WorldWideScience

Sample records for suppressed transition temperature

  1. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    Science.gov (United States)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  2. Membrane Transition Temperature Determines Cisplatin Response

    Science.gov (United States)

    Raghunathan, Krishnan; Ahsan, Aarif; Ray, Dipankar; Nyati, Mukesh K.; Veatch, Sarah L.

    2015-01-01

    Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients. PMID:26484687

  3. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown.

  4. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  5. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  6. Exploration of Geometric Noise Suppression in Transition Edge Sensors

    Science.gov (United States)

    Chervenak, J. A.; Allen, C. A.; Abrahams, J. A.; Miller, T. M.; Talley, D. J.; Staguhn, J. G.; Benford, D. J.; Mosely, S. H.; Finkbeiner, F. M.; Brekosky, R. G.

    2004-01-01

    We present noise data on Mo/Au superconducting transition edge sensors featuring the noise suppression geometry using normal metal bars transverse to the bias current. The effectiveness of the bars in far-infrared bolometers and x-ray microcalorimeters is evaluated. We have examined the effect of the resistivity of the superconducting bilayer on excess noise in bolometer devices. We have also studied the effect of bar density on energy resolution in x-ray devices. We address the question of whether the reduction is noise is necessarily coupled to a reduction in the effective transition sharpness. We propose a fabrication technique experiment to examine the dependence of alpha and noise suppression in similar transverse bar densities.

  7. Superconductivity suppression near metal-dielectric in transition highly disordered systems

    International Nuclear Information System (INIS)

    Kuchinskij, Eh.Z.; Sadovskij, M.V.; Ehrkabaev, M.A.

    1997-01-01

    The effects of temperature suppression of superconducting transition T c within wide limits of disorders values from low-disordered to highly-disordered ones caused by formation of the Coulomb gap in the states density are studied on the bases of the earlier proposed self consistent theory on the metal-dielectric. It is shown that the proposed theory gives satisfactory description of experimental data for a number of the systems under study

  8. Finite-temperature confinement transitions

    International Nuclear Information System (INIS)

    Svetitsky, B.

    1984-01-01

    The formalism of lattice gauge theory at finite temperature is introduced. The framework of universality predictions for critical behavior is outlined, and recent analytic work in this direction is reviewed. New Monte Carlo information for the SU(4) theory are represented, and possible results of the inclusion of fermions in the SU(3) theory are listed

  9. Uncertainty evaluation in transition temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brillaud, C. [Electricite de France, Avoine (France); Augendre, H. [Electricite de France, Clamart (France); Bethmont, M. [Electricite de France, Ecuelles (France)

    1996-12-31

    The pressure vessel surveillance program is mainly based on the transition temperature change assessment, a change which is induced by neutron irradiation. Uncertainties in Charpy test measurements are well known; however, the authors are less familiar with uncertainties due to general procedures governing experiments, which can be significant and therefore must be taken into account. In fact, procedures specify neither the number of specimens needed to obtain a transition curve, nor the choice of test temperatures, nor the fitting method for the transition curve. A study has been conducted to determine the influence of the experimental procedure on the accuracy of transition temperature determination, and the initial results are presented in this paper. Two EDF laboratories performed Charpy tests on the surveillance program reference metal, using 8, 16, 24, 32 and 64 specimens to evaluate how the number of specimens affects the transition temperature. The influence of the scatter of mechanical properties has also been studied at two levels of irradiation. The authors have evaluated the effect of different sampling strategies and investigated a new fitting method, which is based on a simultaneous fitting of all curves with common constraints on parameters.

  10. Temperature, transitivity, and the zeroth law

    DEFF Research Database (Denmark)

    Bergthorsson, Bjørn

    1977-01-01

    Different statements of the zeroth law are examined. Two types of statements—which characterize two aspects of temperature—are found. A new formulation of the zeroth law is given and a corollary is stated. By means of this corollary it is shown how temperature and transitivity are used to disclose...

  11. Structural transition temperature of hemoglobins correlates with species' body temperature.

    Science.gov (United States)

    Zerlin, Kay Frank Thorsten; Kasischke, Nicole; Digel, Ilya; Maggakis-Kelemen, Christina; Temiz Artmann, Aysegül; Porst, Dariusz; Kayser, Peter; Linder, Peter; Artmann, Gerhard Michael

    2007-12-01

    Human red blood cells (RBCs) exhibit sudden changes in their biophysical properties at body temperature (T (B)). RBCs were seen to undergo a spontaneous transition from blockage to passage at T (C) = 36.4 +/- 0.3 degrees C, when the temperature dependency of RBC-passages through 1.3 mum narrow micropipettes was observed. Moreover, concentrated hemoglobin solutions (45 g/dl) showed a viscosity breakdown between 36 and 37 degrees C. With human hemoglobin, a structural transition was observed at T (B) as circular dichroism (CD) experiments revealed. This leads to the assumption that a species' body temperature occupies a unique position on the temperature scale and may even be imprinted in the structure of certain proteins. In this study, it was investigated whether hemoglobins of species with a T (B) different from those of human show temperature transitions and whether those were also linked to the species' T (B). The main conclusion was drawn from dynamic light scattering (DLS) and CD experiments. It was observed that such structural temperature transitions did occur in hemoglobins from all studied species and were correlated linearly (slope 0.81, r = 0.95) with the species' body temperature. We presumed that alpha-helices of hemoglobin were able to unfold more readily around T (B). alpha-helical unfolding would initiate molecular aggregation causing RBC passage and viscosity breakdown as mentioned above. Thus, structural molecular changes of hemoglobin could determine biophysical effects visible on a macroscopic scale. It is hypothesized that the species' body temperature was imprinted into the structure of hemoglobins.

  12. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  13. Dielectric determination of the glass transition temperature (T sub g)

    Science.gov (United States)

    Ries, Heidi R.

    1990-01-01

    The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.

  14. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.

    Science.gov (United States)

    Shahriari, Arjang; Wurz, Jillian; Bahadur, Vaibhav

    2014-10-14

    The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption.

  15. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS.

    Science.gov (United States)

    Lai, Xiaofang; Liu, Ying; Lü, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Finally, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.

  16. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  17. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  18. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    Science.gov (United States)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  19. A universal reduced glass transition temperature for liquids

    Science.gov (United States)

    Fedors, R. F.

    1979-01-01

    Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.

  20. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the

  1. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  2. Luminous transmittance and phase transition temperature of VO 2 ...

    African Journals Online (AJOL)

    The phase transition temperature (τc) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO2 films. Comparison between undoped and doped VO2 films revealed ...

  3. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Structure determination at room temperature and phase transition studies above Tc in ABi4Ti4O15 (A = Ba, Sr or Pb). G NALINI and T N GURU ROW*. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002. Abstract. The room temperature structure of three ...

  4. Heater rod temperature change at boiling transition under flow oscillation

    International Nuclear Information System (INIS)

    Kasai, Shigeru; Toba, Akio; Takigawa, Yukio; Ebata, Shigeo; Morooka, Shin-ichi; Shirakawa, Ken-etsu; Utsuno, Hideaki.

    1986-01-01

    The experiments were performed to investigate the boiling transition phenomenon under flow oscillation (OSBT) during thermal hydraulic instability. It was found, from the experimental results, that the thermal hydraulic instability did not immediately lead to the boiling transition (BT) and, even when the BT occurred due to a power increase, the change in the heater rod temperature was periodically up and down with a saw-toothed shape and no excursion occurred. To investigate the temperature change characteristics, an analysis was also performed using the transient thermal hydraulics code. The analytical results showed that the shape of the heater rod temperature change was well simulated by presuming a repeat of alternate BT and rewetting. Based on these results, further analysis has been performed with the lumped parameter model to investigate the temperature profile characteristics as well as the effects of the post-BT heat transfer coefficient and the flow oscillation period on the maximum temperature. (author)

  5. The thickness dependence of the phase transition temperature in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Fridkin, V. [Institute of Crystallography of Russian Academy of Sciences, 119333 Moscow (Russian Federation); Martin, B., E-mail: b.martin@mx.uni-saarland.de [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Leschhorn, A.; Kliem, H. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany)

    2013-07-15

    It was found recently that in the Langmuir–Blodgett ultrathin vinylidene fluoride (PVDF) films there is ferroelectric phase transition of the first order. Earlier in the bulk PVDF this phase transition was not observed because the melting temperature of this ferroelectric polymer (∼170 °C) is lower than the point of the possible phase transition. Therefore this polymer was treated for a long time as pyroelectric. In the present work we investigate PVDF Langmuir–Blodgett films at the nanoscale and the film thickness interval, where ferroelectric phase transition disappears and transition from ferroelectric to pyroelectric state takes place. This phenomenon is explained by the finite-size effect at the nanoscale using Landau–Ginzburg–Devonshire (LGD) theory and by the Weiss mean field model.

  6. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  7. Seizure Suppression by High Temperature via cAMP Modulation in Drosophila

    Science.gov (United States)

    Saras, Arunesh; Tanouye, Mark A.

    2016-01-01

    Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (parabss1, eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration. PMID:27558668

  8. Comparative High Field Magneto-transport Of Rare Earth Oxypnictides With Maximum Transition Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, Fedor F [Los Alamos National Laboratory; Migliori, A [MPA-NHMFL; Riggs, S [NHMFL-FSU; Hunte, F [NHMFL-FSU; Gurevich, A [NHMFL-FSU; Larbalestier, D [NHMFL-FSU; Boebinger, G [NHMFL-FSU; Jaroszynski, J [NHMFL-FSU; Ren, Z [CHINA; Lu, W [CHINA; Yang, J [CHINA; Shen, X [CHINA; Dong, X [CHINA; Zhao, Z [CHINA; Jin, R [ORNL; Sefat, A [ORNL; Mcguire, M [ORNL; Sales, B [ORNL; Christen, D [ORNL; Mandrus, D [ORNL

    2008-01-01

    We compare magnetotransport of the three iron-arsenide-based compounds ReFeAsO (Re=La, Sm, Nd) in very high DC and pulsed magnetic fields up to 45 and 54 T, respectively. Each sample studied exhibits a superconducting transition temperature near the maximum reported to date for that particular compound. While high magnetic fields do not suppress the superconducting state appreciably, the resistivity, Hall coefficient, and critical magnetic fields, taken together, suggest that the phenomenology and superconducting parameters of the oxypnictide superconductors bridges the gap between MgB{sub 2} and YBCO.

  9. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  10. Depression of Glass Transition Temperatures of Polymer Networks by Diluents

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

    1983-01-01

    A classical thermodynamic theory is used to derive expressions for the depression of the glass transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory

  11. Note on the glass transition temperature of poly(vinylphenol)

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1851-1856 ISSN 0014-3057 Institutional research plan: CEZ:AV0Z40500505 Keywords : Poly(4-vinylphenol) * glass transition temperature * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  12. High-temperature phase transition in hadron matter

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Trushevsky, A.A.

    1976-01-01

    A possible phase transition in hadronic systems at temperatures of few of GeV is shown in the framework of the S-matrix formulation of statistical mechanics given by Dashen, Ma, Bernstein by using Regge pole model for the scattering amplitude

  13. Transitions in aqueous solutions of sucrose at subzero temperatures

    Czech Academy of Sciences Publication Activity Database

    Sikora, Antonín; Dupanov, V. O.; Kratochvíl, Jaroslav; Zámečník, J.

    2007-01-01

    Roč. 46, č. 1 (2007), s. 71-85 ISSN 0022-2348 R&D Projects: GA ČR(CZ) GA522/04/0384 Institutional research plan: CEZ:AV0Z40500505 Keywords : aqueous sucrose solutions * subzero temperature * glass transitions Subject RIV: BJ - Thermodynamics Impact factor: 0.809, year: 2007

  14. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the

  15. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    displacement of Bi atoms along the 'a' axis might be responsible for ferroelectricity in these compounds. The high temperature X-ray data above Tc indicate no structural transition for A = Ba and Pb while A = Sr transforms to the tetragonal structure. Keywords. ab initio structure; powder XRD; Rietveld refinement; Aurivillius ...

  16. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tomoyo Yoshinaga

    Full Text Available Epithelial-mesenchymal transition (EMT of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1 and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1 and an agonist for the G protein-coupled receptor 55 (GRP55, the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  17. Suppression of angular forces in collisions of non-S-state transition metal atoms

    International Nuclear Information System (INIS)

    Krems, R.V.; Klos, J.; Rode, M.F.; Szczesniak, M.M.; Chalasinski, G.; Dalgarno, A.

    2005-01-01

    Angular momentum transfer is expected to occur rapidly in collisions of atoms in states of nonzero angular momenta due to the large torque of angular forces. We show that despite the presence of internal angular momenta transition metal atoms interact in collisions with helium effectively as spherical atoms and angular momentum transfer is slow. Thus, magnetic trapping and sympathetic cooling of transition metal atoms to ultracold temperatures should be readily achievable. Our results open up new avenues of research with a broad class of ultracold atoms

  18. Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    International Nuclear Information System (INIS)

    Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre

    2007-01-01

    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram

  19. Hibernation in black bears: independence of metabolic suppression from body temperature.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  20. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  1. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  2. Low temperature phase transition in KOH and KOD

    International Nuclear Information System (INIS)

    Bastow, T.J.; Elcombe, M.M.; Howard, C.J.

    1986-01-01

    Dielectric constant and differential scanning calorimetry measurements have shown a transition to a new phase in both KOH (at 233 K) and KOD (at 257 K); the shape of the dielectric anomaly suggests electrical ordering at low temperature. Structural parameters obtained from high resolution neutron powder diffraction data demonstrate the ordering to be antiferroelectric. A preliminary account is given of the structures at 293 K and 77 K. (author)

  3. Phytoclimatic assessment of air temperatures transition across important Bbundary values

    International Nuclear Information System (INIS)

    Kazandjiev, Valentin; Slavov, Nicola

    2004-01-01

    Thermal regime investigation in global and regional scale is the problem permanently in field of vision of climatologists in the world. Many of investigations abroad and in our country are devoted to discover long time variation, cycles and their periodicity and especially on the registration of air temperatures changes and averages per year, per six months, seasons and months. Great interest is assessment of change of terms for strong air temperatures transition across 0, 5, 10 and 15 o C during spring and autumn seasons, because they have important scientific and practical application i.e. they are the limit between cold and warm part of the year and trace out duration of the vegetative and non vegetative for different bio ecosystems such as phyto ecosystems and zoo ecosystems. For this reason, the interest on the investigation of agro climatic and forest climatic peculiarity of these indicators increase for last few years. This increase is connected with big importance part of nature season's dynamics connected with human economic activity. Increase of air temperature up to 0 o C an transition by this limit certify for change of cold with warm period and beginning of spring; Contrariwise, decrease the temperatures down the 0 o C shows the end of autumn and beginning of winter. In the moderate continental climatic regions, where is classified most big part of Bulgaria territory is observed for seasons - winter, spring, summer and autumn. Climatologists usually accept these seasons with equal duration - three months. This duration of the seasons, do not permit to provide clear assessment of meteorological conditions in connection with development of plant ecosystems and production in different country regions. By this reason, seasons differentiation by agro climatic and forest-climatic point of view is other use the annual course of the air temperatures. As a strong and most suitable way for beginning and end of seasons are air temperatures transitions up and down

  4. Suppression of the Transit -Time Instability in Large-Area Electron Beam Diodes

    Science.gov (United States)

    Myers, Matthew C.; Friedman, Moshe; Swanekamp, Stephen B.; Chan, Lop-Yung; Ludeking, Larry; Sethian, John D.

    2002-12-01

    Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm × 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%.

  5. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  6. Taste and Temperature in Swallowing Transit Time after Stroke

    Directory of Open Access Journals (Sweden)

    Paula C. Cola

    2012-09-01

    Full Text Available Background: Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods: The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years examined 0–50 days after ictus (median: 6 days, with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results: Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions: The results showed that the sequence of offered stimuli influences

  7. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  8. Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression

    Directory of Open Access Journals (Sweden)

    Huiyan Niu

    2014-11-01

    Full Text Available Background: The aim of this study was to evaluate the function of RhoGDI2 in lung cancer epithelial-mesenchymal transition (EMT process and to illustrate the underlying mechanisms that will lead to improvement of lung cancer treatment. Methods: The RhoGDI2 knock-down and overexpressing A549 cell lines were first constructed. The influence of RhoGDI2 on cytoskeleton in A549 cells was studied using two approaches: G-LISA-based Rac1 activity measurement and immunostaining-based F-actin distribution. The expression levels of key EMT genes were analyzed using real time quantitative polymerase chain reaction (RT-qPCR, western blot and immunostaining in untreated and RhoGDI2 knock-down or overexpressing A549 cells in both in vivo and in vitro experimental settings. Results: Our study showed that the activity of Rac1, a key gene that is crucial for the initiation and metastasis of human lung adenocarcinoma, causing the redistribution of F-actin with partial loss of cell-cell adhesions and stress fibers, was significantly suppressed by RhoGDI2. RhoGDI2 promoted the expression of EMT marker gene E-cadherin and repressed EMT promoting genes Slug, Snail, α-SMA in both A549 cells and lung and liver organs derived from the mouse models. Knocking-down RhoGDI2 induced abnormal morphology for lung organs. Conclusion: These findings indicate that RhoGDI2 repressed the activity of Rac1 and may be involved in the rearrangement of cytoskeleton in lung cancer cells. RhoGDI2 suppresses the metastasis of lung cancer mediated through EMT by regulating the expression of key genes such as E-cadherin, Slug, Snail and α-SMA in both in vivo and in vitro models.

  9. Elevated transition temperature in Ge doped VO2 thin films

    Science.gov (United States)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  10. Mechanistic modeling of transition temperature shift of Japanese RPV materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiranuma, N. [Tokyo Electric Power Co., Tokyo (Japan); Soneda, N.; Dohi, K.; Ishino, S. [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Dohi, N. [Kansai Electric Power Co., Osaka (Japan); Ohata, H. [The Japan Atomic Power Co., Tokyo (Japan)

    2004-07-01

    A new correlation method to predict neutron irradiation embrittlement of reactor pressure vessel (RPV) materials of Japanese nuclear power plants is developed based on the understandings of the embrittlement mechanisms. A set of rate equations is constructed to describe the microstructural changes in the RPV materials during irradiation. Formation of copper-enriched clusters (CEC) and matrix damage (MD) are considered as the two primary causes of the embrittlement. Not only the effects of chemical compositions, such as copper and nickel, and neutron fluence, but also the effects of irradiation temperature as well as neutron flux are formulated in the rate equations to describe the evolution of CEC and MD. Transition temperature shifts corresponding to the microstructural changes are calculated using the predicted number densities of the CEC and MD. Coefficients of the rate equations are optimized using the Japanese surveillance database with a specific attention to reproduce the embrittlement trend of each material of the Japanese RPVs. The standard deviation of 12.1 C of the current Japanese correlation method, JEAC 4201, is reduced down to 10.6 C in the proposed new correlation method. Possibility of adjusting the uncertainty in the initial transition temperatures is discussed. (orig.)

  11. A streptomycin-resistant Escherichia coli mutant with ribosomes temperature-sensitive in the suppression of a nonsense codon.

    Science.gov (United States)

    Zeevi, M; Daniel, V; Engelberg-Kulka, H

    1979-02-26

    Cell free extracts from a streptomycin-resistant E. coli mutant which is also temperature-sensitive for Q beta phage were studied for suppression of a nonsense mutation at various temperatures. The streptomycin-resistant ribosomes of the mutant were found to be temperature-sensitive in suppression of an amber mutation in f2 phage coat protein while retaining the ability to synthesize proteins at an elevated temperature (42 degrees C). The restriction of amber suppression at 42 degrees C is assumed to be related to an alteration in ribosomal protein S12 of the streptomycin-resistant mutant which also causes a change in its electrophoretic mobility.

  12. Suppression Subtractive Hybridization Reveals Transcript Profiling of Chlorella under Heterotrophy to Photoautotrophy Transition

    Science.gov (United States)

    Huang, Jianke; Wang, Weiliang; Yin, Weibo; Hu, Zanmin; Li, Yuanguang

    2012-01-01

    Background Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. Methodology/Principal Findings In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. Conclusions/Significance The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds

  13. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition.

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    Full Text Available Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear.In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1% from the forward library and 62 (21.8% from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense.The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and

  14. 'Vanishing' structural effects of temperature in polymer glasses close to the glass-transition temperature

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Suzuki, T.; Ito, Y.; Yu, R.S.; Kondo, K.; Yampolskii, Yu. P.; Alentiev, A.Yu.

    2007-01-01

    Positron annihilation lifetime (PAL) measurements were used for observation of structural effects of temperature in polystyrene (PS), super-cross-linked polystyrene networks (CPS), and in polyimides (PI) below and in the vicinity of glass-transition temperature T g . 'Vanishing' of these structural effects in the repeating cycles of the temperature controlled PAL experiments due to the slow relaxation processes in different conditions and details of chemical structure is demonstrated. Obtained results illustrate complex, dependent on thermal history, inhomogeneous character of the glass structure. In fact, structure of some polymer glasses is changing continuously. Calculations of the number density of free volume holes in these conditions are discussed

  15. NMR and MRI obtained with high transition temperature dc SQUIDs

    Directory of Open Access Journals (Sweden)

    Souza R.E. de

    1999-01-01

    Full Text Available We have measured nuclear magnetic resonance (NMR signals from several samples at room temperature in magnetic fields ranging from about 0.05 mT to 2 mT using a spectrometer based on a high-Tc dc SQUID (high transition temperature dc Superconducting QUantum Interference Device. We are able to observe proton signals from 1 mL of mineral oil in 2 mT in a single transient. The sensitivity of this system has also allowed the detection of proton NMR at magnetic fields as low as 0.059 mT, which is comparable to the Earth?s field. Such results make possible a number of new experiments in magnetic resonance imaging (MRI. We present a two-dimensional image of a phantom filled with mineral oil obtained in a field of 2 mT.

  16. Simultaneous Determination of Glass Transition Temperatures of Several Polymers.

    Science.gov (United States)

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.

  17. Temperature and center-limb variations of transition region velocities

    International Nuclear Information System (INIS)

    Athay, R.G.; Dere, K.P.

    1989-01-01

    HRTS data from the Spacelab 2 mission are used to derive the center-limb and temperature variations of the mean velocity and the velocity variance in the solar chromosphere and transition zone. The mean velocity is found to vary much more rapidly from center to limb and with temperature than does the velocity variance. Also, the mean velocity shows a characteristic signature at some magnetic neutral lines in accordance with the findings of Klimchuk (1987) from Solar Maximum Mission (SMM) data. The velocity variance does not show a characteristic signature at the neutral lines but shows an inverse correlation with intensity. The latter is interpreted as reduced velocity variance in strong field regions. The results are discussed in terms of downflow along lines of force in magnetic arcades. 23 refs

  18. MiR-200c suppresses the migration of retinoblastoma cells by reversing epithelial mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Shao

    2017-08-01

    Full Text Available AIM: To analyze the relationship between clinical features and epithelial mesenchymal transition (EMT in retinoblastoma (RB, further to investigate whether miR-200c regulates the EMT and migration of RB cells. METHODS: Expression of EMT-related markers and tumor-related factors were detected by immuno-histochemistry analysis in RB tissue from 29 cases. Correlations between their expression and clinical characteristics were analyzed. The regulation effects of miR-200c on EMT-related markers, tumor-related factors were observed in mRNA level and protein level by real-time polymerase chain reaction (PCR and Western blot, respectively, in Y79 and Weri-rb1 cells. Its effects on migration force of these RB cell lines were also detected with Transwell test. RESULTS: Lower expression of E-cadherin was present in the cases with malignant prognosis. MiR-200c promoted the expression of E-cadherin and decreased the expression of Vimentin and N-cadherin in Y79 and Weri-rb1 cells. Migration force of RB cells could be inhibited by miR-200c. CONCLUSION: EMT might be associated with bad prognosis in RB. MiR-200c suppresses the migration of retinoblastomatous cells by reverse EMT.

  19. Cystatin A suppresses tumor cell growth through inhibiting epithelial to mesenchymal transition in human lung cancer.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yuan; Li, Yong; Grün, Katja; Berndt, Alexander; Zhou, Zhongwei; Petersen, Iver

    2018-03-06

    Cystatin A ( CSTA ), belonging to type 1 cystatin super-family, is expressed primarily in epithelial and lymphoid tissues for protecting cells from proteolysis of cytoplasmic and cytoskeletal proteins by cathepsins B, H and L. CSTA acts as a tumor suppressor in esophageal cancer, however, its role in lung cancer has not yet been elucidated. Here we found that CSTA was down-regulated in all lung cancer cell lines compared to normal lung epithelial cells. CSTA was restored in most lung cancer cell lines after treatment with demethylation agent 5-aza-2-deoxycytidine and deacetylation agent Trichostatin. Bisulfite sequencing revealed that CSTA was partially methylated in the promoter and exon 1. In primary lung tumors, squamous cell carcinoma (SCC) significantly expressed more CSTA compared to adenocarcinoma (pgrade (ptransition (MET) and prevented the TGF-β1-induced epithelial to mesenchymal transition (EMT) through inhibiting the ERK/MAPK pathway. In conclusion, our date indicate 1) epigenetic regulation is associated with CSTA gene silencing; 2) CSTA exerts tumor suppressive function through inhibiting MAPK and AKT pathways; 3) Overexpression of CSTA leads to MET and prevents TGF-β1-induced EMT by modulating the MAPK pathway; 4) CSTA may be a potential biomarker for lung SCC and tumor differentiation.

  20. Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM.

    Science.gov (United States)

    Song, Kyung-A; Niederst, Matthew J; Lochmann, Timothy L; Hata, Aaron N; Kitai, Hidenori; Ham, Jungoh; Floros, Konstantinos V; Hicks, Mark A; Hu, Haichuan; Mulvey, Hillary E; Drier, Yotam; Heisey, Daniel A R; Hughes, Mark T; Patel, Neha U; Lockerman, Elizabeth L; Garcia, Angel; Gillepsie, Shawn; Archibald, Hannah L; Gomez-Caraballo, Maria; Nulton, Tara J; Windle, Brad E; Piotrowska, Zofia; Sahingur, Sinem E; Taylor, Shirley M; Dozmorov, Mikhail; Sequist, Lecia V; Bernstein, Bradley; Ebi, Hiromichi; Engelman, Jeffrey A; Faber, Anthony C

    2018-01-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) confers resistance to a number of targeted therapies and chemotherapies. However, it has been unclear why EMT promotes resistance, thereby impairing progress to overcome it. Experimental Design: We have developed several models of EMT-mediated resistance to EGFR inhibitors (EGFRi) in EGFR -mutant lung cancers to evaluate a novel mechanism of EMT-mediated resistance. Results: We observed that mesenchymal EGFR -mutant lung cancers are resistant to EGFRi-induced apoptosis via insufficient expression of BIM, preventing cell death despite potent suppression of oncogenic signaling following EGFRi treatment. Mechanistically, we observed that the EMT transcription factor ZEB1 inhibits BIM expression by binding directly to the BIM promoter and repressing transcription. Derepression of BIM expression by depletion of ZEB1 or treatment with the BH3 mimetic ABT-263 to enhance "free" cellular BIM levels both led to resensitization of mesenchymal EGFR -mutant cancers to EGFRi. This relationship between EMT and loss of BIM is not restricted to EGFR -mutant lung cancers, as it was also observed in KRAS -mutant lung cancers and large datasets, including different cancer subtypes. Conclusions: Altogether, these data reveal a novel mechanistic link between EMT and resistance to lung cancer targeted therapies. Clin Cancer Res; 24(1); 197-208. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. A perspective on transition temperature and KJc data characterization

    International Nuclear Information System (INIS)

    McCabe, D.E.; Merkle, J.G.; Nanstad, R.K.

    1992-01-01

    Proper identification of transition temperature and shape of the lower-bound (K lc ) fracture toughness curve in the transition range has been a long-term objective. A past practice has been to test a large number of specimens of varying sizes, from 1/2T to 8T compacts, in expectation that size effects and statistical variability of (K jc ) could be resolved empirically. Recently, statistical and constraint-based models have been developed that purport to explain much of what has been seen. Weakest-link theory has been successfully used to predict specimen size effects for the lower part of the transition curve. Constraint-based models of β c -- β lc and J ssy (small-scale yield) also can model size effects, but these tend to conflict among themselves with regard to the prediction of full constraint K jc . All lack potential for defining the absolute lower bound of fracture toughness. Statistically based models have the benefit of quantifying data scatter characteristics and provide a basis for making lower-bound toughness estimates with assigned error estimates. The K jc , data are obtained from small specimens, the size of which is dictated by volume limitations of surveillance capsule size. A basis has been explored for establishing a lower-envelope curve from such data

  2. Determination of the glass transition temperature of cyclodextrin polymers.

    Science.gov (United States)

    Tabary, Nicolas; Garcia-Fernandez, Maria Jose; Danède, Florence; Descamps, Marc; Martel, Bernard; Willart, Jean-François

    2016-09-05

    The aim of this work was to determine the main physical characteristics of β-cyclodextrin polymers, well known for improving complexation capacities and providing enhanced and sustained release of a large panel of drugs. Two polymers were investigated: a polymer of β-cyclodextrin (polyβ-CD) and a polymer of partially methylated (DS=0.57) β-cyclodextrin (polyMe-β-CD). The physical characterizations were performed by powder X-ray diffraction and differential scanning calorimetry. The results indicate that these polymers are amorphous and that their glass transition is located above the thermal degradation point of the materials preventing their direct observation and thus their full characterization. We could however estimate the virtual glass transition temperatures by mixing the polymers with different plasticizers (trehalose and mannitol) which decreases Tg sufficiently to make the glass transition observable. Extrapolation to zero plasticizer concentration then yield the following Tg values: Tg (polyMe-β-CD)=317°C±5°C and Tg (polyβ-CD)=418°C±6°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lifted temperature minimum during the atmospheric evening transition

    Science.gov (United States)

    Blay-Carreras, E.; Pardyjak, E. R.; Pino, D.; Hoch, S. W.; Cuxart, J.; Martínez, D.; Reuder, J.

    2015-06-01

    Observations of lifted temperature minimum (LTM) profiles in the nocturnal boundary layer were first reported in 1932. It was defined by the existence of a temperature minimum some centimetres above the ground. During the following decades, several research studies analysed this phenomenon verifying its existence and postulating different hypotheses about its origin. The aim of this work is to study the existence and characteristics of LTM during the evening transition by using observations obtained during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign. Data obtained from two masts instrumented with thermocouples and wind sensors at different heights close to the ground and a mast with radiometers are used to study the role of mechanical turbulence and radiation in LTM development. The study shows that LTM can be detected under calm conditions during the day-night transition, several hours earlier than reported in previous work. These conditions are fulfilled under weak synoptic forcing when the local flow shifts associated with a mountain-plain circulation in relatively complex orography. Under these special conditions, turbulence becomes a crucial parameter in determining the ideal conditions for observing LTM. Additionally, LTM observed profiles are also related to a change in the atmospheric radiative characteristics under calm conditions.

  4. Mean global ocean temperatures during the last glacial transition.

    Science.gov (United States)

    Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff

    2018-01-03

    Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO 2 , thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

  5. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  6. Mean global ocean temperatures during the last glacial transition

    Science.gov (United States)

    Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff

    2018-01-01

    Little is known about the ocean temperature’s long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

  7. Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts

    Science.gov (United States)

    Romo, Cecilia M.; Tylianakis, Jason M.

    2013-01-01

    Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined. PMID:23472147

  8. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts.

    Directory of Open Access Journals (Sweden)

    Cecilia M Romo

    Full Text Available Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined.

  9. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...

  10. Experimental and computational prediction of glass transition temperature of drugs.

    Science.gov (United States)

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  11. Temperature dependent absorption measurement of various transition metal doped laser materials

    Science.gov (United States)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  12. Phase separation and suppression of the structural and magnetic transitions in superconducting doped iron tellurides, Fe(1+x)Te(1-y)S(y).

    Science.gov (United States)

    Zajdel, Pawel; Hsieh, Ping-Yen; Rodriguez, Efrain E; Butch, Nicholas P; Magill, Jeff D; Paglione, Johnpierre; Zavalij, Peter; Suchomel, Matthew R; Green, Mark A

    2010-09-22

    Single crystal and powder samples of the series of iron chalcogenide superconductors with nominal composition, Fe((1.15))Te((1-)y)S(y), are found to form for 0 ≤ y ≤ 0.15. They crystallize in the tetragonal anti-PbO structure, which is composed of layers of edge-shared Fe(Te, S)(4) tetrahedra. For y = 0, Fe(1+x)Te (x ≈ 0.12(1)) is nonsuperconducting and undergoes a tetragonal (P4/nmm) to monoclinic (P2(1)/m) structural transition at ∼65 K, associated with the onset of commensurate antiferromagnetic order at q = (0.5 0 0.5). We show that on sulfur substitution, Fe(1+x)Te(1-y)S(y) becomes orthorhombic (Pmmn) at low temperature for 0 ≤ y ≤ 0.015, where the greatly suppressed magnetic scattering is now incommensurate at q = (0.5-δ 0 0.5) and possesses short ranged magnetic correlations that are well fitted with a two-dimensional Warren peak shape. At much higher concentrations of S (y ≥ 0.075), there is suppression of both the structural and magnetic transitions and a superconducting transition at 9 K is observed. Between these two composition regimes, there exists a region of phase separation (0.025 ≤ y ≤ 0.05), where the low temperature neutron diffraction data is best refined with a model containing both the tetragonal and orthorhombic phases. The increase in the amount of sulfur is found to be associated with a reduction in interstitial iron, x. Microprobe analysis of a single crystal of composition Fe((1.123(5)))Te((0.948(4)))S((0.052(4))) confirms the presence of compositional variation within the crystals, rationalizing the observed phase separation.

  13. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    Science.gov (United States)

    Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

    2010-02-21

    The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

  14. Influence of Network Structure on Glass Transition Temperature of Elastomers

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandzierz

    2016-07-01

    Full Text Available It is generally believed that only intermolecular, elastically-effective crosslinks influence elastomer properties. The role of the intramolecular modifications of the polymer chains is marginalized. The aim of our study was the characterization of the structural parameters of cured elastomers, and determination of their influence on the behavior of the polymer network. For this purpose, styrene-butadiene rubbers (SBR, cured with various curatives, such as DCP, TMTD, TBzTD, Vulcuren®, DPG/S8, CBS/S8, MBTS/S8 and ZDT/S8, were investigated. In every series of samples a broad range of crosslink density was obtained, in addition to diverse crosslink structures, as determined by equilibrium swelling and thiol-amine analysis. Differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA were used to study the glass transition process, and positron annihilation lifetime spectroscopy (PALS to investigate the size of the free volumes. For all samples, the values of the glass transition temperature (Tg increased with a rise in crosslink density. At the same time, the free volume size proportionally decreased. The changes in Tg and free volume size show significant differences between the series crosslinked with various curatives. These variations are explained on the basis of the curatives’ structure effect. Furthermore, basic structure-property relationships are provided. They enable the prediction of the effect of curatives on the structural parameters of the network, and some of the resulting properties. It is proved that the applied techniques—DSC, DMA, and PALS—can serve to provide information about the modifications to the polymer chains. Moreover, on the basis of the obtained results and considering the diversified curatives available nowadays, the usability of “part per hundred rubber” (phr unit is questioned.

  15. Studies on the high-temperature ferroelectric transition of multiferroic hexagonal manganite RMnO3

    Science.gov (United States)

    Sim, Hasung; Jeong, Jaehong; Kim, Haeri; Cheong, S.-W.; Park, Je-Geun

    2018-03-01

    Hexagonal manganites are multiferroic materials with two highly-dissimilar phase transitions: a ferroelectric transition (from P63/mmc to P63cm) at a temperature higher than 1000 K and an antiferromagnetic transition at T N  =  65–130 K. Despite its critical relevance to the intriguing ferroelectric domain physics, the details of the ferroelectric transition are not well known to date primarily because of the ultra-high transition temperature. Using high-temperature x-ray diffraction experiments, we show that the ferroelectric transition is a single transition of abrupt order and R–Op displacement is the primary order parameter. This structural transition is then simultaneously accompanied by MnO5 tilting and the subsequent development of electric polarization.

  16. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  17. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  18. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  19. Temperature Dependence of Arn + Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Arn + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar2 +/(Ar2 + + Ar3 +) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (Tg) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. [Figure not available: see fulltext.

  20. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  1. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  2. Suppression of structural and magnetotransport transitions in compressed Pr0.5Sr0.5MnO3 thin films resulting in colossal magnetoresistance effect

    International Nuclear Information System (INIS)

    Mercey, B.; Hervieu, M.; Prellier, W.; Wolfman, J.; Simon, C.; Raveau, B.

    2001-01-01

    Thin films of Pr 0.5 Sr 0.5 MnO 3 have been deposited on [100]-LaAlO 3 using laser ablation. In contrast to the bulk compounds, such films do not exhibit any structural and magnetotransport transitions versus temperature; more particularly the A-type antiferromagnetic phase with the Fmmm structure which exists in the bulk below T N =135K is suppressed, and the film is an insulator in the absence of a magnetic field. However a colossal magnetoresistance effect is observed, with resistance ratios much larger than in the bulk. These differences with respect to the bulk, are explained by the presence of substrate-induced strains. [copyright] 2001 American Institute of Physics

  3. Spectral weight suppression near a metal-insulator transition in a double-layer electron-doped iridate

    Science.gov (United States)

    Affeldt, Gregory; Hogan, Tom; Smallwood, Christopher L.; Das, Tanmoy; Denlinger, Jonathan D.; Wilson, Stephen D.; Vishwanath, Ashvin; Lanzara, Alessandra

    2017-06-01

    The perovskite iridates Sr2IrO4 and Sr3Ir2O7 represent novel systems for exploring the electronic structure that is characteristic of Mott insulators upon carrier doping. Using angle-resolved photoemission spectroscopy (ARPES), we reveal a previously unobserved suppression of spectral weight near the Fermi level in the conduction band of very lightly electron-doped (Sr1-xLax) 3Ir2O7 followed by a loss of coherence at high temperature. The doping and temperature dependence of this suppression suggests a correspondence with the antiferromagnetic Mott state. These results connect (Sr1-xLax) 3Ir2O7 to other doped Mott insulators and add to the growing evidence of universal physics in these systems.

  4. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi; Dijkwel, Paul P

    2018-02-01

    Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 °C) and room temperature (25 °C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 °C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The

  5. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  6. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  7. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    Science.gov (United States)

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  8. Glass transition temperatures of liquid prepolymers obtained by thermal penetrometry

    Science.gov (United States)

    Potts, J. E., Jr.; Ashcraft, A. C.

    1973-01-01

    Thermal penetrometry is experimental technique for detecting temperature at which frozen prepolymer becomes soft enough to be pierced by weighted penetrometer needle; temperature at which this occurs is called penetration temperature. Apparatus used to obtain penetration temperatures can be set up largely from standard parts.

  9. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  10. An Overview of the Glass Transition Temperature of Synthetic Polymers.

    Science.gov (United States)

    Beck, Keith R.; And Others

    1984-01-01

    Presents an overview of the glass-to-rubber transition, what it is, why it is important, and the major factors that influence it. Indicates that this information should be incorporated into chemistry curricula. (JN)

  11. Depression of the Superfluid Transition Temperature in 4He by a Heat Flow

    International Nuclear Information System (INIS)

    Yin Liang; Qi Xin; Lin Peng

    2014-01-01

    The depression of the superfluid transition temperature T λ in 4 He by a heat flow Q is studied. A small sealed cell with a capillary is introduced and a stable and flat superfluid transition temperature plateau is easily obtained by controlling the temperature of the variable-temperature platform and the bottom chamber of the sealed cell. Owing to the depression effect of the superfluid transition temperature by the heat flow, the heat flow through the capillary is changed by the temperature control to obtain multiple temperature plateaus of different heat flows. The thermometer self-heating effect, the residual heat leak of the 4.2 K environment, the temperature difference on the He II liquid column, the Kapiza thermal resistance between the liquid helium and the copper surface of the sealed cell, the temperature gradient of the sealed cell, the static pressure of the He II liquid column and other factors have influence on the depression effect and the influence is analyzed in detail. Twenty experiments of the depression of the superfluid transition temperature in 4 He by heat flow are made with four sealed cells in one year. The formula of the superfluid transition temperature pressured by the heat flow is T λ (Q) = −0.00000103Q + 2.1769108, and covers the range 229 ≤ Q ≤ 6462 μW/cm 2

  12. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available The epithelial-mesenchymal transition (EMT in retinal pigment epithelial (RPE cells plays a central role in the development of proliferative vitreoretinopathy (PVR. The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF-α (10 ng/ml and transforming growth factor (TGF-β2 (5 ng/ml. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01. Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5'-amino-5'-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

  13. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  14. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    Science.gov (United States)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  15. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  16. MiR-876-5p suppresses epithelial–mesenchymal transition of lung ...

    Indian Academy of Sciences (India)

    Liang Bao

    2017-11-07

    Nov 7, 2017 ... Lung cancer is the leading cause of cancer-related death throughout the world. We aimed to investigate the role of a novel. microRNA-876-5p and its potential molecular target bone morphogenetic protein 4 (BMP-4), in the epithelial–mes- enchymal transition (EMT) of lung cancer. Expressions of ...

  17. MiR-876-5p suppresses epithelial–mesenchymal transition of lung ...

    Indian Academy of Sciences (India)

    Liang Bao

    2017-11-07

    Nov 7, 2017 ... in lung cancer cells and patient tissues. Luciferase activity assay was ... Bone morphogenetic protein 4; epithelial-mesenchymal transition; lung cancer; metastasis; microRNA-876-5p. 1. Introduction ..... -UTR of BMP-4 mRNAs were cloned at the downstream of a luciferase reporter gene (Luci). (C) Levels of ...

  18. Atomistic description for temperature-driven phase transitions in BaTiO3

    Science.gov (United States)

    Qi, Y.; Liu, S.; Grinberg, I.; Rappe, A. M.

    2016-10-01

    Barium titanate (BaTiO3) is a prototypical ferroelectric perovskite that undergoes the rhombohedral-orthorhombic-tetragonal-cubic phase transitions as the temperature increases. In this paper, we develop a classical interatomic potential for BaTiO3 within the framework of the bond-valence theory. The force field is parametrized from first-principles results, enabling accurate large-scale molecular dynamics (MD) simulations at finite temperatures. Our model potential for BaTiO3 reproduces the temperature-driven phase transitions in isobaric-isothermal ensemble (N P T ) MD simulations. This potential allows for the analysis of BaTiO3 structures with atomic resolution. By analyzing the local displacements of Ti atoms, we demonstrate that the phase transitions of BaTiO3 exhibit a mix of order-disorder and displacive characters. Besides, from a detailed observation of structural dynamics during phase transition, we discover that the global phase transition is associated with changes in the equilibrium value and fluctuations of each polarization component, including the ones already averaging to zero, Contrary to the conventional understanding that temperature increase generally causes bond-softening transition, the x -polarization component (the one which is polar in both the orthorhombic and the tetragonal phases) exhibits a bond-hardening character during the orthorhombic-to-tetragonal transition. These results provide further insight about the temperature-driven phase transitions in BaTiO3.

  19. Modal-interference-based temperature sensing using plastic optical fibers: markedly enhanced sensitivity near glass-transition temperature

    Science.gov (United States)

    Numata, Goki; Hayashi, Neisei; Tabaru, Marie; Mizuno, Yosuke; Nakamura, Kentaro

    2015-07-01

    We developed strain and temperature sensors based on multimode interference in perfluorinated graded-index (GI) plastic optical fibers, and investigate their sensing performance at 1300 nm. At room temperature, we achieve ultra-high sensitivities of strain and temperature of -112 pm/μɛ and +49.8 nm/°C/m, the absolute value of which are approximately 7.2 and over 1800 times as large as those in silica GI multimode fibers, respectively. We also find that the temperature sensitivity is drastically enhanced with increasing temperature toward ~80 °C, where phase transition of core polymer partially occurs.

  20. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    Science.gov (United States)

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak

    Science.gov (United States)

    Sung, C.; Wang, G.; Rhodes, T. L.; Smith, S. P.; Osborne, T. H.; Ono, M.; McKee, G. R.; Yan, Z.; Groebner, R. J.; Davis, E. M.; Zeng, L.; Peebles, W. A.; Evans, T. E.

    2017-11-01

    The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs only after ELMs are suppressed and are not observed during the initial RMP application. The T˜ e/Te increases ( >60%) are coincident with changes in normalized density and electron temperature gradients in the region from the top of the pedestal outward to the upper portion of the steep edge gradient. Density turbulence (kθρs ≤ 0.4) in this location was also observed to increase only after ELM suppression. These results are significant since they indicate that increased gradient-driven turbulent transport is one possible mechanism to regulate and maintain ELM-free H-mode operation. Investigation of linear stability of drift wave instabilities using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73 (2016)] shows that the dominant mode moves closer to the electron mode branch from the ion mode branch only after ELMs are suppressed, correlated with the increased turbulence. The increased turbulence during ELM suppression, rather than with the initial RMP application, indicates that the often observed RMP induced "density pump-out" cannot be attributed to long wavelength edge turbulence level changes.

  2. luminous transmittance and phase transition temperature of vo2:ce ...

    African Journals Online (AJOL)

    nb

    molybdenum, niobium and fluorine. Although tungsten (W) doping has shown incredible reduction in τc to room temperature (Batista et al. 2011), W-doped VO2 films are reported to have lower infrared transmittance at room temperature compared with the undoped films. (Wang et al. 2005), and hence unsuitable for high.

  3. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  4. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  5. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  6. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    Science.gov (United States)

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  7. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    turbulent premixed flows . Hence, Tau_c is here varied via the mixture stoichiometry (Phi) with variations in Tau_f pursued in a parallel study...transitions in turbulent premixed flows . Hence, τc is here varied via the mixture stoichiometry (Φ) with variations in τf pursued in a parallel study...combustion products that alter or govern the mixing fluid flow dynamics lead to a gradual alignment of Umix/Ub with the HCP fluid flow direction. This

  8. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  9. Fibulin-1 suppresses endothelial to mesenchymal transition in the proximal outflow tract

    DEFF Research Database (Denmark)

    Harikrishnan, K.; Cooley, M. A.; Sugi, Y.

    2015-01-01

    Endothelial to mesenchymal transition (EMT) that occurs during cardiac outflow tract (OFT) development is critical for formation of the semilunar valves. Fibulin-1 (Fbln1) is an extracellular matrix protein that is present at several sites of EMT, including the OFT (i.e., E9.5-10.5). The aim...... deficiency on the expression of factors that regulate proximal OFT EMT. At E9.5, Fbln1 null proximal OFT endocardium and EMT-derived mesenchyme showed increased TGF beta 2 (58% increase; p = 0.01) and increased Snail1-positive nuclei (27% increase; p = 0.0003). Histological examination of OFT cushions...

  10. Theory of the superconducting proximity effect below the transition temperature

    International Nuclear Information System (INIS)

    Silvert, W.

    1975-01-01

    The form of the low-temperature theory of the superconducting proximity effect depends on whether the non-linear terms are assumed to depend only on the local value of the gap or on its average value over some finite range. The local assumption leads to smaller values of the gap and to unphysical results at low temperatures. The effect of non-locality is significant even in the Ginsburg-Landau regime. (author)

  11. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  12. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  13. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    Science.gov (United States)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  14. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures.

    Science.gov (United States)

    Lee, Seok-Woo; Jafary-Zadeh, Mehdi; Chen, David Z; Zhang, Yong-Wei; Greer, Julia R

    2015-09-09

    To harness "smaller is more ductile" behavior emergent at nanoscale and to proliferate it onto materials with macroscale dimensions, we produced hollow-tube Cu60Zr40 metallic glass nanolattices with the layer thicknesses of 120, 60, and 20 nm. They exhibit unique transitions in deformation mode with tube-wall thickness and temperature. Molecular dynamics simulations and analytical models were used to interpret these unique transitions in terms of size effects on the plasticity of metallic glasses and elastic instability.

  15. Influence of specimen dimensions on ductile-to-brittle transition temperature in Charpy impact test

    Science.gov (United States)

    Rzepa, S.; Bucki, T.; Konopík, P.; Džugan, J.; Rund, M.; Procházka, R.

    2017-02-01

    This paper discusses the correlation between specimen dimensions and transition temperature. Notch toughness properties of Standard Charpy-V specimens are compared to samples with lower width (7.5 mm, 5 mm, 2.5 mm) and sub-size Charpy specimens with cross section 3×4. In this study transition curves are correlated with lateral ductile part of fracture related ones for 5 considered geometries. Based on the results obtained, correlation procedure for transition temperature determination of full size specimens defined by fracture appearance of sub-sized specimens is proposed.

  16. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  17. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition.

    Science.gov (United States)

    Chen, Hong; Chen, Qun; Jiang, Chun-Ming; Shi, Guang-Yue; Sui, Bo-Wen; Zhang, Wei; Yang, Li-Zhen; Li, Zhu-Ying; Liu, Li; Su, Yu-Ming; Zhao, Wen-Cheng; Sun, Hong-Qiang; Li, Zhen-Zi; Fu, Zhou

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  19. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  20. Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2017-11-01

    The shape evolutions of the pear-shaped nuclei 224Ra and even-even Ba-154144 with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. The free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum are studied. For 224Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at N =136 and Z =88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at T ˜0.5 MeV and shape transitions at T =0.5 -2.2 MeV are found for even-even Ba-154144. The transition temperatures are roughly proportional to the corresponding deformations at the ground states.

  1. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  2. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV......, and simulates the transient development of an oxidation zone. Simulations are in good agreement with experimental data for a fast degrading epoxy-amine coating with a glass transition temperature of −50°C. It was found that the degradation rate of the non-stabilized coating was influenced significantly...

  3. On-chip detection of gel transition temperature using a novel micro-thermomechanical method.

    Directory of Open Access Journals (Sweden)

    Tsenguun Byambadorj

    Full Text Available We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.

  4. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    Science.gov (United States)

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  5. Does zero temperature decide on the nature of the electroweak phase transition?

    International Nuclear Information System (INIS)

    Harman, Christopher P.D.; Huber, Stephan J.

    2016-01-01

    Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigenvalue develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8×10 7 GeV 4 . For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×10 7 GeV 4 . Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass.

  6. Impacts of land cover transitions on surface temperature in China based on satellite observations

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  7. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  8. Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis × E. urophylla

    Science.gov (United States)

    Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin

    To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.

  9. Determination of the glass-transition temperature of proteins from a viscometric approach.

    Science.gov (United States)

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Shock-induced phase transition of Tin: Experimental study with velocity and temperature measurements

    Science.gov (United States)

    Chauvin, Camille; Bouchkour, Zakaria; Sinatti, Frédéric; Petit, Jacques

    2017-01-01

    To investigate polymorphic transition and melting on release of Tin, experiments under shock wave compression have been carried out from 10 GPa to 44 GPa with both velocity and temperature measurements. Interface Sn/LiF velocity has been recorded using Photon Doppler Velocimeter (PDV) measurement technique and interface Sn/LiF temperature has been performed thanks to an optical pyrometer appropriate to detect low and high temperatures (respectively 1000 K). While PDV measurements are common and accurate, temperature remains often imprecise due to the lack of knowledge on the emissivity of the sample. The use of an emissive layer at the interface Sn/LiF helps to estimate an accurate temperature measurement which can be compared to our numerical simulations. The profiles of both velocity and radiance records are in good agreement and display the polymorphic transition and the melting on release of Tin. Besides, temperature profiles can show complementary singularities particularly during phase transition, not visible on velocity profiles. This paper will discuss the evidence of phase transitions on temperature measurements, the complementarity with velocity measurements and the advantages of an emissive layer.

  11. On the Frequency Correction in Temperature-Modulated Differential Scanning Calorimetry of Glass Transition

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    2012-01-01

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequen...... correction. The resulting glass transition temperature from the frequency corrected reversing heat flow is thereby shown to be independent of frequency.......Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequency...

  12. Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhou, Hou-Min; Dong, Tao-Tao; Wang, Lin-Lin; Feng, Bo; Zhao, Hong-Chao; Fan, Xiu-Ke; Zheng, Min-Hua

    2012-06-07

    To evaluate the effect of nigericin on colorectal cancer and to explore its possible mechanism. The human colorectal cancer (CRC) cell lines HT29 and SW480 were treated with nigericin or oxaliplatin under the conditions specified. Cell viability assay and invasion and metastasis assay were performed to evaluate the effect of nigericin on CRC cells. Sphere-forming assay and soft agar colony-forming assay were implemented to assess the action of nigericin on the cancer stem cell properties of CRC cells undergone epithelial-mesenchymal transition (EMT). Compared with oxaliplatin, nigericin showed more toxicity for the HT29 cell line (IC50, 12.92 ± 0.25 μmol vs 37.68 ± 0.34 μmol). A similar result was also obtained with the SW116 cell line (IC50, 15.86 ± 0.18 μmol vs 41.02 ± 0.23 μmol). A Boyden chamber assay indicated that a significant decrease in the number of HT29 cells migrating through polyvinylidene fluoride membrane was observed in the nigericin-treated group, relative to the vehicle-treated group [11 ± 2 cells per high-power field (HPF) vs 19.33 ± 1.52 cells per HPF, P cells invading through the Matrigel-coated membrane also decreased in the nigericin-treated group (6.66 ± 1.52 cells per HPF vs 14.66 ± 1.52 cells per HPF, P cells from 83.57% to 63.93%, relative to the control group (P cells treated with nigericin and oxaliplatin. The results showed that HT29 cells treated with nigericin induced an increase in E-cadherin expression and a decrease in the vimentin expression relative to vehicle controls. In contrast, oxaliplatin downregulated the expression of E-cadherin and upregulated the expression of vimentin in HT29 cells relative to vehicle controls. This study demonstrated that nigericin could partly reverse the EMT process during cell invasion and metastasis.

  13. A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer.

    Directory of Open Access Journals (Sweden)

    Takuya Sakamoto

    Full Text Available Epithelial-mesenchymal transition (EMT is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC, EMT is induced by transforming growth factor-beta 1 (TGF-β1. The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine-resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1 and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1 and mesenchymal markers (CDH2, vimentin, SNAI1 were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation.

  14. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  15. Large temperature drop across the Eocene-Oligocene transition in central North America.

    Science.gov (United States)

    Zanazzi, Alessandro; Kohn, Matthew J; MacFadden, Bruce J; Terry, Dennis O

    2007-02-08

    The Eocene-Oligocene transition towards a cool climate (approximately 33.5 million years ago) was one of the most pronounced climate events during the Cenozoic era. The marine record of this transition has been extensively studied. However, significantly less research has focused on continental climate change at the time, yielding partly inconsistent results on the magnitude and timing of the changes. Here we use a combination of in vivo stable isotope compositions of fossil tooth enamel with diagenetic stable isotope compositions of fossil bone to derive a high-resolution (about 40,000 years) continental temperature record for the Eocene-Oligocene transition. We find a large drop in mean annual temperature of 8.2 +/- 3.1 degrees C over about 400,000 years, the possibility of a small increase in temperature seasonality, and no resolvable change in aridity across the transition. The large change in mean annual temperature, exceeding changes in sea surface temperatures at comparable latitudes and possibly delayed in time with respect to marine changes by up to 400,000 years, explains the faunal turnover for gastropods, amphibians and reptiles, whereas most mammals in the region were unaffected. Our results are in agreement with modelling studies that attribute the climate cooling at the Eocene-Oligocene transition to a significant drop in atmospheric carbon dioxide concentrations.

  16. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.Y. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Zhang, G.H. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Lian, J.S. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Jiang, Q. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)]. E-mail: jiangq@jlu.edu.cn

    2006-02-21

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO{sub 2}. In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences.

  17. Two aspects of the quantum chromodynamics' transition at finite temperature

    International Nuclear Information System (INIS)

    Zhang, Bo

    2011-01-01

    This thesis concerns two aspects of the relation between chiral symmetry breaking and confinement. The first aspect is the relations between different topological objects. The relation between monopoles and center vortices and the relation between instantons and monopoles are well established, in this thesis, we explore the relation between instantons (of finite temperature, called calorons) and center vortices in SU(2) and SU(3) gauge theory in Chapter 3 and Chapter 4, respectively. The second aspect is about the order parameters. The dual condensate introduced by E. Bilgici et al. is a novel observable that relates the order parameter of chiral symmetry breaking (chiral condensate) and confinement (Polyakov loop). In this thesis, we investigate the dual condensate on dynamical staggered fermions and explore a new dual operator: the dual quark density in Chapter 5.

  18. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  19. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  20. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature.

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Lambert, Christopher R; Van Dessel, Steven

    2017-05-01

    Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid-gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications. © 2017 The Authors.

  1. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    Science.gov (United States)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-01

    We study phase transitions in S U (∞ ) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia. Depending upon the detailed form of the matrix model, the eigenvalue density and the behavior of the specific heat near the transition differ drastically. We speculate that in the pure gauge theory, although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infinite N .

  2. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  3. Phase transition of tetragonal copper sulfide Cu2S at low temperatures

    Science.gov (United States)

    Zimmer, D.; Ruiz-Fuertes, J.; Bayarjargal, L.; Haussühl, E.; Winkler, B.; Zhang, J.; Jin, C. Q.; Milman, V.; Alig, E.; Fink, L.

    2017-08-01

    The low-temperature behavior of tetragonal copper sulfide, Cu2S , was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal Cu2S undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of ±21 K, an enthalpy of reaction of 1.3(2) kJ mol-1 , and an entropy of reaction of 6.5(2) J mol-1K-1 . The temperature dependence of the heat capacity at the transition temperature indicates that the transition from the tetragonal to the low-temperature polymorph is not a single process. The structure of the low-temperature polymorph at 100 K was solved in space group P n a 21 . The structure is based on a slightly distorted cubic close packing of sulfur with copper in threefold coordination similar to the structure of tetragonal copper sulfide. The electrical resistance changes several orders of magnitude at the transition following the temperature hysteresis. The activation energy of the conductivity for the tetragonal phase and the low-temperature polymorph are 0.15(2) and 0.22(1) eV, respectively. The direct band gap of the tetragonal polymorph is found to be 1.04(2) eV with the absorption spectrum following Urbach's law. The activation energies and the band gaps of both phases are discussed with respect to the results of the calculated electronic band structures.

  4. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    Science.gov (United States)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  5. Traction and lubricant film temperature as related to the glass transition temperature and solidification. [using infrared spectroscopy on EHD contacts

    Science.gov (United States)

    Lauer, J. L.; Peterkin, M. E.

    1978-01-01

    Does a traction fluid have to be a glass or solid under operating conditions. Infrared spectra on dynamic EHD contacts of several types of fluid were used to determine the surface and oil-film temperatures. Polarized spectral runs were made to study molecular alignment. Static glass transition pressures at appropriate temperatures were between 0.1 and 2.0 GPa, with the traction fluid showing the highest. In the EHD contact region, the traction fluid showed both the highest film temperatures as well as the greatest degree of molecular alignment. A plot of the difference between the film and surface temperatures vs shear rate resulted in a master plot valid for all the fluids. From this work, the authors propose a model of 'fluid' traction, where friction between parallel rough molecules provides the traction.

  6. The Present SP Tests for Determining the Transition Temperature TSPon "U" Notch Disc Specimens.

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-05-03

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy E SP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature T SP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a "U" shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests T SP , determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing.

  7. Water sorption and glass transition temperatures in red raspberry (Rubus idaeus)

    International Nuclear Information System (INIS)

    Syamaladevi, Roopesh M.; Sablani, Shyam S.; Tang, Juming; Powers, Joseph; Swanson, Barry G.

    2010-01-01

    Water sorption isotherms and glass transition temperatures of raspberries were determined to understand interactions between water and biopolymers. Water adsorption and desorption isotherms of raspberries were determined with an isopiestic method. Thermal transitions of raspberries equilibrated at selected water concentrations using adsorption and desorption were determined by differential scanning calorimetry (DSC). The sorption isotherm data were modeled by BET and GAB equations, while the plasticizing influence of water on glass transition was modeled by the Gordon-Taylor equation. Equilibrium water concentrations varied at equivalent water activities during adsorption and desorption indicating occurrence of hysteresis and irreversibility of thermodynamic processes. The monolayer water concentrations of 0.099 and 0.108 kg water/kg dry raspberry solids obtained by BET and GAB models during desorption were larger than those during adsorption (0.059 and 0.074 kg water/kg dry raspberry solids). The glass transition temperature of raspberries decreased with increasing water concentrations. The Gordon-Taylor parameters T gs and k obtained for raspberries during adsorption were 42.6 o C and 4.73 and during desorption were 44.9 o C and 5.03, respectively. The characteristic glass transition temperature of the maximally freeze concentrated solution T ' g was -63.1 ± 5 o C and the onset of ice crystal melting temperature T ' m was -32.3 ± 0.4 o C. Although the water activity differed significantly at equivalent water concentrations obtained using absorption or desorption, the glass transition temperatures of raspberries were dependent on the concentration of water present not the method of equilibration.

  8. Transition Temperatures of Thermotropic Liquid Crystals from the Local Binary Gray Level Cooccurrence Matrix

    Directory of Open Access Journals (Sweden)

    S. Sreehari Sastry

    2012-01-01

    Full Text Available This paper presents a method which combines the statistical analysis with texture structural analysis called Local Binary Gray Level Cooccurrence Matrix (LBGLCM to investigate the phase transition temperatures of thermotropic p,n-alkyloxy benzoic acid (nOBA, n=4,6,8,10 and 12 liquid crystals. Textures of the homeotropically aligned liquid crystal compounds are recorded as a function of temperature using polarizing optical microscope attached to the hot stage and high resolution camera. In this method, second-order statistical parameters (contrast, energy, homogeneity, and correlation are extracted from the LBGLCM of the textures. The changes associatedwiththe values of extracted parameters as a function of temperature are a helpful process to identify the phases and phase transition temperatures of the samples. Results obtained from this method have validity and are in good agreement with the literature.

  9. Temperature and electric field induced metal-insulator transition in atomic layer deposited VO2 thin films

    Science.gov (United States)

    Tadjer, Marko J.; Wheeler, Virginia D.; Downey, Brian P.; Robinson, Zachary R.; Meyer, David J.; Eddy, Charles R.; Kub, Fritz J.

    2017-10-01

    Amorphous vanadium oxide (VO2) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 °C for 1-2 h under a low oxygen pressure (10-4 to 10-5 Torr). Under these conditions the crystalline VO2 phase was maintained, while formation of the V2O5 phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 °C range, with an ROFF/RON ratio of up to about 750 and ΔTC ≅ 7-10 °C. Lateral electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO2 sample processed with the 2 h long O2 anneal. Both the width and slope of the field induced MIT I-V hysteresis were dependent upon the VO2 crystalline quality.

  10. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    Science.gov (United States)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  11. Hilbert-Glass Transition: New Universality of Temperature-Tuned Many-Body Dynamical Quantum Criticality

    Directory of Open Access Journals (Sweden)

    David Pekker

    2014-03-01

    Full Text Available We study a new class of unconventional critical phenomena that is characterized by singularities only in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the recently proposed many-body localization-delocalization transition, in which transport coefficients vanish at a critical temperature with no singularities in thermodynamic observables. Describing this purely dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics necessarily requires averaging over a large number of matrix elements between many-body eigenstates. Here, we develop a real-space renormalization group method for excited states that allows us to overcome this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden in this model, using the real-space renormalization group method for excited states we find a finite-temperature dynamical transition between two localized phases. The transition is characterized by nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic spin correlation function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an Edwards-Anderson-like order parameter in one of the localized phases.

  12. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  13. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Science.gov (United States)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  14. Suppression of the low-temperature phase-separated state under pressure in (Eu{sub 1-x}Gd{sub x}){sub 0.6}Sr{sub 0.4}MnO{sub 3} (x=0,0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Tasuku [Department of Materials Science and Engineering, Iwate University, Morioka 020-8551 (Japan); Matsukawa, Michiaki, E-mail: matsukawa@iwate-u.ac.jp [Department of Materials Science and Engineering, Iwate University, Morioka 020-8551 (Japan); Kimura, Daichi; Yamato, Yoshiaki; Kobayashi, Satoru [Department of Materials Science and Engineering, Iwate University, Morioka 020-8551 (Japan); Suryanarayanan, Ramanathan [Laboratoire de Physico-Chimie de L' Etat Solide, CNRS, UMR8648 Universite Paris-Sud, 91405 Orsay (France); Nimori, Sigeki [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Koyama, Keiichi [Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Takahashi, Kohki; Watanabe, Kazuo; Kobayashi, Norio [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2012-11-15

    We have demonstrated the effect of pressure on the steplike metamagnetic transition and its associated magnetostriction in (Eu{sub 1-x}Gd{sub x}){sub 0.6}Sr{sub 0.4}MnO{sub 3} (x=0 and 0.1). The critical field initiating the field induced ferromagnetic transition in both samples is lowered by the applied pressure. The further application of external pressure up to 1.2 GPa on the x=0 parent sample causes a spontaneous ferromagnetic transition with a second-order like character, leading to collapses of the steplike transition and its concomitant lattice striction. These findings indicate a crucial role of the low-temperature phase separated state characterized by a suppressed magnetization upon decreasing temperature. - Highlights: Black-Right-Pointing-Pointer Phase separated manganite exhibits the low-temperature step-like metamagnetic transition. Black-Right-Pointing-Pointer The low-temperature phase separated state is characterized by a suppressed magnetization. Black-Right-Pointing-Pointer The applied pressure collapses the phase separated state, giving a ferromagnetic transition. Black-Right-Pointing-Pointer The step-like magnetic transition accompanies its associated magnetostriction jump.

  15. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    Science.gov (United States)

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  16. Recombinant production and purification of short hydrophobic Elastin-like polypeptides with low transition temperatures.

    Science.gov (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2016-05-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. We report herein the recombinant expression of three hydrophobic ELPs (VPGIG)n with variable lengths (n = 20, 40, 60) and sub-ambient transition temperatures. These ELPs were purified from the cytoplasmic soluble fraction of Escherichia coli by inverse transition cycling, and their exact molecular weight was confirmed by various mass spectrometry techniques. Transition temperatures of ELP20, ELP40, and ELP60 were measured at 18.6 °C, 12.4 °C and 11.7 °C, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...

  18. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  19. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  20. Interactions in a blend of two polymers greatly differing in glass transition temperature

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2011-01-01

    Roč. 49, č. 14 (2011), s. 1031-1040 ISSN 0887-6266 Institutional research plan: CEZ:AV0Z40500505 Keywords : differential scanning calorimetry (DSC) * fouriertransform infrared spectroscopy (FT-IR) * glass transition temperature Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.531, year: 2011

  1. Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams

    Czech Academy of Sciences Publication Activity Database

    Smetana, B.; Zlá, S.; Kroupa, Aleš; Žaludová, M.; Drápala, J.; Burkovič, R.; Petlák, D.

    2012-01-01

    Roč. 110, č. 1 (2012), s. 369-378 ISSN 1388-6150 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Sn-Zn-Al system * DTA * phase transition temperatures Subject RIV: BJ - Thermodynamics Impact factor: 1.982, year: 2012

  2. Time evolution of chiral phase transition at finite temperature and density in the linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)

    1999-08-01

    There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)

  3. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.

    Science.gov (United States)

    Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan

    2013-11-28

    Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous desalination method driven by a mild temperature gradient. We propose a prototype desalination system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic desalination system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical desalination system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory desalination systems based on low- and high-molar-mass LCST draw solutes.

  4. Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    International Nuclear Information System (INIS)

    Bai Yu; Jin Li

    2008-01-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (T f ) was first determined for polymer and polymer based composite materials. (fast track communication)

  5. Phase transitions in cerium at high pressure up to 15 GPa and at high temperatures

    International Nuclear Information System (INIS)

    Tsiok, O.B.; Khvostantsev, L.G.

    2001-01-01

    The phase transitions in cerium are studied through the electric resistance measurement method at pressures up to 15 GPa and high temperatures. It is determined that cerium at pressures above 10 GPa constitutes the mixture of stable and metastable phases, whereby its composition depends on thee trajectory on the P-T-plane, leading to the point with the given P-T-parameters. The transitions in the stable and metastable components of this mixture, proceeding more or less independently, demonstrate the entangled picture of the phase transitions. It was supposed that only the α (Fcc) and α' (α-U) phases are stable in the area of pressures above the well-known γ-α-transition; the remainder phases are metastable. The proposed cupola-shaped equilibrium phase diagram includes extremely wide hysteresis area, wherein the stable and metastable phases may coexist. However after heating above 500 deg C at 15 GPa there remains only one phase α (Fcc) [ru

  6. Rubber adhesion below the glass transition temperature: Role of frozen-in elastic deformation

    Science.gov (United States)

    Akulichev, A. G.; Tiwari, A.; Dorogin, L.; Echtermeyer, A. T.; Persson, B. N. J.

    2017-11-01

    We have studied how the adhesion between rubber and a flat countersurface depends on temperature. When the two solids are separated at room temperature negligible adhesion is detected, which is due to the elastic deformation energy stored in the rubber, which is given back during pull-off and help to break the adhesive bonds. When the system is cooled down below the glass transition temperature, the elastic deformation imposed on the system at room temperature is “frozen-in” and the stored-up elastic energy is not given back during separation at the low temperature. This results in a huge increase in the pull-off force. This study is crucial for many applications involving rubber at low temperatures, e.g., rubber seals for cryogenic or space applications.

  7. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    Science.gov (United States)

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  8. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...... Science B.V. All rights reserved....

  9. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy.

    Directory of Open Access Journals (Sweden)

    Yiwen Sun

    Full Text Available The GP2 peptide is derived from the Human Epidermal growth factor Receptor 2 (HER2/nue, a marker protein for breast cancer present in saliva. In this paper we study the temperature dependent behavior of hydrated GP2 at terahertz frequencies and find that the peptide undergoes a dynamic transition between 200 and 220 K. By fitting suitable molecular models to the frequency response we determine the molecular processes involved above and below the transition temperature (T(D. In particular, we show that below T(D the dynamic transition is dominated by a simple harmonic vibration with a slow and temperature dependent relaxation time constant and that above T(D, the dynamic behavior is governed by two oscillators, one of which has a fast and temperature independent relaxation time constant and the other of which is a heavily damped oscillator with a slow and temperature dependent time constant. Furthermore a red shifting of the characteristic frequency of the damped oscillator was observed, confirming the presence of a non-harmonic vibration potential. Our measurements and modeling of GP2 highlight the unique capabilities of THz spectroscopy for protein characterization.

  10. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    Research highlights: → We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. → The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. → The second method is an experimental study of the stability thermal range of each morph. → We identify the nature of crystals in suspension at equilibrium through Raman analysis. → The solid-solid transition temperature is found equal to 303.65 K ± 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T tr ) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T tr as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T tr is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC

  11. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  12. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Science.gov (United States)

    Arunasalam, Suntharan; Kobakhidze, Archil; Lagger, Cyril; Liang, Shelley; Zhou, Albert

    2018-01-01

    We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T ≲ 132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10-8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  13. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    Science.gov (United States)

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.

  14. Dielectric behavior and low temperature phase transition in NH4IO3

    Science.gov (United States)

    Abdel Kader, M. M.; El-Kabbany, F.; Naguib, H. M.; Gamal, W. M.

    2013-10-01

    The electrical properties namely ac conductivity σ(ω, T) and the complex dielectric permittivity (ε*) are measured at selected frequencies (5-100 kHz) as function of temperature (95 K < T < 280 K) for polycrystalline samples of NH4IO3. The ferroelectric hysteresis loops and the X-ray diffraction pattern are also measured. The analysis of the data indicates that the compound undergoes a structural phase transition at ∼103 K and the behavior of σ(ω, T) obeys the power law. The trend of the temperature dependence of the angular frequency exponent s (0 < s < 1) suggests that the quantum mechanical tunneling model is the most likely one that describes the conduction mechanism. The core results of the article are: (1) the low temperature ac electrical parameters are measured for NH4IO3; (2) the data indicate that the compound undergoes a structural phase transition at 103 K; (3) the originality of this transition has been confirmed by X-ray diffraction; (4) no evidence for the existence of a ferroelectric transition at 103 K as mentioned earlier; and (5) the quantum mechanical tunneling is proposed as the main mechanism of the electric conduction.

  15. High-temperature structural phase transitions in neighborite: a high-resolution neutron powder diffraction investigation

    Science.gov (United States)

    Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.

    2015-01-01

    The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().

  16. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.

    Science.gov (United States)

    Li, Dai-Xi; Liu, Bao-Lin; Liu, Yi-shu; Chen, Cheng-lung

    2008-04-01

    Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (T(g)) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. T(g) is usually measured by using differential scanning calorimetry (DSC). In this study, the T(g) of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (C(p)), density (rho), amorphous cell volume (V(cell)) and specific volume (V(specific)) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90-270K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated T(g) value for glycerol-water binary solution. The T(g) values determined by simulation method were compared with the values in the literatures. The simulation values of T(g) (160.06-167.51K) agree well with the DSC results (163.60-167.10K) and the DMA results (159.00K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (T(g)) of glycerol-water binary cryoprotectants and may be used for other vitrification solutions.

  17. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    International Nuclear Information System (INIS)

    Lee, G.B.; Hong, Y.P.; Im, J.N.; Chung, K.W.

    1989-01-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous

  18. EGCG Suppresses ERK5 Activation to Reverse Tobacco Smoke-Triggered Gastric Epithelial-Mesenchymal Transition in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2016-07-01

    Full Text Available Tobacco smoke is an important risk factor of gastric cancer. Epithelial-mesenchymal transition is a crucial pathophysiological process in cancer development. ERK5 regulation of epithelial-mesenchymal transition may be sensitive to cell types and/or the cellular microenvironment and its role in the epithelial-mesenchymal transition process remain elusive. Epigallocatechin-3-gallate (EGCG is a promising chemopreventive agent for several types of cancers. In the present study we investigated the regulatory role of ERK5 in tobacco smoke-induced epithelial-mesenchymal transition in the stomach of mice and the preventive effect of EGCG. Exposure of mice to tobacco smoke for 12 weeks reduced expression of epithelial markers E-cadherin, ZO-1, and CK5, while the expression of mesenchymal markers Snail-1, Vimentin, and N-cadherin were increased. Importantly, we demonstrated that ERK5 modulated tobacco smoke-mediated epithelial-mesenchymal transition in mice stomach, as evidenced by the findings that tobacco smoke elevated ERK5 activation, and that tobacco smoke-triggered epithelial-mesenchymal transition was reversed by ERK5 inhibition. Treatment of EGCG (100 mg/kg BW effectively attenuated tobacco smoke-triggered activation of ERK5 and epithelial-mesenchymal transition alterations in mice stomach. Collectively, these data suggested that ERK5 was required for tobacco smoke-triggered gastric epithelial-mesenchymal transition and that EGCG suppressed ERK5 activation to reverse tobacco smoke-triggered gastric epithelial-mesenchymal transition in BALB/c mice. These findings provide new insights into the mechanism of tobacco smoke-associated gastric tumorigenesis and the chemoprevention of tobacco smoke-associated gastric cancer.

  19. Glass transition temperature of hard chairside reline materials after post-polymerisation treatments.

    Science.gov (United States)

    Urban, Vanessa M; Machado, Ana L; Alves, Marinês O; Maciel, Adeilton P; Vergani, Carlos E; Leite, Edson R

    2010-09-01

    This study evaluated the effect of post-polymerisation treatments on the glass transition temperature (T(g)) of five hard chairside reline materials (Duraliner II-D, Kooliner-K, New Truliner-N, Ufi Gel hard-U and Tokuso Rebase Fast-T). Specimens (10 x 10 x 1 mm) were made following the manufacturers' instructions and divided into three groups (n = 5). Control group specimens were left untreated. Specimens from the microwave group were irradiated with pre-determined power/time combinations, and specimens from the water-bath group were immersed in hot water at 55 degrees C for 10 min. Glass transition ( degrees C) was performed by differential scanning calorimetry. Data were analysed using anova, followed by post hoc Tukey's test (alpha = 0.05). Both post-polymerisation treatments promoted a significant (p glass transition of material Kooliner, with the effect being more pronounced for microwave irradiation.

  20. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  1. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  3. Transition in Deformation Mechanism of AZ31 Magnesium Alloy during High-Temperature Tensile Deformation

    Directory of Open Access Journals (Sweden)

    Masafumi Noda

    2011-01-01

    Full Text Available Magnesium alloys can be used for reducing the weight of various structural products, because of their high specific strength. They have attracted considerable attention as materials with a reduced environmental load, since they help to save both resources and energy. In order to use Mg alloys for manufacturing vehicles, it is important to investigate the deformation mechanism and transition point for optimizing the material and vehicle design. In this study, we investigated the transition of the deformation mechanism during the high-temperature uniaxial tensile deformation of the AZ31 Mg alloy. At a test temperature of 523 K and an initial strain rate of 3×10−3 s-1, the AZ31 Mg alloy (mean grain size: ~5 μm exhibited stable deformation behavior and the deformation mechanism changed to one dominated by grain boundary sliding.

  4. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions

    Science.gov (United States)

    Velazquez, L.; Castro-Palacio, J. C.

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  5. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  6. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    International Nuclear Information System (INIS)

    Karkut, M.G.; Hake, R.R.

    1983-01-01

    Superconducting upper critical fields H/sub c/2(T), transition temperatures T/sub c/, and normal-state electrical resistivities rho/sub n/ have been measured in the amorphous transition-metal alloy series Zr/sub 1-z/Co/sub x/, Zr/sub 1-x/Ni/sub x/, (Zr/sub 1-x/Ti/sub x/)/sub 0.78/Ni/sub 0.22/, and (Zr/sub 1-x/Nb/sub x/)/sub 0.78/Ni/sub 0.22/. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display T/sub c/ = 2.1--3.8 K, rho/sub n/ = 159--190 μΩ cm, and Vertical Bar(dH/sub c/2/dT)cVertical Bar = 28--36 kG/K. These imply electron mean free paths lroughly-equal2--6 A, zero-temperature Ginzburg-Landau coherence distances xi/sub G/0roughly-equal50--70 A, penetration depths lambda/sub G/0roughly-equal(7--10) x 10 3 A, and extremely high dirtiness parameters xi 0 /lroughly-equal300--1300. All alloys display H/sub c/2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time tau/sub so/. This is in contrast to the anomalously elevated H/sub c/2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-tau/sub so/ fits to WHHM theory obtained by others, for various amorphous alloys

  7. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  8. Critical temperature transition of an interacting Boson-Fermion mixture gas

    International Nuclear Information System (INIS)

    Nguyen Tuan Anh

    2007-01-01

    We study the self-consistent theory of Bose-Einstein condensation in the dilute interacting boson-fermion mixture gas at finite temperature. First, we generalize the idea of the theory using the 2PI effective action formalism. Second, we show the effects of repulsive interactions on the critical temperature for the Bose-Einstein transition. The calculations provide the lowest order correction of the critical temperature (at constant density) by a positive amount proportional to the scattering length a bf and the fermion density n f . The change of the critical temperature yields T c ≅ T 0 + c 1 .a bf /m bf .n f , with c 1 = 2.342. (author)

  9. Thermally enhanced optical nonlinearity in nematic liquid crystal close to phase transition temperature

    Science.gov (United States)

    Shih, Chia-Chi; Chen, Yu-Jen; Hung, Wen-Chi; Jiang, I.-Min; Tsai, Ming-Shan

    2010-09-01

    This study investigates the beam profile and the liquid crystal (LC) arrangement affected by an optical field on LC thin films at a temperature close to nematic-isotropic phase transition temperature ( TNI). A combined microscopic and conoscopic technique was used in experiments as a convenient way to analyze the optical nonlinearity that is associated with the molecular configuration of nematic liquid crystal (NLC). An optical field combined with thermal enhancement enhances molecular reorientation and causes additional molecular excitation along the axis of propagation of the beam. The reorientational nonlinearity yields an undulating structure with multi-foci; the length between each pair of foci increases with time, as described.

  10. Fate of dynamical phase transitions at finite temperatures and in open systems

    Science.gov (United States)

    Sedlmayr, N.; Fleischhauer, M.; Sirker, J.

    2018-01-01

    When a quantum system is quenched from its ground state, the time evolution can lead to nonanalytic behavior in the return rate at critical times tc. Such dynamical phase transitions (DPTs) can occur, in particular, for quenches between phases with different topological properties in Gaussian models. In this paper we discuss Loschmidt echos generalized to density matrices and obtain results for quenches in closed Gaussian models at finite temperatures as well as for open-system dynamics described by a Lindblad master equation. While cusps in the return rate are always smoothed out by finite temperatures we show that dissipative dynamics can be fine-tuned such that DPTs persist.

  11. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  12. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  13. The pressure effect on the superconducting transition temperature of black phosphorus

    CERN Document Server

    Karuzawa, M; Endo, S

    2002-01-01

    We have measured the pressure effect on the superconducting transition temperature T sub c of black phosphorus up to 160 GPa using a superconducting quantum interference device vibrating coil magnetometer. It was found that T sub c had a maximum value of about 9.5 K at about 32 GPa, began decreasing with pressure and reached about 4.3 K at about 100 GPa.

  14. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  15. Isopropanol dehydration via extractive distillation using low transition temperature mixtures as entrainers

    International Nuclear Information System (INIS)

    Rodriguez, Nerea R.; Kroon, Maaike C.

    2015-01-01

    Highlights: • Low transition temperature mixtures (LTTMs) were used for the (isopropanol + water) separation. • (Vapor + liquid) equilibrium (VLE) data of pseudo-binary and pseudo-ternary systems were measured. • The VLE data were successfully correlated using the NRTL model. • (Glycolic acid + choline chloride) (molar ratio = 3:1) showed the largest azeotrope displacement. - Abstract: Low transition temperature mixtures (LTTMs), also known as deep eutectic solvents, show properties that make them suitable as entrainers for extractive distillation. Two different low transition temperature mixtures were considered as potential entrainers for the extractive distillation of the azeotropic mixture (isopropanol + water). (Lactic acid + choline chloride) (2:1) and (glycolic acid + choline chloride) (3:1) were selected for this work. (Vapor + liquid) equilibrium measurements of the pseudo-binary systems (isopropanol + LTTM) and (water + LTTM) were measured at different concentrations of LTTM in a pressure range of 10 to 100 kPa. (Vapor + liquid) equilibrium data of the pseudo-ternary system (isopropanol + water + LTTM) were also measured at constant pressure (100 kPa) and constant LTTM molar fraction of 0.05 and 0.1. It was found that these LTTMs cannot break the azeotrope at those concentrations. However, the azeotrope was displaced to a much higher isopropanol concentration. The NRTL model was successfully applied to fit the experimental data

  16. Allele-specific suppression of the temperature sensitivity of fitA/fitB ...

    Indian Academy of Sciences (India)

    The temperature sensitive transcription defective mutant of Escherichia coli originally called fitA76 has been shown to harbour two missense mutations namely pheS5 and fit95. In order to obtain a suppressor of fitA76, possibly mapping in rpoD locus, a Ts+ derivative (JV4) was isolated from a fitA76 mutant. It was found that ...

  17. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.

    Science.gov (United States)

    Mallamace, Francesco; Branca, Caterina; Corsaro, Carmelo; Leone, Nancy; Spooren, Jeroen; Chen, Sow-Hsin; Stanley, H Eugene

    2010-12-28

    It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analyze existing data of the transport coefficients of 84 glass-forming liquids. We show the data are consistent, on decreasing temperature, with the onset of a well-defined dynamical crossover η(×), where η(×) has the same value, η(×) ≈ 10(3) Poise, for all 84 liquids. The crossover temperature, T(×), located well above the calorimetric glass transition temperature T(g), marks significant variations in the system thermodynamics, evidenced by the change of the SA-like T dependence above T(×) to Arrhenius behavior below T(×). We also show that below T(×) the familiar Stokes-Einstein relation D/T ∼ η(-1) breaks down and is replaced by a fractional form D/T ∼ η(-ζ), with ζ ≈ 0.85.

  18. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  19. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.

    1996-01-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, λ, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/λ∼1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/λ equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/λ = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances

  20. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T. [and others

    1996-07-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

  1. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics

    Science.gov (United States)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.

    2017-09-01

    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  2. Low-temperature structure anomalies in CuNCN. Manifestations of RVB phase transitions?

    Science.gov (United States)

    Tchougréeff, A L; Dronskowski, R

    2013-10-30

    We propose a new frustrated Heisenberg antiferromagnetic model with spatially anisotropic exchange parameters Jc, Ja, and Jac, extending along the c, a, and a ± c (c-a-ca model) lattice directions, and apply it to describe the fascinating physics of copper carbodiimide, CuNCN, assuming the resonating valence bond (RVB) type of its phases. This explains within a unified picture the intriguing absence of magnetic order in CuNCN. We further present a parameters-temperature phase diagram of the c-a-ca-RVB model in the high-temperature approximation. Eight different phases including Curie and Pauli paramagnets (respectively, in disordered and 1D- or Q1D-RVB phases) and (pseudo)gapped (quasi-Arrhenius) paramagnets (2D-RVB phases) are possible. By adding magnetostriction and elastic terms to the model, we derive possible structural manifestations of RVB phase transitions. Assuming a sequence of RVB phase transitions to occur in CuNCN with decreasing temperature, several anomalies observed in the temperature course of the lattice constants are explained.

  3. Effect of growth temperature on polytype transition of GaN from zincblende to wurtzite

    Energy Technology Data Exchange (ETDEWEB)

    Suandon, Siripen [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand); Sanorpim, Sakuntam [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand)]. E-mail: Sakuntam.S@chula.ac.th; Yoodee, Kajornyod [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand); Onabe, Kentaro [Department of Advanced Materials Science, Graduate Schools of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan)

    2007-03-26

    We have investigated effect of growth temperature on the polytype conversion of cubic GaN (c-GaN) grown on GaAs (001) substrates by MOVPE. It was found that the polytype transition of GaN from zincblende (cubic) to wurtzite (hexagonal) structures is much dependent on the growth temperature. Transmission electron microscopy (TEM) observations demonstrate that the GaN grown layers have the cubic structure (c-GaN) and contain bands of stacking faults (SFs) parallels to {l_brace}111{r_brace} planes. For low growth temperatures ({approx} 900 deg. C), XRD results demonstrate that the GaN grown layers with the cubic phase purity higher than 85% were obtained. No different types of single diffraction spots, indicating the incorporation of single-crystal h-GaN, on the selected area diffraction (SAD) pattern was observed. It is also found that a density of SFs decreases with the distance from the interface of c-GaN/GaAs. On the other hand, GaN layers exhibited a transition from cubic to mixed cubic/hexagonal phase under conditions of increasing growth temperature ({approx} 960 deg. C) as determined using TEM-SAD technique with complementary XRD and PL observations. In addition, the optical characteristics of c-GaN layers are shown to be very sensitive to the presence of the single-crystal h-GaN.

  4. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  5. Size dependent hcp-to-fcc transition temperature in Co nanoclusters obtained by ion implantation in silica

    International Nuclear Information System (INIS)

    Mattei, G.; Maurizio, C.; Fernandez, C Julian de; Mazzoldi, P.; Battaglin, G.; Canton, P.; Cattaruzza, E.; Scian, C.

    2006-01-01

    In this work we present in situ investigations on the increase of the hcp-to-fcc transition temperature for Co with respect to the bulk value (420 deg. C) when nanoclusters are considered. Starting from Co:SiO 2 composites obtained by ion implantation with average Co cluster size of about 5 nm, a transition temperature between 800 deg. C and 900 deg. C is found upon thermal annealing in vacuum by in situ transmission electron microscopy. Preliminary results on electron irradiation to promote the transition at lower temperatures are presented

  6. Study of the correlation between yield strength variations and transition temperature in irradiations performed in EDF 1 and G1

    International Nuclear Information System (INIS)

    Lopez-Jimenez, Jose

    1969-04-01

    As neutron irradiation of nuclear reactor structure steel results in changes in physical and mechanical properties, notably an increase of the ductile-to-brittle transition temperature and of yield strength, and as a previous report addressed the study of the relationship between the increase of transition temperature and Wigner doses for some French alloys irradiated within EDF 1 and G1 graphite reactor cores, this report is a complement to this previous study. By using the same correlation method, the author studied the relationship between variations of yield strength and damage flows, as well as the interdependence with transition temperature [fr

  7. Massive Temperature-Induced Metal—Insulator Transition in Individual Nanowires of a Non-Stoichiometric Vanadium Oxide Bronze

    Energy Technology Data Exchange (ETDEWEB)

    Patridge, C.; Wu, T; Jaye, C; Ravel, B; Takeuchi, E; Fischer, D; Sambandamurthy, G; Banerjee, S

    2010-01-01

    Metal-insulator transitions in strongly correlated materials, induced by varying either temperature or dopant concentration, remain a topic of enduring interest in solid-state chemistry and physics owing to their fundamental importance in answering longstanding questions regarding correlation effects. We note here the unprecedented observation of a four-orders-of-magnitude metal-insulator transition in single nanowires of {delta}-K{sub x}V{sub 2}O{sub 5}, when temperature is varied, which thus represents a rare new addition to the pantheon of materials exhibiting pronounced metal-insulator transitions in proximity to room temperature.

  8. Increase of magnetic transition temperatures by reduction of local disorder for perovskite manganites

    International Nuclear Information System (INIS)

    Dabrowski, B.; Chmaissem, O.; Mais, J.; Kolesnik, S.; Jorgensen, J. D.; Short, S.

    2002-01-01

    We report the synthesis of Sr(sub 1-x)Ca(sub x)MnO(sub 3) and La(sub 0.5)Ba(sub 0.5)MnO(sub 3) perovskites over extended cation and oxygen composition ranges and describe the dependence of their phase stability on the tolerance factor t= t(x,T,(delta)) that is a function of composition, temperature, and oxygen content. We show that magnetic transition temperatures depend strongly on the tolerance factor and charge disorder while dependence on the structural disorder is less important. By reducing charge and structural disorder we have significantly increased the Curie and Neel temperatures for perovskite manganites

  9. Influence of temperature upon the a-w transition in titanium

    Science.gov (United States)

    Bezruchko, Galina S.; Kanel, Gennady I.

    2005-07-01

    The α->φ polymorphic transition in shock-compressed high-purity Ti was studied at normal and elevated temperatures. In the experiments, the velocity histories of the sample free surface or interface between the sample and LiF window were recorded. The shock-wave loads were created by impact of Al flyer plates at the impact velocities of 650 m/s and 1200 m/s. The effect of polymorphic transformations was observed at both peak stresses. The parameters of inflection point in the compression wave profile are not constant and strongly depend on the peak stress and the wave propagation distance that indicates great influence of the kinetics of transformation on the wave dynamics. The transition occurs much faster at ˜400 C than at the ˜10 C. As a result of the kinetic effects, apparent pressure of start of the transition at high impact velocity decreases with heating, whereas at low impact velocity it increases in agreement with the phase diagram. No evidences of reverse φ->α transition were recorded.

  10. Ac-conductivity and dielectric relaxations above glass transition temperature for parylene-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kahouli, A. [Joseph Fourier University (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), Grenoble Cedex 9 (France); Laboratory for Materials, Organization and Properties (LabMOP), Tunis (Tunisia); Sylvestre, A. [Joseph Fourier University (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), Grenoble Cedex 9 (France); Jomni, F.; Yangui, B. [Laboratory for Materials, Organization and Properties (LabMOP), Tunis (Tunisia); Legrand, J. [Varioptic SA, Lyon (France)

    2012-03-15

    45% semi-crystalline parylene-C (-H{sub 2}C-C{sub 6}H{sub 3}Cl-CH{sub 2}-){sub n} thin films (5.8 {mu}m) polymers have been investigated by broadband dielectric spectroscopy for temperatures above the glass transition (T{sub g} =90 C). Good insulating properties of parylene-C were obtained until operating temperatures as high as 200 C. Thus, low-frequency conductivities from 10 {sup -15} to 10 {sup -12} S/cm were obtained for temperatures varying from 90 to 185 C, respectively. This conductivity is at the origin of a significant increase in the dielectric constant at low frequency and at high temperature. As a consequence, Maxwell-Wagner-Sillars (MWS) polarization at the amorphous/crystalline interfaces is put in evidence with activation energy of 1.5 eV. Coupled TGA (Thermogravimetric analysis) and DTA (differential thermal analysis) revealed that the material is stable up to 400 C. This is particularly interesting to integrate this material for new applications as organic field effect transistors (OFETs). Electric conductivity measured at temperatures up to 200 C obeys to the well-known Jonscher law. The plateau observed in the low frequency part of this conductivity is temperature-dependent and follows Arrhenius behavior with activation energy of 0.97 eV (deep traps). (orig.)

  11. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    Science.gov (United States)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  12. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  13. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  14. The suppression of dissolution for alloy 690 in high temperature and high pressure water with chromium ion implantation

    International Nuclear Information System (INIS)

    Shibata, Toshio; Fujimoto, Shinji; Ohtani, Saburou; Watanabe, Masanori; Hirao, Kyozo; Okumoto, Masaru; Shibaike, Hiroyuki.

    1994-01-01

    As the material of heat exchanger tubes for PWRs, the nickel alloys such as alloy 690 and alloy 600 have been used, but 58 Ni and 60 Co contained as an impurity elute in primary cooling water, and are radioactivated, in this way, they become the cause of radiation exposure. By increasing chromium concentration, the corrosion resistance of nickel alloys is improved, and for modern heat exchangers, the alloy 690, of which the chromium content is increased up to 30%, has been adopted, and excellent results have been obtained. In this research, aiming at the further reduction of radiation exposure, by increasing the chromium concentration in surface layer using ion implantation technology, the change of the corrosion behavior of alloy 690 in high temperature, high pressure water was investigated. The chemical composition of the alloy 690 used, and the making of plate specimens are shown. The polarization behavior of alloy 690 in 0.1 mol/l sulfuric acid deaerated at normal temperature is reported, and the effect of suppressing dissolution was remarkable in the specimens with much implantation. The electrochemical behavior of alloy 690 in simulated cooling water was investigated. Immobile case has high chromium content and is thin. (K.I.)

  15. Suppression of the structural phase transition and lattice softening in slightly underdoped Ba1-xKxFe2As2 with electronic phase separation

    DEFF Research Database (Denmark)

    Inosov, D.S.; Leineweber, A.; Yang, X.P.

    2009-01-01

    We present x-ray powder diffraction (XRPD) and neutron-diffraction measurements on the slightly underdoped iron-pnictide superconductor Ba1−xKxFe2As2, Tc=32 K. Below the magnetic-transition temperature Tm=70 K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting...

  16. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  17. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: Chemical analyses.

    Science.gov (United States)

    Jiang, Bin; Liu, Yeting; Bhandari, Bhesh; Zhou, Weibiao

    2008-07-09

    This study aims to investigate the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperature (Tg). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples as well as determining their glass transition temperature, which was found to decrease first and then increase as the holding time at the highest temperature increased. The extent of caramelization was quantified by UV-vis absorbance measurement and high-performance liquid chromatography analysis. Results showed that the amount of small molecules from the degradation of sugar increased very fast at the beginning of heating, and this increase slowed down in the later stage of caramelization. On the other hand, there was a lag phase in the formation of large molecules from the degradation of sugar at the beginning of heating, followed by a fast increase in the later stage of caramelization. The obtained results clearly indicate the impact of melting condition on the T g of sugars through formation of intermediates and end products of caramelization. Generally, when the heating condition is relatively mild, small molecules are formed first by decomposition of the sugar, which leads to a decrease of the overall Tg, and as the heating time becomes longer and/or the heating condition becomes more severe, polymerization takes over and more large molecules are formed, which results in an increase of the overall Tg. Mathematical modeling of the relationship will be presented as part II of the study in a separate paper.

  18. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature

    Science.gov (United States)

    Chremos, Alexandros; Glynos, Emmanouil; Green, Peter F.

    2015-01-01

    Structural and dynamical properties of star melts have been investigated with molecular dynamics simulations of a bead-spring model. Star polymers are known to be heterogeneous, but a systematic simulation study of their properties in melt conditions near the glass transition temperature was lacking. To probe their properties, we have expanded from linear to star polymers the applicability of Dobkowski's chain-length dependence correlation function [Z. Dobkowski, Eur. Polym. J. 18, 563 (1982)]. The density and the isokinetic temperature, based on the canonical definition of the laboratory glass-transition, can be described well by the correlation function and a subtle behavior manifests as the architecture becomes more complex. For linear polymer chains and low functionality star polymers, we find that an increase of the arm length would result in an increase of the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior. The effect between low and high functionalities is more pronounced for short arm lengths. Complementary results such as the specific volume and number of neighbors in contact provide further insights on the subtle relation between structure and dynamics. The findings would be valuable to polymer, colloidal, and nanocomposites fields for the design of materials in absence of solution with the desired properties.

  19. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    Science.gov (United States)

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  20. Origin of thickness dependence of structural phase transition temperatures in highly strained BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Yongsoo Yang

    2016-03-01

    Full Text Available Two structural phase transitions are investigated in highly strained BiFeO3 thin films as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA to tetragonal decrease as the film becomes thinner. A film-substrate interface layer, evidenced by half-order peaks, contributes to this behavior, but at larger thicknesses (above a few nanometers, the temperature dependence results from electrostatic considerations akin to size effects in ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase. For ultra-thin films, the tetragonal structure is stable to low temperatures.

  1. Temperature-induced valence transition and associated lattice collapse in samarium fulleride

    Science.gov (United States)

    Arvanitidis, J.; Papagelis, Konstantinos; Margadonna, Serena; Prassides, Kosmas; Fitch, Andrew N.

    2003-10-01

    The different degrees of freedom of a given system are usually independent of each other but can in some materials be strongly coupled, giving rise to phase equilibria sensitively susceptible to external perturbations. Such systems often exhibit unusual physical properties that are difficult to treat theoretically, as exemplified by strongly correlated electron systems such as intermediate-valence rare-earth heavy fermions and Kondo insulators, colossal magnetoresistive manganites and high-transition temperature (high-Tc) copper oxide superconductors. Metal fulleride salts-metal intercalation compounds of C60-and materials based on rare-earth metals also exhibit strong electronic correlations. Rare-earth fullerides thus constitute a particularly intriguing system-they contain highly correlated cation (rare-earth) and anion (C60) sublattices. Here we show, using high-resolution synchrotron X-ray diffraction and magnetic susceptibility measurements, that cooling the rare-earth fulleride Sm2.75C60 induces an isosymmetric phase transition near 32K, accompanied by a dramatic isotropic volume increase and a samarium valence transition from (2 + ɛ) + to nearly 2 + . The negative thermal expansion-heating from 4.2 to 32K leads to contraction rather than expansion-occurs at a rate about 40 times larger than in ternary metal oxides typically exhibiting such behaviour. We attribute the large negative thermal expansion, unprecedented in fullerene or other molecular systems, to a quasi-continuous valence transition from Sm2+ towards the smaller Sm(2+ɛ)+, analogous to the valence or configuration transitions encountered in intermediate-valence Kondo insulators like SmS (ref. 3).

  2. Polymer relaxations in thin films in the vicinity of a penetrant or a temperature induced glass transition

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    The transient properties of thin glassy polymer films in the vicinity of the glass transition are investigated. We compare the differences and similarities between sorption and temperature induced glass transitions, referred to as Pg and Tg, respectively. The experimental technique used is in situ

  3. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  4. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...... that the redox mechanism dominates and to the neglect of adsorbate interactions, which play an important role at high coverages. The model predicts that the activity of copper can be improved by increasing the strengths with which carbon monoxide and oxygen are bonded to the surface, thus suggesting possible...

  5. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  6. Superconducting transition temperature: Interacting Fermi gas and phonon mechanisms in the nonadiabatic regime

    Science.gov (United States)

    Gor'kov, Lev P.

    2016-02-01

    We analyze the mathematical structure of equations for temperature TC of the superconductivity transition in a gas of interacting Fermi particles or at the phonon-mediated pairing in a metal in the case of nonadiabatic conditions ω0≥EF , i.e., when the characteristic phonon frequency ω0 is comparable or larger than the Fermi energy EF. As the methods of calculating TC in common superconductors are not applicable in the nonadiabatic regime, the integral equations for TC are derived in the logarithmic approximation. The new equations contain no divergent terms in the antiadiabatic limit. The results can be immediately generalized to anisotropic band superconductors.

  7. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  8. Charge transport mechanism and low temperature phase transitions in KIO3

    Science.gov (United States)

    Abdel Kader, M. M.; El-Kabbany, F.; Naguib, H. M.; Gamal, W. M.

    2013-04-01

    Our report deals with the measurement of some electrical properties, namely the ac conductivity σ(ω,T) and the complex dielectric permittivity epsilon*(ω, T) in the temperature interval 95K < T < 280K and at some selected frequencies (0.7kHz - 20kHz) for polycrystalline samples of potassium iodate KIO3 using a computerized RLC meter. The improper character of the ferroelectricity over the mentioned temperature range has been achieved by recording the ferroelectric hysteresis loops. The temperature dependence of each electrical parameter reveals that the compound undergoes two phase transitions at T ≈ 258K and at T ≈ 110K. The frequency dependent conductivity seems to be in accordance with the power law σ(ω,T)αωs(T) and the trend of temperature dependence of the frequency exponent s (0 < s < 1) suggests that the quantum mechanical tunneling (QMT) model is the main mechanism of the charge transport. Comparison with the behavior of the NH4IO3 in the same temperature range was outlined.

  9. Determination of the Boundary Transition Temperatures in Polypropylene on the Basis of Measurements in the Terahertz Band

    Science.gov (United States)

    Kitai, M. S.; Nazarov, M. M.; Nedorezova, P. M.; Shkurinov, A. P.

    2017-10-01

    We propose a method for determination of the boundary temperatures of transitions in the structure of polymers by means of analyzing the refractive index of these materials in the terahertz band. The temperatures of glass transition, crystallization, and melting are determined experimentally for isotactic and syndiotactic polypropylenes. Such polymers have low absorption coefficients in the terahertz band. The behavior of intermolecular oscillations of the macromolecules, which are active in polymer spectra in this frequency band, is analyzed.

  10. Pressure Effect on the Structural Transition and Suppression of the High-Spin State in the Triple-Layer T;#8242;-La[subscript 4]Ni[subscript 3]O[subscript 8

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, J.B.; Zhou, H.D.; Matsubayashi, K.; Uwatoko, Y.; Kong, P.P.; Jin, C.Q.; Yang, W.G.; Shen, G.Y. (U of Tokyo); (CIW); (FSU); (Chinese Aca. Sci.); (Texas)

    2012-07-25

    We report a comprehensive high-pressure study on the triple-layer T{prime}-La{sub 4}Ni{sub 3}O{sub 8} with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at P{sub c} {approx} 6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P > 20 GPa, the ambient T{prime} structure transforms gradually to a T-type structure, which involves a structural reconstruction from fluorite La-O{sub 2}-La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallic phase under pressure has been discussed in terms of local displacements of O{sup 2-} ions in the fluorite block under pressure before a global T phase is established.

  11. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection.

    Science.gov (United States)

    Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2015-10-01

    Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed.

  12. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    Science.gov (United States)

    2015-09-01

    Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011;8:149–63. 9. MolyneuxG, Geyer FC,Magnay FA...determine whether our mouse genetic analysis models human breast cancers , we queried the expression of BRCA1 and EMT-TFs in the UNC337 breast cancer ...Corresponding Author (2) Meeting Presentation: A. Pei XH. Genetic analysis of the role of Brca1 in suppression of basal-like breast cancer . 2014 San

  13. Temperature-dependent photoemission and x-ray absorption studies of the metal-insulator transition in Bi1-xLaxNiO3

    Science.gov (United States)

    Wadati, Hiroki; Tanaka, Kiyohisa; Fujimori, Atsushi; Mizokawa, Takashi; Kumigashira, Hiroshi; Oshima, Masaharu; Ishiwata, Shintaro; Azuma, Masaki; Takano, Mikio

    2007-11-01

    Perovskite-type BiNiO3 is an insulating antiferromagnet in which a charge disproportionation occurs at the Bi site. La substitution for Bi suppresses the charge disproportionation and makes the system metallic, and for 0.05≤x≤0.1 a broad metal-insulator transition (MIT) occurs as a function of temperature. We have measured the temperature dependence of the photoemission and x-ray absorption (XAS) spectra of Bi1-xLaxNiO3 to investigate how the electronic structure changes across the MIT. From the Ni2p XAS spectra of x=0.05 , we found almost no change in the valence of Ni across the MIT. In the valence-band photoemission spectra, the Fermi cutoff disappeared for x=0.05 at a low temperature, whereas for x=0.1 and 0.2, it remained at all temperatures but the intensity at the Fermi level decreased gradually with decreasing temperature. Our experimental results suggest that the MIT is caused by the localization of holes in the O2p band and that the “insulating” phase below the MIT is indeed a mixture of insulating and metallic regions.

  14. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  15. Flux pinning and phase transitions in model high-temperature superconductors with columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Stroud, D. (Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)); Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States))

    1993-07-01

    We calculate the degree of flux pinning by defects in model high-temperature superconductors (HTSC's). The HTSC is modeled as a three-dimensional network of resistively shunted Josephson junctions in an external magnetic field, corresponding to a HTSC in the extreme type-II limit. Disorder is introduced either by randomizing the coupling between grains (model-[ital A] disorder) or by removing grains (model-[ital B] disorder). Three types of defects are considered: point disorder, random line disorder, and periodic line disorder; but the emphasis is on random line disorder. Static and dynamic properties of the models are determined by Monte Carlo simulations and by solution of the analogous coupled overdamped Josephson equations in the presence of thermal noise. Random line defects considerably raise the superconducting transition temperature [ital T][sub [ital c

  16. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    Science.gov (United States)

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  17. High temperature phase transition of Tm2Ti2O7

    International Nuclear Information System (INIS)

    Shlyakhtina, A.V.; Shcherbakova, L.G.; Knot'ko, A.V.; Larina, L.L.; Borichev, S.A.

    2004-01-01

    A high temperature phase transition type order-disorder is investigated in Tm 2 Ti 2 O 7 at t>1600 Deg C. It is shown that this transformation is irreversible. Ion conductivity of synthesized at 1670 Deg C nanocrystalline Tm 2 Ti 2 O 7 constitutes 2x10 -3 S/cm at 740 Deg C and remains constant after heat treatment at 860 Deg C for 240 h in the air. It is revealed that the conductivity of specimens (grain size of 20-30 nm) on the basis of Tm 2 Ti 2 O 7 high temperature modification with a structure of disordered pyrochlore is independent of grain size [ru

  18. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo-spin......1-xCox durch ein einfaches Model1 erklärt werden können, das eine RKKY-Wechsel-wirkung zwischen den Momenten der Seltenen Erden und des Pseudo-Spins des Übergangsmetalls annimmt. Die Wechselwirkung wird durch ein effektives Legierungsmedium übermittelt, das mit der CPA-Theorie und elliptischen...

  19. Transition from Slow to Fast Slip with Temperature, Forcing Velocity and Normal Stress: Experimental Evidence

    Science.gov (United States)

    Mitchell, E. K.; Brown, K. M.; Fialko, Y.

    2009-12-01

    temperatures. Our observations are consistent with the concept that thermally activated flattening and associated increases in asperity contact area dominate over any decrease in shear strength with temperature to produce a net strengthening effect. We plan to model individual asperities as Hertzian contacts to define the temperature dependent rheology that controls the evolution of frictional strength as a function of temperature, slip rate and stress. We will use a finite element Abaqus code to run our numerical simulations. We also plan to compare model predictions with data from laboratory experiments. Interestingly, we observe stick-slip behavior at temperatures as high as 500 °C in our dry tests. This may highlight the importance of water in the stick-slip/creep transition at the bottom of the seismogenic zone as well as the presence of the refractory feldspar phase. We also observe other interesting frictional phenomena, such as the growth or decay of oscillations in friction coefficient, slow slip events, and “double period” slip events. These phenomena may be due to a complex transition between stick-slip and creep frictional behavior and are in many ways similar to observations in natural slow-slip systems.

  20. Tunable diode laser measurement of self broadening versus temperature of five close ammonia transitions of the v2 band

    International Nuclear Information System (INIS)

    Baldacchini, G.; D'Amato, F.; Buffa, G.; Tarrini, O.; Ciucci, A.

    1995-08-01

    Self broadening coefficients have been measured as a functional of temperature form 192 to 377 K for five transition lines of the band of ammonia. The results have been compared with theoretical calculations performed in the semiclassical impact approximation, and although one hot transition does not fit well in this scheme, there is in general a fairly good agreement. Moreover there is also an experimental and theoretical evidence against the commonly assumed power law for the temperature dependence. More measurements are needed to clarify the position of the hot transitions in this respect and to verify the extent of validity of the power law in general

  1. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part II: Mathematical modeling.

    Science.gov (United States)

    Jiang, Bin; Liu, Yeting; Bhandari, Bhesh; Zhou, Weibiao

    2008-07-09

    Further to part I of this study, this paper discusses mathematical modeling of the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperatures ( T g). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples and determining their glass transition temperatures ( T g). UV-vis absorbance measurement and high-performance liquid chromatography (HPLC) analysis were used for quantifying the extent of caramelization. Specifically, absorbances at 284 and 420 nm were obtained from UV-vis measurement, and the contents of sucrose, glucose, fructose, and 5-hydroxymethyl-furfural (HMF) in the caramelized sugars were obtained from HPLC measurements. Results from the UV and HPLC measurements were correlated with the Tg values measured by DSC. By using both linear and nonlinear regressions, two sets of mathematical models were developed for the prediction of Tg values of sugar caramels. The first set utilized information obtained from both UV-vis measurement and HPLC analysis, while the second set utilized only information from the UV-vis measurement, which is much easier to perform in practice. As a caramelization process is typically characterized by two stages, separate models were developed for each of the stages within a set. Furthermore, a third set of nonlinear equations were developed, serving as criteria to decide at which stage a caramelized sample is. The models were evaluated through a validation process.

  2. Treatments of intrinsic viscosity and glass transition temperature data of poly(2,6-dimethylphenylmethacrylate)

    International Nuclear Information System (INIS)

    Hamidi, Nasrollah; Massoudi, Ruhullah

    2003-01-01

    A useful relationship, ln(T g )=ln(T g,∞ )-m[η] -ν , between intrinsic viscosity and glass transition temperature for a series of homologous polymers was obtained by combining the Mark-Houwink-Kuhn-Sakurada (MHKS) relation for intrinsic viscosity and molecular mass, and the Fox-Flory equation for glass transition temperature and number-average molecular mass. This relationship was applied to poly(2,6-dimethylphenylmethacrylate) (PDMPh) in a variety of solvents (ideal to good) such as toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems. The parameter α estimated by this procedure in toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems are 0.50 6 , 0.51 1 , 0.56 7 , and 0.67 3 , respectively which are in agreement with those of Mark-Houwink-Kuhn-Sakurada values by less than 5% differences. The T g,∞ quantity estimated from this equation also is within the standard deviation of that obtained from the Fox-Flory method. The m quantity is increasing as the thermodynamic quality of the solvent improves, therefore, m may be considered as an indicator of coil conformations in a given solvent

  3. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  4. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  5. Low temperature synthesis of lamellar transition metal oxides containing surfactant ions

    Energy Technology Data Exchange (ETDEWEB)

    Janauer, G.G.; Chen, R.; Dobley, A.D.; Zavalij, P.Y.; Whittingham, M.S. [State Univ. of New York, Binghamton, NY (United States)

    1997-09-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium (DTA) transition metal oxides with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTA{sub 4}H{sub 2}V{sub 10}O{sub 28}{center_dot}8H{sub 2}O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P {bar 1} and dimensions a = 9.895(1){angstrom}, b = 11.596(1){angstrom}, c = 21.924(1){angstrom}, {alpha} = 95.153(2){degree}, {beta} = 93.778(1){degree}, and {gamma} = 101.360(1){degree}. Additionally, the authors synthesized a dichromate phase and a manganese chloride layered phase, with interlayer spacings of 26.8{angstrom}, and 28.7{angstrom} respectively. The structure, composition, and synthesis of the vanadium compound are described, as well as the synthesis and preliminary characterization of the new chromium and manganese materials.

  6. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.

    Science.gov (United States)

    Bennett, Neil R; Brenan, James M; Fei, Yingwei

    2015-06-13

    Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied.

  7. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.

    Science.gov (United States)

    Gupta, Jasmine; Nunes, Cletus; Jonnalagadda, Sriramakamal

    2013-11-04

    The objectives of this study were as follows: (i) To develop an in silico technique, based on molecular dynamics (MD) simulations, to predict glass transition temperatures (Tg) of amorphous pharmaceuticals. (ii) To computationally study the effect of plasticizer on Tg. (iii) To investigate the intermolecular interactions using radial distribution function (RDF). Amorphous sucrose and water were selected as the model compound and plasticizer, respectively. MD simulations were performed using COMPASS force field and isothermal-isobaric ensembles. The specific volumes of amorphous cells were computed in the temperature range of 440-265 K. The characteristic "kink" observed in volume-temperature curves, in conjunction with regression analysis, defined the Tg. The MD computed Tg values were 367 K, 352 K and 343 K for amorphous sucrose containing 0%, 3% and 5% w/w water, respectively. The MD technique thus effectively simulated the plasticization effect of water; and the corresponding Tg values were in reasonable agreement with theoretical models and literature reports. The RDF measurements revealed strong hydrogen bond interactions between sucrose hydroxyl oxygens and water oxygen. Steric effects led to weak interactions between sucrose acetal oxygens and water oxygen. MD is thus a powerful predictive tool for probing temperature and water effects on the stability of amorphous systems during drug development.

  9. Phase transitions in Cd3P2 at high pressures and high temperatures

    DEFF Research Database (Denmark)

    Yel'kin, F.S.; Sidorov, V.A.; Waskowska, A.

    2008-01-01

    The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression. The experimen......The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression....... The experimental zero-pressure bulk modulus of the low-pressure phase is 64.7(7) GPa, which agrees quite well with the calculated value of 66.3 GPa using the tight-binding linear muffin-tin orbital method within the local density approximation. Tentatively, the high-pressure phase has an orthorhombic crystal...... structure with space group Pmmn (#59). The relative volume change at the phase transition is Delta V/V= -5.5%. Amorphization of the sample occurs above 25 GPa. A P-T phase diagram of Cd3P2 has been constructed. A metastable phase is observed at ambient conditions after heating the sample to above 600 K...

  10. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  11. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures.

    Science.gov (United States)

    Matsuki, Hitoshi; Kato, Kentaro; Okamoto, Hirotsugu; Yoshida, Shuntaro; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji

    2017-12-01

    The variation in phase-transition temperatures of dipalmitoylphosphatidylcholine (DPPC) bilayer membrane by adding two membrane-active ligands, a long-chain fatty acid (palmitic acid (PA)) and an inhalation anesthetic (halothane (HAL)), was investigated by light-transmittance measurements and fluorometry. By assuming the thermodynamic colligative property for the bilayer membrane at low ligand concentrations, the partitioning behavior of these ligands into the DPPC bilayer membrane was considered. It was proved from the differential partition coefficients between two phases that PA has strong affinity with the gel (lamellar gel) phase in a micro-molal concentration range and makes the bilayer membrane more ordered, while HAL has strong affinity with the liquid crystalline phase in a milli-molal concentration range and does the bilayer membrane more disordered. The transfer volumes of both ligands from the aqueous solution to each phase of the DPPC bilayer membrane showed that the preferential partitioning of the PA molecule into the gel (lamellar gel) produces about 20% decrease in transfer volume as compared with the liquid crystalline phase, whereas that of the HAL molecule into the liquid crystalline phase does about twice increase in transfer volume as compared with the gel (ripple gel) phase. Furthermore, changes in thermotropic and barotropic phase behavior of the DPPC bilayer membrane by adding the ligand was discussed from the viewpoint of the ligand partitioning. Reflecting the contrastive partitioning of PA and HAL into the pressure-induced interdigitated gel phase among the gel phases, it was revealed that PA suppresses the formation of the interdigitated gel phase under high pressure while HAL promotes it. These results clearly indicate that each phase of the DPPC bilayer membrane has a potential to recognize various ligand molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Densification and depression in glass transition temperature in polystyrene thin films.

    Science.gov (United States)

    Vignaud, G; S Chebil, M; Bal, J K; Delorme, N; Beuvier, T; Grohens, Y; Gibaud, A

    2014-10-07

    Ellipsometry and X-ray reflectivity were used to characterize the mass density and the glass transition temperature of supported polystyrene (PS) thin films as a function of their thickness. By measuring the critical wave vector (qc) on the plateau of total external reflection, we evidence that PS films get denser in a confined state when the film thickness is below 50 nm. Refractive indices (n) and electron density profiles measurements confirm this statement. The density of a 6 nm (0.4 gyration radius, Rg) thick film is 30% greater than that of a 150 nm (10Rg) film. A depression of 25 °C in glass transition temperature (Tg) was revealed as the film thickness is reduced. In the context of the free volume theory, this result seems to be in apparent contradiction with the fact that thinner films are denser. However, as the thermal expansion of thinner films is found to be greater than the one of thicker films, the increase in free volume is larger for thin films when temperature is raised. Therefore, the free volume reaches a critical value at a lower Tg for thinner films. This critical value corresponds to the onset of large cooperative movements of polymer chains. The link between the densification of ultrathin films and the drop in their Tg is thus reconciled. We finally show that at their respective Tg(h) all films exhibit a critical mass density of about 1.05 g/cm(3) whatever their thickness. The thickness dependent thermal expansion related to the free volume is consequently a key factor to understand the drop in the Tg of ultrathin films.

  13. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  15. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets.

    Science.gov (United States)

    Das, Shyamashis; Dey, Atreya; Reddy, Govardhan; Sarma, D D

    2017-10-05

    The formation of a ring-like deposit at the periphery of a drying colloidal droplet is a vexing problem in many applications. We show a complete suppression of such deposits when a droplet of aqueous colloidal suspension, deposited on a glass substrate coated with a thin layer of silicone oil, is evaporated. This coating prevents the periphery of the aqueous droplet from getting pinned to the substrate and helps in suppressing the ring formation. It also decreases the surface area of the droplet, thereby decreasing the evaporation rate. These two factors together, driving the colloidal particles slowly to the center of the droplet, contribute to form an ordered crystallite at the end of the evaporation process. Brownian dynamics simulations performed to study ordering in the aggregate show that the spherical colloidal particles form face-centered cubic structures. Experiments and simulations show that slow rates of droplet evaporation and smaller-sized colloidal particles further lead to high-quality ordered colloidal crystallites.

  16. Origins of the two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, Daniele, E-mail: ngai@df.unipi.it, E-mail: Prevosto@df.unipi.it [CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone [CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Ngai, K. L., E-mail: ngai@df.unipi.it, E-mail: Prevosto@df.unipi.it [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2014-02-21

    From ellipsometry measurements, Pye and Roth [Phys. Rev. Lett. 107, 235701 (2011)] presented evidence of the presence of two glass transitions originating from two distinctly different and simultaneous mechanisms to reduce the glass transition temperature within freestanding polystyrene films with thickness less than 70 nm. The upper transition temperature T{sub g}{sup u}(h) is higher than the lower transition temperature T{sub g}{sup l}(h) in the ultrathin films. After comparing their data with the findings of others, using the same or different techniques, they concluded that new theoretical interpretation is needed to explain the two transitions and the different dependences of T{sub g}{sup u}(h) and T{sub g}{sup l}(h) on film thickness and molecular weight. We address the problem based on advance in delineating the different viscoelastic mechanisms in the glass-rubber transition zone of polymers. Theoretical considerations as well as experiments have shown in time-scales immediately following the segmental α-relaxation are the sub-Rouse modes with longer length scale but shorter than that of the Rouse modes. The existence of the sub-Rouse modes in various polymers including polystyrene has been repeatedly confirmed by experiments. We show that the sub-Rouse modes can account for the upper transition and the properties observed. The segmental α-relaxation is responsible for the lower transition. This is supported by the fact that the segmental α-relaxation in ultrathin freestanding PS films had been observed by dielectric relaxation measurements and photon correlation spectroscopy. Utilizing the temperature dependence of the segmental relaxation times from these experiments, the glass transition temperature T{sub g}{sup α} associated with the segmental relaxation in the ultrathin film is determined. It turns out that T{sub g}{sup α} is nearly the same as T{sub g}{sup l}(h) of the lower transition, and hence definitely segmental α-relaxation is the

  17. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions

    Science.gov (United States)

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-03-01

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of

  18. Temperature-induced order-disorder structural phase transitions of two-dimensional isostructural hexamethylenetetramine co-crystals.

    Science.gov (United States)

    Chia, Tze Shyang; Quah, Ching Kheng

    2017-10-01

    Hexamethylenetetramine-benzoic acid (1/2) (HBA) and hexamethylenetetramine-4-methylbenzoic acid (1/2) (HMBA) co-crystals undergo order-disorder structural phase transition from a low-temperature monoclinic crystal structure to a high-temperature orthorhombic crystal structure at the transition temperatures of 257.5 (5) K (Pn ↔ Fmm2) and 265.5 (5) K (P2 1 /n ↔ Cmcm), respectively, using variable-temperature single-crystal X-ray diffraction analysis. The observed phase transitions were confirmed to be reversible first-order transitions as indicated by the sharp endothermic and exothermic peaks in the differential scanning calorimetry measurement. The three-molecule aggregate of HBA and HMBA consists of a hexamethylenetetramine molecule and two benzoic acid or two 4-methylbenzoic acid molecules, respectively. The acid molecules are ordered at the low-temperature phase and are equally disordered over two positions, which are related by a mirror symmetry, at the high-temperature phase. The two-dimensional supramolecular constructs common to both co-crystals are formed by three-molecule aggregates via weak intermolecular C-H...O and C-H...π interactions into molecular trilayers parallel to the ac plane with small XPac dissimilarity indices and parameters. The PIXEL interaction energies of all corresponding molecular contacts were calculated and the results are comparable between HBA and HMBA co-crystals, resulting in similar lattice energies and transition temperatures despite their two-dimensional isostructural relationship. The observed phase transitions of these two energetically similar co-crystals are triggered by similar mechanisms, i.e. the molecular rotator ordering and structural order-disorder transformation, which induced non-merohedral twinning with similar twin matrices in the low-temperature crystal form of both co-crystals.

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-12-31

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  20. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  1. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  2. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  3. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.

    1995-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  4. A detailed view of microparticle formation by in-process monitoring of the glass transition temperature.

    Science.gov (United States)

    Vay, Kerstin; Frieß, Wolfgang; Scheler, Stefan

    2012-06-01

    Biodegradable poly(D,L-lactide-co-glycolide) microspheres were prepared by a well-controlled emulsion solvent extraction/evaporation process. The objective of this study was to investigate how drug release can be modified by changing the morphology of the polymer matrix. The matrix structure was controlled by the preparation temperature which was varied between 10 and 35 °C, thus changing the 4 weeks release pattern from almost linear kinetics to a sigmoidal profile with a distinct lag phase and furthermore decreasing the encapsulation efficiency. By monitoring the glass transition temperature during the extraction process, it was shown that the preparation temperature determines the particle morphology by influencing the time span in which the polymer chains were mobile and flexible during the extraction process. Further factors determining drug release were found to be the molecular weight of the polymer and the rate of solvent removal. The latter, however, has also influence on the encapsulation efficiency with slow removal causing a higher drug loss. A secondary modification of the outer particle structure could be achieved by ethanolic post-treatment of the particles, which caused an extension of the lag phase and subsequently an accelerated drug release. Copyright © 2012. Published by Elsevier B.V.

  5. The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke

    Directory of Open Access Journals (Sweden)

    Paula Cristina Cola

    2010-03-01

    Full Text Available CONTEXT: The effect of sour taste and food temperature variations in dysphagic patients has not been entirely clarified. OBJECTIVE: To determine the effect of sour and cold food in the pharyngeal transit times of patients with stroke. METHODS: Patients participating in this study were 30 right-handed adults, 16 of which were male and 14 were female, aged 41 to 88 (average age 62.3 years with ictus varying from 1 to 30 days (median of 6 days. To analyze the pharyngeal transit time a videofluoroscopy swallow test was performed. Each patient was observed during swallow of a 5 mL paste bolus given by spoon, totaling four different stimuli (natural, cold, sour and cold sour, one at a time, room temperature (22ºC and cold (8ºC were used. Later, the tests were analyzed using specific software to measure bolus transit time during the pharyngeal phase. RESULTS: The results showed that the pharyngeal transit time was significantly shorter during swallow of cold sour bolus when compared with other stimuli. Conclusion - Sour taste stimuli associated to cold temperature cause significant change in swallowing patterns, by shortening the pharyngeal transit time, which may lead to positive effects in patients with oropharyngeal dysphagia.CONTEXTO: O efeito do sabor azedo e as variações da temperatura dos alimentos em indivíduos disfágicos, ainda não foi totalmente esclarecidos. OBJETIVO: Verificar o efeito do sabor azedo e da temperatura fria no tempo de trânsito faríngeo da deglutição em indivíduos após acidente vascular encefálico hemisférico isquêmico. MÉTODOS: Participaram deste estudo 30 indivíduos adultos, sendo 16 do gênero masculino e 14 do feminino, destros, com faixa etária variando de 41 a 88 anos (média de 62,3 anos e ictus que variou de 1 a 30 dias (mediana de 6 dias. Para analisar o tempo de trânsito faríngeo da deglutição foi realizado o exame de videofluoroscopia da deglutição. Cada indivíduo foi observado durante a

  6. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10 -6 M) or E2 (10 -9 M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10 -8 M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiao-hui [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Zhang, Ling, E-mail: lindazhang8508@hotmail.com [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Chen, Guo-tao; Yan, Ru-yu [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Sun, Hang; Guo, Hui [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Liu, Qi, E-mail: txzzliuqi@163.com [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China)

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  8. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  9. MiR?30c protects diabetic nephropathy by suppressing epithelial?to?mesenchymal transition in db/db mice

    OpenAIRE

    Zhao, Yanru; Yin, Zhongwei; Li, Huaping; Fan, Jiahui; Yang, Shenglan; Chen, Chen; Wang, Dao Wen

    2017-01-01

    Summary Epithelial?to?mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR?30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR?30c in EMT and tubulointerstitial fibrosis, recombinant adeno?associated viral vec...

  10. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.

    Science.gov (United States)

    Liu, Guangming; Craig, Vincent S J

    2010-01-01

    We present an investigation of the change in wettability of water droplets on 3 different flat, smooth substrates with an elevation in temperature. Two methods were employed. In the first method the droplet was placed on the substrate before it was heated and in the second method the droplets were induced to fall onto a preheated substrate. We find that the intrinsic wettability of the surface is important and that fundamentally different behavior is observed on a hydrophobic surface relative to hydrophilic surfaces. For the hydrophobic surface and employing the first method, we have observed three different regimes over the temperature range of 65 degrees C to 270 degrees C. In regime I (65 degrees C to 110 degrees C), the contact angle of water droplets exhibit a slight decrease from 108 degrees to 105 degrees and an accompanying significant decrease in droplet lifetime (tau) from approximately 111 s to approximately 30 s is observed. In regime II (120 degrees C to 190 degrees C), tau remains constant at approximately 20 s however the contact angle significantly increases from 127 degrees to 158 degrees--that is we enter a superhydrophobic regime on a flat surface. In this regime the droplet remains stationary on the surface. Regime III (210 degrees C to 270 degrees C), is the Leidenfrost regime in which the water droplet exhibits a rapid motion on the solid surface with a contact angle higher than 160 degrees. In comparison, the wetting behavior of a water droplet on two relatively hydrophilic surfaces (Au and GaAs) have also been investigated as a function of temperature. Here no wetting transition is observed from 65 degrees C up to 365 degrees C. In the second method, the wetting behavior on the hydrophobic surface is similar to that observed in the first method for temperatures below the Leidenfrost temperature and the water droplet rebounds from the solid surface at higher temperatures. Additionally, the Leidenfrost phenomenon can be observed above 280

  11. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  12. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    Science.gov (United States)

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification.

    Science.gov (United States)

    Yiin, Chung Loong; Quitain, Armando T; Yusup, Suzana; Sasaki, Mitsuru; Uemura, Yoshimitsu; Kida, Tetsuya

    2016-01-01

    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of the microwave properties of superconducting films with high transition temperature

    International Nuclear Information System (INIS)

    Richter, W.; Klinger, M.; Daginnus, M.

    1989-01-01

    In the meantime high quality Y-Ba-Cu-O thin films were produced. The latest results show, that its surface resistances are clearly lower than the values of copper, measured at a temperature of 77 K and up to frequencies of 86 GHz. This examination had the aim to produce high-T c films with a simple and low cost method, to use them as transmission lines at frequencies up to 30 GHz and above. A screen printing process was investigated, and high-T c thick films were fabricated on several substrates. Superconducting transition temperatures up to 80 K (dc zero resistance) were obtained. The films showed no complete magnetic shielding, and its microwave surface resistances were clearly higher than that ones for copper. The a. c. Josephson effect was proved with granular structures of bulk Y-Ba-Cu-O material and with screen printed thick films. Because of its high surface resistances, these thick films are unsuitable for the use as transmission lines at high frequencies. However, the a.c. Josephson effect can be used to manufacture microwave sensors in bulk Y-Ba-Cu-O and screen printed films of Y-Ba-Cu-O, which have a favourable geometric structure. (orig.) With 16 refs., 2 tabs., 24 figs [de

  15. Gas Temperature Demography and the HI-to-H2 Transition in the Magellanic Clouds

    Science.gov (United States)

    Jameson, Katherine; McClure-Griffiths, Naomi; Liu, Boyang; Staveley-Smith, Lister; Miller Dickey, John; Bolatto, Alberto D.; Dawson, Joanne; Dénes, Helga; Li, Di; Stanimirovic, Snezana; Wolfire, Mark G.; Wong, Tony H.

    2017-06-01

    Given their proximity and low metallicity, the Magellanic Clouds provide the ideal laboratory to study the evolution of gas in the interstellar medium. We present first results from a new HI and OH absorption line study using the ATCA to measure the warm-to-cold atomic fraction and the atomic-to-molecular transition in the Large and Small Magellanic Clouds (LMC and SMC, respectively). The survey targets 48 sources in the LMC and 29 sources in the SMC, which covers more sources at higher senstitivity and spectral resolutin than previous absorption line measurement studies. We decompose the emission and absorption spectra using the autonomous gaussian decomposition software GaussPy (Lindner et al. 2015), which allows us to measure the spin temperature and optical depth of the HI gas. These measurements of the optical depth allow us to constrain the amount of "CO-faint" gas that is optically thick HI gas. Initial analysis indicates that we measure higher spin temperatures than the previous studies (Dickey et al. 1994, Marx-Zimmer et al. 2000), and cold atomic gas fractions of ~20%. We currently have no detections of OH absorption and an upper limit on the column density of molecular gas in the targeted lines of sight of ~few x 1022 cm-2, which is consistent with the dust-based molecular gas estimates.

  16. Temperature dependent lattice distortion and high temperature phase transition of pseudo-cubic bis(tetramethylammonium) hexafluorotitanate(IV), (TMA)2[TiF6

    NARCIS (Netherlands)

    Göbel, Ole; ten Elshof, Johan E.; Schreurs, A.M.M.

    2011-01-01

    The crystal structure of (TMA)2[TiF6] between –173 °C and 180 °C was refined on the basis of single crystal diffraction data. A phase transition from rhombohedral to cubic at approx. 142 °C was found by measuring the birefringence as a function of temperature, and confirmed by the refined crystal

  17. Thermal diffusivity of spinels at elevated temperature: implications for heat transfer in the transition zone

    Science.gov (United States)

    Hofmeister, A. M.

    2006-12-01

    The dependence of the vibrational component of thermal diffusivity (D) of spinel-family minerals on chemical composition, disorder, and temperature (T) is discerned using laser-flash measurements of single-crystals up to 1850 K, and used along with data on garnets and radiative transfer calculations to constrain heat transport in Earth's transition zone (TZ). Laser-flash analysis lacks the systematic errors associated with conventional methods, namely, corruption with radiative transfer, and thermal contact losses. Chemical compositions are synthetic disordered spinel, 4 natural samples near MgAl2O4; 4 natural hercynites (Mg,Fe,Al)3O4], nearly ZnAl2O4, and 2 magnetites [Fe3O4]. The magnetic transition is manifest as a lambda curve in 1/D, but otherwise, 1/D is described by low-order polynomial fits with temperature. Ordered, MgAl2O4 has D(298K) = 7.78 mm2/s, which should approximate that of γ-Mg2SiO4. At 298 K, D decreases strongly as cation substitution or Mg-Al disorder increases: D(298K) for ringwoodite is estimated as 5.8 mm2/s. However, above 1400 K, D becomes constant: this limit (Dsat=0.70-1.07 mm2/s) weakly depends on composition and disorder and is analogous to the Dulong-Petit limit in heat capacity (Cp). Mantle garnets have Dsat=0.65 mm2/s (Hofmeister 2006 Phys Chem Min.). To obtain TZ values, we use d(lnD)/dP= (4γth 2/3)KT, literature data on bulk modulus and thermal Gruneisen parameter, density from PREM, and Cp=1.3 J/g-K, which depends weakly on composition, T, and P. Average thermal conductivity (k)in the TZ is 5-6 W/m-K, depending on garnet proportion, and increase with P. Radiative transfer provides ca 1 W/m-K, depending on Fe content and grain-size (Hofmeister 2005 J. Geodyn.). Our estimate of large k = 6-7 W/m-K is twice recent estimates, and is a consequence of phonon saturation revealed by laser-flash measurements. Efficient vibrational transport of heat in the TZ and deeper stabilizes against convection, as does the positive temperature

  18. 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways.

    Science.gov (United States)

    Chao, Wei; Deng, Jeng-Shyan; Li, Pei-Ying; Liang, Yu-Chia; Huang, Guan-Jhong

    2017-03-28

    3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.

  19. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. High-temperature phase transitions, spectroscopic properties, and dimensionality reduction in rubidium thorium molybdate family.

    Science.gov (United States)

    Xiao, Bin; Gesing, Thorsten M; Kegler, Philip; Modolo, Giuseppe; Bosbach, Dirk; Schlenz, Hartmut; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2014-03-17

    Four new rubidium thorium molybdates have been synthesized by high-temperature solid-state reactions. The crystal structures of Rb8Th(MoO4)6, Rb2Th(MoO4)3, Rb4Th(MoO4)4, and Rb4Th5(MoO4)12 were determined using single-crystal X-ray diffraction. All these compounds construct from MoO4 tetrahedra and ThO8 square antiprisms. The studied compounds adopt the whole range of possible structure dimensionalities from zero-dimensional (0D) to three-dimensional (3D): finite clusters, chains, sheets, and frameworks. Rb8Th(MoO4)6 crystallizes in 0D containing clusters of [Th(MoO4)6](8-). The crystal structure of Rb2Th(MoO4)3 is based upon one-dimensional chains with configuration units of [Th(MoO4)3](2-). Two-dimensional sheets occur in compound Rb4Th(MoO4)4, and a 3D framework with channels formed by thorium and molybdate polyhedra has been observed in Rb4Th5(MoO4)12. The Raman and IR spectroscopic properties of these compounds are reported. Temperature-depended phase transition effects were observed in Rb2Th(MoO4)3 and Rb4Th(MoO4)4 using thermogravimetry-differential scanning calorimetry analysis and high-temperature powder diffraction methods.

  1. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, λ, was equal to the inner diameter of the orifice plate, d (e.g., d/λ=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/λ equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/λ=4.2). This observation indicates that the d/λ=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction and the mixture initial

  2. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  3. Tuning the ferroelectric-to-paraelectric transition temperature and dipole orientation of group-IV monochalcogenide monolayers

    Science.gov (United States)

    Barraza-Lopez, Salvador; Kaloni, Thaneshwor P.; Poudel, Shiva P.; Kumar, Pradeep

    2018-01-01

    Coordination-related, two-dimensional (2D) structural phase transitions are a fascinating facet of two-dimensional materials with structural degeneracies. Nevertheless, a unified theoretical account of these transitions remains absent, and the following points are established through ab initio molecular dynamics and 2D discrete clock models here: Group-IV monochalcogenide (GeSe, SnSe, SnTe,...) monolayers have four degenerate structural ground states, and a phase transition from a threefold coordinated onto a fivefold coordinated structure takes place at finite temperature. On unstrained samples, this phase transition requires lattice parameters to evolve freely. A fundamental energy scale J permits understanding this transition, and numerical results indicate a transition temperature Tc of about 1.41 J . Numerical data provides a relation among the experimental (rhombic) parameter 〈Δ α 〉 [Chang et al., Science 353, 274 (2016), 10.1126/science.aad8609] and T of the form 〈Δ α 〉 =Δ α (T =0 ) (1-T /Tc)β , with a critical exponent β ≃1 /3 that coincides with experiment. It is also shown that 〈Δ α 〉 is temperature independent in another theoretical work [Fei et al., Phys. Rev. Lett. 117, 097601 (2016), 10.1103/PhysRevLett.117.097601], and thus incompatible with experiment. Tc and the orientation of the in-plane intrinsic electric dipole can be controlled by moderate uniaxial tensile strain, and a modified discrete clock model describes the transition on strained samples qualitatively. An analysis of out-of-plane fluctuations and a discussion of the need for van der Waals corrections to describe these materials are given too. These results provide an experimentally compatible framework to understand structural phase transitions in 2D materials and their effects on material properties.

  4. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  5. The calcium-sensing receptor suppresses epithelial-to-mesenchymal transition and stem cell- like phenotype in the colon.

    Science.gov (United States)

    Aggarwal, Abhishek; Prinz-Wohlgenannt, Maximilian; Gröschel, Charlotte; Tennakoon, Samawansha; Meshcheryakova, Anastasia; Chang, Wenhan; Brown, Edward M; Mechtcheriakova, Diana; Kállay, Enikö

    2015-03-18

    The calcium sensing receptor (CaSR), a calcium-binding G protein-coupled receptor is expressed also in tissues not directly involved in calcium homeostasis like the colon. We have previously reported that CaSR expression is down-regulated in colorectal cancer (CRC) and that loss of CaSR provides growth advantage to transformed cells. However, detailed mechanisms underlying these processes are largely unknown. In a cohort of 111 CRC patients, we found significant inverse correlation between CaSR expression and markers of epithelial-to-mesenchymal transition (EMT), a process involved in tumor development in CRC. The colon of CaSR/PTH double-knockout, as well as the intestine-specific CaSR knockout mice showed significantly increased expression of markers involved in the EMT process. In vitro, stable expression of the CaSR (HT29(CaSR)) gave a more epithelial-like morphology to HT29 colon cancer cells with increased levels of E-Cadherin compared with control cells (HT29(EMP)). The HT29(CaSR) cells had reduced invasive potential, which was attributed to the inhibition of the Wnt/β-catenin pathway as measured by a decrease in nuclear translocation of β-catenin and transcriptional regulation of genes like GSK-3β and Cyclin D1. Expression of a spectrum of different mesenchymal markers was significantly down-regulated in HT29(CaSR) cells. The CaSR was able to block upregulation of mesenchymal markers even in an EMT-inducing environment. Moreover, overexpression of the CaSR led to down-regulation of stem cell-like phenotype. The results from this study demonstrate that the CaSR inhibits epithelial-to-mesenchymal transition and the acquisition of a stem cell-like phenotype in the colon of mice lacking the CaSR as well as colorectal cancer cells, identifying the CaSR as a key molecule in preventing tumor progression. Our results support the rationale to develop new strategies either preventing CaSR loss or reversing its silencing.

  6. The Present SP Tests for Determining the Transition Temperature TSP on “U” Notch Disc Specimens

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-01-01

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy ESP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature TSP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a “U” shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests TSP, determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing. PMID:28772851

  7. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  8. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  9. Determination of the Glass Transition Temperature of Freestanding and Supported Azo-Polymer Thin Films by Thermal Assisted Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Chernykh Elena

    2017-01-01

    Full Text Available In this paper we introduce and apply the method for determination of the glass transition temperature of the sub-100 nm thick freestanding and supported polymer films based on thermally assisted atomic force microscopy (AFM. In proposed approach changes of the phase of an oscillating AFM cantilever are used to determine glass transition temperature. An anomalous decrease of the glass transition temperature for both free-standing and supported azobenzene-functionalized polymer thin films is shown.

  10. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    into contact to themselves below the glass transition temperature T-g of the bulk Tg-bulk, in a lap-shear joint geometry, at a constant healing temperature T-h for a healing time t(h) of 10 min to 24 h. The lap-shear strength sigma of the symmetric HMWPS-HMWPS and UHMWPS-URMWPS interfaces has been measured...

  11. Evaluation of transforming growth factor-β1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells.

    Science.gov (United States)

    Li, Wei; Kidiyoor, Amritha; Hu, Yangyang; Guo, Changcheng; Liu, Min; Yao, Xudong; Zhang, Yuanyuan; Peng, Bo; Zheng, Junhua

    2015-02-01

    Transforming growth factor-β1 (TGF-β1) plays a dual role in apoptosis and in proapoptotic responses in the support of survival in a variety of cells. The aim of this study was to determine the function of TGF-β1 in bladder cancer cells and the relationship with POK erythroid myeloid ontogenic factor (Pokemon). TGF-β1 and its receptors mediate several tumorigenic cascades that regulate cell proliferation, migration, and survival of bladder cancer cells. Bladder cancer cells T24 were treated with different levels of TGF-β1. Levels of Pokemon, E-cadherin, Snail, MMP2, MMP9, Twist, VEGF, and β-catenin messenger RNA (mRNA) and protein were examined by real-time quantitative fluorescent PCR and Western blot analysis, respectively. The effects of TGF-β1 on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay, proliferation of T24 was evaluated with reference to growth curves with MTT assay, and cell invasive ability was investigated by Transwell assay. Data show that Pokemon was inhibited by TGF-β1 treatment; the gene and protein of E-cadherin and β-catenin expression level showed decreased markedly after TGF-β1 treatment (P Pokemon, β-catenin, and E-cadherin. The high expression of TGF-β1 leads to an increase in the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Related mechanism is worthy of further investigation.

  12. Proteus vulgaris and Proteus mirabilis Decrease Candida albicans Biofilm Formation by Suppressing Morphological Transition to Its Hyphal Form.

    Science.gov (United States)

    Lee, Kyoung Ho; Park, Su Jung; Choi, Sun Ju; Park, Joo Young

    2017-11-01

    Candida albicans (C. albicans) and Proteus species are causative agents in a variety of opportunistic nosocomial infections, and their ability to form biofilms is known to be a virulence factor. In this study, the influence of co-cultivation with Proteus vulgaris (P. vulgaris) and Proteus mirabilis (P. mirabilis) on C. albicans biofilm formation and its underlying mechanisms were examined. XTT reduction assays were adopted to measure biofilm formation, and viable colony counts were performed to quantify yeast growth. Real-time reverse transcriptase polymerase chain reaction was used to evaluate the expression of yeast-specific genes (rhd1 and rbe1), filament formation inhibiting genes (tup1 and nrg1), and hyphae-related genes (als3, ece1, hwp1, and sap5). Candida biofilm formation was markedly inhibited by treatment with either living or heat-killed P. vulgaris and P. mirabilis. Proteus-cultured supernatant also inhibited Candida biofilm formation. Likewise, treatment with live P. vulgaris or P. mirabilis or with Proteus-cultured supernatant decreased expression of hyphae-related C. albicans genes, while the expression of yeast-specific genes and the filament formation inhibiting genes of C. albicans were increased. Heat-killed P. vulgaris and P. mirabilis treatment, however, did not affect the expression of C. albicans morphology-related genes. These results suggest that secretory products from P. vulgaris and P. mirabilis regulate the expression of genes related to morphologic changes in C. albicans such that transition from the yeast form to the hyphal form can be inhibited. © Copyright: Yonsei University College of Medicine 2017

  13. Glass-Transition Temperature Profile Measured in a Wood Cell Wall Using Scanning Thermal Expansion Microscope (SThEM)

    Science.gov (United States)

    Antoniow, J. S.; Maigret, J.-E.; Jensen, C.; Trannoy, N.; Chirtoc, M.; Beaugrand, J.

    2012-11-01

    This study aims to assess the in situ spatial distribution of glass-transition temperatures ( T g) of the main lignocellulosic biopolymers of plant cell walls. Studies are conducted using scanning thermal expansion microscopy to analyze the cross-section of the cell wall of poplar. The surface topography is mapped over a range of probe-tip temperatures to capture the change of thermal expansion on the sample surface versus temperature. For different temperature values chosen between 20 °C and 250 °C, several quantitative mappings were made to show the spatial variation of the thermal expansion. As the glass transition affects the thermal expansion coefficient and elastic modulus considerably, the same data line of each topography image was extracted to identify specific thermal events in their topographic evolution as a function of temperature. In particular, it is shown that the thermal expansion of the contact surface is not uniform across the cell wall and a profile of the glass-transition temperature could thus be evidenced and quantified corresponding to the mobility of lignocellulosic polymers having a role in the organization of the cell wall structures.

  14. miR-136 targets MIEN1 and involves the metastasis of colon cancer by suppressing epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Ren H

    2017-12-01

    Full Text Available Haipeng Ren,1 Yuanling Qi,1 Xiaoyan Yin,2 Jianfeng Gao1 1Department of Internal Medicine of Oncology, People’s Hospital of Weifang, Weifang, 2Health and Family Planning Bureau of Weifang, Shouguang, People’s Republic of China Abstract: MIEN1 is a novel oncogene, and it involves tumor progression in various cancer types, including colon cancer. However, the definite molecular mechanisms of MIEN1 in colon cancer progression remain to be completely elucidated. In the present study, bioinformatics prediction showed that miR-136 could be an upstream regulator of MIEN1; a luciferase assay and Western blot assay revealed that miR-136 negatively regulates MIEN1 expression via directly targeting its 3'-untranslated region sequence. Moreover, a functional assay using wound healing and transwell invasion showed that overexpressed miR-136 inhibited cell migration and invasion, and overexpression of MIEN1 partly rescued the above-mentioned effects of miR-136 in colon cancer cells. Additionally, a clinical sample assay showed that miR-136 expression was generally downregulated in colon cancer tissue, which was inversely correlated with MIEN1 expression. Furthermore, we found that miR-136 suppressed the Akt/NF-κB signaling pathway and epithelial-to-mesenchymal transition in colon cancer. These results suggest that miR-136, as a tumor suppressor, acts in tumor metastasis by suppressing MIEN1 expression in colon cancer, providing a novel target for the treatment of colon cancer. Keywords: colon cancer, miR-136, MIEN1, migration, invasion

  15. MiR-22 suppresses epithelial-mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop.

    Science.gov (United States)

    Xu, Mingjie; Li, Jiangfeng; Wang, Xiao; Meng, Shuai; Shen, Jiaying; Wang, Song; Xu, Xin; Xie, Bo; Liu, Ben; Xie, Liping

    2018-02-12

    MicroRNAs (miRNAs) have been validated to play prominent roles in the occurrence and development of bladder cancer (BCa). MiR-22 was previously reported to act as a tumor suppressor or oncomiRNA in various types of cancer. However, its accurate expression, function, and mechanism in BCa remain unclear. Here, we find that miR-22 is frequently downregulated in BCa tissues compared with adjacent non-cancerous tissues. Overexpression of miR-22 significantly inhibits proliferation, migration, and invasion of BCa cells both in vitro and in vivo. Importantly, miR-22 is found to suppress cell proliferation/apoptosis by directly targeting MAPK1 (mitogen-activated protein kinase 1, ERK2) and inhibit cell motility by targeting both MAPK1 and Snail. Further statistical analysis shows that low-expression of MAPK1 or Snail is an independent prognostic factor for a better overall survival in patients with BCa (n = 401). Importantly, we describe an important regenerative feedback loop among vimentin, Slug and MAPK1 in BCa cells. MAPK1-induced Slug expression upregulates vimentin. Vimentin in turn activates MAPK1. By inhibiting Snail and MAPK1/Slug/vimentin feedback loop, miR-22 suppresses epithelial-mesenchymal transition (EMT) of BCa cells in vitro as well as in vivo. Taken together, this study reveals that miR-22 is critical to the proliferation, apoptosis and EMT progression in BCa cells. Targeting the pathway described here may be a novel approach for inhibiting proliferation and metastasis of BCa.

  16. MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Wang

    Full Text Available The loss of microRNA-122 (miR-122 expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC, however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET, as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4, and down-regulated mesenchymal proteins (vimentin and fibronectin. The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.

  17. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    International Nuclear Information System (INIS)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-01-01

    Purpose: Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  18. Group theoretical treatment of the low-temperature phase transition of the Cd6Ca 1/1-cubic approximant

    International Nuclear Information System (INIS)

    Tamura, R.; Shibata, K.; Nishimoto, K.; Takeuchi, S.; Edagawa, K.; Saitoh, K.; Isobe, M.; Ueda, Y.

    2005-01-01

    An antiparallel orientational transition is reported for an intermetallic compound, i.e., Cd 6 Ca crystal, which is a 1/1-1/1-1/1 crystalline approximant to the icosahedral quasicrystal Cd 5.7 Ca. A group theoretical analysis based on the Landau theory predicts that the space group of the low-temperature phase is either C2/c or C2/m, in good agreement with the observations. Accordingly, two types of orientational orderings of Cd 4 tetrahedra, which are located in the center of icosahedral clusters, may occur below 100 K: In both cases, the Cd 4 tetrahedra are orientationally ordered in an antiparallel fashion along the [110] direction of the high temperature body-centered-cubic phase. Such a transition in a metal is reminiscent of orientational transitions in molecular solids

  19. Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems

    Czech Academy of Sciences Publication Activity Database

    Čuda, J.; Kohout, Tomáš; Tuček, J.; Haloda, J.; Filip, J.; Prucek, R.; Zbořil, J.

    2011-01-01

    Roč. 116, č. 11 (2011), art. B11205-B11205 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30130516 Keywords : troilite * meteorite * Mössbauer spectroscopy * low-temperature magnetic behavior * magnetic transition Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.021, year: 2011

  20. Temperature-induced phase transition in hydrogels of interpenetrating networks of poly(N-isopropylacrylamide) and polyacrylamide

    Czech Academy of Sciences Publication Activity Database

    Radecki, M.; Spěváček, Jiří; Zhigunov, Alexander; Sedláková, Zdeňka; Hanyková, L.

    2015-01-01

    Roč. 68, July (2015), s. 68-79 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : temperature induced volume phase transition * interpenetrating polymer network * poly(N-isopropylacrylamide) Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  1. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Sedláková, Zdeňka; Valentová, H.; Spěváček, Jiří

    2013-01-01

    Roč. 291, č. 10 (2013), s. 2409-2417 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * poly (N-isopropylmethacrylamide) poly (Nisopropylacrylamide) interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.410, year: 2013

  2. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  3. Criticality of the zero-temperature jamming transition probed by self-propelled particles.

    Science.gov (United States)

    Liao, Qinyi; Xu, Ning

    2018-01-31

    We perform simulations of athermal systems of self-propelled particles (SPPs) interacting via harmonic repulsion in the vicinity of the zero-temperature jamming transition at point J. Every particle is propelled by a constant force f pointing to a randomly assigned and fixed direction. When f is smaller than the yield force f y , the system is statically jammed. We find that f y increases with packing fraction and exhibits finite size scaling, implying the criticality of point J. When f > f y , SPPs flow forever and their velocities satisfy the k-Gamma distribution. Velocity distributions at various packing fractions and f collapse when the particle velocity is scaled by the average velocity v[combining macron], suggesting that v[combining macron] is a reasonable quantity to characterize the response to f. We thus define a response function R(ϕ,f) = v[combining macron](ϕ,f)/f. The function exhibits critical scaling nicely, implying again the criticality of point J. Our analysis and results indicate that systems of SPPs behave analogically to sheared systems, although their driving mechanisms are apparently distinct.

  4. Study of glass transition temperature (Tg) of novel stress-sensitive composites using molecular dynamic simulation

    Science.gov (United States)

    Koo, B.; Liu, Y.; Zou, J.; Chattopadhyay, A.; Dai, L. L.

    2014-09-01

    This study investigates the glass transition temperature (Tg) of novel stress-sensitive composites capable of detecting a damage precursor using molecular dynamics (MD) simulations. The molecular structures of a cross-linked epoxy network (which consist of epoxy resin, hardener and stress-sensitive material) have been simulated and experimentally validated. The chemical constituents of the molecular structures are di-glycidyl ether of bisphenol F (DGEBF: epoxy resin), di-ethylene tri-amine (DETA: hardener) and tris-(cinnamoyloxymethyl)-ethane (TCE: stress-sensitive material). The cross-linking degree is varied by manipulating the number of covalent bonds through tuning a cutoff distance between activated DGEBF and DETA during the non-equilibrium MD simulation. A relationship between the cross-linking degree and Tgs has been studied numerically. In order to validate a proposed MD simulation framework, MD-predicted Tgs of materials used in this study have been compared to the experimental results obtained by the differential scanning calorimetry (DSC). Two molecular models have been constructed for comparative study: (i) neat epoxy (epoxy resin with hardener) and (ii) smart polymer (neat epoxy with stress-sensitive material). The predicted Tgs show close agreement with the DSC results.

  5. Strain-tuning of the magnetocaloric transition temperature in model FeRh films

    Science.gov (United States)

    Loving, M. G.; Barua, R.; Le Graët, C.; Kinane, C. J.; Heiman, D.; Langridge, S.; Marrows, C. H.; Lewis, L. H.

    2018-01-01

    The chemically ordered B2 phase of equiatomic FeRh is known to absorb or evolve a significant latent heat as it traverses its first-order phase transition in response to thermal, magnetic, and mechanical drivers. This attribute makes FeRh an ideal magnetocaloric material testbed for investigation of relationships between the crystalline lattice and the magnetic spins, which are especially experimentally accessible in thin films. In this work, epitaxial FeRh films of nominal 30 nm and 50 nm thicknesses with out-of-plane c-axis orientation were sputter-deposited at high temperature onto (0 0 1)-MgO or (0 0 0 1)-Al2O3 substrates and capped with Al, Au, Cr, or W after in situ annealing at 973 K to promote CsCl-type chemical order. In this manner a controlled strain state was invoked. Experimental results derived from laboratory and synchrotron x-ray diffraction combined with magnetometry indicate that the antiferromagnetic (AF)—ferromagnetic (FM) magnetostructural phase transformation in these films may be tuned over an ~50° range (373 K–425 K) through variation in the c/a ratio derived from lattice strain delivered by the substrate and the capping layers. These results supply fundamental information that might be used to engineer the magnetocaloric working material in new system designs by introducing targeted values of passive strain to the system.

  6. Using Combined Computational Techniques to Predict the Glass Transition Temperatures of Aromatic Polybenzoxazines

    Science.gov (United States)

    Mhlanga, Phumzile; Wan Hassan, Wan Aminah; Hamerton, Ian; Howlin, Brendan J.

    2013-01-01

    The Molecular Operating Environment software (MOE) is used to construct a series of benzoxazine monomers for which a variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area, hydrophobic volume and the sum of atomic polarizabilities, etc.) are obtained and quantitative structure property relationships (QSPR) models are formulated. Three QSPR models (formulated using up to 5 descriptors) are first used to make predictions for the initiator data set (n = 9) and compared to published thermal data; in all of the QSPR models there is a high level of agreement between the actual data and the predicted data (within 0.63–1.86 K of the entire dataset). The water accessible surface area is found to be the most important descriptor in the prediction of Tg. Molecular modelling simulations of the benzoxazine polymer (minus initiator) carried out at the same time using the Materials Studio software suite provide an independent prediction of Tg. Predicted Tg values from molecular modelling fall in the middle of the range of the experimentally determined Tg values, indicating that the structure of the network is influenced by the nature of the initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary data for polymer design. PMID:23326419

  7. Using combined computational techniques to predict the glass transition temperatures of aromatic polybenzoxazines.

    Directory of Open Access Journals (Sweden)

    Phumzile Mhlanga

    Full Text Available The Molecular Operating Environment software (MOE is used to construct a series of benzoxazine monomers for which a variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area, hydrophobic volume and the sum of atomic polarizabilities, etc. are obtained and quantitative structure property relationships (QSPR models are formulated. Three QSPR models (formulated using up to 5 descriptors are first used to make predictions for the initiator data set (n = 9 and compared to published thermal data; in all of the QSPR models there is a high level of agreement between the actual data and the predicted data (within 0.63-1.86 K of the entire dataset. The water accessible surface area is found to be the most important descriptor in the prediction of T(g. Molecular modelling simulations of the benzoxazine polymer (minus initiator carried out at the same time using the Materials Studio software suite provide an independent prediction of T(g. Predicted T(g values from molecular modelling fall in the middle of the range of the experimentally determined T(g values, indicating that the structure of the network is influenced by the nature of the initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary data for polymer design.

  8. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    Energy Technology Data Exchange (ETDEWEB)

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  9. A study on the change in the phase transition temperature of TiSi sub 2 by adding the Zr element on different Si substrates

    CERN Document Server

    Yoon, S H

    1999-01-01

    The stabilization of C49 TiSi sub 2 at high temperature was investigated by adding Zr element to Ti-silicide both on single crystalline Si(100) and amorphous Si substrates. This stabilization of the C49 TiSi sub 2 phase, which exhibits lower surface and interface energies than those of the C54 TiSi sub 2 phase, was expected to suppress the problems of Ti-silicide, such as the phase transition and the agglomeration. Ti and Zr films of 40 nm were co-deposited on Si substrates in a dual e-beam evaporation system equipped with an ion pump and at a base pressure of approx 5x10 sup - sup 9 Torr. The amounts of Zr contents added to the Ti-silicide were 5, 10 and 20 atomic %, and the thicknesses were monitored by in-situ quartz-crystal thickness monitors. After the deposition, films were annealed by using an ex-situ vacuum furnace at temperatures between 600 .deg. C and 900 .deg. C in 100 .deg. C increments. The phase identification and the chemical compositions were investigated by X-ray diffraction (XRD) and Auger ...

  10. Magnetic surface domain imaging of uncapped epitaxial FeRh(001 thin films across the temperature-induced metamagnetic transition

    Directory of Open Access Journals (Sweden)

    Xianzhong Zhou

    2016-01-01

    Full Text Available The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001 thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001 surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  11. Oxygen order-disorder phase transition in PrBaCo2O5.48 at high temperature

    International Nuclear Information System (INIS)

    Streule, S.; Podlesnyak, A.; Pomjakushina, E.; Conder, K.; Sheptyakov, D.; Medarde, M.; Mesot, J.

    2006-01-01

    We have investigated the PrBaCo 2 O 5.48 compound by means of neutron powder diffraction at temperatures 300K OD =776K, which we associate with an oxygen order-disorder transition: the well-known room temperature ordered crystal structure, in which slabs of CoO 6 octahedra and CoO 5 pyramids interleave (Pmmm symmetry) gets lost at temperatures T>T OD , resulting in a statistical distribution of octahedra and pyramids in the sample. The new phase can be described by the tetragonal P4/mmm space group. The transition is caused by displacement of apical oxygen ions and is an indication that ionic conductivity, which has been observed in 3D cobaltites, may also exist in layered cobaltites

  12. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  13. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  14. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  15. Curcumin downregulates the expression of Snail via suppressing Smad2 pathway to inhibit TGF-β1-induced epithelial-mesenchymal transitions in hepatoma cells.

    Science.gov (United States)

    Cao, Meng-Ting; Liu, Hui-Fang; Liu, Zhi-Gang; Xiao, Ping; Chen, Jing-Jing; Tan, Yuan; Jiang, Xiao-Xin; Jiang, Zhi-Chao; Qiu, Yu; Huang, Hong-Jun; Zhang, Qiu-Gui; Jiang, Guan-Min

    2017-12-12

    Hepatocellular carcinoma (HCC) remains the third cause of cancer-related mortality. Resection and transplantation are the only curative treatments available but are greatly hampered by high recurrence rates and development of metastasis, the initiation of cancer metastasis requires migration and invasion of cells, which is enabled by epithelial-mesenchymal transitions (EMT). TGF-β1 is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation and apoptosis. TGF-β1 is known as a major inducer of EMT, and it was reported that TGF-β1 induced EMT via Smad-dependent and Smad-independent pathways. However, the extrinsic signals of TGF-β1 regulated the EMT in hepatoma cells remains to be elucidated, and searching drugs to inhibit TGF-β1 induced EMT may be considered to be a potentially effective therapeutic strategy in HCC. Fortunately, in this study, we found that curcumin inhibited TGF-β1-induced EMT in hepatoma cells. Furthermore, we demonstrated that curcumin inhibited TGF-β1-induced EMT via inhibiting Smad2 phosphorylation and nuclear translocation, then suppressing Smad2 combined with the promoter of Snail which inhibited the transcriptional expression of Snail. These findings suggesting curcumin could be a useful agent for antitumor therapy and also a promising drug combined with other strategies to preventing and treating HCC.

  16. Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode

    Science.gov (United States)

    Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge

    2018-03-01

    The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.

  17. Suppression of Hepatic Epithelial-to-Mesenchymal Transition by Melittin via Blocking of TGFβ/Smad and MAPK-JNK Signaling Pathways.

    Science.gov (United States)

    Park, Ji-Hyun; Park, Byoungduck; Park, Kwan-Kyu

    2017-04-13

    Transforming growth factor (TGF)-β1 plays a crucial role in the epithelial-to-mesenchymal transition (EMT) in hepatocytes and hepatic stellate cells (HSC), which contributes to the pathogenesis of liver fibrosis. Melittin (MEL) is a major component of bee venom and is effective in rheumatoid arthritis, pain relief, cancer cell proliferation, fibrosis and immune modulating activity. In this study, we found that MEL inhibits hepatic EMT in vitro and in vivo, regulating the TGFβ/Smad and TGFβ/nonSmad signaling pathways. MEL significantly inhibited TGF-β1-induced expression of EMT markers (E-cadherin reduction and vimentin induction) in vitro. These results were confirmed in CCl₄-induced liver in vivo. Treatment with MEL almost completely blocked the phosphorylation of Smad2/3, translocation of Smad4 and phosphorylation of JNK in vitro and in vivo. Taken together, these results suggest that MEL suppresses EMT by inhibiting the TGFβ/Smad and TGFβ/nonSmad-c-Jun N-terminal kinase (JNK)/Mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that MEL possesses potent anti-fibrotic and anti-EMT properties, which may be responsible for its effects on liver diseases.

  18. Curcumin reverses benzidine-induced epithelial-mesenchymal transition via suppression of ERK5/AP-1 in SV-40 immortalized human urothelial cells.

    Science.gov (United States)

    Liu, Zhiqi; Liu, Jie; Zhao, Li; Geng, Hao; Ma, Jiaxing; Zhang, Zhiqiang; Yu, Dexin; Zhong, Caiyun

    2017-04-01

    Overexposure to benzidine has been manifested as an important cause of bladder cancer. However, the molecular mechanism of benzidine-induced malignancy is still insufficiently interpreted. Epithelial-mesenchymal transition (EMT) is a crucial pathophysiological process in embryonic development as well as initiation and development of epithelium-originated malignant tumors. The role of extracellular regulated protein kinase 5 (ERK5) in benzidine-meditated bladder cancer development has not been explored. In the present study, we explored the role of ERK5/AP-1 pathway in benzidine-induced EMT in human normal urothelial cells and the intervention effect of curcumin on bezidine-induced EMT. We found that benzidine-induced EMT in SV-40 immortalized human urothelial cells (SV-HUC-1) at low concentrations. We detected that ERK5/AP-1 pathway was notably activated. Specific ERK5 inhibitor, XMD8-92 was applied to determine the role of ERK5 in benzidine-induced EMT. Results indicated that XMD8-92 reversed the EMT process. Furthermore, curcumin effectively attenuated benzidine-induced urocystic EMT by suppressing ERK5/AP-1 pathway. In conclusion, the present study revealed the positive role of ERK5/AP-1 in benzidine-provoked urocystic EMT and the curcumin promising use in bladder cancer prevention and intervention via ERK5/AP-1 pathway.

  19. Anti-Cancer Activity of Solanum nigrum (AESN) through Suppression of Mitochondrial Function and Epithelial-Mesenchymal Transition (EMT) in Breast Cancer Cells.

    Science.gov (United States)

    Lai, Ying-Jang; Tai, Chen-Jei; Wang, Chia-Woei; Choong, Chen-Yen; Lee, Bao-Hong; Shi, Yeu-Ching; Tai, Cheng-Jeng

    2016-04-28

    Chemotherapy is the main approach for treating advanced and recurrent carcinoma, but the clinical performance of chemotherapy is limited by relatively low response rates, drug resistance, and adverse effects that severely affect the quality of life of patients. An association between epithelial-mesenchymal transition (EMT) and chemotherapy resistance has been investigated in recent studies. Our recent studies have found that the aqueous extract of Solanum nigrum (AESN) is a crucial ingredient in some traditional Chinese medicine formulas for treating various types of cancer patients and exhibits antitumor effects. We evaluated the suppression of EMT in MCF-7 breast cancer cells treated with AESN. The mitochondrial morphology was investigated using Mitotracker Deep-Red FM stain. Our results indicated that AESN markedly inhibited cell viability of MCF-7 breast cancer cells through apoptosis induction and cell cycle arrest mediated by activation of caspase-3 and production of reactive oxygen species. Furthermore, mitochondrial fission was observed in MCF-7 breast cancer cells treated with AESN. In addition to elevation of E-cadherin, downregulations of ZEB1, N-cadherin, and vimentin were found in AESN-treated MCF-7 breast cancer cells. These results suggested that AESN could inhibit EMT of MCF-7 breast cancer cells mediated by attenuation of mitochondrial function. AESN could be potentially beneficial in treating breast cancer cells, and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells.

  20. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer

    Science.gov (United States)

    Burgess, Emma M.; Karlsson, Jens O. M.; Eroglu, Ali

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants. PMID:29304068

  1. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    Science.gov (United States)

    Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  2. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    Directory of Open Access Journals (Sweden)

    Andrew C Drake

    Full Text Available Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg of mixtures of sugars (trehalose or raffinose, polymers (polyvinylpyrrolidone or Ficoll, penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide, and phosphate buffered saline (PBS solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  3. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    Science.gov (United States)

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the

  4. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  5. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    Science.gov (United States)

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  7. Effects of finite temperature on two-photon transitions in a Rydberg atom in a high-Q cavity

    International Nuclear Information System (INIS)

    Puri, R.R.; Joshi, A.

    1989-01-01

    The effects of cavity temperature on an effective two-level atom undergoing two-photon transitions in a high-Q cavity are investigated. The quantum statistical properties of the field and the dynamical properties of the atom in this case are studied and compared with those for an atom making one-photon transitions between the two levels. The analysis is based on the solution of the equation for the density matrix in the secular approximation which is known to be a valid approximation in the case of a Rydberg atom in a high-Q cavity. (orig.)

  8. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng, E-mail: gscheng2006@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Kong, Tao [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123 (China)

    2014-11-17

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.

  9. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    International Nuclear Information System (INIS)

    Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng; Kong, Tao

    2014-01-01

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions

  10. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  11. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Sung, C.; White, A.E.; Howard, N.T.; Oi, C.Y.; Rice, J.E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Ernst, D.; Walk, J.; Hughes, J.W.; Irby, J.; Kasten, C.; Hubbard, A.E.; Greenwald, M.J.; Mikkelsen, D.

    2013-01-01

    The first measurements of long wavelength (k y ρ s < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge. (paper)

  12. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  13. Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics.

    Science.gov (United States)

    Wang, Le; Dash, Sibashisa; Chang, Lei; You, Lu; Feng, Yaqing; He, Xu; Jin, Kui-juan; Zhou, Yang; Ong, Hock Guan; Ren, Peng; Wang, Shiwei; Chen, Lang; Wang, Junling

    2016-04-20

    Oxygen vacancy is intrinsically coupled with magnetic, electronic, and transport properties of transition-metal oxide materials and directly determines their multifunctionality. Here, we demonstrate reversible control of oxygen content by postannealing at temperature lower than 300 °C and realize the reversible metal-insulator transition in epitaxial NdNiO₃ films. Importantly, over 6 orders of magnitude in the resistance modulation and a large change in optical bandgap are demonstrated at room temperature without destroying the parent framework and changing the p-type conductive mechanism. Further study revealed that oxygen vacancies stabilized the insulating phase at room temperature is universal for perovskite nickelate films. Acting as electron donors, oxygen vacancies not only stabilize the insulating phase at room temperature, but also induce a large magnetization of ∼50 emu/cm³ due to the formation of strongly correlated Ni²⁺ t(2g)⁶e(g)² states. The bandgap opening is an order of magnitude larger than that of the thermally driven metal-insulator transition and continuously tunable. Potential application of the newly found insulating phase in photovoltaics has been demonstrated in the nickelate-based heterojunctions. Our discovery opens up new possibilities for strongly correlated perovskite nickelates.

  14. Development of DMBZ-15 High-Glass-Transition-Temperature Polyimides as PMR-15 Replacements Given R&D 100 Award

    Science.gov (United States)

    Chuang, Kathy

    2004-01-01

    PMR-15, a high-temperature polyimide developed in the mid-1970s at the NASA Lewis Research Center,1 offers the combination of low cost, easy processing, and good high-temperature performance and stability. It has been recognized as the leading polymer matrix resin for carbon-fiber-reinforced composites used in aircraft engine components. The state-of-the-art PMR-15 polyimide composite has a glass-transition temperature (Tg) of 348 C (658 F). Since composite materials must be used at temperatures well below their glass-transition temperature, the long-term use temperatures of PMR-15 composites can be no higher than 288 C (550 F). In addition, PMR-15 is made from methylene dianiline (MDA), a known liver toxin. Concerns about the safety of workers exposed to MDA during the fabrication of PMR-15 components and about the environmental impact of PMR-15 waste disposal have led to the industry-wide implementation of special handling procedures to minimize the health risks associated with this material. These procedures have increased manufacturing and maintenance costs significantly and have limited the use of PMR-15 in commercial aircraft engine components.

  15. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  16. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  17. Mapping the orthorhombic-to-tetragonal transition at ambient temperature in YBa2Cu3O/sub y/ ceramics

    International Nuclear Information System (INIS)

    The orthorhombic-to-tetragonal transition at ambient temperature in YBa 2 Cu 3 O/sub y/ ceramics is empirically mapped as a function of oxygen content (y) based on published neutron and x-ray diffraction studies. On approaching the transition region (y∼6.5) from the orthorhombic phase, there is a noticeable anomaly in the c-axis length, a smooth evolution of the b axis, and a rather abrupt transition of the a axis (the axis along which oxygen deficiency obtains at larger values of y in the orthorhombic phase). Finally, the empirical method developed here for ascertaining oxygen content from crystallographic data is compared to neutron, hydrogen reduction, and iodometric titration results for several metastable YBa 2 Cu 3 O/sub y/ ceramics and Fe- and Co-doped materials

  18. Compressive ion acoustic double layer and its transitional properties for a two electron temperature warm, multi-ion plasma

    Science.gov (United States)

    Steffy, S. V.; Ghosh, S. S.

    2018-01-01

    The emergence of the compressive ion acoustic double layer has been investigated for a two electron temperature warm, multi-ion plasma by the Sagdeev pseudopotential technique. It shows that the ambient cooler electron concentration plays a deterministic role in initiating the transition process of a compressive ion acoustic solitary wave to its double layer. Incorporating the derivative analysis for the pseudopotential, the transitional phase was further quantified by assigning a critical value for the ambient cooler electron concentration. It has been observed that, beyond that critical value, the width of the solitary wave increases rapidly with the increasing amplitude which coincides with the aforementioned transitional phase, manifesting a change in the internal microphysics of the structure for that region. A comparison with the satellite observation revealed good agreement validating the present model. The model will be useful in interpreting the observed monopolar structures in the auroral acceleration region.

  19. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Vanaja, Kiran; Levchenko, Andre; Iwasaki, Akiko

    2016-07-26

    Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.

  20. Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces

    Science.gov (United States)

    Jensen, Derek D.; Nadeau, Daniel F.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    Near-surface turbulence data from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program are used to study countergradient heat fluxes through the early evening transition. Two sites, subjected to similar large-scale forcing, but with vastly different surface and sub-surface characteristics, are considered. The Playa site is situated at the interior of a large dry lakebed desert with high sub-surface soil moisture, shallow water table, and devoid of vegetation. The Sagebrush site is located in a desert steppe region with sparse vegetation and little soil moisture. Countergradient sensible heat fluxes are observed during the transition at both sites. The transition process is both site and height dependent. At the Sagebrush site, the countergradient flux at 5 m and below occurs when the sign change of the sensible heat flux precedes the local temperature gradient sign change. For 10 m and above, the countergradient flux occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. At the Playa site, the countergradient flux at all tower levels occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. The phenomenon is explained in terms of the mean temperature and heat-flux evolution. The temperature gradient sign reversal is a top-down process while the flux reversal occurs nearly simultaneously at all heights. The differing countergradient behaviour is primarily due to the different subsurface thermal characteristics at the two sites. The combined high volumetric heat capacity and high thermal conductivity at the Playa site lead to small vertical temperature gradients that affect the relative magnitude of terms in the heat-flux tendency equation. A critical ratio of the gradient production to buoyant production of sensible heat flux is suggested so as to predict the countergradient behaviour.

  1. The behavior of stress correlations and glass transition temperature in liquid aluminum at cooling and heating process

    Science.gov (United States)

    Kirova, E. M.; Pisarev, V. V.

    2018-01-01

    Molecular dynamics study of stress correlations and shear viscosity behavior of the rapidly cooled and re-heated liquid aluminum film is performed. The embedded atom method potential is used at the simulation. The stress correlation behavior is studied in the plane of the film and along the direction normal to the plane. The behavior of the kinematic viscosity and the stress correlations are compared for cooling and heating process. Using two methods we showed that the glass transition for the cooling process is higher than for the heating. The first method is based on the stress correlations in the plane of the film and the steep change of the kinematic viscosity. The second method is based on the transverse oscillations in the film. The glass transition temperature is estimated from the dependence of the oscillation damping on temperature. The increasing in the kinematic viscosity correlates with the decrease of transverse oscillations damping in the film.

  2. Calculation of the magnetic anisotropy energy and finite-temperature magnetic properties of transition-metal films

    International Nuclear Information System (INIS)

    Garibay-Alonso, R; Villasenor-Gonzalez, P; Dorantes-Davila, J; Pastor, G M

    2004-01-01

    The magnetic anisotropy energy at the interface (IMAE) of Co films deposited on the Pd(111) surface are determined in the framework of a self-consistent, real-space tight-binding method at zero temperature. Significant spin moments are induced at the Pd atoms at the interface which have an important influence on the observed reorientation transitions as a function of Co film thickness. Film-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of thin transition-metal films deposited on metallic non-magnetic substrates. Furthermore, using a real-space recursive expansion of the local Green function and within the virtual-crystal approximation we calculate the magnetization curves and the Curie temperature T C for free-standing Fe films

  3. Calculation of the magnetic anisotropy energy and finite-temperature magnetic properties of transition-metal films

    Energy Technology Data Exchange (ETDEWEB)

    Garibay-Alonso, R [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Villasenor-Gonzalez, P [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Dorantes-Davila, J [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Pastor, G M [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, Toulouse (France)

    2004-06-09

    The magnetic anisotropy energy at the interface (IMAE) of Co films deposited on the Pd(111) surface are determined in the framework of a self-consistent, real-space tight-binding method at zero temperature. Significant spin moments are induced at the Pd atoms at the interface which have an important influence on the observed reorientation transitions as a function of Co film thickness. Film-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of thin transition-metal films deposited on metallic non-magnetic substrates. Furthermore, using a real-space recursive expansion of the local Green function and within the virtual-crystal approximation we calculate the magnetization curves and the Curie temperature T{sub C} for free-standing Fe films.

  4. Molecular simulation and mathematical modelling of glass transition temperature depression induced by CO2 plasticization in Polysulfone membranes

    Science.gov (United States)

    Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.

    2017-08-01

    A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .

  5. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl

    2014-05-01

    Highlights: • New phase transition for DMPC was found. • FT-IR method is an important addition to the DSC studies. • The proposed method for determining the T{sub C} give very consistent results. - Abstract: In this work, alternatives to differential scanning calorimetry (DSC) as a method of determining the main phospholipid phase transition temperature are presented. The bilayer phase transitions from the ripple gel phase (P{sub β{sup ′}}) to the liquid-crystal phase (L{sub α}) of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) methods. In this work, two correlations between the DSC and FT-IR methods, and NMR and EPR methods are shown. The proposed methods allow for determining the T{sub C} temperature with a high degree of accuracy. Furthermore, a comparison of results obtained using the DSC and FT-IR methods allowed for an observation of a new DMPC phase transition. The liposomes analyzed in this work were obtained by the modified reverse-phase evaporation method (mREV)

  6. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.

    Science.gov (United States)

    Depaz, Roberto A; Pansare, Swapnil; Patel, Sajal Manubhai

    2016-01-01

    This study explored the ability to conduct primary drying during lyophilization at product temperatures above the glass transition temperature of the maximally freeze-concentrated solution (Tg′) in amorphous formulations for four proteins from three different classes. Drying above Tg′ resulted in significant reductions in lyophilization cycle time. At higher protein concentrations, formulations freeze dried above Tg′ but below the collapse temperature yielded pharmaceutically acceptable cakes. However, using an immunoglobulin G type 4 monoclonal antibody as an example, we found that as protein concentration decreased, minor extents of collapse were observed in formulations dried at higher temperatures. No other impacts to product quality, physical stability, or chemical stability were observed in this study among the different drying conditions for the different proteins. Drying amorphous formulations above Tg′, particularly high protein concentration formulations, is a viable means to achieve significant time and cost savings in freeze-drying processes.

  7. The effect of transition metals additions on the temperature coefficient of linear expansion of titanium and vanadium

    International Nuclear Information System (INIS)

    Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.

    1976-01-01

    Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees

  8. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive....... The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  9. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Films of high-molecular-weight amorphous polystyrene (PS, M-w = 225 kg/mol, M-w/M-n = 3, T-g-bulk = 97degreesC, where T-g-bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M-w = 87 kg/mol, M-w/M-n = 2, Tg-bulk = 109degreesC) were brought into contact...

  10. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    OpenAIRE

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room tem...

  11. Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet

    OpenAIRE

    Sandvik, A. W.

    1998-01-01

    We present results of extensive quantum Monte Carlo simulations of the three-dimensional (3D) S=1/2 Heisenberg antiferromagnet. Finite-size scaling of the spin stiffness and the sublattice magnetization gives the critical temperature Tc/J = 0.946 +/- 0.001. The critical behavior is consistent with the classical 3D Heisenberg universality class, as expected. We discuss the general nature of the transition from quantum mechanical to classical (thermal) order parameter fluctuations at a continuo...

  12. On the high temperature phase transition in Ba(Zr0.20Ti0.80O3 ceramic

    Directory of Open Access Journals (Sweden)

    K. P. Chandra

    2017-08-01

    Full Text Available Temperature dependent X-ray diffraction (XRD and dielectric properties of perovskite Ba(Zr0.2Ti0.8O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873∘C at 20Hz, diffusive in character has been found where the lattice structure changes from monoclinic (space group: P2∕m to hexagonal (space group: P6∕mmm. This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of d33=98pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr0.2Ti0.8O3 is a promising material for electrostrictive applications.

  13. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway.

    Science.gov (United States)

    Li, Li-Fu; Kao, Kuo-Chin; Liu, Yung-Yang; Lin, Chang-Wei; Chen, Ning-Hung; Lee, Chung-Shu; Wang, Chih-Wei; Yang, Cheng-Ta

    2017-11-01

    Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis. The mechanisms regulating interactions among MV, EMT and Src remain unclear. In this study, we suggested hypothesized that nintedanib can suppress MV-augmented bleomycin-induced EMT and pulmonary fibrosis by inhibiting the Src pathway. Five days after administrating bleomycin to mimic acute lung injury (ALI), C57BL/6 mice, either wild-type or Src-deficient were exposed to low tidal volume (V T ) (6 ml/kg) or high V T (30 ml/kg) MV with room air for 5 hrs. Oral nintedanib was administered once daily in doses of 30, 60 and 100 mg/kg for 5 days before MV. Non-ventilated mice were used as control groups. Following bleomycin exposure in wild-type mice, high V T MV induced substantial increases in microvascular permeability, TGF-β1, malondialdehyde, Masson's trichrome staining, collagen 1a1 gene expression, EMT (identified by colocalization of increased staining of α-smooth muscle actin and decreased staining of E-cadherin) and alveolar epithelial apoptosis (P Src signalling using Src-deficient mice, dampened the MV-augmented profibrotic mediators, EMT profile, epithelial apoptotic cell death and pathologic fibrotic scores (P Src pathway. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. 1α,25(OH2D3 Suppresses the Migration of Ovarian Cancer SKOV-3 Cells through the Inhibition of Epithelial–Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yong-Feng Hou

    2016-08-01

    Full Text Available Ovarian cancer is the most lethal gynecological malignancy due to its high metastatic ability. Epithelial-mesenchymal transition (EMT is essential during both follicular rupture and epithelium regeneration. However, it may also accelerate the progression of ovarian carcinomas. Experimental studies have found that 1α,25-dihydroxyvitamin-D3 [1α,25(OH2D3] can inhibit the proliferation of ovarian cancer cells. In this study, we investigated whether 1α,25(OH2D3 could inhibit the migration of ovarian cancer cells via regulating EMT. We established a model of transient transforming growth factor-β1(TGF-β1-induced EMT in human ovarian adenocarcinoma cell line SKOV-3 cells. Results showed that, compared with control, 1α,25(OH2D3 not only inhibited the migration and the invasion of SKOV-3 cells, but also promoted the acquisition of an epithelial phenotype of SKOV-3 cells treated with TGF-β1. We discovered that 1α,25(OH2D3 increased the expression of epithelial marker E-cadherin and decreased the level of mesenchymal marker, Vimentin, which was associated with the elevated expression of VDR. Moreover, 1α,25(OH2D3 reduced the expression level of transcription factors of EMT, such as slug, snail, and β-catenin. These results indicate that 1α,25(OH2D3 suppresses the migration and invasion of ovarian cancer cells by inhibiting EMT, implying that 1α,25(OH2D3 might be a potential therapeutic agent for the treatment of ovarian cancer.

  15. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Panshi Zhang

    Full Text Available Treatments for triple-negative breast cancer (TNBC are limited; intermediate-conductance calcium-activated potassium (SK4 channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC and western blotting (WB, increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05. Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (p<0.05. Further investigation revealed that treatment with epidermal growth factor (EGF/basic fibroblast growth factor (bFGF caused MDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  16. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Icosahedron-fcc transition size by molecular dynamics simulation of Lennard-Jones clusters at a finite temperature.

    Science.gov (United States)

    Ikeshoji, T; Torchet, G; de Feraudy, M F; Koga, K

    2001-03-01

    We studied finite-temperature ensembles of solid clusters produced by cooling liquid droplets either by evaporation or by a thermostat through a molecular dynamics calculation using the Lennard-Jones potential. The ensembles consist of either single or binary component clusters with 25% of the atoms 8% smaller in diameter than the other 75%. These clusters (380 clusters in total) exhibit various structures in the size range of n=160-2200, where n is the number of atoms in a cluster. For increasing size, the clusters show a gradual transition from icosahedral to a variety of structures: decahedral, face centered cubic, a small amount of hexagonal, and some icosahedral structures. They are asymmetrical or faulted. Electron diffraction patterns calculated with average structure factors of clusters after grouping them into several size regions are very similar to those experimentally observed. The size transition is around n=450 for single component clusters whatever the cooling process, evaporation or thermostat. This size is smaller than the experimental transition size estimated for argon clusters formed in a supersonic expansion. The transition size for binary component clusters is around n=600 for evaporative cooling, and larger for thermostatic cooling. The larger transition size found for the binary component clusters is consistent with the large icosahedral Au-Fe and Au-Cu alloy clusters observed experimentally.

  18. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – A review

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available Motivated by the widespread and contradictory results regarding the glass transition temperature of carbon nanotube (CNT/epoxy composites, we reviewed and analyzed the literature results dealing with the effect of unmodified multiwall carbon nanotubes (MWNT on the cure behaviour of an epoxy resin (as a possible source of this discrepancy. The aim of this work was to clarify the effective role of unmodified multiwall carbon nanotubes on the cure kinetics and glass transition temperature (Tg of their epoxy composites. It was found that various authors reported an acceleration effect of CNT. The cure reaction was promoted in its early stage which may be due to the catalyst particles present in the CNT raw material. While SWNT may lead to a decrease of Tg due to their bundling tendency, results reported for MWNT suggested an increased or unchanged Tg of the composites. The present status of the literature does not allow to isolate the effect of MWNT on the Tg due to the lack of a study providing essential information such as CNT purity, glass transition temperature along with the corresponding cure degree.

  19. Low-Frequency Optical Studies of High Critical Transition Temperature Superconductors

    Science.gov (United States)

    Voss, Karl Friedrich

    also seem to determine the transition temperature. The dissertation ends with a summary of the results.

  20. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2

  1. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, Ernest D. [Modeling and Computing Services, LLC; Odette, George Robert [UCSB; Nanstad, Randy K [ORNL; Yamamoto, Takuya [ORNL

    2007-11-01

    The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance

  2. Structural disorder and its effect on the superconducting transition temperature in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br

    International Nuclear Information System (INIS)

    Su, X.; Zuo, F.; Schlueter, J.A.; Kelly, M.E.; Williams, J.M.

    1998-01-01

    In this paper, we report direct evidence of a structural transition in the organic superconductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br near 80 K and the effect of disorder on the superconducting transition temperature. By cooling the sample from above 80 K, the interlayer magnetoresistance displays a bumplike feature, which increases sharply with increasing cooling rate. The rapidly cooled sample has a much larger resistivity and a lower transition temperature, which decreases linearly with increasing resistivity near the transition temperature. We propose that rapid cooling quenches the sample into a disordered state. Localized moments in the disordered state reduce the superconducting transition temperature. copyright 1998 The American Physical Society

  3. A Bayesian approach to infer the radial distribution of temperature and anisotropy in the transition zone from seismic data

    Science.gov (United States)

    Drilleau, M.; Beucler, E.; Mocquet, A.; Verhoeven, O.; Moebs, G.; Burgos, G.; Montagner, J.

    2013-12-01

    Mineralogical transformations and matter transfers within the Earth's mantle make the 350-1000 km depth range (considered here as the mantle transition zone) highly heterogeneous and anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations from 1-D models such as PREM, and are secondly interpreted in terms of temperature and composition distributions. However, the degree of heterogeneity in the transition zone can be strong enough so that the concept of a 1-D reference seismic model may be addressed. To avoid the use of any seismic reference model, we developed a Markov chain Monte Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature and radial anisotropy distributions, considering a given composition of the mantle. These interpretations are based on laboratory measurements of elastic moduli and Birch-Murnaghan equation of state. An originality of the algorithm is its ability to explore both smoothly varying models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly chosen values for depth, temperature and radial anisotropy. This parameterization is able to generate a self-adapting parameter space exploration while reducing the computing time. Using a Bayesian exploration, the probability distributions on temperature and anisotropy are governed by uncertainties on the data set. The method was successfully applied to both synthetic data and real dispersion curves. Surface wave measurements along the Vanuatu- California path suggest a strong anisotropy above 400 km depth which decreases below, and a monotonous temperature distribution between 350 and 1000 km depth. On the contrary, a negative shear wave anisotropy of about 2 % is found at the top of the transition zone below Eurasia. Considering compositions ranging from piclogite to pyrolite, the overall temperature profile and temperature gradient are higher for the continental path than for the oceanic

  4. Winter to Spring Transition in Europe 48-45 degrees N: From Temperature Control by Advection to Control by Insolation

    Science.gov (United States)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Hu, H.; Jusem, J. C.; Starr, D.

    1999-01-01

    As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.

  5. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  6. Gel formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide lentinan in water.

    Science.gov (United States)

    Zhang, Yangyang; Xu, Xiaojuan; Zhang, Lina

    2008-10-01

    The gelation behavior of the triple-helical polysaccharide lentinan fractions having different molecular weights in water at 25 degrees C were studied by using a rheometer. The analysis of concentration and molecular weight dependence of shear stress and shear viscosity showed that aqueous lentinan is a typical shear-thinning fluid, possessing potential as a viscosity control agent, and that a weak gel with entangled network structure formed. The dynamic oscillatory behavior of lentinan in the temperature range of 1-15 degrees C was also investigated by rheologic method. The storage modulus G' and complex viscosity eta* increased first with decreasing temperature, and underwent a maximum centered at 7-9 degrees C, and then decreased with further decreasing temperature. This abnormal phenomenon was ascribed to formation of rigid structure in the gel state, which was confirmed by the experimental results from micro-DSC. The micro-DSC curves showed that an endothermic peak appeared at 7-9 degrees C for lentinan in water upon heating, which was attributable to the intramolecular order-disorder structure transition similar to triple-helical polysaccharide schizophyllan. Namely, at lower temperature, the side glucose residues of lentinan (triplix II) formed a well-organized triple-helical structure (triplix I) through hydrogen-bonding with the surrounding water molecules. Moreover, this conformation transition was proved to be thermally reversible. (c) 2008 Wiley Periodicals, Inc.

  7. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs.

    Science.gov (United States)

    Kissi, Eric Ofosu; Grohganz, Holger; Löbmann, Korbinian; Ruggiero, Michael T; Zeitler, J Axel; Rades, Thomas

    2018-03-15

    Recrystallization of amorphous drugs is currently limiting the simple approach to improve solubility and bioavailability of poorly water-soluble drugs by amorphization of a crystalline form of the drug. In view of this, molecular mobility, α-relaxation and β-relaxation processes with the associated transition temperatures T gα and T gβ , was investigated using dynamic mechanical analysis (DMA). The correlation between the transition temperatures and the onset of recrystallization for nine amorphous drugs, stored under dry conditions at a temperature of 296 K, was determined. From the results obtained, T gα does not correlate with the onset of recrystallization under the experimental storage conditions. However, a clear correlation between T gβ and the onset of recrystallization was observed. It is shown that at storage temperature below T gβ , amorphous nifedipine retains its amorphous form. On the basis of the correlation, an empirical correlation is proposed for predicting the onset of recrystallization for drugs stored at 0% RH and 296 K.

  8. Phase transitions and hydrogen bonding in deuterated calcium hydroxide: High-pressure and high-temperature neutron diffraction measurements

    International Nuclear Information System (INIS)

    Iizuka, Riko; Komatsu, Kazuki; Kagi, Hiroyuki; Nagai, Takaya; Sano-Furukawa, Asami; Hattori, Takanori; Gotou, Hirotada; Yagi, Takehiko

    2014-01-01

    In situ neutron diffraction measurements combined with the pulsed neutron source at the Japan Proton Accelerator Research Complex (J-PARC) were conducted on high-pressure polymorphs of deuterated portlandite (Ca(OD) 2 ) using a Paris–Edinburgh cell and a multi-anvil press. The atomic positions including hydrogen for the unquenchable high-pressure phase at room temperature (phase II′) were first clarified. The bent hydrogen bonds under high pressure were consistent with results from Raman spectroscopy. The structure of the high-pressure and high-temperature phase (Phase II) was concordant with that observed previously by another group for a recovered sample. The observations elucidate the phase transition mechanism among the polymorphs, which involves the sliding of CaO polyhedral layers, position modulations of Ca atoms, and recombination of Ca–O bonds accompanied by the reorientation of hydrogen to form more stable hydrogen bonds. - Graphical abstract: Crystal structures of high-pressure polymorphs of Ca(OD) 2 , (a) at room temperature (phase II′) and (b) at high temperature (phase II), were obtained from in situ neutron diffraction measurements. - Highlights: • We measured in situ neutron diffraction of high-pressure polymorphs of Ca(OD) 2 . • Hydrogen positions of the high-pressure phase are first determined. • The obtained hydrogen bonds reasonably explain Raman peaks of OH stretching modes. • A phase transition mechanism among the polymorphs is proposed

  9. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry.

    Science.gov (United States)

    Luis F Cuñado, Jose; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-11

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  10. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  11. Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide presents a method for predicting reference transition temperature adjustments for irradiated light-water cooled power reactor pressure vessel materials based on Charpy V-notch 30-ftlbf (41-J) data. Radiation damage calculative procedures have been developed from a statistical analysis of an irradiated material database that was available as of May 2000. The embrittlement correlation used in this guide was developed using the following variables: copper and nickel contents, irradiation temperature, and neutron fluence. The form of the model was based on current understanding for two mechanisms of embrittlement: stable matrix damage (SMD) and copper-rich precipitation (CRP); saturation of copper effects (for different weld materials) was included. This guide is applicable for the following specific materials, copper, nickel, and phosphorus contents, range of irradiation temperature, and neutron fluence based on the overall database: 1.1.1 MaterialsA 533 Type B Class 1 and 2, A302 Grade B, A302 G...

  12. Effect of heat-treatment on phase transition temperatures of a superelastic NiTi alloy for medical use

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, K.W.K.; Cheung, K.M.C.; Lu, W.W.; Luk, K.D.K. [Univ. of Hong Kong (China). Dept. of Orthopaedic Surgery; Chung, C.Y. [City Univ. of Hong Kong, Kowloon (China). Dept. of Physics and Materials Science

    2002-07-01

    Surgical correction of scoliosis typically uses stainless steel or titanium alloy spinal instrumentation to straighten the scoliotic spine by 70% only. Our aim is to develop a method to overcome this by using an implantable superelastic (SE) nickel-titanium (NiTi) alloy rod, which will impose a continuous gradual correction force to the spine after the surgery so as to achieve a superior correction. More than 75 specimens made of a Ti-50.0 at% Ni alloy were treated by different heat treatment routes. The Austenitic transition temperature of the NiTi alloy can be adjusted to be available at 37.5 C by altering the heat treatment parameters: time and temperature of heat treatment. The experimental results showed that the heat treatment temperature should set between 400-500 C and the heat treatment time should be less than 60 minutes for the alloy. (orig.)

  13. Investigation of Regularities of Heat and Mass Transfer and Phase Transitions during Water Droplets Motion through High-Temperature Gases

    Directory of Open Access Journals (Sweden)

    Roman S. Volkov

    2014-06-01

    Full Text Available The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging” usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.

  14. On the critical temperature discontinuity at the theoretical bcc-fcc phase transition in compressed selenium and tellurium superconductors

    Science.gov (United States)

    Szczęśniak, D.; Wrona, I. A.; Drzazga, E. A.; Kaczmarek, A. Z.; Szewczyk, K. A.

    2017-11-01

    Recent hydrides-driven advent in the high-pressure phonon-mediated superconductivity motivates research on chemical elements which compound with hydrogen. It is desired that such elements should allow chemical pre-compression of hydrogen to assure the induction of the superconducting phase with the high transition temperature (T C). Herein, we present detailed theoretical insight into the properties of the superconducting state induced under pressure (p) in two of such component elements, namely selenium (Se) and tellurium (Te) at p=250 GPa and p=70 GPa, respectively. The assumed external pressure conditions allow us to conduct our analysis just above previously theoretically predicted bcc-fcc structural phase transition of Se and Te, and identify the possible associated discontinuity effect of the critical temperature. In particular, our numerical analysis is conducted within Migdal-Eliashberg formalism, due to the confirmed electron-phonon pairing mechanism and relatively high electron-phonon coupling constant in the materials of interest. We predict that T C values in Se and Te equal 8.13 K and 5.96 K, respectively, and mark the highest critical temperature values for these elements within the postulated fcc phase. Additionally, we supplement these results by the estimated maximum values of the superconducting energy band gap and the effective mass of electrons. We predict that all these parameters can be used as a guidelines for experimental observation of the critical temperature discontinuity and the corresponding bcc-fcc phase transition in Se and Te superconductors. Moreover, we show that the thermodynamics of superconducting phase in both elements may exhibit deviations from the conventional estimates of the Bardeen-Cooper-Schrieffer theory, and suggest existence of the strong-coupling and retardation effects. Finally, we note that our results can be also instructive for future screening of chemical elements for applications in superconducting hydrides.

  15. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-11-20

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure-room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.

  16. Predict the glass transition temperature and plasticization of β-cyclodextrin/water binary system by molecular dynamics simulation.

    Science.gov (United States)

    Zhou, Guohui; Zhao, Tianhai; Wan, Jie; Liu, Chengmei; Liu, Wei; Wang, Risi

    2015-01-12

    The glass transition temperature, diffusion behavior and plasticization of β-cyclodextrin (β-CD), and three amorphous β-CD/water mixtures (3%, 5% and 10% [w/w] water, respectively) were investigated by molecular dynamics simulation, which were performed using Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field and isothermal-isobaric ensembles. The specific volumes of four amorphous cells were obtained as a function of temperature. The glass transition temperatures (T(g)) were estimated to be 334.25 K, 325.12 K, 317.32 K, and 305.41 K for amorphous β-CD containing 0%, 3%, 5% and 10% w/w water, respectively, which compares well with the values observed in published literature. The radial distribution function was computed to elucidate the intermolecular interactions between amorphous β-CD and water, which acts as a plasticizer. These results indicate that the hydrogen bond interactions of oxygen in hydroxyl ions was higher than oxygen in acetal groups in β-CD amorphous mixtures with that in water, due to less accessibility of ring oxygens to the surrounding water molecules. The mobility of water molecules was investigated over various temperature ranges, including the rubbery and glassy phases of the β-CD/water mixtures, by calculating the diffusion coefficients and the fractional free volume. In β-CD amorphous models, the higher mobility of water molecules was observed at temperatures above Tg, and almost no change was observed at temperatures below T(g). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Science.gov (United States)

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  18. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    Science.gov (United States)

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  19. Thermosensitive copolymeric hydrogels with the regulated temperature of a phase transition

    International Nuclear Information System (INIS)

    Samchenko, Yu.M.; Konovalova, V.V.; Korotich, E.I.; Poltoratskaya, T.P.; Pobegaj, A.A.; Burban, A.F.; Ul'berg, Z.R.; Samchenko, Yu.M.; Konovalova, V.V.; Korotich, E.I.; Poltoratskaya, T.P.; Pobegaj, A.A.; Burban, A.F.; Ul'berg, Z.R.

    2011-01-01

    The work is devoted to the methods of obtaining the thermosensitive copolymeric hydrogels based on the NIPAAm with acrylic acid and its derivatives such as acrylamide, acrylonitrile, and methylacrylate. The mechanisms of thermoinitiated phase transitions in hydrogel matrices and the regularities of the thermoinitiated release of model compounds and drugs (aniline, novocaine, and sodium diclofenac) from copolymeric hydrogel are investigated.

  20. Non-local temperature-dependent phase-field models for non-isothermal phase transitions

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Rocca, E.; Sprekels, J.

    2007-01-01

    Roč. 76, č. 1 (2007), s. 197-210 ISSN 0024-6107 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-isothermal phase transitions * free energy * thermodynamic consistency Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2007 http://jlms.oxfordjournals.org/content/76/1/197.short

  1. Excitons and continuum transitions of rubidium halides in the 10 - 26 eV photon energy range at low temperatures

    International Nuclear Information System (INIS)

    Zierau, W.; Skibowski, M.

    1975-04-01

    The reflection spectra of RbCl, RbBr and RbI single crystals were investigated for temperatures between 300 K and 8 K in order to study excitations from the Rb + 4p level (> approximately 16 eV) as well as the higher continuum transitions from the valence band (> approximately 10 eV). The measurements were performed by use of the synchrotron radiation of DESY. The sensitivity for detecting details of the fine structure was increased by simultaneously measuring the wavelength modulated spectra. The experimental procedure is briefly described. New spectral features have been resolved for the exciton multiplets from the Rb + 4p level. They are discussed in light of the predictions of a recent model for the Rb + 4p excitons based on ligand field theory. The continuum transitions associated with the valence band and the Rb + 4p level show characteristic structure which is compared with calculations of the joint density of states. (orig.) [de

  2. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-04-11

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  3. Orientation relations during the α-ω phase transition of zirconium: in situ texture observations at high pressure and temperature.

    Science.gov (United States)

    Wenk, H-R; Kaercher, P; Kanitpanyacharoen, W; Zepeda-Alarcon, E; Wang, Y

    2013-11-08

    Transition metals Ti, Zr, and Hf have a hexagonal close-packed structure (α) at ambient conditions, but undergo phase transformations with increasing temperature and pressure. Of particular significance is the high-pressure hexagonal ω phase which is brittle compared to the α phase. There has been a long debate about transformation mechanisms and orientation relations between the two crystal structures. Here we present the first high pressure experiments with in situ synchrotron x-ray diffraction texture studies on polycrystalline aggregates. We follow crystal orientation changes in Zr, confirming the original suggestion by Silcock for an α→ω martensitic transition for Ti, with (0001)(α)||(1120)(ω), and a remarkable orientation memory when ω reverts back to α.

  4. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  5. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring

    Science.gov (United States)

    Bala, K. Jaya; Peter, A. John; Lee, Chang Woo

    2017-09-01

    Simultaneous effects of pressure and temperature on electronic and optical properties are studied in a Ga0.7In0.3N/GaN quantum ring using variational formulism. The changes in exciton binding energy due to the applications of hydrostatic pressure and temperature are obtained taking into account the geometrical confinement. The transition energies of interband and intersubband as a function of hydrostatic pressure, at a constant temperature, are obtained. The oscillator strength due to interband and intersubband optical transitions with the combined effects of hydrostatic pressure and temperature is found. The pressure and temperature induced absorption coefficients as a function of photon energy are investigated in a Ga0.7In0.3N/GaN quantum ring. The results show that the application of pressure leads to blue shift of the resonant peaks of the optical transition whereas the effect of temperature suffers red shift of the resonant peaks.

  6. Insights into glass transition and relaxation behavior using temperature-modulated differential scanning calorimetry

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Our simulations of TMDSC signals prove that the frequency correction of non-reversing heat flow can give a master curve within a certain range of freque...... insights about the glass structural response to thermal treatments....

  7. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa 2Cu 3O x

    Science.gov (United States)

    Farneth, W. E.; Bordia, R. K.; McCarron, E. M.; Crawford, M. K.; Flippen, R. B.

    1988-06-01

    A detailed study of the superconducting properties and the crystal symmetry of YBa 2Cu 3O x as a function of oxygen content (x) is presented. We correlate the oxygen content, structure and superconducting transition temperature for YBa 2Cu 3O x (6topotactic intercalation/deintercalation of oxygen. It is shown that the orthorhombic to tetragonal phase transition coincides with a loss in superconductivity for samples prepared both by quenching from high temperature and samples prepared by deoxygenation at low temperature. For the orthorhombic phase, T c monotonically decreases as x goes from 7.0 to 6.4 along with a complementary decrease in the extent of orthorhombic distortion. The decrease in T c, however, is not uniform. For quenched samples it shows a plateau for x ˜ 6.75 to 6.55 and then a rather abrupt drop around x ˜ 6.5. Comparison of our data with the literature indicates that the dependence of superconducting properties and crystal structure on the oxygen content can be a complex function of sample processing history. Samples with the same oxygen content but prepared in different ways may have x-ray powder patterns that are indistinguishable, but significantly different electrical properties.

  8. Possibility of the vortex-antivortex transition temperature of a thin-film superconductor being renormalized by disorder

    International Nuclear Information System (INIS)

    Hebard, A.F.; Kotliar, G.

    1989-01-01

    The universal relation between the Kosterlitz-Thouless transition temperature T/sub c/ and the superfluid sheet density of thin-film superconductors with mean-field transition temperature T/sub c/ 0 results in a monotonically decreasing dependence of the ratio T/sub c//T/sub c0/ on the normal-state sheet resistance R/sub n/. Ambiguity in the experimental definition of R/sub n/ in highly disordered thin-film superconductors is addressed by reexamining previously published data on amorphous composite In/InO/sub x/ films. Arguments are presented in favor of using the zero-temperature value of R/sub n/, a quantity obtained by extrapolation. The dependence of T/sub c//T/sub c0/ on R/sub n/ that results from such a choice is in agreement with theory for dirty superconductors and thus suggests that additional corrections to T/sub c/ in the presence of extreme disorder are not required

  9. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  10. The effect of water temperature on food transit time and digestive enzymes activity in Caspian kutum (Rutilus kutum larvae

    Directory of Open Access Journals (Sweden)

    Nahid Ghysvandi

    2014-07-01

    Full Text Available The present study investigates the effects of water temperature on digestive enzymes activity and food transit time in Caspian kutum (Rutilus kutum larvae. Caspian kutum larvae (532 ± 0.05 and 543 ± 0.02 mg were divided into two groups with three replicates and reared at different water temperature i.e. 25.6 ± 0.4°C (T1 and 18.4 ± 0.1°C (T2. At the end of the experiment, sampling of intestine was performed at 0, 1, 3, 5, 8, 16, 24 and 30 h after feeding from each treatment. In T2, food was observed until 24 h after feeding and the intestine was empty 29 h after feeding, while in T1 19 h after feeding the intestine was empty. Digestive enzymes activities were higher in T2 treatment. The peaks of trypsin and alkaline phosphatase enzymes activity were found 8 h after feeding in T1, while occurred 16 h after feeding in T2. The highest chymotrypsin and alpha-amylase enzymes activity were observed 5 and 8h after feeding in T1 and T2, respectively. These results confirmed remarkable effects of temperature on food transit time and digestive enzymes activity of Caspian kutum.

  11. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    National Research Council Canada - National Science Library

    Morrill, Jason

    2004-01-01

    A designer Quantitative Structure-Property Relationsbip (QSPR) based upon molecular properties calculated using the AM1 semi-empirical quantum mechanical metbod was developed to predict the glass transition temperature (Tg...

  12. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.

    Science.gov (United States)

    Jiang, Bin; Kasapis, Stefan

    2011-11-09

    An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena.

  13. Relationship between superconducting transition temperature and number of CuO2 layers in mercury-based superconductors

    International Nuclear Information System (INIS)

    Chen Xiaojia; Xu Zhuan; Jiao Zhengkuan; Zhang Qirui

    1997-01-01

    The nonmonotonic dependence of the superconducting transition temperature on the number of CuO 2 layers (n) per unit cell for mercury-based cuprate systems is investigated with the framework of the electrostatic model and the Ginsburg-Landau theory. It is found that the largest value of the normalized density of states is 1.8 when n=3, which corresponds to the highest T c in this series. Using reasonable parameters we predict an upper limit of T c of 160 K. (orig.)

  14. Chromium and nickel ion irradiation effects on the low- and high-temperature metal-semiconductor transitions in (V1 - xCrx)2O3 ceramics

    Science.gov (United States)

    Kokabi, H. R.; Studer, F.

    1996-11-01

    Chromium doped vanadium sesquioxide [(V1-xCrx)2O3] ceramic samples have been irradiated using medium energy chromium and nickel ions (52Cr:572 MeV, 64Ni:640 MeV) at various fluences (4×1011-1.1×1014 ions/cm2) and doping rates (x=0.3, 0.6, and 0.7). Irradiation has been carried out under vacuum and at room temperature. Irradiated samples have been characterized by electrical resistivity measurements as a function of temperature for the low- and the high-temperature transitions in the (V1-xCrx)2O3 system. Irradiation by chromium and nickel ions creates bilayered samples as the ions mean projected range were smaller than the sample thickness. The bilayer structure is characterized by two transitions at low temperature. Dealing with the high temperature positive temperature coefficient transition, the negative temperature coefficient behavior above this transition has been considerably attenuated due to the bilayered structure. In situ measurements on an irradiated sample have shown that after annealing the electrical characteristics for the low- and the high-temperature transitions tend to be close to those of an unirradiated sample. However, even an annealing at 380 °C does not eliminate all the irradiation effects.

  15. Entropy-driven phase transition in low-temperature antiferromagnetic Potts models

    Czech Academy of Sciences Publication Activity Database

    Kotecký, R.; Sokal, A.D.; Swart, Jan M.

    2014-01-01

    Roč. 330, č. 3 (2014), s. 1339-1394 ISSN 0010-3616 R&D Projects: GA ČR GA201/09/1931; GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Antiferromagnetic Potts model * proper coloring * plane quadrangulation * phase transition * diced lattice Subject RIV: BA - General Mathematics Impact factor: 2.086, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/swart-0429507.pdf

  16. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Czech Academy of Sciences Publication Activity Database

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  17. Room temperature magneto-structural transition in Al for Sn substituted Ni–Mn–Sn melt spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Maziarz, W. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 W. Reymonta Str., 30-059 Kraków (Poland); Czaja, P., E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 W. Reymonta Str., 30-059 Kraków (Poland); Szczerba, M.J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 W. Reymonta Str., 30-059 Kraków (Poland); Przewoźnik, J.; Kapusta, C. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Żywczak, A.; Stobiecki, T. [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Cesari, E. [Department de Fisica, Universitat de Illes Balears, Ctra. de Valldemossa, km 7.5, Palma de Mallorca E-07071 (Spain); Dutkiewicz, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 W. Reymonta Str., 30-059 Kraków (Poland)

    2013-12-15

    Martensitic and magnetic transformations in Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5−x}Al{sub x} (x=0, 1, 2, 3) Heusler alloy ribbons were investigated. It is demonstrated that both magnetic and structural transformations occur in all of the studied samples. It is also shown that substitution of Sn with Al causes the martensitic transformation (MT) and the reverse martensitic transformation (RMT) temperatures to increase to room temperature (ΔT{sub MT}=49 K; ΔT{sub RMT}=43 K), whereas the Curie temperature of martensite T{sub C}{sup M} decreases (ΔT=36 K) and the Curie temperature of austenite T{sub C}{sup A} remains practically insensitive to Al introduction. This then allows to tune T{sub C}{sup A} and the MT temperature leading to their coincidence at ambient temperature. The austenite phase with the L2{sub 1} type structure has been identified to exist in all the samples regardless of composition. On the other hand the structure of martensite has been shown to be sensitive to composition. It has been determined as the 10 M martensite with (32{sup ¯}) stacking sequence in Al free samples and the 4O martensite with the stacking periodicity (31{sup ¯}) in Al containing samples. In addition, the splitting of the field cooling (FC) and the field heating (FH) thermo-magnetic curves at low (50 Oe) magnetic field and below the T{sub C}{sup M} has been attributed to intermartensitic transition. The application of large magnetic field (50 kOe) has shown the existence of two distinct ferromagnetic states with a considerable hysteresis loop. The properties of these materials make them promising for magnetocaloric applications. - Highlights: • Al for Sn substituted Ni–Mn–Sn based ferromagnetic Heusler alloys were produced by melt spinning. • Martensitic, reverse martensitic and intermartensitic transformations were observed, their temperatures and magnitude changed with Al substitution. • Different types of martensite structures were identified depending on Al

  18. Protein Internal Dynamics Associated With Pre-System Glass Transition Temperature Endothermic Events: Investigation of Insulin and Human Growth Hormone by Solid State Hydrogen/Deuterium Exchange.

    Science.gov (United States)

    Fang, Rui; Grobelny, Pawel J; Bogner, Robin H; Pikal, Michael J

    2016-11-01

    Lyophilized proteins are generally stored below their glass transition temperature (T g ) to maintain long-term stability. Some proteins in the (pure) solid state showed a distinct endotherm at a temperature well below the glass transition, designated as a pre-T g endotherm. The pre-T g endothermic event has been linked with a transition in protein internal mobility. The aim of this study was to investigate the internal dynamics of 2 proteins, insulin and human growth hormone (hGH), both of which exhibit the pre-T g endothermic event with onsets at 50°C-60°C. Solid state hydrogen/deuterium (H/D) exchange of both proteins was characterized by Fourier transform infrared spectroscopy over a temperature range from 30°C to 80°C. A distinct sigmoidal transition in the extent of H/D exchange had a midpoint of 56.1 ± 1.2°C for insulin and 61.7 ± 0.9°C for hGH, suggesting a transition to greater mobility in the protein molecules at these temperatures. The data support the hypothesis that the pre-T g event is related to a transition in internal protein mobility associated with the protein dynamical temperature. Exceeding the protein dynamical temperature is expected to activate protein internal motion and therefore may have stability consequences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. The effect of specimen size on the ductile/brittle transition temperature in an A533B pressure vessel steel

    International Nuclear Information System (INIS)

    Green, G.; Knott, J.F.

    It was ascertained that it is possible to relate critical crack opening displacement (COD) values, deltasub(crit), obtained on small specimens of A 533-B pressure vessel steel to the fracture toughness value representing the initiation of fracture in a large structure. The variation of deltasub(crit) with temperature is given. A sharp increase in deltasub(crit) is observed above a temperature of approximately -100 degC and this was found to be associated with the initiation of small amounts of fibrous fracture, prior to a cleavage instability. An upper limit to the deltasub(crit) values was obtained above -50 degC, where the fracture was found to be fully ductile. Values of deltasub(crit) estimated from the valid fracture toughness results are shown for comparison. At low temperatures the estimated deltasub(crit) values are seen to be less than those measured in the small bend specimens and the sharp increase in the estimated deltasub(crit) values occurs at a higher temperature, approximately 0 degC. The room temperature deltasub(crit) value, estimated from the valid toughness results (0.15 mm) compares well with COD for the initiation of fibrous fracture, measured at the same temperature in small bend specimens (0.175 mm). The following conclusions were drawn from the experiments: 1. The ductile/brittle transition temperature, determined by critical COD measurements, is influenced by the relaxation of triaxial stresses in small specimens. 2. It is possible to relate critical COD values for the initiation of fibrous fracture, measured in small specimens, to the fracture toughness representing this behaviour in a large structure

  20. Pregnancy Suppresses the Daily Rhythmicity of Core Body Temperature and Adipose Metabolic Gene Expression in the Mouse.

    Science.gov (United States)

    Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J

    2016-09-01

    Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.

  1. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.

    Science.gov (United States)

    Kim, Jaai; Lee, Changsoo

    2016-02-01

    Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up

  2. Method of producing YBa2Cu3O6+x superconductors with high transition temperatures

    International Nuclear Information System (INIS)

    Rao, A.S.; Arora, O.P.; Aprigliano, L.F.

    1991-01-01

    This patent describes a method for making an improved ceramic superconductor. It comprises: mixing an oxide selected from the group consisting of Y 2 O 3 , Er 2 O 3 , Eu 2 O 3 , Yb 2 O 3 , Dy 2 O 3 and Ho 2 O 3 with barium carbonate and copper oxide powders in a ratio of about 50 grams in the case of Y 2 O 3 , 83 grams for Er 2 O 3 , 76 grams for Eu 2 O 3 , 86 grams of Ho 2 O 3 to about 70 grams of BaCO 3 to about 105 grams of CuO, ball milling the mixture with zironia balls for at least on hour; calcining the mixture at a temperature of 940 degree C + or -degree C with a heating sequence of 2 degree C per minute from room temperature to 200 degree C, maintaining the mixture at the 200 degree C temperature for a least about sixty minutes, heating the mixture at 3 degree C per minute until a temperature of 940 degree C + or -2 degree C is reached, maintaining the mixture at the 940 degree C + or -2 degree C for three hundred minutes, cooling the mixture to room temperature at a rate of 1 degree C per minute, adding silver oxide in powdered form to the mixture an amount of from about 1 to about 20 weight percent, ball milling the mixture containing silver oxide for at least one hour, compacting the mixture, sintering the mixture at 920 degree C + or -2 degree C by heating the mixture at 2 degree C per minute from room temperature 200 degree C, maintaining the temperature at 200 degree C for 60 minutes and then resuming the heating at 3 degree C per minute until a temperature of 920 degree C is reached, (l) maintaining the mixture at 920 degree C + or -2 degree C for three hundred minutes, and (m) cooling the mixture to room temperature at a rate of degree C per minute

  3. Tunable diode laser measurement of self broadening versus temperature of five close ammonia transitions of the v{sub 2} band

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; D`Amato, F. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Buffa, G.; Tarrini, O. [Pisa Univ. (Italy). Dip. di Fisica; Ciucci, A.

    1995-08-01

    Self broadening coefficients have been measured as a functional of temperature form 192 to 377 K for five transition lines of the band of ammonia. The results have been compared with theoretical calculations performed in the semiclassical impact approximation, and although one hot transition does not fit well in this scheme, there is in general a fairly good agreement. Moreover there is also an experimental and theoretical evidence against the commonly assumed power law for the temperature dependence. More measurements are needed to clarify the position of the hot transitions in this respect and to verify the extent of validity of the power law in general.

  4. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  5. Can Holstein-Kondo lattice model be used as a candidate for the theory of high transition temperature superconductors

    Directory of Open Access Journals (Sweden)

    R Nourafkan

    2009-08-01

    Full Text Available   It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph interactions as the pairing mechanism (ARPES, and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy. In this paper, we introduce the Holstein-Kondo lattice model (H-KLM which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .

  6. Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Moraes, Guilherme F.; Ono, Lilian S.; Parra, D.F.; Lugao, Ademar B.

    2011-01-01

    Experimental results showed that the crosslink density of polymeric stocks may be predicted from values of gel content based on the reactive portion of the stocks, that is, exclusive of plasticizers and fillers. Where entanglements may be neglected, the crosslink density is directly proportional to functions of the gel and sol contents. In order to predict the behavior of carbon-chain polymers exposed to ionizing radiation, an empirical rule can be used. According to this rule, polymers containing a hydrogen atom at each carbon atom predominantly undergo crosslinking. During irradiation, chain scission occurs simultaneously and competitively with crosslinking, the end result being determined by the ratio of the yields of the two reactions. The ratio of crosslinking to scission depends basically on factors including total irradiation dose, dose rate and the presence of oxygen. The glass transition temperature (Tg), temperature below which the polymer segments do not have sufficient energy to move past one another, marks the onset of segmental mobility for a polymer. Properties such as melt index, melt strength, crystallinity, glass transition, gel fraction, swelling ratio and elasticity modulus were assessed in LDPE (2.6 g.10 min -1 melt index) gamma irradiated within a 10, 15, 20 and 30 kGy and results obtained were further discussed prior conclusion. (author)

  7. Low temperature specific heat and phonon anomalies in transition metal compounds

    International Nuclear Information System (INIS)

    Roedhammer, P.; Weber, W.; Gmelin, E.; Rieder, K.H.

    1976-01-01

    Specific heat measurements reported in the temperature range 1.5 to 70 0 K for TiC, TiN, ZrC, NbC, HfC and TaC. The Debye temperatures calculated as functions of temperature from the experimental data are in close agreement with theoretical values obtained using shell models to predict phonon densities. It is shown that the frequencies of lowest-lying phonon anomalies may be calculated from specific heat differences between superconducting and normal compounds; frequencies of 5.8, 4.8 and 3.1 Th/sub z/ are predicted for TiN, NbC and TaC respectively. 15 refs

  8. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    Science.gov (United States)

    Ovchinnikov, Victor; Karplus, Martin

    2014-01-01

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes. PMID:24811667

  9. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    International Nuclear Information System (INIS)

    Ovchinnikov, Victor; Karplus, Martin

    2014-01-01

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes

  10. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  11. Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan ST

    2015-10-01

    -mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC and l-glutathione (GSH abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC. Keywords: PLB, SILAC, EMT, stemness, Nrf2, tongue squamous cell carcinoma

  12. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  13. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-02-01

    , but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl and B-cell lymphoma 2 (Bcl-2, but increased the expression of Bcl-2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK and extracellular signal-regulated kinases 1 and 2 (Erk1/2 and inhibited the activation of protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E

  14. Studies of the transition temperature and normal state resistivity of Nb3Ge and Nb films

    International Nuclear Information System (INIS)

    Lutz, H.; Weismann, H.; Gurvitch, M.; Goland, A.N.; Kammerer, O.F.; Strongin, M.

    1976-01-01

    Correlations between T/sub c/ and specific features of the normal state resistance vs temperature curves are discussed for both Nb 3 Ge and ion damaged Nb films. Of particular interest is the correlation between T/sub c/ and rho 0 in Nb 3 Ge films

  15. In-transit temperature extremes could have negative effects on ladybird (Coleomegilla maculata) hatch rate

    Science.gov (United States)

    The shipment of mass-produced natural enemies for augmentative release is a standard procedure used by the biological control industry. Yet there has been insufficient research on the effects of temperature change, experienced during shipment, on the quality of predators as they arrive at release si...

  16. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    Science.gov (United States)

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Temperature-induced phase transitions during ion-beam irradiation of the perovskite-structure oxides

    International Nuclear Information System (INIS)

    Meldrum, A.; Boatner, L.A.; Ewing, R.C.

    1997-01-01

    Several perovskite-structure oxide compounds, including CaTiO 3 , SrTiO 3 , BaTiO 3 , KNbO 3 , and KTaO 3 were irradiated by 800 keV Kr + ions in order to investigate and compare their response to heavy-ion irradiation. The critical amorphization temperature T c , above which amorphization temperature T c , above which amorphization could not be induced, was found to increase in the order SrTiO 3 → CaTiO 3 → BaTiO 3 → KNbO 3 → KTaO 3 . No single physical parameter explains the observed sequence, although T c correlates well with the melting temperatures. The well-known temperature-driven phase transformations in these materials did not have a significant effect on the dose required for amorphization. Domain boundaries were observed in the pristine samples; however, after only a low dose, the boundaries became poorly defined and, with increasing dose, eventually disappeared. Dislocation loops were observed to aggregate at the domain boundaries

  18. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    Science.gov (United States)

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  19. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/ mammalian target of rapamycin and p38 MAPK mediated pathways. Keywords: Plumbagin, pancreatic cancer, cell cycle, autophagy, EMT, Sirt1

  20. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  1. Integrated high-transition temperature magnetometer with only two superconducting layers

    DEFF Research Database (Denmark)

    Kromann, R.; Kingston, J.J.; Miklich, A.H.

    1993-01-01

    are required, the SQUID body serving as the crossunder that completes the multiturn flux transformer. The highest temperature at which any of the magnetometers functioned was 76 K. At 60 K the magnetic field gain of this device was 63, and the magnetic field noise was 160 fT Hz-1/2 at 2 kHz, increasing to 3.4...... pT Hz-1/2 at 1 Hz....

  2. Nonlocal fluctuational electromagnetic response and neutron magnetic scattering near the superconducting transition temperature

    International Nuclear Information System (INIS)

    Barash, Yu.S.; Galaktionov, A.V.

    1992-01-01

    A general expression is found for superconducting fluctuation contribution to transverse permittivity c tr f (Ω, Q) of a standard massive isotopic metal near T c at Ω c and Qζ 0 0 is the coherence length at zero temperature, Q is the external electromagnetic field pulse), depending on frequency and wave vector. Differential cross section of magnetic scattering of neutrons near T c in the region of comparatively small angles is considered

  3. Use of glass transition temperature for stabilization of board's cracks of Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Fred W. Calonego

    2010-09-01

    Full Text Available The Eucalyptus grandis logs temperatures were determined and correlated with the board's cracks during steaming. Thermocouples were inserted in the logs center, registering their temperatures during steaming at 90"C. The logs were sawed and the board's cracks measured. It was concluded that: (1 the logistic S-shaped curve explains the logs temperature variation; (2 the logs with diameter of 20 to As temperaturas em toras de Eucalyptus grandis, durante a vaporização, foram determinadas e correlacionadas com as rachaduras das tábuas. Nos centros das toras foram inseridos termopares e registradas suas temperaturas durante a vaporização à 90"C. As toras foram desdobradas e as rachaduras das tábuas mensuradas. Concluiu-se que: (1 o modelo estatístico sigmoidal logístico explica a variação da temperatura nas toras; (2 as toras com 20 a <25, 25 a <30 e 30 a <35 cm de diâmetro apresentaram, respectivamente, 84,2"C, 73,1"C e 45,8"C ao final da vaporização; e (3 as rachaduras foramsignificativamente menores nas toras que atingiram a temperatura de transição vítrea.

  4. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  5. Tuning the Transition Temperature of WSix Alloys for Use in Cryogenic Microcalorimeters

    Science.gov (United States)

    Cecil, T.; Gades, L.; Madden, T.; Yan, D.; Miceli, A.

    2016-07-01

    Microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the thermal kinetic inductance detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20 % of T_C, the T_C of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSix alloy system as a material for these detectors. By co-sputtering from a Si and W2Si target, we have deposited WSix films with a tunable T_C that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the T_C, resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSix is a good candidate for TKIDs.

  6. Strength, ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.

    1988-01-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20 and 38%. The reduction in area ranged from 30 to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0-0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. (orig.)

  7. Strength, ductility, and ductile-brittle transition temperature for MFR [magnetic fusion reactor] candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.; Peterson, J.R.

    1987-09-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20% and 38%. The reduction in area ranged from 30% to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 0 C to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0 to 0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. 14 refs., 4 figs., 3 tabs

  8. The reexamination of thermal expansion of ferromagnetic superconductors and the pressure differential of its superconducting transition temperature-possible application to UGe2

    International Nuclear Information System (INIS)

    Konno, Rikio; Hatayama, Nobukuni

    2011-01-01

    The temperature dependence of thermal expansion of ferromagnetic superconductors below the superconducting transition temperature T scu of a majority spin conduction band is reexamined. In the previous study [to be published in J. M. Phys. B] the volume differential of the kinetic energy of conduction electrons is constant. However, in this study the volume differential of the kinetic energy of conduction electrons is inconstant. The superconducting gap of the majority spin conduction band used in this study has a line node. It is appropriate to UGe 2 . The pressure differential of its superconducting transition temperature is also investigated. We find that the thermal expansion coefficient has the divergence at the superconducting transition temperature. The thermodynamic Grueneisen's relation is satisfied.

  9. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  10. Mean ocean temperature change over the last glacial transition based on heavy noble gases in the atmosphere

    Science.gov (United States)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji

    2017-04-01

    On paleo-climatic timescales heavy noble gases (krypton and xenon) are conserved in the atmosphere-ocean system and are passively cycled through this system without interaction with any biogeochemical process. Due to the characteristic temperature dependency of the gas solubility factors in sea water, the atmospheric noble gas content is unambiguously linked to mean global ocean temperature (MOT). Here we use this proxy to reconstruct MOT over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 78 ice samples with a recently developed method that yields the isotopic ratios of N2, Ar, Kr and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr in the trapped air with the required precision. Based on the isotopic ratios we correct the elemental ratios for the fractionation processes in the firn column to obtain the true atmospheric values. On the basis of a 4-box model that incorporates effects of sea-level change, different saturation states of the water and different temperature distributions in the global ocean, we infer MOT based on the three elemental ratio pairs and assess its uncertainty. On average, the uncertainty of our MOT record is +/- 0.27°C, which is a significant improvement to earlier studies that reached about +/- 1°C uncertainty. This allows an unprecedented assessment of the glacial-interglacial MOT difference, as well as a direct comparison between MOT and climate change for the first time. We find a LGM-Holocene difference of 2.6°C, which is on the lower end of what earlier studies have suggested (3 +/- 1°C) and provides a new constraint on ocean heat uptake over the last glacial transition. Furthermore, we find a very close relation between MOT and Antarctic temperatures which shows for the first time the effect of Atlantic overturning circulation changes on global ocean heat uptake. Finally, our record shows a MOT warming rate during the Younger Dryas that is almost double to

  11. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    Science.gov (United States)

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  12. Superconducting transition temperature and the formation of closed electron shells in the atoms of superconducting compounds

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    The relationship between the regularities in the tansition temperature (T/sub c/) values in analogous compounds (having the same structure and stoichiometry) and the formation of the closed electron shells outside inert gas shells in the atoms of the variable component of the 158 intermetallic superconducting compounds has been discussed. The T/sub c/ data for compounds of the elements from the first long period of the Periodic Table (K to Se) are compared with the T/sub c/ data for the analogous compounds of the elements from the second long period (Rb to Te)

  13. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    Science.gov (United States)

    2005-07-01

    R., R. Doradziński, J. Garczyński, L. Sierzputowski, J. M. Bara- nowski, and M. Kamińska. “AMMONO method of GaN and AlN production,” Diamond and...implanted ZnO nanorods ,” Journal of Vacuum Science and Technology B , 21 (4):1476–1481 (July/August 2003). 47. Jin, Z., T. Fukumura, M. Kawasaki, K. Ando...R. Gamelin. “High-Temperature Ferromagnetism in Ni2+-Doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semi- conductor Quantum Dots

  14. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  15. Standard test method for determination of reference temperature, to, for ferritic steels in the transition range

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the determination of a reference temperature, To, which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic KJc instabilities, or both. The specific types of ferritic steels (3.2.1) covered are those with yield strengths ranging from 275 to 825 MPa (40 to 120 ksi) and weld metals, after stress-relief annealing, that have 10 % or less strength mismatch relative to that of the base metal. 1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness. 1.3 Median KJc values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences among the allowable test specimens in 1.2. The degree of KJc variability among specimen types i...

  16. Temperature and frequency investigations of the electrical parameters in the TGS ferroelectric transition

    Energy Technology Data Exchange (ETDEWEB)

    Berbecaru, Ciceron [University of Bucharest, Faculty of Physics, Bucharest-Magurele 077125 (Romania)

    2010-05-15

    Pure and D: alanina doped triglycin sulphate (TGS) crystals were grown from aqueous solutions. Fresh cleaved, polished and silver paste painted samples were temperature and frequency investigated. Pure crystals show nonreproducible values of the permittivity and dielectric loss crossing up and down the Curie point. More stable and much lower values of the permittivity and dielectric loss could be noticed for D: alanina doped crystals. Permittivity and loss values show different frequencies behavior related to polar or nonpolar state of crystals. Frequency dependence of permittivity and loss behavior could be related to the general picture of relaxation of different polarization mechanisms and their contributions to permittivity and loss values for dielectric materials. Much smaller and stable values of permittivity and loss, vs. temperature and frequency, were found for doped crystals. Experimental results point out for a more stable structure with dipoles mobility decreased of doped vs. pure TGS crystals. Thus, higher figure of merit of doped TGS crystals point to a major advantage for technical applications (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Indium tin oxide films prepared by atmospheric plasma annealing and their semiconductor-metal conductivity transition around room temperature

    International Nuclear Information System (INIS)

    Li Yali; Li Chunyang; He Deyan; Li Junshuai

    2009-01-01

    We report the synthesis of indium tin oxide (ITO) films using the atmospheric plasma annealing (APA) technique combined with the spin-coating method. The ITO film with a low resistivity of ∼4.6 x 10 -4 Ω cm and a high visible light transmittance, above 85%, was achieved. Hall measurement indicates that compared with the optimized ITO films deposited by magnetron sputtering, the above-mentioned ITO film has a higher carrier concentration of ∼1.21 x 10 21 cm -3 and a lower mobility of ∼11.4 cm 2 V -1 s -1 . More interestingly, these electrical characteristics result in the semiconductor-metal conductivity transition around room temperature for the ITO films prepared by APA.

  18. Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass

    International Nuclear Information System (INIS)

    Ichitsubo, Tetsu; Matsubara, Eiichiro; Kai, Satoshi; Hirao, Masahiko

    2004-01-01

    We have found that crystallization of a Pd 40 Ni 40 P 20 bulk metallic glass is accelerated in the vicinity of the glass transition temperature T g when it is subjected to sub/low-MHz frequency ultrasonic vibration. Resonance frequencies and internal frictions have been measured with the electromagnetic acoustic resonance (EMAR) technique. In the initial heating process of an as-cast glassy sample, the resonance frequencies jump up just above T g under ultrasonic excitation, which is attributed to nano-crystallization that is confirmed by the X-ray diffraction profile. However, such a notable change is not observed without ultrasonic vibration. The irregular Λ-shaped internal-friction peaks are also observed prior to the abrupt crystallization. This rapid crystallization is considered to be caused by a stochastic resonance, in which the jump frequency of atoms matches the frequency of the interatomic-potential change by the ultrasonic vibration

  19. Annealing effect reversal by water sorption-desorption and heating above the glass transition temperature-comparison of properties.

    Science.gov (United States)

    Saxena, A; Jean, Y C; Suryanarayanan, R

    2013-08-05

    Our objective is to compare the physical properties of materials obtained from two different methods of annealing reversal, that is, water sorption-desorption (WSD) and heating above glass transition temperature (HAT). Trehalose was annealed by storing at 100 °C for 120 h. The annealing effect was reversed either by WSD or HAT, and the resulting materials were characterized by differential scanning calorimetry (DSC), water sorption studies, and positron annihilation spectroscopy (PAS). While the products obtained by the two methods of annealing reversal appeared to be identical by conventional characterization methods, they exhibited pronounced differences in their water sorption behavior. Positron annihilation spectroscopy (PAS), by measuring the fractional free volume changes in the processed samples, provided a mechanistic explanation for the differences in the observed behavior.

  20. Inverse iron isotope effect on the transition temperature of the (Ba,K)Fe2As2 superconductor.

    Science.gov (United States)

    Shirage, Parasharam M; Kihou, Kunihiro; Miyazawa, Kiichi; Lee, Chul-Ho; Kito, Hijiri; Eisaki, Hiroshi; Yanagisawa, Takashi; Tanaka, Yasumoto; Iyo, Akira

    2009-12-18

    We report that the (Ba,K)Fe(2)As(2) superconductor (transition temperature, T(c) approximately 38 K) has an inverse iron isotope coefficient alpha(Fe) = -0.18(3) (where T(c) approximately M(-alphaFe) and M is the iron isotope mass); i.e., the sample containing the large iron isotope mass depicts a higher T(c). Systematic inverse shifts in T(c) were clearly observed between the samples using three types of Fe isotopes ((54)Fe, natural Fe, and (57)Fe). This indicates the first evidence of the inverse isotope effect in high-T(c) superconductors. This anomalous mass dependence on T(c) implies an exotic coupling mechanism in Fe-based superconductors.

  1. Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film

    Science.gov (United States)

    Shi, Shoupeng; Gao, Daqiang; Xia, BaoRui; Xue, Desheng

    2016-02-01

    We have deposited a copper oxide (CuO) thin film using a magnetron sputtering system by modulating rate of oxygen flow, and we found that the phase of cuprous oxide (Cu2O) appeared after irradiation by argon ions. Magnetic measurement results indicate that the thin film exhibits room temperature ferromagnetism after irradiation, while the virgin CuO thin film is diamagnetic. Vacancies and interstitial would appear in the lattice during irradiation and phase transition, which will originate in the local magnetic moment. In combination with the analyses of Raman spectra, we believe that the ferromagnetism of the film may originate from Cu vacancies, which provides an approach in investigating the mechanism of magnetism in the diluted magnetic semiconductor.

  3. Structural and Transition Temperature of HgPbxBa2Ca2Cu3O8+δ Superconductor

    International Nuclear Information System (INIS)

    Hermiz, G.Y.; Abbass, M.M.

    2005-01-01

    Solid state reaction technique (SSR) was used to prepare high-T c phase in HgPb x Ba 2 Ca 2 Cu 3 O 8+δ superconductors. The effect of additional Pb to HgBa 2 Ca 2 Cu 3 O 8+δ was investigated. It has been found that the maximum transition temperature T c =133K is at x=0.1.X-ray diffraction showed a tetragonal structure with an average value of e=15.816 A . The average value of the valence of copper (v) is equal to 2.025. There is an increasing of density with the enhancement of the concentration of Pb 2

  4. Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects.

    Science.gov (United States)

    Taskent, Humeyra; Cho, Jae-Hyun; Raleigh, Daniel P

    2008-05-02

    Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed alpha-beta protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 degrees C. Plots of the log of the observed first-order rate constant versus denaturant concentration, "chevron plots," displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford beta parameter, beta(T), shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of Delta G versus Delta G degrees, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.

  5. Phase transitions and melting on the Hugoniot of Mg2SiO4 forsterite: new diffraction and temperature results

    Science.gov (United States)

    Asimow, P. D.; Akin, M. C.; Homel, M.; Crum, R. S.; Pagan, D.; Lind, J.; Bernier, J.; Mosenfelder, J. L.; Dillman, A. M.; Lavina, B.; Lee, S.; Fat'yanov, O. V.; Newman, M. G.

    2017-06-01

    The phase transitions of forsterite under shock were studied by x-ray diffraction and pyrometry. Samples of 2 mm thick, near-full density (>98% TMD) polycrystalline forsterite were characterized by EBSD and computed tomography and shock compressed to 50 and 75 GPa by two-stage gas gun at the Dynamic Compression Sector, Advanced Photon Source, with diffraction imaged during compression and release. Changes in diffraction confirm a phase transition by 75 GPa. In parallel, single-crystal forsterite shock temperatures were taken from 120 to 210 GPa with improved absolute calibration procedures on the Caltech 6-channel pyrometer and two-stage gun and used to examine the interpretation of superheating and P-T slope of the liquid Hugoniot. This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported in part by LLNL's LDRD program under Grants 15-ERD-012 and 16-ERD-010. The Dynamic Compression Sector (35) is supported by DOE / National Nuclear Security Administration under Award Number DE-NA0002442. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Caltech lab supported by NSF EAR-1426526.

  6. Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    International Nuclear Information System (INIS)

    Wong, Chi Ho; Lortz, Rolf

    2016-01-01

    Highlights: • The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is compared. • Being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening unless a curvature is added. • The edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations. - Abstract: In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron–phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening. However, if a curvature is added, T c can be strongly enhanced. The increase in T c with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations.

  7. Noise and specific detectivity measurements on high-temperature superconducting transition-edge bolometers

    International Nuclear Information System (INIS)

    Black, R.D.; Mogro-campero, A.; Turner, L.G.

    1990-01-01

    The effects of thermal fluctuation noise in thermal detectors can be lessened by reducing heat capacity and thermal conductance. An attempt to accomplish this with the YBa2Cu3O(7-x) (YBCO) bolometer by making YBCO resistors on thermally isolated membranes is reported. The spectral power of the electrical noise of YBCO films on SrTiO3, bulk silicon with a buffer layer, and in thin dielectric membranes is measured. It is found that 1/f noise predominates in polycrystalline YBCO films on silicon-based substrates. Films on SrTiO3 with good electrical properties are dominated by thermal fluctuation noise, just as in the case of low-temperature superconductors. The implications of these findings for bolometer are addressed. The specific detectivity of a bolometric pixel made on bulk SrTiO3 is reported. 14 refs

  8. TRANSITION AND DECOMPOSITION TEMPERATURES OF CEMENT PHASES - A COLLECTION OF THERMAL ANALYSIS DATA

    Directory of Open Access Journals (Sweden)

    Nick C. Collier

    2016-10-01

    Full Text Available Thermal analysis techniques provide the cement chemist with valuable tools to qualify and quantify the products formed during the hydration of cementitious materials. These techniques are commonly used alongside complimentary techniques such as X-ray diffraction and electron microscopy/energy dispersive spectroscopy to confirm the composition of phases present and identify amorphous material unidentified by other techniques. The most common thermal analysis techniques used by cement chemists are thermogravimetry, differential thermal analysis and differential scanning calorimetry. In order to provide a useful reference tool to the cement chemist, this paper provides a brief summary of the temperatures at which phase changes occur in the most common cement hydrates in the range 0-800°C in order to aid phase identification.

  9. Superfluid density and superconducting transition temperature in dirty iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Thomas; Ahn, Felix; Eremin, Ilya [Ruhr-Universitaet Bochum, Bochum (Germany)

    2016-07-01

    Measurements on optimally electron doped LaFeAsO{sub 1-x}F{sub x} samples under pressure up to ∝23 kbar reveal a clear mutual independence between the critical temperature T{sub c} and the ratio of superfluid density over effective band mass of Cooper pairs n{sub s}/m*. The ratio increases about ∝30 % at the maximum pressure whereas T{sub c} remains constant, which clearly implies a breakdown of the Uemura relation in LaFeAsO{sub 1-x}F{sub x}. Here we analyze theoretically this effect by taking into account the effect of nonmagnetic impurities in a multi-band superconductor. We show that the ratio between intra-band and inter-band scattering rates can explain the behaviour of the observables under pressure by only acting on structural parameters while the amount of chemical disorder is still constant.

  10. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  11. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  12. The finite temperature QCD phase transition and the thermodynamic equation of state. An investigation employing lattice QCD with Nf=2 twisted mass quarks

    International Nuclear Information System (INIS)

    Burger, Florian

    2012-01-01

    In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.

  13. Temperature response of the cell cycle of Haplopappus gracilis in suspension culture and its significance to the G1 transition probability model.

    Science.gov (United States)

    Gould, A R

    1977-01-01

    The effects of temperature on the cell cycle of Haplopappus gracilis suspension cultures were analysed by the fraction of labelled mitoses method. Sphase in these cultures shows a different temperature optimum as compared to optima derived for G2 and mitosis. G1 phase has a much lower Q10 than the other cell cycle phases and shows no temperature optimum between 22 and 34° C. These results are discussed in relation to a transition probability model of the cell cycle proposed by Smith and Martin (Proc. Natl. Acad. Sci. USA 70, 1263-1267, 1973), in which each cell has a time independent probability of initiating the transition into another round of DNA replication and division. The implications of such a model for cell cycle analysis are discussed and a tentative model for a probabilistic transition trigger is advanced.

  14. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature.

    Science.gov (United States)

    Tassel, Cédric; Goto, Yoshihiro; Kuno, Yoshinori; Hester, James; Green, Mark; Kobayashi, Yoji; Kageyama, Hiroshi

    2014-09-22

    We report a novel oxyhydride SrCrO2H directly synthesized by a high-pressure high-temperature method. Powder neutron and synchrotron X-ray diffraction revealed that this compound adopts the ideal cubic perovskite structure (Pm3̄m) with O(2-)/H(-) disorder. Surprisingly, despite the non-bonding nature between Cr 3d t(2g) orbitals and the H 1s orbital, it exhibits G-type spin ordering at T(N)≈380 K, which is higher than that of RCrO3 (R=rare earth) and any chromium oxides. The enhanced T(N) in SrCrO2H with four Cr-O-Cr bonds in comparison with RCr(3+)O3 with six Cr-O-Cr bonds is reasonably explained by the tolerance factor. The present result offers an effective strategy to tune octahedral tilting in perovskites and to improve physical and chemical properties through mixed anion chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Locating of normal transitions in a Bi2223 high temperature superconducting coil by using capacitor type voltage terminals and the active power method

    Science.gov (United States)

    Nanato, N.; Okura, K.; Kumagai, H.; Aoyama, H.

    2017-07-01

    It is important to locate positions of normal transitions in a high temperature superconducting (HTS) coil for identifying its design and fabrication weakness. In this paper, the authors propose a locating method by using capacitor type voltage terminals and the active power method. The former is a method to measure voltage in a HTS coil without electric contact and the latter is a method to detect the normal transitions by measuring active power dissipated in the coil. Combination of the two methods can achieve precise location of the normal transitions. The authors show usefulness of the method through experimental results for a Bi2223 HTS coil.

  16. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  17. Gamma radiation and temperature influence on the chemical effect produced by isomeric transition in the telluric acid

    International Nuclear Information System (INIS)

    Muriel G, M.

    1976-01-01

    When the gamma radiation due to the isomeric transition is internally converted an autoionization is produced. For atoms with a high atomic number this autoionization can be a large one and produce a fragmentation in a molecule. In the specific case of the solid state these fragments remain trapped in different places of the crystalline system. This can be considered as chemical change in the original molecule. These damages produced by the nuclear transformation can be measured by different methods: heating, gamma rays, pressure, etc. In this work the results of an experimental measurement of the behavior of the crystalline telluric acid molecule fragments under gamma radiation (0 to 20 Mrads) with controlled temperature of 2 0 C (-196 0 C to 50 0 C) it is presented. It was observed that the values of the mentioned behavior vary rapidly at first for relatively low doses and that for larger doses these values remained constant. Besides with a lower temperature these variation are progressively lower. (author)

  18. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.

    Science.gov (United States)

    Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S

    2015-11-10

    Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  20. The behavior of the electron density and temperature at Millstone Hill during the equinox transition study September 1984

    Science.gov (United States)

    Richards, P. G.; Torr, D. G.; Buonsanto, M. J.; Miller, K. L.

    1989-01-01

    The ionospheric electron density and temperature variations is simulated during the equinox transition study in September 1984 and the results are compared with measurements made at Millstone Hill. The agreement between the modeled and measured electron density and temperature for the quiet day (18 September) is very good but there are large differences on the day of the storm (19 September). On the storm day, the measured electron density decreases by a factor of 1.7 over the previous day, while the model density actually increases slightly. The model failure is attributed to an inadequate increase in the ratio of atomic oxygen to molecular neutral densities in the MSIS neutral atmosphere model, for this particular storm. A factor of 3 to 5 increase in the molecular to atomic oxygen density ratio at 300 km is needed to explain the observed decrease in electron density. The effect of vibrationally excited N sub 2 on the electron density were studied and found to be small.

  1. Dynamics across the structural transitions at elevated temperatures in Na0.7CoO2

    Directory of Open Access Journals (Sweden)

    Juranyi Fanni

    2015-01-01

    Full Text Available The layered transition-metal oxide Nax CoO2 has been studied extensively both for its correlated electronic properties as well as for potential battery applications. It was discovered that high-temperature Na ion vacancy order and dynamics can be very useful to tailor low-temperature properties of members of this compound family. We have studied the Na-ion dynamics on the atomic length-scale in the Na0.7 CoO2 compound by neutron spectroscopy. The temperature dependence of both the elastic and the inelastic intensities show steps at TA ≈ 290 K and TB ≈ 400 K. At TA the step is shown to be connected to low energy phonons, while at TB the Na ion diffusion suddenly gets fast enough, and the characteristic signal of quasielastic scattering appears. The current results further elucidate the subtle changes in the Na ion dynamics that have been revealed in our previous neutron diffraction studies [1], intimately connecting structural transformations at TA and TB with the opening-up of 1D and 2D Na-ion diffusion paths. Finally, the estimated diffusion coefficient above TB was found to differ from the one measured by muon-spin relaxation (μ+SR [2] by about four orders of magnitude. However it might be that the present QENS data rather describe a fast localized prozess than a long range translational diffusion. Within this model the corresponding time scale (ℏ/E would be in the order of 50 ps.

  2. On the finite temperature λφ4 model. Is there a first order phase transition in (λφ4)3?

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.

    1995-11-01

    We investigate the behavior at finite temperature of the massive λ φ 4 model in a D-dimensional spacetime, performing a renormalization up to the order of one loop. In this approximation we show that the thermal mass increase with the temperature, while the thermal coupling constant decrease with the temperature. We establish that in the (λφ 4 ) 3 model there is a temperature β * -1 above which the coupling constant becomes negative. We argue that the system could develop a first order phase transition, where the origin corresponds to a metastable vacuum. (author). 29 refs

  3. Influence of high energy lead irradiation on the low and high temperature metal-semiconductor transitions in (V 1 - xCr x) 2O 3 ceramics

    Science.gov (United States)

    Kokabi, H. R.; Studer, F.

    1997-04-01

    Ceramic samples of chromium doped vanadium sesquioxide [(V 1 - xCr x) 2O 3] have been irradiated using high energy lead ions (208Pb : 6.032 GeV) with various fluences (4 to 50 × 10 11 ions/cm 2). Irradiations have been carried out under vacuum and at different temperatures. Irradiated samples have been characterized by electrical resistivity measurements as a function of temperature for low and high temperature transitions in the (V 1 - xCr x) 2O 3 system. As the low and high temperature (LT and HT) phase transitions in this system correspond to different enthalpy variations, both transitions do not exhibit the same sensitivity to irradiation with heavy ions. Because of internal stress formation, lead ions irradiation induced shifts of the HT and LT transition temperatures and broadening of these transitions. Besides, stabilization of a fraction of the microcrystals in the sample in the metallic state led to the reduction of the PTC (Positive Temperature Coefficient)-like effect. The effects of the doping amounts ( x = 0.003 and 0.007) and the irradiation temperature (77 K and 300 K) on the modification of electrical properties of the irradiated materials have been studied using resistivity measurements. Irradiations with a smaller doping rate and at 77 K lead to more significant changes in the thermal variations of the electrical resistivity. Large differences in electrical characteristics have been observed between samples irradiated either in the metallic (300 K) or the semiconducting state (77 K) which showed that the sensitivity of (V 1 - xCr x) 2O 3 ceramics to heavy ion irradiation is dependent on the phase state and on its physical properties.

  4. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    International Nuclear Information System (INIS)

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.; Cowley, S. C.

    2011-01-01

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  5. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai, E-mail: tczhang@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Liang, Junjun [Department of Physics, Shanxi University, Taiyuan 030006 (China)

    2014-03-17

    We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.

  6. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    Science.gov (United States)

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.

  7. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system

    Directory of Open Access Journals (Sweden)

    Oh KS

    2014-06-01

    Full Text Available Keun Sang Oh,1 Ji Young Yhee,2 Dong-Eun Lee,3 Kwangmeyung Kim,2 Ick Chan Kwon,2 Jae Hong Seo,4 Sang Yoon Kim,5 Soon Hong Yuk1,4 1College of Pharmacy, Korea University, Sejong, 2Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 3Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk, 4Biomedical Research Center, Korea University Guro Hospital, Seoul, 5Department of Otolaryngology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea Abstract: Primary tumor and tumor-associated metastatic lymphatics have emerged as new targets for anticancer therapy, given that these are difficult to treat using traditional chemotherapy. In this study, docetaxel-loaded Pluronic nanoparticles with Flamma™ (FPR-675, fluorescence molecular imaging dye; DTX/FPR-675 Pluronic NPs were prepared using a temperature-induced phase transition for accurate detection of metastatic lymphatics. Significant accumulation was seen at the primary tumor and in metastatic lymph nodes within a short time. Particle size, maximum drug loading capacity, and drug encapsulation efficiency of the docetaxel-loaded Pluronic NPs were approximately 10.34±4.28 nm, 3.84 wt%, and 94±2.67 wt%, respectively. Lymphatic tracking after local and systemic delivery showed that DTX/FPR-675 Pluronic NPs were more potent in tumor-bearing mice than in normal mice, and excised mouse lymphatics showed stronger near-infrared fluorescence intensity on the tumor-bearing side than on the non-tumor-bearing side at 60 minutes post-injection. In vivo cytotoxicity and efficacy data for the NPs demonstrated that the systemically administered NPs caused little tissue damage and had minimal side effects in terms of slow renal excretion and prolonged circulation in tumor-bearing mice, and rapid renal excretion in non-tumor-bearing mice using an in vivo real-time near-infrared fluorescence imaging system. These results

  8. Tilt Angle and the Temperature Shifts Calculated as a Function of Concentration for the AC* Phase Transition in a Binary Mixture of Liquid Crystals

    Science.gov (United States)

    Yurtseven, H.; Kurt, M.

    We study here the tilt angle and the temperature shifts as a function of concentration for the AC* phase transition in a binary mixture, using our mean field model with the biquadratic P2θ2 coupling — and also with the bilinear Pθ and P2θ2 couplings. By expanding the free energy in terms of the tilt angle and polarization, the tilt angle and the temperature shift are evaluated by using the coefficients given in the free energy expansion. By employing a concentration-dependent coefficient, the tilt angle and the temperature shift are calculated as a function of concentration of 10.O.4 for the SmAC* transition in a binary mixture of C7 and 10.O.4. Our calculated values of the tilt angle and the temperature shifts decrease as the concentration of 10.O.4 increases, as confirmed experimentally for the AC* transition in this binary mixture. This indicates that our mean field models studied here are satisfactory to explain the observed behavior of the AC* transition of the binary mixture of C7 and 10.O.4.

  9. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    Science.gov (United States)

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…

  10. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.

    2004-01-01

    Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition...... was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics....

  11. Measurement of glass transition temperature, residual heat of reaction and mixing ratio of epoxy resins using near infrared spectroscopy: a preliminary study

    DEFF Research Database (Denmark)

    Houmøller, Lars Plejdrup; Laursen, Peter Clemen

    2003-01-01

    As a measure of the degree of curing of epoxy resins, the glass transition temperature, Tg, and the residual heat of reaction, DeltaHr, are often used. In this study, near infrared spectroscopy and multivariate calibration (partial least squares regression (PLSR)) have been used to monitor the two...

  12. Glass transition temperatures of microphase separated semi-interpenetrating polymer networks of polystyrene-inter-poly(cross)-2-ethylhexyl-methacrylate

    NARCIS (Netherlands)

    de Graaf, L.A.; de Graaf, Leontine A.; Möller, Martin; Moller, M.

    1995-01-01

    The glass transition temperature of semi-interpenetrating polymer networks (semi-IPNs) of atactic polystyrene (PS) in crosslinked methacrylates was studied by systematic variation of the morphology, that is domain size, continuity and concentration in the domains. Semi-IPNs were prepared from

  13. SCK-CEN Contribution to the''Relation between different measures of exposure-induced shifts in ductile-brittle transition temperatures'' (REFEREE). Progress Report

    International Nuclear Information System (INIS)

    Chaouadi, R.; Van Walle, E.; Fabry, A.; Puzzolante, J.L.

    1998-08-01

    The relationship between Charpy-V (CVN) impact, fracture toughness and tensile properties for selected reactor pressure -vessel steels in the transition temperature range are investigated. Data on the testing of unirradiated material are reported. The applied methods include chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination

  14. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    International Nuclear Information System (INIS)

    Yu, Tang-Qing; Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency

  15. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  16. Fabrication of (PPC/NCC)/PVA composites with inner-outer double constrained structure and improved glass transition temperature.

    Science.gov (United States)

    Cui, Shaoying; Li, Li; Wang, Qi

    2018-07-01

    Improving glass transition temperature (T g ) and mechanical property of the environment-friendly poly(propylene carbonate) via intermacromolecular complexation through hydrogen bonding is attractive and of great importance. A novel and effective strategy to prepare (polypropylene carbonate/nanocrystalline cellulose)/polyvinyl alcohol ((PPC/NCC)/PVA) composites with inner-outer double constrained structure was reported in this work. Outside the PPC phase, PVA, as a strong skeleton at microscale, could constrain the movement of PPC molecular chains by forming hydrogen bonding with PPC at the interface of PPC and PVA phases; inside the PPC phase, the rod-like NCC could restrain the flexible molecular chains of PPC at nanoscale by forming multi-hydrogen bonding with PPC. Under the synergistic effect of this novel inner-outer double constrained structure, T g , mechanical properties and thermal stability of (PPC/NCC)/PVA composite were significantly increased, e.g. T g of the composite researched the maximum value of 49.6 °C, respectively 15.6 °C, 5.7 °C and 4.2 °C higher than that of PPC, PPC/NCC and PPC/PVA composite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Observation of exchanging role of gold and silver nanoparticles in bimetallic thin film upon annealing above the glass transition temperature

    Science.gov (United States)

    Htet Kyaw, Htet; Tay Zar Myint, Myo; Hamood Al-Harthi, Salim; Maekawa, Toru; Yanagisawa, Keiichi; Sellai, Azzouz; Dutta, Joydeep

    2017-08-01

    The exchange role of gold (Au) and silver (Ag) in bimetallic films co-evaporated onto soda-lime glass substrates with Au-Ag volume ratios of 1:2, 1:1 and 2:1 have been demonstrated. Annealing of the films above the glass transition temperature in air led to non-alloying nature of the films, silver neutrals (Ag0) and gold nanoparticles (AuNPs) on the surface, along with silver nanoparticles (AgNPs) inside the glass matrix. Moreover, the size distribution and interparticle spacing of the AuNPs on the surface were governed by the Ag content in the deposited film. In contrast, the content of Au in the film played an opposite role leading to the migration of Ag ions (i.e. Ag0 being transformed to Ag ions after annealing in oxygen ambient) to form AgNPs inside the glass matrix. The higher the Au content in the film is, the more likely Ag0 to stay on the surface and impacts on the size distribution of AuNPs and consequently on the refractive index sensitivity measurements. Experimental realisation of this fact was reflected from the best performance for localized surface plasmon resonance (LSPR) sensitivity test achieved with Au-Ag ratio of 1:2. The Au/Ag/glass bimetallic dynamic results of this study can be pertinent to sensor applications integrated with optical devices.

  18. Effect of borojo (Borojoa patinoi Cuatrecasas) three-phase composition and gum arabic on the glass transition temperature.

    Science.gov (United States)

    Rodríguez-Bernal, Jenny M; Tello, Edisson; Flores-Andrade, Enrique; Perea-Flores, Maria de Jesús; Vallejo-Cardona, Alba A; Gutiérrez-López, Gustavo F; Quintanilla-Carvajal, Maria X

    2016-02-01

    The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials. © 2015 Society of Chemical Industry.

  19. Effect of cooling rate on the transition temperature in Bi-Pb-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Wang Yugui; Wang Jinsong; Wang Nanlin; Jiao Xinping; Han Guchang; Chen Zhaojia; Wang Keqin; Wu Xiaoguang

    1989-12-01

    The resistance and a.c. susceptibility measurement show that cooling rate of the cast-annealing samples in heat treatment process has some effect on the 110K superconducting phase in Bi-Pb-Sr-Ca-Cu-O system. Rapid quenching of the sample in air from 845 deg C causes oxygen deficiency in lattice and brings about a trifling change of unit cell size along c-axis direction. The d.c. magnetization and specific heat anomaly Δc measurements demostrate that fast cooling rate can reduce the transition temperature of high-T c phase and the lower critical field, and weaken the pinning forces for vertex lines. The peak value of specific heat anomaly of the sample with nominal composition of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 4.5 O v is still small in comparison with YBa 2 Cu 3 O 7 . From the magnetization curve the authors estimate that the superconducting volume fraction is about 20%

  20. Prediction of the shift in the brittle-ductile transition temperature of light-water reactor (LWR) pressure vessel materials

    International Nuclear Information System (INIS)

    Koziol, J.J.

    1983-01-01

    This report presents the results of an investigation undertaken by The Metal Properties Council Subcommittee 6 on Nuclear Materials and ASTM Subcommittee E10.02 on Behavior and Use of Metallic Materials in Nuclear Systems to determine the feasibility of establishing standard design curves for the purpose of predicting changes in the toughness properties of reactor pressure vessel materials as a result of exposure to neutron irradiation. It is based on a statistical treatment of irradiation data available as of November 1977. One of the important products of the MPC-ASTM effort is the computer data bank. It has been carefully scrutinized by members of the MPC and ASTM and its applicability for the present study was unmatched. The periodic updating and expanding the data bank should be considered for future analyses involving revisions to the present study or in conjunction with studies aimed at determining the response of the Charpy upper shelf energy to neutron radiation exposure or both. This report represents the opinion of MPC Subcommittee 6 concerning the predictability of the shift in the brittle-ductile transition temperature based on data available as of November 1977. The data are presented as three sets of curves: total data base, experimental data, and surveillance data

  1. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  2. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    Science.gov (United States)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  3. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  4. A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor

    DEFF Research Database (Denmark)

    See, A. M.; Klochan, O.; Micolich, P.

    2013-01-01

    . The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin......, and the interference effects which arise from coherent tunnelling of electrons in the quantum dot....

  5. Application of sample-sample two-dimensional correlation spectroscopy to determine the glass transition temperature of poly(ethylene terephthalate) thin films.

    Science.gov (United States)

    Hu, Yun; Zhang, Ying; Li, Boyan; Ozaki, Yukihiro

    2007-01-01

    The glass transition temperatures (Tg) of poly(ethylene terephthalate) (PET) thin films with different thicknesses are determined by analyzing their in situ reflection-absorption infrared (RAIR) spectra measured over a temperature range of 28 to 84 degrees C. The criterion of standard deviation of the covariance matrices is used as a graphical indicator for the determination of the Tg present in the sample-sample two-dimensional (2D) correlation spectra calculated from the temperature-dependent RAIR spectra. After two data pretreatments of the first derivative of the spectral absorbance versus temperature and the mean normalization over the wavenumbers are sequentially carried out on the RAIR spectra, an abrupt change of the first-derivative correlation spectra with respect to temperature is quickly obtained. It reflects the temperature at which the apparent intensity changes in pertinent absorption bands of PET thin films take place due to the dramatic segmental motion of PET chain conformation. The Tg of the thin PET films is accordingly determined. The results reveal that it decreases with a great dependence on the film thickness and that sample-sample 2D correlation spectroscopy enables one to determine the transition temperature of polymer thin films in an easy and valid way.

  6. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  7. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  8. A novel pressure-induced polymorphic transition from fumed silica to transparent amorphous SiO sub 2 at room temperature

    CERN Document Server

    Uchino, T; Azuma, M; Takano, M; Takahashi, M; Yoko, T

    2002-01-01

    We show that when we use highly dispersed oxides called fumed silica, a pressure-induced structural transition occurs at lower pressures (2-8 GPa) than would normally be expected for bulk a-SiO sub 2 (over 10 GPa). Furthermore, this transition finally results in a transparent monolith at 6-8 GPa, accompanied by densification, even at room temperature. We suggest that this novel polymorphic modification of a-SiO sub 2 results from the highly reactive nature surface strained Si-O bonds that are formed particularly in the compressed fumed silica samples.

  9. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  10. Temporal Texture Profile and Identification of Glass Transition Temperature as an Instrumental Predictor of Stickiness in a Caramel System.

    Science.gov (United States)

    Mayhew, Emily J; Schmidt, Shelly J; Schlich, Pascal; Lee, Soo-Yeun

    2017-09-01

    Stickiness is an important texture attribute in many food systems, but its meaning can vary by person, product, and throughout mastication. This variability and complexity makes it difficult to devise analytical tests that accurately and consistently predict sensory stickiness. Glass transition temperature (T g ) is a promising candidate for texture prediction. Our objective is to elucidate the temporal profile of stickiness in order to probe the relationship between T g and dynamic stickiness perception. Nine caramel samples with diverse texture and thermal profiles were produced for sensory testing and differential scanning calorimetry. Sixteen trained panelists generated stickiness-relevant terms to be used in a subsequent temporal dominance of sensation (TDS) test with the same panelists. Following the TDS study, these panelists also rated samples for overall tactile and oral stickiness. Stickiness ratings were then correlated to TDS dominance parameters across the full evaluation period and within the first, middle, and final thirds of the evaluation period. Samples with temporal texture profiles dominated by tacky, stringy, and enveloping attributes consistently received the highest stickiness scores, although the correlation strength varied by time period. T g was found to correlate well with trained panelist and consumer ratings of oral (R 2 trained = 0.85; R 2 consumer = 0.96) and tactile (R 2 trained = 0.78; R 2 consumer = 0.79) stickiness intensity, and stickiness intensity ratings decreased with T g of completely amorphous samples. Further, glassy samples followed a different texture trajectory (brittle-cohesive-toothpacking) than rubbery samples (deformable-tacky-enveloping). These results illuminate the dynamic perception of stickiness and support the potential of T g to predict both stickiness intensity and texture trajectory in caramel systems. © 2017 Institute of Food Technologists®.

  11. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  12. Clumped isotope analyses suggest constant seawater temperatures at the Middle-Late Jurassic transition in the Subboreal realm

    Science.gov (United States)

    Wierzbowski, Hubert; Bajnai, David; Wacker, Ulrike; Fiebig, Jens; Rogov, Mikhail

    2017-04-01

    Clumped isotope analyses were performed on a set of 18 well-preserved belemnite rostra and 4 ammonite shells derived from uppermost Middle-Upper Jurassic strata of the Russian Platform. The aim of the study is to reconstruct palaeoclimatic variations and paleoceanographic changes during and after the Middle-Late Jurassic transition in the Subboreal realm. Previous studies, based on the δ18O values and elemental ratios of belemnite rostra, suggest the presence of a prolonged Late Callovian-Middle Oxfordian cool period with bottom waters at ˜5 °C, followed by a pronounced Late Oxfordian-Late Kimmeridgian warming (by 6.5-9.5 °C) in the epicontinental Middle Russian Sea. The occurrence of cold bottom waters is interpreted as a result of the formation of wide marine connections with the Arctic Sea during a sea-level highstand. As an independent proxy for palaeotemperatures, clumped isotopes could estimate the extent to which the δ18O record is influenced by local salinity variations. Clumped isotope analyses suggest constant bottom water temperatures (˜15 °C) of the Middle Russian Sea during the latest Callovian-earliest Late Kimmeridgian. This questions the previous interpretation of the δ18O record. The Upper Oxfordian-Lower Kimmeridgian decrease in δ18O values, which was previously explained by warming, probably results instead from a decrease in salinity. A decrease in sea level after the Middle-Late Jurassic boundary transgression could have contributed to the enhanced freshwater runoff. Consequently, the limited water exchange in the restricted basin of the Middle Russian Sea probably led to the significant decrease in salinity and water δ18O values.

  13. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  14. Lead(II) coordination polymers based on rigid-flexible 3,5-bis-oxyacetate-benzoic acid: Structural transition driven by temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong-Qiang, E-mail: chenjzxy@126.com; Tian, Yuan

    2017-03-15

    Three Pb(II) complexes ([Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Pb{sub 4}(BOABA){sub 2}(µ{sub 4}-O)(H{sub 2}O){sub 2}]·H{sub 2}O){sub n} (2), and [Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]{sub n} (3) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb{sub 4}(µ{sub 4}-O)(COO){sub 6} SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1–3 have been investigated. - Graphical abstract: Three Pb(II) coordination polymers were obtained under the same reaction systems with different temperatures. Both of complexes 1 and 2 are 2D network. 3 presents a 3D framework based on Pb–O–C rods SBUs. The 2D to 3D structures transition between three complexes was achieved successfully by temperature control. - Highlights: • Three Pb(II) complexes were obtained under the same reaction systems with different temperatures. • Structural transition of the crystallization products is largely dependent on the reaction temperature. • The luminescence properties studies reveal that three complexes exhibit yellow fluorescence emission behavior, which might be good candidates for obtaining photoluminescent materials.

  15. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  16. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Serena Battaglia

    Full Text Available BACKGROUND: Chronic hepatitis C virus (HCV infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT, a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development.

  17. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  18. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO{sub 3} investigated by high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Grande, Tor, E-mail: grande@ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2012-12-15

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO{sub 3} has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3{sup Macron }c structure of LaFeO{sub 3} is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO{sub 3} at T{sub N}=735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO{sub 3} to gain insight to the magnetoelectric coupling in BiFeO{sub 3}, which is also multiferroic. The first order phase transition of LaFeO{sub 3} from Pbnm to R3{sup Macron }c was observed at 1228{+-}9 K, and a subsequent transition to Pm3{sup Macron }m was extrapolated to occur at 2140{+-}30 K. The stability of the Pbnm and R3{sup Macron }c polymorphs of LaFeO{sub 3} is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V{sub A}/V{sub B}. - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO{sub 3}. Highlights: Black-Right-Pointing-Pointer The crystal structure of LaFeO{sub 3} is studied by HTXRD from RT to 1533 K. Black-Right-Pointing-Pointer A non-linear expansion across the Neel temperature is observed for LaFeO{sub 3}. Black-Right-Pointing-Pointer The ratio V{sub A}/V{sub B} is used to rationalize the thermal evolution of the structure.

  19. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  20. MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2

    Directory of Open Access Journals (Sweden)

    De-Ning Ma

    2016-01-01

    Full Text Available Abstract Background Our previous study reported that microRNA-26a (miR-26a inhibited tumor progression by inhibiting tumor angiogenesis and intratumoral macrophage infiltration in hepatocellular carcinoma (HCC. The direct roles of miR-26a on tumor cell invasion remain poorly understood. In this study, we aim to explore the mechanism of miR-26a in modulating epithelial-mesenchymal transition (EMT in HCC. Methods In vitro cell morphology and cell migration were compared between the hepatoma cell lines HCCLM3 and HepG2, which were established in the previous study. Overexpression and down-regulation of miR-26a were induced in these cell lines, and Western blot and immunofluorescence assays were used to detect the expression of EMT markers. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Immunohistochemical assays were conducted to study the relationships between miR-26a expression and enhancer of zeste homolog 2 (EZH2 and E-cadherin expression in human HCC samples. Results Down-regulation of miR-26a in HCCLM3 and HepG2 cells resulted in an EMT-like cell morphology and high motility in vitro and increased in tumor growth and pulmonary metastasis in vivo. Through down-regulation of EZH2 expression and up-regulation of E-cadherin expression, miR-26a inhibited the EMT process in vitro and in vivo. Luciferase reporter assay showed that miR-26a directly interacted with EZH2 messenger RNA (mRNA. Furthermore, the expression of miR-26a was positively correlated with E-cadherin expression and inversely correlated with EZH2 expression in human HCC tissue. Conclusions miR-26a inhibited the EMT process in HCC by down-regulating EZH2 expression.