repression in lung fibroblasts post-transcriptionally through a novel TIA-1-dependent mechanism and provide new insights into the mechanisms underlying its potential antifibrotic activity. Copyright © 2018. Published by Elsevier B.V.

  8. Studies on the Contribution of Cox-2 Expression in the Progression of Oral Squamous Cell Carcinoma and H-Ras Activation.

    Science.gov (United States)

    Moazeni-Roodi, Abdolkarim; Allameh, Abdolamir; Harirchi, Iraj; Motiee-Langroudi, Maziar; Garajei, Ata

    2017-04-01

    The aim of this study was to investigate the relationship between the H-ras and Cox-2 gene expression in tumors from Iranian Oral Squamous Cell Carcinoma (OSCC) patients. Fresh tumor biopsies removed from oral cavity were collected from 67 new cases. Total RNA was extracted from biopsies and processed for quantification of H-ras and Cox-2 specific RNA expression using real-time PCR (QPCR). In addition, 59 gingival biopsies from apparently normal individuals were processed for QPCR assays. The results showed that Cox-2 expression at mRNA levels was at minimal levels in normal gingival biopsies. However, there was a surge in Cox-2 expression in tumor tissues (11.5 fold, p Cox-2 expression was elevated depending on the tumor grade and there was a 1.7 fold increase (p = 0.003) in tumors diagnosed as MD/PD compared to that pathologically diagnosed as WD. This inflammatory marker was increased more significantly in smoker patients compared to non-smoker matching group. The H-ras expression at mRNA levels was significantly higher in OSCC samples compared to normal gingival (3 fold; p = 0.044). This expression was significantly higher in tumors diagnosed as MD/PD compared to WD (1.59 fold, p = 0.033). In conclusion, we found a correlation between H-ras expression and Cox-2 induction in OSCC tissue, suggesting that together these genes are contributing to cancer progression. Cox-2 is an early event in cancers of mucosal epithelial cells and a surge in Cox-2 expression in OSCC could be partly due to pro-inflammatory factors such as smoking.

  9. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    Science.gov (United States)

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  10. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells.

    Science.gov (United States)

    Shan, Yujuan; Zhang, Lanwei; Bao, Yongping; Li, Baolong; He, Canxia; Gao, Mingming; Feng, Xue; Xu, Weili; Zhang, Xiaohong; Wang, Shuran

    2013-06-01

    Metastasis and recurrence of bladder cancer are the main reasons for its poor prognosis and high mortality rates. Because of its biological activity and high metabolic accumulation in urine, sulforaphane, a phytochemical exclusively occurring in cruciferous vegetables, has a powerful and specific potential for preventing bladder cancer. In this paper, sulforaphane is shown to significantly suppress a variety of biochemical pathways including the attachment, invasion, migration and chemotaxis motion in malignant transitional bladder cancer T24 cells. Transfection with cyclooxygenase-2 (COX-2) overexpression plasmid largely abolished inhibition of MMP2/9 expression as well as cell invasive capability by sulforaphane. Moreover, sulforaphane inhibited the epithelial-to-mesenchymal transition (EMT) process which underlies tumor cell invasion and migration mediated by E-cadherin induction through reducing transcriptional repressors, such as ZEB1 and Snail. Under conditions of over-expression of COX-2 and/or MMP2/9, sulforaphane was still able to induce E-cadherin or reduce Snail/ZEB1 expression, suggesting that additional pathways might be involved. Further studies indicated that miR-200c played a role in the regulation of E-cadherin via the ZEB1 repressor but not by the Snail repressor. In conclusion, the EMT and two recognized signaling pathways (COX-2/MMP2,9/ ZEB1, Snail and miR-200c/ZEB1) are all targets for sulforaphane. This study indicated that sulforaphane may possess therapeutic potential in preventing recurrence of human bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Structural Probing, Screening and Structure-Based Drug Repositioning Insights into the Identification of Potential Cox-2 Inhibitors from Selective Coxibs.

    Science.gov (United States)

    Bommu, Uma Devi; Konidala, Kranthi Kumar; Pamanji, Rishika; Yeguvapalli, Suneetha

    2017-12-13

    The rate-limiting enzyme cyclooxygenase-2 (COX-2) is considered as an insightful prognostic target for non-small cell lung cancer (NSCLC) therapy. Now, administration and prolonged utilization of selective COX-2 inhibitors (COXIBs) towards moderating the NSCLC has been associated with different side effects. In the present study, we focused on the structure-based drug repositioning approaches for predicting therapeutic potential de novo candidates for human COX-2. Due to discrepancies in the eminence of x-ray diffraction structures, creates a big barrier in drug discovery approach. Hence, the adaptable COX-2 structure was investigated using multi-template modeling method. Next, a dataset of twenty-six celebrex-associated optimized scaffolds were screened from ZINC database. Comparative docking approaches were then utilized to identify five compounds as best binders to the active site of COX-2 structures and strongly agree with enormous experimental consequences. MD simulations of regarded protein-ligand complexes reveals that lead molecules were stabilized dynamically in inside the cyclooxygenase site by forming potential salt bridges with Tyr 348 , Tyr 385 and Ser 530 residues. These significant results revealed that, identified druggables could prevent the tyrosyl radicals and prostaglandin production that reduces NSCLC progression. Furthermore, pharmacokinetics assets of respected ligands were analyzed, which incorporates similarity ensemble approach, druglikeness and ADMET properties. Finally, the identified novel candidates could serve as COX-2 inhibitors for NSCLC therapy, and coxibs are the best choices for designing new scaffolds to treat cyclooxygenases regard disorders.

  12. The Expression of HSD17B12 Is Associated with COX-2 Expression and Is Increased in High-Grade Epithelial Ovarian Cancer.

    Science.gov (United States)

    Kemiläinen, Heidi; Huhtinen, Kaisa; Auranen, Annika; Carpén, Olli; Strauss, Leena; Poutanen, Matti

    2018-01-01

    The aim of this study was to characterize the expression of hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12), an enzyme involved in the synthesis of arachidonic acid (AA), in ovarian cancer, and to study its coexpression with its upstream and downstream enzymes in the AA pathway, namely elongation of very long chain fatty acids protein 5 (ELOVL5) and cyclooxygenase-2 (COX-2), respectively. Samples from benign and malignant ovarian neoplastic lesions were immunohistochemically stained with HSD17B12, ELOVL5, and COX-2. The staining intensities were quantified with the QuantCenter program, and the results were confirmed with visual inspection. Statistical significances were calculated with the Student t test, the Mann-Whitney test, linear regression, or ANOVA. The expression of the HSD17B12, ELOVL5, and COX-2 enzymes increased according to the grade of the endometrioid ovarian adenocarcinomas. In contrast, in serous adenocarcinomas, staining with ELOVL5 was constantly weak, whereas the expression of HSD17B12 and COX-2 increased with the grade or FIGO stage of the cancer, respectively. The expression of HSD17B12 increased along with the severity of ovarian cancer, and the expression mimicked COX-2 expression and intensity. This further suggests the involvement of HSD17B12 in AA production, and its coexpression with COX-2 indicates a role for the enzyme in the increased prostaglandin production during ovarian cancer progression. © 2018 S. Karger AG, Basel.

  13. Mitochondrial oxidative stress activates COX-2/mPGES-1/PGE2 cascade induced by albumin in renal proximal tubular cells.

    Science.gov (United States)

    Zhuang, Yibo; Wang, Chenhu; Wu, Chunfeng; Ding, Dan; Zhao, Fei; Hu, Caiyu; Gong, Wei; Ding, Guixia; Zhang, Yue; Chen, Lihong; Yang, Guangrui; Zhu, Chunhua; Zhang, Aihua; Jia, Zhanjun; Huang, Songming

    2018-02-06

    COX-2/mPGES-1/PGE2 cascade is of importance in the pathogenesis of kidney injury. Meanwhile, recent studies documented a detrimental role of mitochondrial oxidative stress in kidney diseases. The present study was undertaken to investigate the role of mitochondrial oxidative stress in albumin-induced activation of COX-2/mPGES-1/PGE2 cascade in renal proximal tubular cells. Following albumin overload in mice, we observed a significant increase of oxidative stress and mitochondrial abnormality determined by transmission electron microscope, which was attenuated by the administration of MnTBAP, a mitochondrial SOD2 mimic. More interestingly, albumin overload-induced upregulation of COX-2 and mPGES-1 at mRNA and protein levels was largely abolished by MnTBAP treatment in mice. Meanwhile, urinary PGE2 excretion was also blocked by MnTBAP treatment. Furthermore, mouse proximal tubule epithelial cells (mPTCs) were treated with albumin. Similarly, COX-2/mPGES-1/PGE2 cascade was significantly activated by albumin in dose- and time-dependent manners, which was abolished by MnTBAP treatment in parallel with a blockade of oxidative stress. Collectively, the findings from current study demonstrated that mitochondrial oxidative stress could activate COX-2/mPGES-1/PGE2 cascade in proximal tubular cells under the proteinuria condition. Mitochondrial oxidative stress/COX-2/mPGES-1/PGE2 could serve as the important targets for the treatment of proteinuria-associated kidney injury.

  14. Study of COX-2, Ki67, and p53 expression to predict effectiveness of 5-flurouracil, epirubicin and cyclophosphamide with celecoxib treatment in breast cancer patients.

    Science.gov (United States)

    Chow, L W C; Loo, W T Y; Wai, C C Y; Lui, E L H; Zhu, L; Toi, M

    2005-10-01

    Cyclooxygenase-2 (COX-2) affects cell proliferation, apoptosis, and metastasis of breast cancer, and may also be involved in tumor angiogenesis through vascular endothelial growth factor. Ki67 and p53 are common markers of proliferation and apoptosis in tumor cells. This study investigated the change in expression of COX-2, Ki67, and p53 in solid tumors after the administration of chemotherapeutic drugs. Fifty patients were eligible to be treated with preoperative 5-fluorouracil, epirubicin, and cyclophosphamide, with celecoxib (FECC). Tumor tissue samples from 10 patients who, diagnosed with invasive ductal carcinoma, completed chemotherapy were examined immunohistochemically for COX-2, Ki67, and p53. From the 60% of patients who expressed COX-2 and 90% who expressed Ki67 and p53 before treatment, 90% of patients revealed a lower intensity staining for each marker after FECC treatment. However, changes in expression of the three markers did not significantly correlate with tumor size, grade, axillary lymph node status. Immunostained slides clearly showed that the diaminobenzidine intensity was markedly reduced after the three-cycle FECC treatment, which implied the combined regimens be effective to the cancer patients. This study demonstrates a novel relationship between COX-2, Ki67, and p53 expression of human breast invasive ductal carcinomas. This functional relationship provides support for a potential therapeutic role of COX-2 inhibitors in human breast cancer.

  15. Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity.

    Science.gov (United States)

    Duan, Yuzhong; Chen, Fanglin; Zhang, Anmei; Zhu, Bo; Sun, Jianguo; Xie, Qichao; Chen, Zhengtang

    2014-01-01

    Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE(2) in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE(2) upregulation, IκBα degradation, NFκB activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and PGE(2) levels, but the PTP inhibitor peroxovanadium (POV) significantly increased the COX-2 mRNA and PGE(2) levels. Furthermore, the PTP inhibitor mitigated the inhibitory effect of aspirin on COX-2 and PGE(2) upregulation and NF-κB activation, whereas the PKC inhibitor enhanced the inhibitory effects of aspirin on the production of COX-2 and PGE(2). Our data indicate a novel mechanism by which aspirin acts as a potent anti-inflammatory agent in alveolus macrophages and ALI.

  16. Glycoprotein isolated from Ulmus davidiana Nakai regulates expression of iNOS and COX-2 in vivo and in vitro.

    Science.gov (United States)

    Lee, Sei-Jung; Lim, Kye-Taek

    2007-06-01

    This study was carried out to investigate the anti-inflammatory potential of a 116-kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN glycoprotein, 116 kDa) in lipopolysaccaride (LPS)-treated RAW 264.7 cells and dextran sodium sulfate (DSS)-treated A/J mouse. In LPS (1 microg/ml)-stimulated RAW 264.7 cells, we found that UDN glycoprotein has dose-dependent blocking effects of reactive oxygen species (ROS) and inducible nitric oxide (NO) production. In addition, the results obtained from electrophoretic mobility shift assay (EMSA) and western blot analysis showed that UDN glycoprotein dose-dependently inhibits DNA binding activity of nuclear factor-kappa B (NF-kappaB), and activities of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and manganese-superoxide dismutases (Mn-SOD) in LPS-stimulated RAW 264.7 cells. Similar results after treatment with UDN glycoprotein were also brought in the DSS-stimulated A/J mouse colitis. The increased disease activity index (DAI) and the shortened large intestine in DSS (5%)-treated A/J mouse were normalized by treatment with UDN glycoprotein [40 mg/kg body weight (BW)]. These intestinal protective activities of UDN glycoprotein are caused by blockage of plasmic thiobarbituric acid reactive substances (TBARS) formation, nitric oxide (NO) production, and lactate dehydrogenase (LDH) release, accompanying the inhibition of colonic inflammatory signal mediators (NF-kappaB, iNOS, and COX-2). These results in this study were presumably come from anti-oxidative effect of UDN glycoprotein in either LPS-stimulated RAW 264.7 cells or DSS-stimulated A/J mouse colitis. Therefore, we speculate that UDN glycoprotein has anti-inflammatory potential at the early inflammation stage.

  17. Anti-inflammatory effects of shea butter through inhibition of iNOS, COX-2, and cytokines via the Nf-κB pathway in LPS-activated J774 macrophage cells.

    Science.gov (United States)

    Verma, Nandini; Chakrabarti, Rina; Das, Rakha H; Gautam, Hemant K

    2012-01-12

    Shea butter is traditionally used in Africa for its anti-inflammatory and analgesic effects. In this study we explored the anti-inflammatory activities of the methanolic extract of shea butter (SBE) using lipopolysaccharide (LPS)-induced murine macrophage cell line J774. It was observed that SBE significantly reduced the levels of LPS-induced nitric oxide, Tumor necrosis factor-α (TNF-α), interleukins, 1β (IL-1β), and -12 (IL-12) in the culture supernatants in a dose dependent manner. Expression of pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were also inhibited by SBE. These anti-inflammatory effects were due to an inhibitory action of SBE on LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-12 mRNA expressions. Moreover, SBE efficiently suppressed IκB phosphorylation and NF-κB nuclear translocation induced by LPS. These findings explain the molecular bases of shea butter's bioactivity against various inflammatory conditions and substantiate it as a latent source of novel therapeutic agents.

  18. Overexpression of farnesoid X receptor in small airways contributes to epithelial to mesenchymal transition and COX-2 expression in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Chen, Bi; You, Wen-Jie; Xue, Shan; Qin, Hui; Zhao, Xu-Ji; Zhang, Miao; Liu, Xue-Qing; Zhu, Shu-Yang; Jiang, Han-Dong

    2016-11-01

    Epithelial-mesenchymal transition (EMT) and cyclooxygenase-2 (COX-2) contribute to airway remodelling and inflammation in chronic obstructive pulmonary disease (COPD). Recent data suggest that the farnesoid X receptor (FXR), a nuclear receptor traditionally considered as bile acid-activated receptor, is also expressed in non-classical bile acids target tissues with novel functions beyond regulating bile acid homeostasis. This study aimed to investigate the potential role of FXR in the development of COPD, as well as factors that affect FXR expression. Expression of FXR, EMT biomarkers and COX-2 was examined by immunohistochemistry in lung tissues from non-smokers, smokers, and smokers with COPD. The role of FXR in TGF-β1-induced EMT and COX-2 expression in human bronchial epithelial (HBE) cells was evaluated in vitro . Factors regulating FXR expression were assessed in cultured HBE cells and a cigarette smoke-induced rat model of COPD. Expression of FXR, EMT markers and COX-2 was significantly elevated in small airway epithelium of COPD patients compared with controls. The staining scores of FXR in small airway epithelium were negatively related with FEV 1 % of predicted of smokers without and with COPD. FXR agonist GW4064 remarkably enhanced and FXR antagonist Z-Guggulsterone significantly inhibited EMT changes in TGF-β1-treated HBE cells. Both chenodeoxycholic acid (CDCA) and GW4064 increased COX-2 expression in HBE cells, whereas Z-Guggulsterone dramatically restrained CDCA-induced COX-2 expression. Finally, FXR expression is induced by IL-4 and IL-13 in HBE cells, as well as by cigarette smoke exposure in a rat model of COPD. Overexpression of FXR in small airway may contribute to airway remodelling and inflammation in COPD by regulating EMT and COX-2 expression.

  19. Toward the understanding of the molecular basis for the inhibition of COX-1 and COX-2 by phenolic compounds present in Uruguayan propolis and grape pomace.

    Science.gov (United States)

    Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena

    2016-12-01

    Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.

  20. Clinical Significance of Hu-Antigen Receptor (HuR) and Cyclooxygenase-2 (COX-2) Expression in Human Malignant and Benign Thyroid Lesions.

    Science.gov (United States)

    Giaginis, Constantinos; Alexandrou, Paraskevi; Delladetsima, Ioanna; Karavokyros, Ioannis; Danas, Eugene; Giagini, Athina; Patsouris, Efstratios; Theocharis, Stamatios

    2016-01-01

    Hu-antigen R (HuR) is considered to play a crucial role in tumor formation and growth by binding to mRNAs encoding proteins such as Cyclooxygenase-2 (COX-2) and inducing their expression via mRNA stabilization and/or altered translation. The present study aimed to evaluate the clinical significance of HuR and COX-2 proteins’ expression in human benign and malignant thyroid lesions. HuR and COX-2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 98 patients with benign (n = 48) and malignant (n = 50) lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity and recurrence risk rate. Enhanced HuR and COX-2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0073 and p = 0.0016, respectively), as well as in papillary carcinomas compared to hyperplastic nodules (p = 0.0039 and p = 0.0009, respectively). Positive associations of both HuR and COX-2 expression with follicular cells’ proliferation rate were also noted (p = 0.0087 and p = 0.0127, respectively). In malignant thyroid lesions, elevated COX-2 expression was significantly associated with female patients’ gender (p = 0.0381) and the presence of lymph node metastases (p = 0.0296). The present data support evidence that both HuR and COX-2 may be involved in the malignant state of thyroid neoplasia and may be utilized in the diagnosis of malignant thyroid tumors.

  1. Ekspresi COX-2 dan Jumlah Neutrofil Fase Inflamasi pada Proses Penyembuhan Luka Setelah Pemberian Sistemik Ekstrak Etanolik Rosela (Hibiscus sabdariffa (studi in vivo pada Tikus Wistar

    Directory of Open Access Journals (Sweden)

    Endah Kusumastuti

    2014-06-01

    Full Text Available Inflamasi merupakan respon alami tubuh terhadap adanya kerusakan jaringan. Salah satu medikamen untuk mengatasi inflamasi adalah antiinflamasi non steroid (AINS. Penggunaan AINS mempunyai beberapa efek samping dan dalam beberapa hal penggunaan tanaman obat dinilai lebih aman. Rosela merupakan salah satu tanaman obat yang mempunyai potensi sebagai antiinflamasi. Penelitian ini bertujuan untuk mengetahui efek pemberian sistemik ekstrak etanolik rosela terhadap ekspresi COX-2 dan jumlah neutrofil fase inflamasi pada proses penyembuhan luka. Bunga rosela didapatkan dari perkebunan di Dusun Bulusari Desa Pojok Kecamatan Tarokan Kabupaten Kediri Jawa Timur. Pembuatan ekstrak rosela dilakukan di LPPT unit I UGM Yogjakarta dengan cara perkolasi. Tikus putih galur Wistar sebanyak 36 ekor diberi perlukaan dengan punch biopsi ɵ 3 mm pada mukosa bukal. Subjek dibagi menjadi 3 kelompok, masing-masing kelompok 12 ekor tikus. Pembagian kelompok terdiri dari kontrol negatif (saline, kontrol positif (ibuprofen 20 mg/kg BB dan perlakuan (ekstrak rosela 500 mg/kg BB. Pemberian minum sesuai kelompoknya sehari sekali selama 4 hari. Pada hari ke-1, ke-2, ke-3 dan ke-4 tikus dikorbankan lalu jaringan mukosa yang mengalami perlukaan dibuat preparat histologis. Pewarnaan Hematoksilin Eosin (HE dilakukan untuk mengamati jumlah neutrofil. Ekspresi COX-2 diamati pada preparat dengan pewarnaan imunohistokimia menggunakan rabbit polyclonal antibody COX-2 (Lab Vision, USA. Jumlah neutrofil dan ekspresi COX-2 dihitung di bawah mikroskop cahaya lalu data dianalisi menggunakan ANAVA dan LSD. Hasil penelitian menunjukkan bahwa ekspresi COX-2 dan jumlah neutrofil lebih rendah pada kelompok perlakuan dibanding kontrol. Pengamatan klinis pada hari ke-4 juga tampak luka seluruh subjek telah menutup sempurna setelah pemberian minum rosela. Disimpulkan bahwa ekstrak etanolik rosela mempunyai kemampuan menghambat ekspresi COX-2 dan menurunkan jumlah neutrofil sehingga dapat digunakan

  2. Efficacy and safety of COX-2 inhibitors for advanced non-small-cell lung cancer with chemotherapy: a meta-analysis.

    Science.gov (United States)

    Dai, Ping; Li, Jing; Ma, Xiao-Ping; Huang, Jian; Meng, Juan-Juan; Gong, Ping

    2018-01-01

    The study of cyclooxygenase-2 (COX-2) inhibitors is now mired in controversy. We performed a meta-analysis to assess the efficacy and safety profile of COX-2 inhibitors in patients with advanced non-small-cell lung cancer (NSCLC). A literature search of PubMed, EMBASE, the Cochrane Central databases, and ClinicalTrials.gov, up until March 26, 2017, identified relevant randomized controlled trials. Data analysis was performed using Stata 12.0. Six eligible trials (1,794 patients) were selected from the 407 studies that were identified initially. A significant difference, favoring COX-2 inhibitors plus chemotherapy over chemotherapy alone, was observed in the overall response rate (relative risk [RR] =1.25, 95% confidence interval [CI]: 1.06-1.48). Further, we conducted two subgroup analyses according to the type of COX-2 inhibitors (celecoxib, rofecoxib, or apricoxib) and treatment line (first or second chemotherapy). The first-line treatment includes: NP (changchun red bean + cisplatin or carboplatin), GP (double fluorine cytidine + cisplatin or carboplatin), or TP (paclitaxel + cisplatin or carboplatin, docetaxel + cisplatin or carboplatin). The second-line treatment includes two internationally recognized compounds, one is docetaxel and the other is the pemetrexed, both of which are individually selected. In subgroup analysis, significantly increased overall response rate (ORR) results were found for rofecoxib plus chemotherapy (RR =1.56, 95% CI: 1.08-2.25) and COX-2 inhibitor given with first-line chemotherapy (RR =1.27, 95% CI: 1.07-1.50). However, there was no difference between COX-2 inhibitors plus chemotherapy and chemotherapy alone in overall survival (hazard ratio [HR] =1.04, 95% CI: 0.91-1.18), progression-free survival (HR =0.97, 95% CI: 0.86-1.10), and 1-year survival rate (RR =1.03, 95% CI: 0.89-1.20). Toxicity did not differ significantly between COX-2 inhibitors plus chemotherapy and chemotherapy alone with the exception of leukopenia (RR =1.21, 95

  3. Signal Transduction Pathways (MAPKs, NF-κB, and C/EBP) Regulating COX-2 Expression in Nasal Fibroblasts from Asthma Patients with Aspirin Intolerance

    Science.gov (United States)

    Garcia-Garcia, Francesc Josep; Mullol, Joaquim; Perez-Gonzalez, Maria; Pujols, Laura; Alobid, Isam

    2012-01-01

    Background Recent studies have revealed that cyclooxygenase-2 (COX-2) expression is down-regulated in aspirin-induced asthma (AIA). Various signal pathways (MAPKs, NF-κB and C/EBP) are involved in COX-2 regulation. Objective To investigate the regulation of COX-2 expression through MAP-kinase pathway activation and nuclear factor translocation in aspirin-induced asthma (AIA). Methods Fibroblasts were isolated from specimens of nasal mucosa (NM, N = 5) and nasal polyps (NP, N = 5). After IL-1β (1 ng/ml) incubation, COX-2 and phosphorylated forms of ERK, JNK and p38 MAPK were measured by Western blot. MAPK’s role in IL-1β-induced COX-2 expression was assessed by treating cells with ERK (PD98059), JNK (SP600125) and p38 MAPK (SB203580) inhibitors (0.1–10 µM) prior to IL-1β exposure. NF-κB and C/EBP nuclear translocation was measured by Western blot and TransAM® after IL-1β (10 ng/ml) exposure. Results No differences were observed in the MAPK phosphorylation time-course between NM and NP-AIA fibroblasts. The p38 MAPK inhibitor at 10 µM significantly reduced IL-1β-induced COX-2 expression in NM fibroblasts (85%). In NP-AIA fibroblasts the COX-2 inhibition (65%) at 1 and 10 µM was not statistically significant compared to non-treated cells. ERK and JNK inhibitors had no significant effect in either the NM or NP-AIA cultures. The effect of IL-1β on NF-κB and C/EBP subunits’ nuclear translocation was similar between NM and NP-AIA fibroblasts. Conclusions These results suggest that p38 MAPK is the only MAPK involved in IL-1β-induced COX-2 expression. NM and NP-AIA fibroblasts have similar MAPK phosphorylation dynamics and nuclear factor translocation (NF-κB and C/EBP). COX-2 downregulation observed in AIA patients appears not to be caused by differences in MAPK dynamics or transcription factor translocation. PMID:23240010

  4. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala (Sweden); Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Kubota, Akira, E-mail: akubota@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Timme-Laragy, Alicia R., E-mail: atimmelaragy@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003 (United States); Woodin, Bruce, E-mail: bwoodin@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States)

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  5. Synthesis, biological evaluation and docking study of a new series of di-substituted benzoxazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents.

    Science.gov (United States)

    Kaur, Avneet; Pathak, Dharam P; Sharma, Vidushi; Wakode, Sharad

    2018-02-15

    A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a-13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC 50 value of 0.04 µM and 1.02 µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression.

    Science.gov (United States)

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli; Modjtahedi, Helmout; Opara, Elizabeth I

    2017-09-21

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells' cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7's cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.

  7. Deficiency in either COX-1 or COX-2 genes does not affect amyloid beta protein burden in amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Park, Sun Ah; Chevallier, Nathalie; Tejwani, Karishma; Hung, Mary M; Maruyama, Hiroko; Golde, Todd E; Koo, Edward H

    2016-09-09

    Epidemiologic studies indicate that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk for developing Alzheimer's disease (AD). Because the primary mode of action of NSAIDs is to inhibit cyclooxygenase (COX) activity, it has been proposed that perturbed activity of COX-1 or COX-2 contributes to AD pathogenesis. To test the role of COX-1 or COX-2 in amyloid deposition and amyloid-associated inflammatory changes, we examined amyloid precursor protein (APP) transgenic mice in the context of either COX-1 or COX-2 deficiency. Our studies showed that loss of either COX-1 or COX-2 gene did not alter amyloid burden in brains of the APP transgenic mice. However, one marker of microglial activation (CD45) was decreased in brains of COX-1 deficient/APP animals and showed a strong trend in reduction in COX-2 deficient/APP animals. These results suggest that COX activity and amyloid deposition in brain are likely independent processes. Further, if NSAIDs do causally reduce the risks of AD, then our findings indicate that the mechanisms are likely not due primarily to their inhibition on COX or γ-secretase modulation activity, the latter reported recently after acute dosing of ibuprofen in humans and nonhuman primates. Copyright © 2016. Published by Elsevier Inc.

  8. Influence of CYP2C9 and COX-2 Genetic Polymorphisms on Clinical Efficacy of Non-Steroidal Anti-Inflammatory Drugs in Treatment of Ankylosing Spondylitis.

    Science.gov (United States)

    Wang, Yu; Yi, Xiao-Dong; Lu, Hai-Lin

    2017-04-12

    BACKGROUND The aim of this study was to evaluate the relationships of CYP2C9 and COX-2 genetic polymorphisms with therapeutic efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in treatment of ankylosing spondylitis (AS). MATERIAL AND METHODS We enrolled 130 AS inpatients and outpatients in the Arthritis and Rheumatism Department of Peking University First Hospital and 106 healthy people getting routine check-ups between September 2013 and July 2014. CYP2C9 and COX-2 genetic polymorphisms were detected by PCR-RFLP. All AS patients underwent medical treatment and 12-week follow-up treatment. Score differences of BASDAI, ASAS20, ASAS50, and ASAS70 for AS patients with different genotypes before and after treatment were compared. RESULTS In terms of COX-2-1290A/G and -1195G/A gene polymorphism genotype and allele frequency, the case group and control group were obviously different (all P0.05). AS patients had improved BASDAI, ASAS20, ASAS50, and ASAS70 scores after they received NSAID treatment (all Ptreatment of AS and COX-2 gene -1290A/G and -1195G/A polymorphism were associated (all P0.05). CONCLUSIONS COX-2-1290A/G and -1195G/A polymorphism may increase AS risk and they both can be considered as biological indicators for prediction of efficacy of NSAIDs in treatment of AS.

  9. The role of Phosphatidylinositol 3 kinase (PI3K and Cycloxygenase-2 (COX2 in carcinogenesis of colorectal polyps

    Directory of Open Access Journals (Sweden)

    Raul Alberto Anselmi Júnior

    2018-01-01

    Full Text Available Objectives: Determine immunohistochemical expression of Phosphatase and tensin homolog (PTEN, Phosphatidylinositol 3 kinase (PI3K, Cycloxygenase-2 (COX2 and one proliferation marker (Ki67 in colorectal polyps and correlate with clinical and pathological data in search of carcinogenic pathways. Methods: The reports of 297 polyps diagnosed through endoscopy were reviewed for parameters including age, gender, prior colorectal cancer, the presence of multiple polyps, and polyps’ location, appearance and size. Was conducted a microscopic morphometric computerized analysis of immunohistochemical expression using, the selected antibodies and correlated with clinical and pathological variables. Results: The tissue immunohistochemical expression was higher in right colon polyps for the proliferation marker and Phosphatidylinositol 3 kinase (p ≤ 0.0001 and 0.057 respectively. Cycloxygenase-2 and Phosphatase and tensin homolog demonstrated higher tissue immunoexpression in pedunculated polyps (p = 0.009 and 0.002 respectively. Cycloxygenase-2 exhibited higher immunoexpression in larger polyps (p = 0.005. Phosphatidylinositol 3 kinase, Cycloxygenase-2, Phosphatase and tensin homolog and the proliferation marker exhibited higher immunoexpression in high-grade dysplastic polyps (p = 0.031, 0.013, 0.044 and <0.001 respectively. Phosphatase and tensin homolog labeling was higher in polyps with high-grade dysplasia and lower in some of serrated lesions (p = 0.044. Conclusions: The greater expression of the proliferation marker and Phosphatidylinositol 3 kinase in the right colon may be related to right-sided colorectal carcinogenesis. The proliferation marker, Cycloxygenase-2 and Phosphatidylinositol 3 kinase results can be associated with progression of polyps to colorectal cancer. The higher Phosphatase and tensin homolog expression suggests its attempt to control the cell cycle. Resumo: Objetivos: Determinar a expressão imuno-histoquímica de

  10. Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects

    International Nuclear Information System (INIS)

    Corona, Giulia; Deiana, Monica; Incani, Alessandra; Vauzour, David; Assunta Dessi, M.; Spencer, Jeremy P.E.

    2007-01-01

    We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 μg/ml) the number of cells in the G2/M phase increased to 51.82 ± 2.69% relative to control cells (15.1 ± 2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 μg/ml) to exert rapid inhibition of p38 (38.7 ± 4.7%) and CREB (28.6 ± 5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9 ± 9.3%). Our data suggest that olive oil polyphenols may exert chemopreventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development

  11. Search Region of Origin Honey Bee A. mellifera in Indonesia Region Using Mitochondrial DNA intergenic cox1/cox2

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2011-12-01

    Full Text Available Apis mellifera is a favourite honey bee for the beekeepers throughout many countries. This species comprise of 24 subspecies. Based on phylogeography and morphometric evidences, these subspecies have been grouped into four lineage; namely the African (A, Western and Northern Europe (M, Southeastern Europe (C, and Near Eastern (O. Apis mellifera have been imported to Indonesia since 1972, and mostly from Australia. However, until recently there are no data about the A. mellifera subspecies and the origin. Therefore the objective of this research is to determine the lineage of A. mellifera in Indonesia based on mtDNA intergenic region between cox1/cox2 genes. In this region there are two DNA fragments, P and Q fragnant, that can be used to determine the A. mellifera lineage. The methodology used consist of samples collection, DNA isolation, DNA amplification, DNA restriction using DraI enzyme, DNA sequencing, and DNA alignment using Clustal X and MEGA spftwares. DNA fragment amplified by using E2 and H1 primer revealed a 863 bp. Digestion of the region with the DraI restriction enzyme revealed one haplotype, which consist of five DNA fragments. Based on DNA sequences and DNA alignment, A. mellifera in Indonesia was homologue with the C lineage. Its subspecies is A. m. ligustica that lived natively in Italy, they were imported to Indonesia from Australia

  12. In Vitro, In Silico Elucidation of Antiurease Activity, Kinetic Mechanism and COX-2 Inhibitory Efficacy of Coagulansin A of Withania coagulans.

    Science.gov (United States)

    Phull, Abdul Rehman; Hassan, Mubshir; Abbas, Qamar; Raza, Hussain; Haq, Ihsan Ul; Seo, Sung Yum; Kim, Song Ja

    2018-01-01

    Urease enzyme plays a crucial role in the survival of Helicobacter pylori that contributes to different diseases, including peptic ulcer (gastric and duodenal ulcers). Coagulansin A is the steroidal lactone (withanolide) found in plants of solanaceae family such Withania coagulans. The current study was carried out to examine the in vitro urease, COX-2 inhibitory activity and effect on type II collagen expression of coagulansin A. Moreover, we investigated cytotoxic effects on rabbit articular chondrocytes through MTT assay. COX-2 and type II collagen expressions were determined through a Western blot method. Molecular docking and simulation studies of urease (PDBID 4H9M) and COX-2 (PDBID 5F1A) proteins were also performed as an in silico approach. Results showed that COX-2 expression was decreased dose dependably, significantly higher expression of type II collagen was observed at higher doses. In the current study, coagulansin A was found as non-toxic, and showed notable urease inhibitory activity in non-competitive manner with IC 50 23.14 μm in comparison to reference drug thiourea 17.81 μm. Significant decrease in COX-2 expression (40%) and increase in type II collagen (20%) were observed as compared to control. In silico results unveiled the strong binding affinities of coagulansin A with both of these urease and COX-2 proteins. Therefore, herein we proposed the significant antiurease potential of this compound that could be used in treating different diseases such as ulcers. Moreover, detailed in vivo studies and molecular mechanism based studies are suggested. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  13. Elevated Hu-Antigen Receptor (HuR) Expression is Associated with Tumor Aggressiveness and Poor Prognosis but not with COX-2 Expression in Invasive Breast Carcinoma Patients.

    Science.gov (United States)

    Giaginis, Constantinos; Sampani, Anastasia; Kotta-Loizou, Iolly; Giannopoulou, Ioanna; Danas, Eugene; Politi, Ekaterini; Tsourouflis, Gerasimos; Kouraklis, Gregorios; Patsouris, Efstratios; Keramopoulos, Antonios; Nakopoulou, Lydia; Theocharis, Stamatios

    2017-08-14

    Hu-antigen R (HuR), a RNA-binding protein, is considered to play a crucial role in tumor development and progression by stabilizing or regulating a group of cellular mRNAs of cancer-related genes, such as cyclooxygenase-2 (COX-2). The present study aimed to evaluate the clinical significance of HuR and COX-2 expression in invasive breast carcinoma. HuR and COX-2 protein expression was assessed immunohistochemically on paraffin-embedded breast cancer tissue sections obtained from 121 patients and was statistically analyzed with clinicopathological parameters, estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), as well as with tumor cells' proliferative capacity and overall and disease-free patients' survival. High HuR expression was positively associated with larger tumor size and advanced disease stage (p = 0.0234 and p = 0.0361, respectively), being more frequently observed in ER negative cases (p = 0.0208). High COX-2 expression was negatively associated with histological (p Cox-regression analysis, p = 0.0223 and p = 0.0004, respectively) level. On the other hand, high COX-2 expression was associated with favorable overall and disease-free patients' survival merely at univariate level (log-rank test, p = 0.0389 and p = 0.0154, respectively). HuR expression was not associated with COX-2 expression (Spearman R = 0.1489, p = 0.1032). The present data support evidence that HuR is associated with tumor aggressiveness and poor prognosis in breast carcinoma, reinforcing its potential as promising therapeutic target in this type of neoplasia.

  14. BMP9/COX-2 axial mediates high phosphate-induced calcification in vascular smooth muscle cells via Wnt/β-catenin pathway.

    Science.gov (United States)

    He, Fang; Wang, Han; Ren, Wen-Yan; Ma, Yan; Liao, Yun-Peng; Zhu, Jia-Hui; Cui, Jin; Deng, Zhong-Liang; Su, Yu-Xi; Gan, Hua; He, Bai-Cheng

    2018-03-01

    Vascular calcification is a notable risk factor for cardiovascular system. High phosphate can induce calcification in vascular smooth muscle cells (VSMCs), but the detail mechanism underlying this process remains unclear. In the present study, we determined the relationship between high phosphate and bone morphogenetic protein 9 (BMP9) in VSMCs, the effect of BMP9 on calcification in VSMCs and the effect of COX-2 on BMP9 induced calcification in VSMCs, as well as the possible mechanism underlying this biological process. We found that high phosphate obviously up-regulates the expression of BMP9 in VSMCs. Over-expression of BMP9 decreases the level of alpha-smooth muscle cell actin (α-SMA) apparently, but increases the level of Runx-2, Dlx-5, and ALP in VSMCs. Meanwhile, BMP9 increases the level of OPN and OCN, promotes mineralization in VSMCs and induces calcification in thoracic aorta. High phosphate and over-expression of BMP9 increases the level of COX-2. Over-expression of COX-2 enhances the inhibitory effect of BMP9 on α-SAM and increases the level of OPN and OCN induced by BMP9. However, inhibition of COX-2 decreases the BMP9-induced calcification in VSMCs and thoracic aorta. For mechanism, we found that high phosphate or BMP9 increases the level of β-catenin and p-GSK3β in VSMCs, but no substantial effect on GSK3β. However, COX-2 inhibitor decreases the expression of β-catenin induced by BMP9. Our findings indicated that BMP9 is involved in the phosphate-induced calcification in VSMCs and COX-2 partly mediates the BMP9-induced calcification in VSMCs through activating Wnt/β-catenin pathway. © 2017 Wiley Periodicals, Inc.

  15. Activation of COX-2/mPGES-1/PGE2 Cascade via NLRP3 Inflammasome Contributes to Albumin-Induced Proximal Tubule Cell Injury

    Directory of Open Access Journals (Sweden)

    Yibo Zhuang

    2017-06-01

    Full Text Available Background/Aims: The activation of NOD-like receptor family, pyrin domain containing3 (NLRP3 inflammasome has been shown to be positively correlated with the severity of proteinuria in chronic kidney disease (CKD patients. Prostaglandin E2 (PGE2, an important inflammatory mediator, is also involved in various kidney injuries. The aim of the present study was to investigate the involvement of NLRP3 inflammasome and PGE2 synthetic pathway in albumin-induced renal tubular injury. Methods: Murine proximal tubular cells (mPTCs were treated with albumin to induce cell injury. NLRP3 siRNA and specific COX-2 inhibitor NS398 were used to define their roles in mediating albumin-induced mPTC injury or the activation of COX-2/mPGES-1/PGE2 cascade. Results: In mPCTs, inhibition of NLRP3 by a small interfering RNA (siRNA blocked albumin-induced kidney injury molecule 1 (KIM-1 upregulation, inflammatory response, and cell apoptosis. Albumin markedly activated cyclooxygenase-2 (COX-2/ microsomal prostaglandin E synthase-1 (mPGES-1/PGE2 pathway in this cell line, an effect largely abolished by NLRP3 silencing at both mRNA and protein levels. More interestingly, blockade of COX-2 using a specific COX-2 inhibitor NS398 markedly inhibited the upregulation of KIM-1 and inflammatory cytokines, and attenuated cell apoptosis in line with blunted PGE2 release following albumin treatment. Conclusions: The findings suggest that COX-2/mPGES-1/PGE2 axis could be activated by albumin in the proximal tubular cells via a NLRP3 inflammasome-mediated mechanism and could thus contribute to proteinuria-related renal tubular cell injury.

  16. Indomethacin-Induced Apoptosis in Esophageal Adenocarcinoma Cells Involves Upregulation of Bax and Translocation of Mitochondrial Cytochrome C Independent of COX-2 Expression

    Directory of Open Access Journals (Sweden)

    Sanjeev Aggarwal

    2000-07-01

    Full Text Available The prolonged use of nonsteroidal anti-inflammatory drugs (NSAIDs has been shown to exert a chemopreventive effect in esophageal and other gastrointestinal tumors. The precise mechanism by which this occurs, however, is unknown. While the inhibition of COX-2 as a potential explanation for this chemopreventive effect has gained a great deal of support, there also exists evidence supporting the presence of cyclooxygenase-independent pathways through which NSAIDs may exert their effects. In this study, immunohistochemical analysis of 29 Barrett's epithelial samples and 60 esophageal adenocarcinomas demonstrated abundant expression of the COX-2 protein in Barrett's epithelium, but marked heterogeneity of expression in esophageal adenocarcinomas. The three esophageal adenocarcinoma cell lines, Flo-1, Bic-1, Seg-1, also demonstrated varying expression patterns for COX-1 and COX-2. Indomethacin induced apoptosis in all three cell lines, however, in both a time- and dose-dependent manner. In Flo-1 cells, which expressed almost undetectable levels of COX-1 and COX-2, in Seg-1, which expressed significant levels of COX-1 and COX-2, indomethacin caused upregulation of the pro-apoptosic protein Bax. The upregulation of Bax was accompanied by the translocation of mitochondrial cytochrome c to the cytoplasm, activation of caspase 9. Pre-treatment of both cell lines with the specific caspase 9 inhibitor, z-LEHD-FMK, as well as the broad-spectrum caspase inhibitor, z-VAD-FMK, blocked the effect of indomethacin-induced apoptosis. These data demonstrate that induction of apoptosis by indomethacin in esophageal adenocarcinoma cells is associated with the upregulation of Bax expression and mitochondrial cytochrome c translocation, does not correlate with the expression of COX-2. This may have important implications for identifying new therapeutic targets in this deadly disease.

  17. The aromatic volatile organic compounds toluene, benzene and styrene induce COX-2 and prostaglandins in human lung epithelial cells via oxidative stress and p38 MAPK activation.

    Science.gov (United States)

    Mögel, Iljana; Baumann, Sven; Böhme, Alexander; Kohajda, Tibor; von Bergen, Martin; Simon, Jan-Christoph; Lehmann, Irina

    2011-10-28

    Toluene, benzene and styrene are volatile organic compounds (VOCs) widely distributed in the environment. Tobacco smoke, traffic exposure and solvents used for paints, rubber and adhesives are known sources for these compounds. The aim of the present study was to investigate whether toluene, benzene and styrene can induce inflammatory reactions in lung cells and to characterize possible underlying mechanisms. A previous study gave evidence that expression of cyclooxygenase-2 (COX-2) is upregulated following exposure to the aromatic VOC chlorobenzene. Here, we investigated the effects of the aromatics toluene, benzene and styrene on human lung cells, with emphasis on COX-2, the rate-limiting enzyme of the prostaglandin pathway. In addition, we studied the potential role of oxidative stress and p38 MAPK activation in the toluene/benzene/styrene-dependent COX-2 induction. Following exposure to the aromatic compounds the expression level of COX-2 increased markedly. In addition, prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)), major products of the COX enzyme, were found to be upregulated in response to toluene, benzene or styrene exposure. Furthermore, we observed an activation of p38 MAPK resulting from aromatic VOC exposure. Treatment of the cells with a specific p38 inhibitor (SB203580) or the antioxidant N-acetylcysteine (NAC) was able to prevent the toluene/benzene/styrene-dependent COX-2 activation, and subsequent increased PGE(2) and PGF(2α) secretion. These results suggest that toluene, benzene and styrene induce production and secretion of PGE(2) and PGF(2α) in lung epithelial cells via p38 MAPK and COX-2 activation in a redox sensitive manner. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  19. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yuxia Wang

    Full Text Available Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2 is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2 is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA. The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM. The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.

  20. Effect of a single nucleotide polymorphism in miR-146a on COX-2 protein expression and lung function in smokers with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Wang, Ran; Li, Min; Zhou, Sijing; Zeng, Daxiong; Xu, Xuan; Xu, Rui; Sun, Gengyun

    2015-01-01

    To evaluate the effect of a single nucleotide polymorphism (rs2910164) in the miR-146a precursor on the expression level of miR-146a, cyclooxygenase-2 (COX2), and production of prostaglandin E2 (PGE2) in lung tissue harvested from smokers with chronic obstructive pulmonary disease, as well as the lung function and disease stages from the same patient population. One-hundred and sixty-eight smokers with diagnosed chronic obstructive pulmonary disease were recruited. The patients were genotyped for rs2910164 polymorphism using Sanger sequencing, and their lung function/disease stages were evaluated following Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. Meanwhile, messenger ribonucleic acid and protein expression levels of miR-146a and COX2 as well as PGE2 production were determined in 66 lung tissue samples collected in the patients who received surgical treatment. We confirmed that COX2 is a validated target of miR-146a in human fibroblast cells, and identified the differential expression patterns of miR-146a and COX2 in each rs2910164 genotype group. We observed a significant association between rs2910164 in miR-146a and the levels of either COX2 or PGE2 using real-time polymerase chain reaction and Western blot. Consistently, we were able to demonstrate that the rs2910164 single nucleotide polymorphism has a functional effect on the baseline lung function in the study population. In the present study, the rs2910164 CC and GC genotype was found to be associated with an improved lung function and milder disease stages, at least partially, mediated by its ability to increase in COX2 expression and PGE2 production.

  1. Gastrointestinal toxicity among patients taking selective COX-2 inhibitors or conventional NSAIDs, alone or combined with proton pump inhibitors: a case-control study.

    Science.gov (United States)

    Bakhriansyah, Mohammad; Souverein, Patrick C; de Boer, Anthonius; Klungel, Olaf H

    2017-10-01

    To assess the risk of gastrointestinal perforation, ulcers, or bleeding (PUB) associated with the use of conventional nonsteroidal anti-inflammatory drugs (NSAIDs) with proton pump inhibitors (PPIs) and selective COX-2 inhibitors, with or without PPIs compared with conventional NSAIDs. A case-control study was performed within conventional NSAIDs and/or selective COX-2 inhibitors users identified from the Dutch PHARMO Record Linkage System in the period 1998-2012. Cases were patients aged ≥18 years with a first hospital admission for PUB. For each case, up to four controls were matched for age and sex at the date a case was hospitalized (index date). Logistic regression analysis was used to calculate odds ratios (ORs). At the index date, 2634 cases and 5074 controls were current users of conventional NSAIDs or selective COX-2 inhibitors. Compared with conventional NSAIDs, selective COX-2 inhibitors with PPIs had the lowest risk of PUB (adjusted OR 0.51, 95% confidence interval [CI]: 0.35-0.73) followed by selective COX-2 inhibitors (adjusted OR 0.66, 95%CI: 0.48-0.89) and conventional NSAIDs with PPIs (adjusted OR 0.79, 95%CI: 0.68-0.92). Compared with conventional NSAIDs, the risk of PUB was lower for those aged ≥75 years taking conventional NSAIDs with PPIs compared with younger patients (adjusted interaction OR 0.79, 95%CI: 0.64-0.99). However, those aged ≥75 years taking selective COX-2 inhibitors, the risk was higher compared with younger patients (adjusted interaction OR 1.22, 95%CI: 1.01-1.47). Selective COX-2 inhibitors with PPIs, selective COX-2 inhibitors, and conventional NSAIDs with PPIs were associated with lower risks of PUB compared with conventional NSAIDs. These effects were modified by age. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  2. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2 : a safer alternative to COX-2 inhibition.

    Science.gov (United States)

    Ozen, Gulsev; Gomez, Ingrid; Daci, Armond; Deschildre, Catherine; Boubaya, Lilia; Teskin, Onder; Uydeş-Doğan, B Sonmez; Jakobsson, Per-Johan; Longrois, Dan; Topal, Gokce; Norel, Xavier

    2017-11-01

    The side effects of cyclooxygenase-2 (COX-2) inhibitors on the cardiovascular system could be associated with reduced prostaglandin (PG)I 2 synthesis. Microsomal PGE synthase-1 (mPGES-1) catalyses the formation of PGE 2 from COX-derived PGH 2 . This enzyme is induced under inflammatory conditions and constitutes an attractive target for novel anti-inflammatory drugs. However, it is not known whether mPGES-1 inhibitors could be devoid of cardiovascular side effects. The aim of this study was to compare, in vitro, the effects of mPGES-1 and COX-2 inhibitors on vascular tone in human blood vessels. The vascular tone and prostanoid release from internal mammary artery (IMA) and saphenous vein (SV) incubated for 30 min with inhibitors of mPGES-1 or COX-2 were investigated under normal and inflammatory conditions. In inflammatory conditions, mPGES-1 and COX-2 proteins were more expressed, and increased levels of PGE 2 and PGI 2 were released. COX-2 and NOS inhibitors increased noradrenaline induced vascular contractions in IMA under inflammatory conditions while no effect was observed in SV. Interestingly, the mPGES-1 inhibitor significantly reduced (30-40%) noradrenaline-induced contractions in both vessels. This effect was reversed by an IP (PGI 2 receptor) antagonist but not modified by NOS inhibition. Moreover, PGI 2 release was increased with the mPGES-1 inhibitor and decreased with the COX-2 inhibitor, while both inhibitors reduced PGE 2 release. In contrast to COX-2 inhibition, inhibition of mPGES-1 reduced vasoconstriction by increasing PGI 2 synthesis. Targeting mPGES-1 could provide a lower risk of cardiovascular side effects, compared with those of the COX-2 inhibitors. This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc. © 2017

  3. Ahr2-dependance of PCB126 effects on the swimbladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Science.gov (United States)

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swimbladder is assumed a homolog of the tetrapod lung. Both swimbladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR1) agonists; in zebrafish (Danio rerio) the swimbladder fails to inflate with exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P4501 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swimbladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependance of the effect of PCB126 on swimbladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swimbladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swimbladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swimbladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos2 failed to inflate the swimbladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swimbladder. Our results indicate that PCB126 blocks swimbladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swimbladder cells. PMID:23036320

  4. Expression and Activity of COX-1 and COX-2 in Acanthamoeba sp.-Infected Lungs According to the Host Immunological Status.

    Science.gov (United States)

    Łanocha-Arendarczyk, Natalia; Baranowska-Bosiacka, Irena; Kot, Karolina; Gutowska, Izabela; Kolasa-Wołosiuk, Agnieszka; Chlubek, Dariusz; Kosik-Bogacka, Danuta

    2018-01-02

    Little is known about the pathomechanism of pulmonary infections caused by Acanthamoeba sp. Therefore, the aim of this study was to determine whether Acanthamoeba sp. may affect the expression and activity of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), resulting in the altered levels of their main products, prostaglandins (PGE₂) and thromboxane B₂ (TXB₂), in lungs of immunocompetent or immunosuppressed hosts. Acanthamoeba sp. induced a strong expression of COX-1 and COX-2 proteins in the lungs of immunocompetent mice, which, however, did not result in significant differences in the expression of PGE₂ and TXB₂. Our immunohistochemical analysis showed that immunosuppression induced by glucocorticoids in Acanthamoeba sp.-infected mice caused a decrease in COX-1 and COX-2 (not at the beginning of infection) in lung tissue. These results suggest that similar to COX-2, COX-1 is an important mediator of the pathophysiology in experimental pulmonary acanthamoebiasis. We suggest that the signaling pathways important for Acanthamoeba sp. induction of lung infection might interact with each other and depend on the host immune status.

  5. Shengfu Oil Enhances the Healing of Full-Thickness Scalded Skin Accompanying the Differential Regulation of β-Catenin, Dlk1, and COX-2

    Directory of Open Access Journals (Sweden)

    Man-Tang Chen

    2017-11-01

    Full Text Available Shengfu oil is a traditional Chinese medicine formula containing 16 ingredients, including Scutellariae radix, Olibanum, and Rehmanniae radix. In this study, we aimed to enhance the wound healing of rabbit full-thickness scalded skin by Shengfu oil and to elucidate its regulatory effects on β-catenin, Dlk1, and COX-2. We found that Shengfu oil exhibited significant anti-inflammatory, analgesic, and antimicrobial activities. The structure of wound tissues in Shengfu oil group was intact, including regenerated cutaneous appendages, indicating better healing capability of Shengfu oil compared to the controls. The protein expression of β-catenin, Dlk1, and COX-2 in wound tissues were investigated by immunohistochemistry staining and were further quantitated with the use of multispectral imaging analysis. The protein expression of β-catenin and Dlk1 in the Shengfu oil group was higher than that in the sesame oil group in early wound repair, accompanied by the lower expression of COX-2; the protein expression of β-catenin decreased in the middle of wound healing; the protein expression of β-catenin and Dlk1 increased at the end of wound healing. These results strongly suggest that Shengfu oil can enhance wound healing by regulating the expression of β-catenin, Dlk1, and COX-2 due to its excellent anti-inflammatory, analgesic, and antimicrobial activities.

  6. Perioperative Pain Relief by a COX-2 Inhibitor Affects Ileal Repair and Provides a Model for Anastomotic Leakage in the Intestine

    NARCIS (Netherlands)

    van der Vijver, R.J.; Laarhoven, C.J. van; de Man, B.M.; Lomme, R.M.L.M.; Hendriks, T.

    2013-01-01

    The authors examined the potential of the cyclooxygenase 2 (COX-2) inhibitor carprofen to reproducibly induce anastomotic leakage. In experiment 1, an anastomosis was constructed in both ileum and colon of 20 rats, and they were given carprofen (5 mg/kg subcutaneously every 24 hours) or

  7. Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    International Nuclear Information System (INIS)

    Yeoh, Ann S.J.; Bowen, Joanne M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2005-01-01

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NFκB and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NFκB and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NFκB and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis

  8. COX-2 rs689466, rs5275, and rs20417 polymorphisms and risk of head and neck squamous cell carcinoma: a meta-analysis of adjusted and unadjusted data

    International Nuclear Information System (INIS)

    Leng, Wei-Dong; Wen, Xiu-Jie; Kwong, Joey S. W.; Huang, Wei; Chen, Jian-Gang; Zeng, Xian-Tao

    2016-01-01

    Numerous case–control studies have been performed to investigate the association between three cyclooxygenase-2 (COX-2) polymorphisms (rs20417 (−765G > C), rs689466 (−1195G > A), and rs5275 (8473 T > C)) and the risk of head and neck squamous cell carcinoma (HNSCC). However, the results were inconsistent. Therefore, we conducted this meta-analysis to investigate the association. We searched in PubMed, Embase, and Web of Science up to January 20, 2015 (last updated on May 12, 2016). Two independent reviewers extracted the data. Odds ratios (ORs) with their 95 % confidence intervals (CIs) were used to assess the association. All statistical analyses were performed using the Review Manager (RevMan) 5.2 software. Finally 8 case–control studies were included in this meta-analysis. For unadjusted data, an association with increased risk was observed in three genetic models in COX-2 rs689466 polymorphism; however, COX-2 rs5275 and rs20417 polymorphisms were not related to HNSCC risk in this study. The pooled results from adjusted data all revealed non-significant association between these three polymorphisms and risk of HNSCC. We also found a similar result in the subgroup analyses, based on both unadjusted data and adjusted data. Current results suggest that COX-2 rs689466, rs5275, and rs20417 polymorphisms are not associated with HNSCC. Further large and well-designed studies are necessary to validate this association

  9. Exploring QSAR with E-state index: selectivity requirements for COX-2 versus COX-1 binding of terphenyl methyl sulfones and sulfonamides.

    Science.gov (United States)

    Chakraborty, Santanu; Sengupta, Chandana; Roy, Kunal

    2004-09-20

    An attempt has been made to explore selectivity requirements for cyclooxygenase-2 (COX-2) versus cyclooxygenase-1 (COX-1) binding of terphenyl methyl sulfones and sulfonamides using electrotopological state (E-state) index and suitable indicator parameters. Multiple linear regression analyses produced statistically acceptable equations: the best relation based on 'all-possible-subsets regression' for COX-1 binding (n=18) showed predicted variance and explained variance of 0.675 and 0.777, respectively, while in case of the best equation for COX-2 binding (n=38), these values rose to 0.842 and 0.874, respectively. For the selectivity relation (n=17), predicted variance and explained variance values were 0.601 and 0.687, respectively. Based on the results of the analyses, three important sites have been suggested: sites A (methylsulfonyl or aminosulfonyl moiety), B (central phenyl ring), and C (terminal phenyl ring containing different substituents). All three sites are important for COX-2 binding while sites B and C are important for COX-1 binding. For COX-2 selectivity, only site C plays an important role. The study shows the utility of E-state index in developing statistically acceptable model having direct physicochemical significance.

  10. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ching [Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (China); Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Ho, Heng-Chien; Lee, Miau-Rong [Department of Biochemistry, China Medical University, Taichung 404, Taiwan (China); Lai, Kuang-Chi [Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan (China); School of Medicine, China Medical University, Taichung 404, Taiwan (China); Yeh, Chung-Min; Lin, Yueh-Min [Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan (China); Ho, Tin-Yun [School of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Hsiang, Chien-Yun, E-mail: cyhsiang@mail.cmu.edu.tw [Department of Microbiology, China Medical University, Taichung 404, Taiwan (China); Chung, Jing-Gung, E-mail: jgchung@mail.cmu.edu.tw [Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan (China); Department of Biotechnology, Asia University, Taichung 413, Taiwan (China)

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2 h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  11. Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways.

    Directory of Open Access Journals (Sweden)

    Uma Kant Misra

    Full Text Available OBJECTIVE: In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. METHODS: We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. RESULTS: 8-CPT-2Me-cAMP treatment caused a 2-2.5-fold increase of p-cPLA2(S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinase(T389, and p-AKT(S473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. CONCLUSION: We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling.

  12. Cox-2 Inhibition Protects against Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Akt-Dependent Enhancement of iNOS Expression

    Directory of Open Access Journals (Sweden)

    Lei Pang

    2016-01-01

    Full Text Available The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2 expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R. The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor. Furthermore, pretreatment with NS398 (COX-2 specific inhibitor significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6 and tumor necrosis factor (TNFα] and reactive oxygen species (ROS production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor or 1400W (iNOS-selective inhibitor cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling.

  13. Effect of a hormone-releasing intrauterine system (Mirena® on aromatase and Cox-2 expression in patients with adenomyosis submitted or not, to endometrial resection

    Directory of Open Access Journals (Sweden)

    Maia R

    2012-04-01

    Full Text Available Hugo Maia Jr1,2, Clarice Haddad1, Julio Casoy1, Rebeca Maia1, Nathanael Pinheiro3, Elsimar M Coutinho11Centro de Pesquisa e Assistência em Reprodução Humana (CEPARH, 2Itaigara Memorial Day Hospital, 3IMAGEPAT, Salvador, Bahia, BrazilObjective: To investigate the effect of a levonorgestrel-releasing intrauterine system (Mirena® on aromatase and cyclooxygenase-2 (Cox-2 expression in the endometrium of patients with adenomyosis who were submitted to endometrial resection at the time of insertion, compared to a group not submitted to endometrial resection and a group of controls with adenomyosis not submitted to any previous hormonal treatment.Patients and methods: Patients with adenomyosis (n = 89 were included in this study. Twenty-two patients had been using Mirena® for 5 years but had not been submitted to endometrial resection prior to insertion of the device. Twenty-four patients were submitted to endometrial resection at the time of Mirena® insertion. The remaining 43 patients with adenomyosis had undergone no previous hormonal treatment and served as a control group. Cox-2 and aromatase expression were determined in the endometrium by immunohistochemistry.Results: Use of Mirena® for 5 years reduced aromatase expression in the endometrium; however, this reduction was significantly greater in the uteri previously submitted to endometrial resection. The reduction in Cox-2 expression was significant only in the uteri submitted to endometrial resection followed by the insertion of Mirena®.Conclusion: Endometrial resection followed by the insertion of Mirena® was associated with greater rates of amenorrhea in patients with adenomyosis, which in turn were associated with a more effective inhibition of aromatase and Cox-2 expression in the endometrium.Keywords: aromatase, Mirena®, adenomyosis, Cox-2, endometrium, levonorgestrel

  14. Expressão de p53, p16 E COX-2 em carcinoma escamoso de esôfago e associação histopatológica p53, p16 E COX-2 expression in esophageal squamous cell carcinoma and histopathological association

    Directory of Open Access Journals (Sweden)

    Izabella Paz Danezi Felin

    2008-12-01

    Full Text Available RACIONAL: O câncer de esôfago representa cerca de 2% dos tumores malignos e a terceira causa mais comum de câncer do trato gastrointestinal. A associação do prognóstico do câncer de esôfago com alguns marcadores imunoistoquímicos, como as proteínas p53, p16 e a ciclooxigenase 2 (COX-2 tem sido relatada. A detecção de marcadores moleculares através de imunoistoquímica pode ser utilizada para avaliação prognóstica. OBJETIVOS: Investigar a associação entre a expressão das proteínas p53, p16 e a COX-2 com o estádio do carcinoma escamoso de esôfago. MÉTODOS: Foram analisadas 31 amostras de ressecção cirúrgica por esofagectomia diagnosticadas como carcinoma de células escamosas de esôfago e 31 amostras não-tumorais referentes a cada caso. Realizou-se a revisão histopatológica e o estádio pTNM. Amostras tumorais e não-tumorais adjacentes foram submetidas a análise imunoistoquímica para avaliar o conteúdo das proteínas p53, p16 e COX-2. Foi considerada positiva a expressão nuclear para p53 em quantidade igual ou superior a 10,00% das células e presença da expressão citoplasmática de acordo com três escores (1, 2, 3 de intensidade (leve, moderada, acentuada de imunocoloração para COX-2. RESULTADOS: Em área tumoral, as análises revelaram 48,38% de positividade para p53, 16,12% de positividade para p16, e 100,00% de positividade escores 1+, 2+ ou 3+ para COX-2. No entanto, quando se avaliou possível relação da expressão destes marcadores com o estádio, apenas a COX-2, escore 3+ intensidade acentuada mostraram associação significativa. CONCLUSÃO: O presente estudo demonstrou que existe relação positiva entre a expressão de COX-2, escore 3+ e estádio mais avançado no carcinoma de esôfago.BACKGROUND: The esophageal carcinoma represents about 2% of malignant tumors and is the third most common cause of gastrointestinal cancer. The correlation between immunohistochemistry markers, such as p53, p16

  15. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  16. Efficacy and safety of COX-2 inhibitors for advanced non-small-cell lung cancer with chemotherapy: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Dai P

    2018-02-01

    Full Text Available Ping Dai, Jing Li, Xiao-Ping Ma, Jian Huang, Juan-Juan Meng, Ping Gong Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China Background: The study of cyclooxygenase-2 (COX-2 inhibitors is now mired in controversy. We performed a meta-analysis to assess the efficacy and safety profile of COX-2 inhibitors in patients with advanced non-small-cell lung cancer (NSCLC.Patients and methods: A literature search of PubMed, EMBASE, the Cochrane Central databases, and ClinicalTrials.gov, up until March 26, 2017, identified relevant randomized controlled trials. Data analysis was performed using Stata 12.0.Results: Six eligible trials (1,794 patients were selected from the 407 studies that were identified initially. A significant difference, favoring COX-2 inhibitors plus chemotherapy over chemotherapy alone, was observed in the overall response rate (relative risk [RR] =1.25, 95% confidence interval [CI]: 1.06–1.48. Further, we conducted two subgroup analyses according to the type of COX-2 inhibitors (celecoxib, rofecoxib, or apricoxib and treatment line (first or second chemotherapy. The first-line treatment includes: NP (changchun red bean + cisplatin or carboplatin, GP (double fluorine cytidine + cisplatin or carboplatin, or TP (paclitaxel + cisplatin or carboplatin, docetaxel + cisplatin or carboplatin. The second-line treatment includes two internationally recognized compounds, one is docetaxel and the other is the pemetrexed, both of which are individually selected. In subgroup analysis, significantly increased overall response rate (ORR results were found for rofecoxib plus chemotherapy (RR =1.56, 95% CI: 1.08–2.25 and COX-2 inhibitor given with first-line chemotherapy (RR =1.27, 95% CI: 1.07–1.50. However, there was no difference between COX-2 inhibitors plus chemotherapy and chemotherapy alone in overall survival (hazard ratio [HR] =1.04, 95% CI: 0.91–1

  17. Prognostic value of Cox-2 and PD-L1 expression and its relationship with tumor-infiltrating lymphocytes in resected lung adenocarcinoma.

    Science.gov (United States)

    Shimizu, Katsuhiko; Okita, Riki; Saisho, Shinsuke; Maeda, Ai; Nojima, Yuji; Nakata, Masao

    2017-01-01

    Programmed cell death-1 ligand 1 (PD-L1), tumor-infiltrating CD8-positive T lymphocytes (CD8-positive TILs), and cyclooxygenase-2 (Cox-2) have been used as prognostic tools in patients with lung adenocarcinoma. We conducted a retrospective review of data from 170 patients who had undergone pulmonary resection as an initial treatment for clinical T1-2 N0 lung adenocarcinoma. We then investigated the expressions of three biomarkers using immunohistochemical analyses and compared the expression levels with the clinicopathological characteristics and outcomes of the patients. Next, we classified the tumors into four groups based on the PD-L1 and CD8-positive TILs statuses and evaluated the prognostic significance of Cox-2 expression according to the tumor immune microenvironment classification. Tumors with positive PD-L1 expression levels had a significantly larger number of CD8-positive TILs than tumors with negative PD-L1 expression levels, whereas tumors with high Cox-2 expressions had significantly fewer CD8-positive TILs than tumors with low Cox-2 expressions. A multivariate analysis showed that histological subtype, nodal metastasis, CD8-positive TILs count, and PD-L1 expression were independent predictors of patient outcome. Using a classification based on the PD-L1 and CD8-positive TILs statuses, the outcomes of patients with a negative PD-L1 expression and a high CD8-positive TIL count were significantly better than those with other classifications. In patients with negative PD-L1 and low CD8-positive TILs, the rate of EGFR mutation was significantly higher than that in other classifications, and Cox-2 expression was a powerful predictor of outcome. Clinical and pathological features in conjunction with the tumor immune microenvironment classification indicate that lung adenocarcinoma should be divided into different subgroups for prognosis and treatment. Classification according to the PD-L1 and CD8-positive TILs statuses might enable the effects of Cox-2

  18. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    Science.gov (United States)

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  19. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET{sub B} receptor cascade

    Energy Technology Data Exchange (ETDEWEB)

    El-Gowelli, Hanan M. [Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria (Egypt); Helmy, Maged W.; Ali, Rabab M. [Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria (Egypt); El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com [Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria (Egypt)

    2014-03-01

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET{sub B} receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β{sub 1}, TGF-β{sub 1}). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET{sub B} receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET{sub B} receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ET{sub B} receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET{sub B} receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. - Highlights: • Celecoxib abolishes nephrotoxic manifestations of CSA in rats. • Blockade of ETB receptors by BQ788 mimicked the nephrotoxic effects of CSA. • CSA or BQ788 reduces renal protein expression of COX-2 and endothelin ETB receptors. • Enhanced TGFβ1/IL-2/COX2/ETB

  20. Cadmium-induced calcium release and prostaglandin E[sub 2] production in neonatal mouse calvaria are dependent on cox-2 induction and protein kinase C activation

    Energy Technology Data Exchange (ETDEWEB)

    Romare, A. (Department of Pharmacology, Faculty of Health Sciences, Univ. of Linkoeping (Sweden)); Lundholm, C.E. (Department of Pharmacology, Univ. of Linkoeping (Sweden) Astra Haessle AB, Regulatory Affairs, Moendal (Sweden))

    The mechanisms by which cadmium (Cd) causes skeletal impairment have not been fully clarified. Release of calcium from neonatal mouse calvaria in organ culture is stimulated by submicromolar concentrations of Cd, an effect that is associated with increased production of prostaglandin E[sub 2] (PGE[sub 2]). The prostaglandin-synthesising enzyme cyclooxygenase (cox) exists in two forms, one constitutive (cox-1) and the other inducible (cox-2). Cox-2 can be induced by mitogenic stimuli and inflammatory cytokines, such as parathyroid hormone (PTH), interleukin-1[alpha] and tumour necrosis factor-[alpha]. Cd potently activates protein kinase C (PKC), which in turn induces cox-2 production in several cell types. Our aim was to determine whether Cd-induced Ca release and PGE[sub 2] production in neonatal mouse calvaria involve induction of cox-2 and, if so, to ascertain whether that effect is mediated by activation of PKC. Cd dose-dependently stimulated Ca release from cultured neonatal mouse calvaria, with a maximal effect at 0.4-0.8 [mu]M. Different sensitivity was observed to Cd-induced Ca release between two breeds of mice suggesting that the susceptibility to Cd may be genetically determined. Dexamethasone (10 [mu]M) added to the culture medium abolished the Ca releasing effect of Cd, an effect not overcome by addition of arachidonic acid (10 [mu]M). The cox-2-selective inhibitors NS-398 and DFU and the less selective inhibitor meloxicam, potently impeded Cd-induced Ca release (IC[sub 50] of 1 nM, 41 nM and 7 nM, respectively) and calvarial production of PGE[sub 2]. Cd-induced and phorbol 12-myristate 13-acetate (PMA; 20 nM)-induced Ca release was inhibited by the PKC inhibitor calphostin C (0.5 [mu]M) and by NS-398. The effects of PMA and Cd on Ca release were not additive, suggesting that both operated via the PKC pathway. We suggest that Cd-induced Ca release from neonatal mouse calvaria in culture depends on induction of cox-2 that occurs via the PKC signalling

  1. Co-Expression of p16, Ki67 and COX-2 Is Associated with Basal Phenotype in High-Grade Ductal Carcinoma In Situ of the Breast.

    Science.gov (United States)

    Perez, Amanda Arantes; Balabram, Débora; Rocha, Rafael Malagoli; da Silva Souza, Átila; Gobbi, Helenice

    2015-06-01

    We assessed the co-expression of cell cycle-related biomarkers in a series of 121 consecutive cases of high-grade ductal carcinoma in situ (DCIS), pure or associated with invasive carcinoma, and their associations with the different immunoprofiles of DCIS. Cases were identified from the histopathology files of the Breast Pathology Laboratory, Federal University of Minas Gerais, Brazil, from 2003 to 2008. The expression of estrogen rec