MVMO-based approach for optimal placement and tuning of supplementary damping controller
Rueda Torres, J.L.; Gonzalez-Longatt, F.
2015-01-01
This paper introduces an approach based on the Swarm Variant of the Mean-Variance Mapping Optimization (MVMO-S) to solve the multi-scenario formulation of the optimal placement and coordinated tuning of power system supplementary damping controllers (POCDCs). The effectiveness of the approach is
ANFIS based UPFC supplementary controller for damping low frequency oscillations in power systems
Directory of Open Access Journals (Sweden)
M. Sobha
2007-12-01
Full Text Available An adaptive neuro- fuzzy inference system (ANFIS based supplementary Unified Power Flow Controller (UPFC to superimpose the damping function on the control signal of UPFC is proposed. By using a hybrid learning procedure, the proposed ANFIS construct an input –output mapping based on stipulated input-output data pairs. The linguistic rules, considering the dependence of the plant output on the controlling signal are used to build the initial fuzzy inference structure. On the basis of linearized Philips-Hefron model of power system installed with UPFC, the damping function of the UPFC with various alternative UPFC control signals are investigated. In the simulations under widely varying operating conditions and system parameters, ANFIS based controller yields improved performance when compared with constant gain controller, based on phase compensation technique. To validate the robustness of the proposed technique, the approach is integrated to a multi-machine power system and the nonlinear simulation results are presented
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
Robust Rudder Roll Damping Control
DEFF Research Database (Denmark)
Yang, C.
The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H-infinity...... theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4...
DEFF Research Database (Denmark)
Perez, Tristan; Blanke, Mogens
2012-01-01
limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...
Directory of Open Access Journals (Sweden)
Ali Nasser Hussain
2016-09-01
Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.
A PSO based unified power flow controller for damping of power system oscillations
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Daneshgah Street, P.O. Box 179, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
On the basis of the linearized Phillips-Herffron model of a single-machine power system, we approach the problem of select the best input control signal of the unified power flow controller (UPFC) and design optimal UPFC based damping controller in order to enhance the damping of the power system low frequency oscillations. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. This controller is tuned to simultaneously shift the undamped electromechanical modes to a prescribed zone in the s-plane. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multiobjective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based UPFC controller using the proposed multiobjective function has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to the m{sub B} based controller. (author)
Kumar, Sanjiv; Kumar, Narendra
2017-06-01
In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.
Active and passive damping based on piezoelectric elements -controllability issues-
Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.
2001-01-01
Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient
PID motion control tuning rules in a damping injection framework
Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
Controlled damping of a physical pendulum: experiments near critical conditions
International Nuclear Information System (INIS)
Gonzalez, Manuel I; Bol, Alfredo
2006-01-01
This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions
Chen, D
The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.
Directory of Open Access Journals (Sweden)
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Active damping based on decoupled collocated control
Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.
2002-01-01
High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration
Factors controlling superelastic damping capacity of SMAs
Czech Academy of Sciences Publication Activity Database
Heller, Luděk; Šittner, Petr; Pilch, Jan; Landa, Michal
2009-01-01
Roč. 18, 5-6 (2009), 603-611 ISSN 1059-9495 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20760514 Keywords : shape memory alloys * superelastic damping * thermomechanical testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.592, year: 2009
Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller
DEFF Research Database (Denmark)
Yao, Wei; Jiang, L.; Fang, Jiakun
2013-01-01
This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided....
CONTROL OF BAGRAS (Eucalyptus deglupta DAMPING-OFF BY FUNGICIDES
Directory of Open Access Journals (Sweden)
EMILIO O. ANINO
2000-01-01
Full Text Available Selected fungicides were tested to control damp ing-off affecting bagras seedlings in the Central Nursery of the Paper Industries Corporation of the Philippines (PICOP, Surigao del Sur, Philippines. The fungicides, at three concentrations each, were applie d once before seed sowing to control pre-emergence damping-off and applied again after germination to cont rol post-emergence damping-off. Ajax detergent (2g/l H2O, Benlate (0.5 g/1 H2O, Brassicol (1.5 gv'l H 2O, and Fungitox (1.0 g/1 H2O provided the best level of control against the disease. Ajax detergent is the most practical among the best chemicals because it is cheap, locally available, not a heal th hazard, and less polluting.
Satellite Dynamic Damping via Active Force Control Augmentation
Varatharajoo, Renuganth
2012-07-01
An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC
Power system damping - Structural aspects of controlling active power
Energy Technology Data Exchange (ETDEWEB)
Samuelsson, O.
1997-04-01
Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs
Unified Power Flow Controller Placement to Improve Damping of Power Oscillations
M. Salehi; A. A. Motie Birjandi; F. Namdari
2015-01-01
Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...
Use of electro-magnetic damping for vibration control
DEFF Research Database (Denmark)
Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey
2012-01-01
to introduce additional electromagnetic damping into vibrating mechanical system. The hysteretic losses and eddy currents are included in the model, to take into account more realistic dynamic behaviour of the system. The mathematical model of the controller is derived using lumped parameter approach......Vibration of machines is an unwanted phenomenon, and it is usually of interest to eliminate it. There are various means to be used in order to reach the goal, where the utilization of the electromagnet augmented by an external shunt circuit is analyzed in the paper. The magnetic force is used...
Effect of supplementary cementing materials on the concrete corrosion control
International Nuclear Information System (INIS)
Mejia de Gutierrez, R.
2003-01-01
Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs
Takács, Gergely
2012-01-01
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of ...
DEFF Research Database (Denmark)
Yao, Wei; Fang, Jiakun; Zhao, Ping
2013-01-01
the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...
Controllable outrigger damping system for high rise building with MR dampers
Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing
2010-04-01
A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.
Mechanism of biological control of Rhizoctonia damping-off of ...
African Journals Online (AJOL)
MOHSEN
2014-01-29
Jan 29, 2014 ... from soil, causing severe damping-off disease to radish and cucumber was .... concentrations of elements in samples were expressed in milli- equivalent per ..... radioactive analysis, is a polysaccharide synthesized in the golgi ...
Directory of Open Access Journals (Sweden)
Saleh M. Bamasak
2017-09-01
Full Text Available Wide Area Measurement System (WAMS can extend and effectively improve the power system stabilizers (PSS capability in damping the inter-area low frequency oscillations in interconnected bulk power systems. This paper proposes the implementation of Weighted Wide Area Damping Controller (WWADC in which weighted factors are introduced for each remote feedback signals. Modal analysis approach is implemented for the purpose of identifying the optimal location as well as the input signals’ optimal combination of WWADC. Based on the linearized model, Differential Evolution (DE algorithm is applied to search for optimal controller parameters and optimal weighted factors. The successful application of the proposed approach is achieved in two power networks; the two-area 4-machine system and the IEEE-39 bus 10-machine system. The analysis of the eigenvalue and non-linear time domain simulations indicate that damping the inter-area oscillations and improving the system stability irrespective of the severity and the location of the disturbances can be effectively achieved by WADC
Effect of supplementary cementing materials on the concrete corrosion control
Directory of Open Access Journals (Sweden)
Mejía de Gutiérrez, R.
2003-12-01
Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.
La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son
SUN, D.; TONG, L.
2002-05-01
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.
WAMS Based Damping Control of Inter-area Oscillations Employing Energy Storage System
Directory of Open Access Journals (Sweden)
MA, J.
2012-05-01
Full Text Available This paper presents a systematic design procedure for a wide-area damping controller (WADC employing Energy Storage Systems (ESSs. The WADC is aimed at enhancing the damping of multiple inter-area modes in a large scale power system. Firstly, geometric measures of controllability and obsevability are used to select the control locations for ESSs and most effective stabilizing signals, respectively. Then, the WADC coordinates these signals to achieve multiple-input-multiple-output (MIMO controllers with the least Frobenius norm feedback gain matrix. The simulation results of frequency and time domains verify the effectiveness of the wide-area damping controller for various operating conditions. Furthermore, the robustness of the wide-area damping controller is also tested with respect to time delay and uncertainty of models.
Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi
2018-01-01
Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.
Linear control strategies for damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2006-01-01
increases with the phase angle of the damper, and that improved damping efficiency thus follows from the ability of an active device to produce a force acting ahead of velocity. Phase lead is equivalent to negative stiffness, and the effect of negative stiffness is illustrated by a radiation condition...
Tuning of damping controller for UPFC using quantum particle swarm optimizer
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-11-15
On the basis of the linearized Phillips-Herffron model of a single machine power system, we design optimally the unified power flow controller (UPFC) based damping controller in order to enhance power system low frequency oscillations. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO) technique that has fewer parameters and stronger search capability than the particle swarm optimization (PSO), as well as is easy to implement. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through non-linear time-domain simulation and some performance indices studies under various disturbance conditions of over a wide range of loading conditions. The results analysis reveals that the designed QPSO based UPFC controller has an excellent capability in damping power system low frequency oscillations in comparison with the designed classical PSO (CPSO) based UPFC controller and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based damping controller is superior to the m{sub B} based damping controller.
Directory of Open Access Journals (Sweden)
Chaowu Jin
2016-01-01
Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.
Directory of Open Access Journals (Sweden)
Yanfeng Ma
2018-05-01
Full Text Available Large-scale wind power interfacing to the power grid has an impact on the stability of the power system. However, with an additional damping controller of the wind generator, new ways for improving system damping and suppressing the low frequency oscillation (LFO of power systems can be put forward. In this paper, an active-reactive power additional damping controller based on active disturbance rejection control (ADRC is proposed. In order to improve the precision of the controller, the theory of data driven control is adopted, using the numerical algorithms for subspace state space system identification (N4SID to obtain the two order model of the ADRC controlled object. Based on the identification model, the ADRC additional damping controller is designed. Taking a 2-area 4-machine system containing the doubly fed induction generator (DFIG wind farm as an example, it is verified that the active-reactive additional damping controller designed in this paper performs well in suppressing negative-damping LFO and forced power oscillation. When the operation state of the power system changes, it can still restrain the LFO effectively, showing stronger robustness and better effectiveness compared to the traditional proportional–integral–derivative (PID additional damping controller.
Performance analysis of conventional PSS and fuzzy controller for damping power system oscillations
Banna, Hasan UI; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro; Cabrera Tobar, Ana; Ghorbani, Hamidreza; Ying, Shaoqing
2014-01-01
Electro-mechanical oscillations are produced, in the machines of an interconnected power network, followed by a disturbance or due to high power transfer through weak tie lines. These oscillations should be damped as quickly as possible to ensure the reliable and stable operation of the network. To damp these oscillations different controllers, based on local or wide area signals, have been the subject of many papers. This paper presents the analysis of the performance of Conventional Power S...
Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads
Directory of Open Access Journals (Sweden)
Lei Zhou
2015-12-01
Full Text Available The integration of large-scale renewable energy poses great challenges for the operation of power system because of its increased frequency fluctuations. More load frequency control (LFC resources are demanded in order to maintain a stable system with more renewable energy injected. Unlike the costly LFC resources on generation side, the thermostatically controlled loads (TCLs on the demand side become an attractive solution on account of its substantial quantities and heat-storage capacity. It generally contains air conditioners (ACs, water heaters and fridges. In this paper, the supplementary LFC is extracted by the modeling and controlling of aggregated ACs. We first present a control framework integrating the supplementary LFC with the traditional LFC. Then, a change-time-priority-list method is proposed to control power output taking into account customers’ satisfaction. Simulations on a single-area power system with wind power integration demonstrate the effectiveness of the proposed method. The impact of ambient temperature changes and customer preferences on room temperature is also involved in the discussion. Results show that the supplementary LFC provided by ACs could closely track the LFC signals and effectively reduce the frequency deviation.
PID controller auto-tuning based on process step response and damping optimum criterion.
Pavković, Danijel; Polak, Siniša; Zorc, Davor
2014-01-01
This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Semi-active control of helicopter vibration using controllable stiffness and damping devices
Anusonti-Inthra, Phuriwat
Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor
PSS and TCSC damping controller coordinated design using PSO in multi-machine power system
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2010-12-15
The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.
Directory of Open Access Journals (Sweden)
Ashfaque Ahmed Hashmani
2011-07-01
Full Text Available This paper deals with the decentralized hierarchical PSS (Power System Stabilizer controller design to achieve a better damping of specific inter-area oscillations. The two-level decentralized hierarchical structure consists of two PSS controllers. The first level controller is a local PSS controller for each generator to damp local mode in the area where controller is located. This controller uses only local signals as input signals. The local signal comes from the generator at which the controller is located. The secondary level controller is a multivariable decentralized global PSS controller to damp inter-area modes. This controller uses selected suitable wide area PMU (Phasor Measurement Units signals as inputs. The PMU or global signals are taken from network locations where the oscillations are well observable. The global controller uses only those global input signals in which the assigned single inter-area mode is most observable and is located at a generator that is most effective in controlling the assigned mode. The global controller works mainly in a frequency band given by the natural frequency of the assigned mode. The effectiveness of the resulting hierarchical controller is demonstrated through simulation studies conducted on a test power system.
Controllable damping of high-Q violin modes in fused silica suspension fibers
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Tokmakov, K V, E-mail: dmitriev@hbar.phys.msu.r, E-mail: mitr@hbar.phys.msu.r [Present address: Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2010-01-21
Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10{sup 8}. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.
Controllable damping of high-Q violin modes in fused silica suspension fibers
Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.
2010-01-01
Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.
Controllable damping of high-Q violin modes in fused silica suspension fibers
International Nuclear Information System (INIS)
Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P; Tokmakov, K V
2010-01-01
Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10 8 . They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.
Comparison among nonlinear excitation control strategies used for damping power system oscillations
International Nuclear Information System (INIS)
Leon, A.E.; Solsona, J.A.; Valla, M.I.
2012-01-01
Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.
Equal modal damping design for a family of resonant vibration control formats
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2013-01-01
derivative term in the control coupling can change these properties into balanced position and velocity peaks, respectively. In particular this gives an improved control format based on measurement of structural displacement or deformation. In all cases the optimal calibration in terms of a root locus......The principle of equal modal damping is used to give a unified presentation and calibration of resonant control of structures for different control formats, based on velocity, acceleration–position or position feedback. When introducing a resonant controller the original resonant mode splits...... identification leads to a simple explicit pair of design formulae for controller frequency and damping ratio based on a simple two -degrees-of-freedom system. Unconditional stability is demonstrated for a general multi-degrees-of-freedom system with multiple controllers for the velocity and acceleration...
A New Control Structure for Multi-Terminal dc Grids to Damp Inter-Area Oscillations
DEFF Research Database (Denmark)
Eriksson, Robert
2014-01-01
This article analyzes the control structure of the multi-terminal dc (MTDC) system to damp ac system interarea oscillations through active power modulation. A new control structure is presented that maximizes the relative controllability without the need for communication among the dc terminals....... In point-to-point high voltage dc (HVDC) transmission, the active power modulation of the two terminals occurs in opposite directions. In this case the control direction is given and only needs to be phase compensated to align for maximal damping. In the case of MTDC systems the control direction...... interrelates with the active power modulation share of the dc terminals and the relative controllability depends on this. The new control structure eliminates the need of communication between the dc terminals by performing dc voltage feedback loop shaping. This makes it possible to modulate the power in one...
Energy Technology Data Exchange (ETDEWEB)
Shakarami, M.R., E-mail: shakarami@iust.ac.i [Centre of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Kazemi, A. [Centre of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)
2011-03-15
A static synchronous series compensator (SSSC) is one of the series flexible ac transmission system (FACTS) devices that injects a balanced three-phase voltage in quadrature with the transmission line current. There are two channels for controlling of phase and magnitude of the voltage. When the SSSC is used for damping of inter-area oscillations, a SSSC-based stabilizer can be included in both channels. In this paper, the best location and suitable input control signal for SSSC in order to enhance the damping of inter-area oscillations are selected by residue analysis. A method by quadratic mathematic programming has been presented to the design of the stabilizer. By this method, the effect of the stabilizer in both control channels of the SSSC on damping of inter-area oscillations has been assessed. By considering the gain of stabilizer as a criterion, obtained results from studying on a small and a large multi-machine power system show that the stabilizer in the phase control channel is more effective for damping inter-are oscillations.
International Nuclear Information System (INIS)
Perfetto, S; Rohlfing, J; Infante, F; Mayer, D; Herold, S
2016-01-01
Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency. (paper)
Perfetto, S.; Rohlfing, J.; Infante, F.; Mayer, D.; Herold, S.
2016-09-01
Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency.
Directory of Open Access Journals (Sweden)
Long Chen
2016-01-01
Full Text Available Active suspension has not been popularized for high energy consumption. To address this issue, this paper introduces the concept of a new kind of suspension. The linear motor is considered to be integrated into an adjustable shock absorber to form the hybrid active semiactive suspension (HASAS. To realize the superiority of HASAS, its energy consumption and regeneration mechanisms are revealed. And the system controller which is composed of linear quadratic regulator (LQR controller, mode decision and switch controller, and the sliding mode control based thrust controller is developed. LQR controller is designed to maintain the suspension control objectives, while mode decision and switch controller decides the optimal damping level to tune motor thrust. The thrust controller ensures motor thrust tracking. An adjustable shock absorber with three regulating levels to be used in HASAS is trial produced and tested to obtain its working characteristics. Finally, simulation analysis is made with the experimental three damping characteristics. The impacts of adjustable damping on the motor force and energy consumption are investigated. Simulation results demonstrate the advantages of HASAS in energy conservation with various suspension control objectives. Even self-powered active control and energy regenerated to the power source can be realized.
Yaw control for active damping of structural dynamics
Energy Technology Data Exchange (ETDEWEB)
Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.
1996-12-01
Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs
Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)
Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper
International Nuclear Information System (INIS)
Ho, C; Lang, Z Q; Billings, S A; Sapiński, B
2013-01-01
The main problem of using a conventional linear damper on a vibration isolation system is that the reduction of the resonant peak in many cases inevitably results in the degradation of the high-frequency transmissibility. Instead of using active control methods which normally depend on the model of the controlled plant and where unmodelled dynamics may induce stability concerns, recent studies have revealed that optimal vibration isolation over a wide frequency range can be achieved by using nonlinear damping. The present study is concerned with the realization of the ideal nonlinear damping characteristic using a feedback-controlled MR damper. Both simulation and experimental studies are conducted to demonstrate the advantages of the simple but effective vibration control strategy. This research work has significant implications for the effective use of MR dampers in the vibration control of a wide range of engineering systems. (paper)
Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations
Directory of Open Access Journals (Sweden)
Shiyun Xu
2017-12-01
Full Text Available Aiming at damping the inter-area oscillations of power systems, the present study proposes a wide-area decentralized coordinated control framework, where the upper-level controller is designed to coordinate the lower-level multiple FACTS devices. Based on the polytopic differential inclusion method, the derived controller adopts a decentralized structure and it is guaranteed to be robust to meet the demand of operation under multiple operating conditions. Since time delay of wide area signal transmission is inevitable, in what follows, the quantum evolution algorithm (QEA method is introduced to find an optimal solution of the time-delay coordinated controller. In this regard, the stability of the system with a prescribed time delay is guaranteed and the system damping ratio is increased. Effectiveness and applicability of the proposed controller design methods have been demonstrated through numerical simulations.
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines
International Nuclear Information System (INIS)
Kumar, A A; Hugues-Salas, O; Savini, B; Keogh, W
2016-01-01
The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods. (paper)
GOES-R active vibration damping controller design, implementation, and on-orbit performance
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is
Enhancing damping of gas bearings using linear parameter-varying control
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Galeazzi, Roberto
2017-01-01
systems to regulate the injection pressure of the fluid. Due to the strong dependencies of system performance on system parameters, the sought controller should be robust over a large range of operational conditions. This paper addresses the damping enhancement of controllable gas bearings through robust...... control approaches. Through an extensive experimental campaign the paper evaluates two robust controllers, a linear parametervarying (LPV) controller and ∞ controller, on their capability to guarantee stability and performance of a gas bearing across the large operational envelopes in rotational speed...
Directory of Open Access Journals (Sweden)
Srikanta Mahapatra
2014-12-01
Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.
DEFF Research Database (Denmark)
Bak-Jensen, Birgitte; El-Moursi, M. S.; Abdel-Rahman, Mansour Hassan
2010-01-01
This paper addresses implementation issues associated with a novel damping control algorithm for a STATCOM in a series compensated wind park for mitigating SSR (subsynchronous resonance) and damping power system oscillations. The IEEE first benchmark model on subsynchronous resonance is adopted...... the SSR, damping the power system oscillation and enhancing the transient stability margin in response to different SCRs....... in the STATCOM control structure. The performances of the controllers are tested in steady state operation and in response to system contingencies, taking into account the impact of short circuit ratios (SCRs). Simulation results are presented to demonstrate the capability of the controllers for mitigating...
Directory of Open Access Journals (Sweden)
Saeed Soleymani
2016-01-01
Full Text Available This paper Analytically investigates the effects of system and controller parameters and operating conditions on the dynamic and transient behavior of wind turbines (WTs with doubly-fed induction generators (DFIGs under voltage dips and wind speed fluctuations. Also, it deals with the design considerations regarding rotor and speed controllers. The poorly damped electrical and mechanical modes of the system are identified, and the effects of system parameters, and speed/rotor controllers on these modes are investigated by modal and sensitivity analyses. The results of theoretical studies are verified by time domain simulations. It is found that the dynamic behavior of the DFIG-based WT under voltage dips is strongly affected by the stator dynamics. Further, it is shown that the closed loop bandwidth of the rotor current control, rotor current damping, DFIG power factor and the rotor back-emf voltages have high impact on the stator modes and consequently on the DFIG dynamic behavior. Moreover, it is shown that the dynamic behavior of DFIG-based WT under wind speed fluctuation is significantly dependent on the bandwidth and damping of speed control loop.
Directory of Open Access Journals (Sweden)
Tiago Lukasievicz
2018-02-01
Full Text Available This paper proposes a control approach and supplementary controllers for the operation of a hybrid stand-alone system composed of a wind generation unit and a conventional generation unit based on synchronous generator (CGU. The proposed controllers allow the islanded or isolated operation of small power systems with predominance of wind generation. As an advantage and a paradigm shift, the DC-link voltage of the wind unit is controlled by means of a conventional synchronous generator connected to the AC grid of the system. Two supplementary controllers, added to a diesel generator (DIG and to a DC dump load (DL, are proposed to control the DC-link voltage. The wind generation unit operates in V-f control mode and the DIG operates in PQ control mode, which allows the stand-alone system to operate either in wind-diesel (WD mode or in wind-only (WO mode. The strong influence of the wind turbine speed variations in the DC-link voltage is mitigated by a low-pass filter added to the speed control loop of the wind turbine. The proposed control approach does not require the use battery bank and ultra-capacitor to control the DC-link voltage in wind generation units based on fully rated converter.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
Impact of Cyber Attacks on High Voltage DC Transmission Damping Control
Directory of Open Access Journals (Sweden)
Rui Fan
2018-04-01
Full Text Available Hybrid AC/HVDC (AC-HVDC grids have evolved to become huge cyber-physical systems that are vulnerable to cyber attacks because of the wide attack surface and increasing dependence on intelligent electronic devices, computing resources and communication networks. This paper, for the first time, studies the impact of cyber attacks on HVDC transmission oscillation damping control.Three kinds of cyber attack models are considered: timing attack, replay attack and false data injection attack. Followed by a brief introduction of the HVDC model and conventional oscillation damping control method, the design of three attack models is described in the paper. These attacks are tested on a modified IEEE New England 39-Bus AC-HVDC system. Simulation results have shown that all three kinds of attacks are capable of driving the AC-HVDC system into large oscillations or even unstable conditions.
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
International Nuclear Information System (INIS)
Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok
2014-01-01
This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80–99) and the control algorithm is synthesized based on the H ∞ tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches. (papers)
Directory of Open Access Journals (Sweden)
S. Zhu
1998-01-01
Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.
DEFF Research Database (Denmark)
Han, Yang; Shen, Pan; Zhao, Xin
2017-01-01
In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...
DEFF Research Database (Denmark)
Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj
2011-01-01
For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....
Design of multi-objective damping controller for gate-controlled ...
Indian Academy of Sciences (India)
augment the modulated damping torque of the GCSC against the system uncertainties and non- .... all of the simulation processes from mathematical modelling from current ... system, are performed in the MATLAB/SIMULINK environment.
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-10-15
In this paper, a new approach based on the particle swarm optimization (PSO) technique is proposed to tune the parameters of the thyristor controlled series capacitor (TCSC) power oscillation damping controller. The design problem of the damping controller is converted to an optimization problem with the time-domain-based objective function which is solved by a PSO technique which has a strong ability to find the most optimistic results. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The performance of the newly designed controller is evaluated in a four-machine power system subjected to the different types of disturbances in comparison with the genetic algorithm based damping controller. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based TCSC damping controller using the proposed fitness function has an excellent capability in damping power system inter-area oscillations and enhances greatly the dynamic stability of the power systems. Moreover, it is superior to the genetic algorithm based damping controller.
Directory of Open Access Journals (Sweden)
Bin Zhao
2014-05-01
Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.
Climate variability and vadose zone controls on damping of transient recharge
Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.
2017-01-01
Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.
A current controller of grid-connected converter for harmonic damping in a distribution network
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2011-01-01
Harmonic resonance caused by the increased use of shunt-connected capacitors in LCL-filters and power factor correction devices may become a serious power quality challenge in electric distribution systems. A voltage-detection method based on current control is developed to damp harmonic resonances....... However, it is susceptible to the mismatch between harmonic conductance and characteristic impedance of distribution feeder. This paper proposes a current controller which allows discrete adjustment of harmonic conductance for both the characteristic harmonic and the non-characteristic harmonic voltages...
A new electromagnetic shunt damping treatment and vibration control of beam structures
International Nuclear Information System (INIS)
Niu Hongpan; Zhang Xinong; Xie Shilin; Wang Pengpeng
2009-01-01
In this paper a new class of shunted electromagnetic damping treatment is proposed: a non-contact electromagnetic shunt damper (NC-EMSD). The NC-EMSD consists of an electromagnet attached to a host structure, a permanent magnet attached to the fixed boundary and an electrical impedance connected to the terminals of the electromagnet. The electromagnet and the shunt impedance constitute a closed circuit. When the structure vibrates, an induced electromotive force will be produced and results in the electromagnetic force as damping force, which can suppress the vibration of the structure. The model of NC-EMSD is built up based on the equivalent current method. The governing equations of the beam with NC-EMSD are established using Hamilton's principle. The capacitor-matching-inductance (CMI) method and the negative resistive capacitor-matching-inductance (NR-CMI) method are proposed, respectively. Then the vibration control of a cantilever beam with NC-EMSD is simulated and measured by CMI and NR-CMI control methods, respectively. The results show that both the CMI and NR-CMI can attenuate the vibration effectively, and the NR-CMI provides much better control performance than that by CMI. It is indicated as well from the studies that the decrease of either the gap between the magnet pair or the resistance of the shunt impedance contributes to the improvement of control performance
Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj
2015-11-01
This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Tang, Yi; Yoon, Changwoo; Zhu, Rongwu
2015-01-01
This paper investigates the stability regions of current control for LCL-filtered grid-connected converters, where no active or passive damping is required to stabilize the closed-loop control system. It is already identified in the literature that if the LCL resonance frequency is placed within 1....../6 to 1/2 of the system sampling frequency, the grid current control can be directly used without damping. If the resonance frequency is smaller than 1/6 of the sampling frequency, the converter current control should then be adopted. This paper further extends the analysis to the cases where...... the resonance frequency could be larger than 1/2 of the sampling frequency, and derives the complete stability regions for both grid and converter current control. Interestingly, it is found that for any given LCL-filter design, there will always be one stable current control design without any damping, which...
Energy Technology Data Exchange (ETDEWEB)
Nogueira, Fabricio G.; Barreiros, Jose A.L.; Barra, Walter Jr.; Costa, Carlos T. Jr. [Universidade Federal do Para (UFPA), Instituto de Tecnologia, Faculdade de Engenharia Eletrica, Campus Universitario do Guama, CEP: 66075-900, Belem (Brazil); Ferreira, Andre M.D. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Campus Belem, Departamento de Controle e Processos Industriais, Av. Almirante Barroso, 1155 (Marco), CEP: 66093-020, Belem (Brazil)
2011-02-15
This paper presents the development and field tests of a digital damping controller designed to mitigate intra-plant electromechanical oscillations via the speed governor system of fast acting units. The controller performance is assessed on an 18-MVA diesel generating unit, at Santana Power Plant (Amapa State, Amazon Region at Northern Brazil). In order to design the damping control law, a set of parametric ARX models representing the plant dynamics at several load conditions, are previously identified from data collected on field tests. The damping controller gains are calculated by using the identified ARX models parameters as inputs to a discrete-time pole-placement design method (pole-shifting) and then embedded on a DSP based microcontroller digital system, for field tests assessment. The digital damping controller modulates the diesel engine inlet valve position according to the observed oscillation on the measured electric power, using a PWM device, which is specially developed to this application. The experimental results shown the good performance of the developed controller on damping efficiently the electromechanical oscillations observed between generating units at Santana Power Plant. (author)
Analysis of Harmonics Suppression by Active Damping Control on Multi Slim DC-link Drives
DEFF Research Database (Denmark)
Yang, Feng; Máthé, Lászlo; Lu, Kaiyuan
2016-01-01
Compared with conventional dc-link drive, slim dc-link drive is expected to achieve lower cost and longer life time. However, harmonics distortion problem may occur in such drive systems. This paper proposes to use an active damping control method to suppress the harmonic distortion...... with the benefit of low cost and also low loss. A new analysis method, based on the frequency domain impedance model, is presented to explore the mechanism of harmonics suppression. Also, a general method is presented to build the impedance model of a PMSM drive system using Field Oriented Control (FOC) method....... Some design issues, including power levels, current control bandwidth and harmonic interaction, are discussed when the drive system is fed by a weak grid. Case studies on a two-drive system composed by two slim dc-link drive units are provided to verify the proposed analysis method....
Energy Technology Data Exchange (ETDEWEB)
Martins, N; Pinto, H J.C.P.; Bianco, A [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Macedo, N J.P. [FURNAS, Rio de Janeiro, RJ (Brazil)
1994-12-31
This paper describes control structures and computer methods to enhance the practical use of thyristor controlled series compensation (TCSC) in power systems. The location and controller design of the TCS devices, to damp system oscillations, are based on modal analysis and frequency response techniques, respectively. Results are given for a large practical power system. (author) 15 refs., 18 figs., 5 tabs.
DEFF Research Database (Denmark)
Li, Hui; Liu, Shengquan; Ji, Haiting
2014-01-01
on the power system stabilizer (PSS) control method. Transient simulation on different damping gain coefficients are conducted for justification. Following the OTEF mechanism analysis, an additional fuzzy damping control strategy with the active/reactive power loop is proposed by identifying the oscillation......This study investigates the inter-area low-frequency damping control strategies of a doubly fed induction generator (DFIG)-based wind farm through oscillation transient energy function (OTEF) analysis. Based on the OTEF descent expressions, the feasibility of damping the inter-area low...... oscillation of the wind turbine shaft. The proposed additional fuzzy control strategy with the active/reactive power loop has better damping performance than the presented PSS control, especially for damping the inter-area low-frequency oscillation....
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik
2012-01-01
In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...
Directory of Open Access Journals (Sweden)
Ting-Chia Ou
2017-04-01
Full Text Available This paper endeavors to apply a novel intelligent damping controller (NIDC for the static synchronous compensator (STATCOM to reduce the power fluctuations, voltage support and damping in a hybrid power multi-system. In this paper, we discuss the integration of an offshore wind farm (OWF and a seashore wave power farm (SWPF via a high-voltage, alternating current (HVAC electric power transmission line that connects the STATCOM and the 12-bus hybrid power multi-system. The hybrid multi-system consists of a battery energy storage system (BESS and a micro-turbine generation (MTG. The proposed NIDC consists of a designed proportional–integral–derivative (PID linear controller, an adaptive critic network and a proposed functional link-based novel recurrent fuzzy neural network (FLNRFNN. Test results show that the proposed controller can achieve better damping characteristics and effectively stabilize the network under unstable conditions.
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...
Indian Academy of Sciences (India)
mraga
1. Supplementary Material. A soluble-lead Redox Flow Battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors by A Banerjee et al (pp 163-. 170). Figure S1. SEM images for bare substrates: (a) graphite sheet, (b) 20 ppi RVC, (c) 30 ppi. RVC and (d) 45 ppi RVC.
Indian Academy of Sciences (India)
Supplementary information. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J C JEYAVEERANa, CHANDRASEKAR PRAVEEN*,b, Y ARUNc, A A M PRINCEa and P. T PERUMALc. aDepartment of Chemistry, Ramakrishna Mission Vivekananda College, Mylapore, Chennai.
Indian Academy of Sciences (India)
Acer
Supplementary data: Table 1. Collection localities of C. mystaceus in Thailand. Pop. Code N. Province. District. Region. 1. BRk. 9. Buri Ram. Krasang. Northeast. 2. CPm. 5. Chaiyaphum. Mueang. Northeast. 3. KKk. 5. Khon Kaen. Kranuan. Northeast. 4. KKm. 5. Khon Kaen. Mueang. Northeast. 5. KKu. 4. Khon Kaen.
Indian Academy of Sciences (India)
Plant Pathology
Supplementary data: Table 1. Identification of various virulence factors in R. solanacearum: Rs-09-161, Rs-10-244, GMI1000. Gene name Rs-09-161 locus tag*. Accession no. Rs-10-244 locus tag*. Accesion no. GMI1000 locus tag. Location. Gene description. Exopolysacharide. epsA. RALSO161_m00209880 KY661391 ...
Indian Academy of Sciences (India)
charissa
Supplementary data: Table 1. Oligonucleotide primers used for SNP verification by Sanger sequencing. Oligo. 5' – 3' sequence. Product size (bp). Annealing temperature (°C). katG_L gccggtcaagaagaagtacg. 591. 67. katG_R ctcttcgtcagctcccactc. rpoB_La ctgatccaaaaccagatccg. 440. 64. rpoB_Ra tacacgatctcgtcgctaac.
Ventilated air cavities for the control of rising damp in historical buildings. Functional analysis
Directory of Open Access Journals (Sweden)
Mª T. Gil Muñoz
2018-01-01
Full Text Available This study analyzes the behavior of ventilated air cavities and their level of efficiency when used for the control of rising damp and the associated pathological damage in walls and foundations of historical buildings. The methodology is based on experiments on-site and monitoring. Knowledge of local climate conditions, the surroundings of the building, its construction features and the type of foundation constitute the preliminary conditions for the monitoring. In order to reach the goal we have measured several parameters according to a plan, developed graphical tools for the study, and prepared statistical data. The building of this system has not always been accompanied by a thorough assessment that would justify the intervention. The results show how this situation has affected the design strategies and sizing of the ventilated air cavities, limiting in many cases their efficiency.
Analysis and damping control of power system low-frequency oscillations
Wang, Haifeng
2016-01-01
This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.
Design and control of LCL-filter with active damping for Active Power Filter
DEFF Research Database (Denmark)
Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L
2010-01-01
of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal......In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...
Directory of Open Access Journals (Sweden)
Maria Alejandra Fajardo-Mejía
2016-09-01
Full Text Available Damping-off is considered one of the most limiting phytosanitary problems in conifer seedling production because it may cause massive damage or total plant death in short time periods. This pathology is caused by a complex of microorganisms, the most common of which are Fusarium spp. and Rhizoctonia spp. This study evaluated the effect of growth substrates and plant extracts at different concentrations on germination and incidence of disease in Pinus tecunumanii plants. The plants were inoculated with the damping-off pathogen Fusarium oxysporum and treatments were applied in a completely randomized design with a factorial arrangement of 4x2x3. This corresponded to four substrates (pine bark, rice hull, coconut husk and sandy soil (4:1; two plant extracts (Matricaria chamomilla and Datura stramonium, andthree concentrations of each extract (Control concentration: 0%, Concentration 1: 50 % and Concentration 2: Undiluted. Each treatment had three repetitions, with 25 plants per repetition. The growth substrates affected germination; the most effective of these were sandy soil (4:1 and pine bark, with 90% and 92% germination at day 20, respectively. No significant difference was observed between the germination obtained with these substrates and that obtained with coconut husk after day 19. Meanwhile, all of the extracts had a significant effect on controlling the disease when they were combined with the substrates, with the exception of coconut husk. With this last substrate the incidence of disease was lower than 4% without the application of plant extracts; this indicates that coconut husk discourages the development of the disease on its own.
Pradhan, M.; Brinkman, S.A.; Beatty, A.; Maika, A.; Satriawan, E.; de Ree, J.; Hasan, A.
2013-01-01
Background This paper presents the study protocol for a pragmatic cluster randomized controlled trial (RCT) with a supplementary matched control group. The aim of the trial is to evaluate a community-based early education and development program launched by the Government of Indonesia. The program
Pradhan, M.P.; Brinkman, S.A.; Beatty, A.; Maika, A.; Satriawan, E.; de Ree, J.; Hasan, A.
2013-01-01
Background: This paper presents the study protocol for a pragmatic cluster randomized controlled trial (RCT) with a supplementary matched control group. The aim of the trial is to evaluate a community-based early education and development program launched by the Government of Indonesia. The program
International Nuclear Information System (INIS)
Ware, A.G.
1985-01-01
Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses
International Nuclear Information System (INIS)
Lee, Jung Pil; Kim, Han Gun
2012-01-01
In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).
Damping-controlled fluidelastic instability forces in multi-span tubes with loose supports
International Nuclear Information System (INIS)
Hassan, Marwan A.; Rogers, Robert J.; Gerber, Andrew G.
2011-01-01
This paper presents simulations of a loosely supported multi-span tube subjected to turbulence and fluidelastic instability forces in order to compare several time-domain fluid force models simulating the damping-controlled fluidelastic instability mechanism in tube arrays. These models include the negative damping model based on the Connors equation, fluid force coefficient-based models (Chen; Tanaka and Takahara), and two semi-analytical models (Price and Paidoussis; and Lever and Weaver). Time domain modelling challenges for each of these theories are discussed. The implemented models are validated against available experimental data. The linear simulations (without tube/support clearance) show that the Connors-equation based model exhibits the most conservative prediction of the critical flow velocity when the recommended design values for the Connors equation are used. The models are then utilized to simulate the nonlinear response of a three-span cantilever tube in a lattice bar support subjected to air crossflow. The tube is subjected to a single-phase flow passing over the spans where the flow velocity and the support clearance are varied. Special attention is paid to the tube/support interaction parameters that affect wear, such as impact forces, contact ratio, and normal work rate. As was seen for the linear cases, the reduced flow velocity at the instability threshold differs for the fluid force models considered. The investigated models do, however, exhibit similar response characteristics for the impact force, tip lift response, and work rate, except for the Connors-based model that overestimates the response and the tube/support interaction parameters for the loose support case, especially at large clearances.
DEFF Research Database (Denmark)
Chen, S. S.; Wang, L.; Lee, W. J.
2009-01-01
A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...
Dirksz, D. A.; Scherpen, J. M. A.; Ortega, R.
2008-01-01
A dynamic extension for position feedback of port-Hamiltonian mechanical systems is studied. First we look at the consequences for the matching equations when applying Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Then we look at the possibilities of asymptotically
A robust active control system for shimmy damping in the presence of free play and uncertainties
Orlando, Calogero; Alaimo, Andrea
2017-02-01
Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.
An active feedback system to control synchrotron oscillations in the SLC Damping Rings
International Nuclear Information System (INIS)
Corredoura, P.L.; Pellegrin, J.L.; Schwarz, H.D.; Sheppard, J.C.
1989-03-01
Initially the SLC Damping Rings accomplished Robinson instability damping by operating the RF accelerating cavities slightly detuned. In order to be able to run the cavities tuned and achieve damping for Robinson instability and synchrotron oscillations at injection an active feedback system has been developed. This paper describes the theoretical basis for the feedback system and the development of the hardware. Extensive measurements of the loop response including stored beam were performed. Overall performance of the system is also reported. 3 refs., 6 figs
Directory of Open Access Journals (Sweden)
Francisco Palacios-Quiñonero
2014-01-01
Full Text Available We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.
Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain
2016-01-01
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.
Directory of Open Access Journals (Sweden)
Naz Niamul Islam
Full Text Available Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS and thyristor-controlled series compensation (TCSC damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA. A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.
International Nuclear Information System (INIS)
Kubalek, J.; Hajek, B.
1993-01-01
This standard establishes the requirements for supplementary Control Points provided to enable the operating staff to shut down the reactor and maintain the plant in a safe shut-down condition when the main control room is no longer available. This standard covers the functional selection, design and organization of the man/machine interface. It also establishes requirements for procedures which systematically verify and validate the functional design of supplementary control points. The requirements reflect the application of human engineering principles as they apply to man/machine interface. This standard does not cover special emergency response centres (e.g. a Technical Support Centre). It also does not include the detailed equipment design. Unavailability of the main control room controls due to intentionally man-induced events is not considered
DEFF Research Database (Denmark)
Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Iov, Florin
2012-01-01
Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate......, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design....
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
A SOFTWARE PRODUCT LINE FOR ENERGY-EFFICIENT CONTROL OF SUPPLEMENTARY LIGHTING IN GREENHOUSES
DEFF Research Database (Denmark)
Mærsk-Møller, Hans Martin; Jørgensen, Bo Nørregaard
2011-01-01
of 2009 – 2010 showed 25 percent savings with no negative effect on plant quality. To accelerate the impact of our approach, we chose to use Software Product Line Engineering, as it enables a greater variety of related software tools to be created faster. We have created a web-based analysis tool, Dyna...... preserving production quality. This paper presents a novel approach addressing this issue. We use weather forecasts and electricity prices to compute cost- and energy-efficient supplementary light plans that achieve the required plant growth defined by the grower. Experiments performed during the winter...... of these two tools is described together with the lessons learned from using Software Product Line Engineering in the domain of greenhouse software development....
International Nuclear Information System (INIS)
Kaesemann, C.-P.; Huart, M.; Mueller, P.; Sigalov, A.
2006-01-01
The electrical power and energy for ASDEX Upgrade (AUG) is provided by three separate pulsed networks based on flywheel generators. Major damages at couplings of the shaft of the synchronous generator EZ4 (220 MVA / 600 MWs) were discovered during a routine check. The damage can only be explained by torsional resonances in the generator shaft which are excited by active power transients from the converter loads. For generator protection, torque sensors were installed near the coupling between the flywheel and the rotor. They cause an early termination of plasma experiments if a predefined torque level is exceeded. These terminations limited the achievable plasma current flattop time of AUG significantly. Since a low natural damping of the torsional resonances was identified as a major cause of the phenomena observed, novel feedback controlled DC circuits were developed providing electromagnetic damping for the generator shafts in case of excitation. Each damping circuit consists of a DC choke, acting as a buffer storage of magnetic energy, fed by a thyristor converter. The current reference for the converter is derived from the torque sensor signals. This enables the choke current to alternate with the measured natural frequency of the shaft assembly. Thus, with proper phasing, torsional resonances in generator shaft systems weighing more than 100 tons can be damped with little additional power. Since April 2003, the damping circuits have been routinely operated during all plasma experiments. Despite the low damping power used, torsional resonances could be reduced to a value that avoids a trip signal from the torque sensors. This paper describes the results from analysing, designing and testing of the feedback controlled buffer storage of magnetic energy, representing an effective and low cost solution for damping torsional resonances in electric power systems. It will present the layout, analyse the results of measurements obtained during commissioning and
Directory of Open Access Journals (Sweden)
Javad Morsali
2017-02-01
Full Text Available In this paper, fractional order proportional-integral-differential (FOPID controller is employed in the design of thyristor controlled series capacitor (TCSC-based damping controller in coordination with the secondary integral controller as automatic generation control (AGC loop. In doing so, the contribution of the TCSC in tie-line power exchange is extracted mathematically for small load disturbance. Adjustable parameters of the proposed FOPID-based TCSC damping controller and the AGC loop are optimized concurrently via an improved particle swarm optimization (IPSO algorithm which is reinforced by chaotic parameter and crossover operator to obtain a globally optimal solution. The powerful FOMCON toolbox is used along with MATLAB for handling fractional order modeling and control. An interconnected multi-source power system is simulated regarding the physical constraints of generation rate constraint (GRC nonlinearity and governor dead band (GDB effect. Simulation results using FOMCON toolbox demonstrate that the proposed FOPID-based TCSC damping controller achieves the greatest dynamic performance under different load perturbation patterns in comparison with phase lead-lag and classical PID-based TCSC damping controllers, all in coordination with the integral AGC. Moreover, sensitivity analyses are performed to show the robustness of the proposed controller under various uncertainty scenarios.
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
Energy Technology Data Exchange (ETDEWEB)
Wilches Bernal, Felipe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierre, Brian Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Montana Tech of the Univ. of Montana, Butte, MT (United States); Donnelly, Matthew K. [Montana Tech of the Univ. of Montana, Butte, MT (United States)
2017-03-01
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.
Directory of Open Access Journals (Sweden)
M. Mallika Arjunan
2014-01-01
Full Text Available In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii's fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.
Energy Technology Data Exchange (ETDEWEB)
Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)
2015-09-14
A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.
Active Damping Control Methods for Three-Phase Slim DC-link Drive System
DEFF Research Database (Denmark)
Yang, Feng; Wang, Dong; Blaabjerg, Frede
2017-01-01
for stabilizing such slim dc-link drives together with the benefit of low cost and high flexibility. This paper gives an overview of the state-of-the-art active damping methods for the three-phase slim dc-link drive. The main pros and cons of each method are identified. The theoretical comparison is validated...
DEFF Research Database (Denmark)
Abdeldjabar, Benrabah; Xu, Dianguo; Wang, Xiongfei
2016-01-01
This paper deals with the problem of LCL filter resonance in grid connected inverter control. The system equations are reformulated to allow the application of the active disturbance rejection control (ADRC). The resonance, assumed unknown, is treated as a disturbance, then estimated and mitigated...
Cabell, Randolph H.; Gibbs, Gary P.
2000-01-01
make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential
Study on A Control Method of PAPF for Resonance Damping and Harmonics Compensation in Power System
DEFF Research Database (Denmark)
Zhou, Fang; Wu, Longhui; Chen, Zhe
2009-01-01
In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound with traditi......In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound...... with traditional method, it shows that whether the capacitor current is included in the detecting current of PAPF or not. Also the PAPF with proposed method has strong ability in harmonic compensation. Finally, the experiment results are presented to verify the analysis....
International Nuclear Information System (INIS)
Ware, A.G.; Arendts, J.G.
1984-01-01
A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly
DEFF Research Database (Denmark)
Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro
2011-01-01
Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...
Wejse, Christian; Gomes, Victor F; Rabna, Paulo; Gustafson, Per; Aaby, Peter; Lisse, Ida M; Andersen, Paul L; Glerup, Henning; Sodemann, Morten
2009-05-01
Vitamin D has been shown to be involved in the host immune response toward Mycobacterium tuberculosis. To test whether vitamin D supplementation of patients with tuberculosis (TB) improved clinical outcome and reduced mortality. We conducted a randomized, double-blind, placebo-controlled trial in TB clinics at a demographic surveillance site in Guinea-Bissau. We included 365 adult patients with TB starting antituberculosis treatment; 281 completed the 12-month follow-up. The intervention was 100,000 IU of cholecalciferol or placebo at inclusion and again 5 and 8 months after the start of treatment. The primary outcome was reduction in a clinical severity score (TBscore) for all patients with pulmonary TB. The secondary outcome was 12-month mortality. No serious adverse effects were reported; mild hypercalcemia was rare and present in both arms. Reduction in TBscore and sputum smear conversion rates did not differ among patients treated with vitamin D or placebo. Overall mortality was 15% (54 of 365) at 1 year of follow-up and similar in both arms (30 of 187 for vitamin D treated and 24 of 178 for placebo; relative risk, 1.19 [0.58-1.95]). HIV infection was seen in 36% (131 of 359): 21% (76 of 359) HIV-1, 10% (36 of 359) HIV-2, and 5% (19 of 357) HIV-1+2. Vitamin D does not improve clinical outcome among patients with TB and the trial showed no overall effect on mortality in patients with TB; it is possible that the dose used was insufficient. Clinical trial registered with www.controlled-trials.com/isrctn (ISRCTN35212132).
Damping Inter-area Oscillations using Static Synchronous Series Compensator (SSSC)
DEFF Research Database (Denmark)
Su, Chi; Chen, Zhe
2011-01-01
Static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. When fed with some supplementary signals from the connected system, SSSC is able to participate in the power system inter-area oscillation damping by changing...... the compensated reactance. This paper analyses the influence of SSSC on power system small signal stability. A SSSC damping controller scheme is presented and discussed. In DIgSILENT PowerFactory software, modal analysis and time-domain simulation are conducted in a single-machine infinite bus system model...... and a four-machine two-area test system model to verify and improve the damping controller scheme....
DEFF Research Database (Denmark)
Lorzadeh, Iman; Askarian Abyaneh, Hossein; Savaghebi, Mehdi
2016-01-01
Inductive-capacitive-inductive (LCL)-type line filters are widely used in grid-connected voltage source inverters (VSIs), since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L......-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid...... passive (resistive) resonance damping solutions, due to their additional power losses, active damping (AD) techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF) AD has...
Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael
2005-05-01
Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.
International Nuclear Information System (INIS)
Kress, R.L.; Jansen, J.F.; Noakes, M.W.
1994-01-01
When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller
Energy Technology Data Exchange (ETDEWEB)
Prasad, Mata [ABB, New Delhi (India); Rao, L V; Chakravorty, S; Moni, R S; Dass, R [National Thermal Power Corporation Ltd., New Delhi (India); Mishra, R B; Tripathi, D B [Powergrid (India); Bjorklund, Hans; Duchen, Hugo; Westling, Soren [ABB Power Systems, Ludvika (Sweden)
1994-12-31
The Rihand-Delhi Hvdc transmission system comprises of two poles in bipolar mode, each of 750 MW nominal capacity. The length of the transmission line is 814 km and the main objective of the link is the transmission of bulk power from the Singrauli/Rihand thermal generating complex to the major load centers near the National Capital region. As in all major Hvdc schemes, the Rihand-Delhi Hvdc project has also been provided with a SSO damping controller which was extensively tested in the simulator prior to installation. This paper describes some of the important field tests conducted to ascertain actual performance and compares the same with corresponding simulator cases. Also covered is the performance of the frequency controller. (author) 3 refs., 9 figs.
Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi
2018-05-01
A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.
Directory of Open Access Journals (Sweden)
A. Khoshsaadat
2014-09-01
Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC has been proposed for controlling of the SSSC-based damping system and applied to a Single Machine Infinite Bus (SMIB power system. For implementation of the learning process in this controller, we use of the one approach of the learning ability that named as Forward Signal and Backward Error Back-Propagation (FSBEBP method for improving of the system efficiency. This artificial intelligence-based control model leads to a controller with adaptive structure, improved correctness, high damping ability and dynamic performance. System implementation is easy and it requires 49 fuzzy rules for inference engine of the system. As compared with the other complex neuro-fuzzy systems, this controller has medium number of the fuzzy rules and low number of layers, but it has high accuracy. In order to demonstrate of the proposed controller ability, it is simulated and its output compared with that of classic Lead-Lag-based Controller (LLC and PI controller.
Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and B. ambifaria BC-F for control of damping-o...
DEFF Research Database (Denmark)
Morato, Josep; Knüppel, Thyge; Østergaard, Jacob
2013-01-01
As wind power plants (WPPs) gradually replace the power production of the conventional generators, many aspects of the power system may be affected, in which the small signal stability is included. Additional control may be needed for wind turbine generators (WTGs) to participate in the power...... oscillation damping. The feasibility of implementing this control needs to be assessed. This paper studies how the damping contribution of a WPP is affected by different operating conditions and its dependence to selected feedback signals. The WPP model used includes individual WTGs to study how internal...
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
Shao, Xinxin; Naghdy, Fazel; Du, Haiping
2017-03-01
A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.
Wilches-Bernal, Felipe
Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control
DEFF Research Database (Denmark)
Huang, Min; Wang, Xiongfei; Loh, Poh Chiang
2014-01-01
damping method with an extra feedback provides a high rejection of the resonance so that the dynamic is improved. In this paper, taking a Proportional-Resonant (PR) together with a harmonic compensator (HC), resonant-inductor-voltage-feedback active damping is applied on an LLCL-filter based three...... of the proposed method is investigated in simulation and by experimental results....
Directory of Open Access Journals (Sweden)
Iman Lorzadeh
2016-08-01
Full Text Available Inductive-capacitive-inductive (LCL-type line filters are widely used in grid-connected voltage source inverters (VSIs, since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid passive (resistive resonance damping solutions, due to their additional power losses, active damping (AD techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF AD has attracted considerable attention due to its effective damping performance and simple implementation. This paper thus presents a state-of-the-art review of resonance and stability characteristics of CCF-based AD approaches for a digitally-controlled LCL filter-based grid-connected inverter taking into account the effect of computation and pulse width modulation (PWM delays along with a detailed analysis on proper design and implementation.
International Nuclear Information System (INIS)
Hassan, M.A.; Rogers, R.J.; Gerber, A.G.
2009-01-01
This paper presents simulations of a loosely supported multi-span tube subjected to turbulence and fluidelastic instability forces. Several time-domain fluid force models simulating the damping controlled fluidelastic instability mechanism in tube arrays have been presented. These models include the negative damping model based on the Connors equation, fluid force coefficient-based models (Chen and Tanaka and Takahara), and two semi-analytical models (Price and Paidoussis; and Lever and Weaver) were implemented in an in-house finite code. Time domain modeling challenges for each of these theories were discussed. The implemented models were validated against available experimental data. The linear simulations showed that the Connors-equation based model exhibits the most conservative prediction of the critical flow velocity when the recommended design values for the Connors equation were used. The models were then utilized to simulate the nonlinear response of a three-span cantilever tube in a square lattice bar support subjected to air crossflow. The tube was subjected to a single-phase flow passing over one of the tube's spans. For each of these models the flow velocity and the support clearance were varied. Special attention was paid to the tube/support interaction parameters that affect wear, such as impact forces, contact ratio, and normal work rate. As the prediction of the linear threshold varies depending on the utilized model, the nonlinear response also differs. The investigated models exhibit similar response characteristics for the impact force, tip lift response, and work rate. Simulation results show that the Connors-based model underestimates the response and the tube/support interaction parameters for the loose support case. (author)
International Nuclear Information System (INIS)
Jeon, Jin Young
2009-01-01
This paper presents a new acoustic radiation optimization method for a vibrating panel-like structure with a passive piezoelectric shunt damping system in order to minimize well-radiating modes generated from the panel. The optimization method is based on an idea of using the p-version finite element method(p-version FEM), the boundary element method(BEM), and the particle swarm optimization algorithm(PSOA). Optimum embossment design for the vibrating panel using the PSOA is first investigated in order to minimize noise radiation over a frequency range of interest. The optimum embossment design works as a kind of stiffener so that well-radiating natural modes are shifted up with some degrees. The optimized panel, however, may still require additional damping for attenuating the peak acoustic amplitudes. A passive shunt damping system is thus employed to additionally damp the well-radiating modes from the optimized panel. To numerically evaluate the acoustic multiple-mode damping capability by a shunt damping system, the integrated p-version FEM/BEM for the panel with the shunt damping system is modeled and developed by MATLAB. Using the PSOA, the optimization technique for the optimal multiple-mode shunt damper is investigated in order to achieve the optimum damping performance for the well-radiating modes simultaneously. Also, the acoustic damping performance of the shunt damping circuit in the acoustic environment is demonstrated numerically and experimentally with respect to the realistically sized panel. The simulated result shows a good agreement with that of the experimental result
DEFF Research Database (Denmark)
Zhao, Bin; Li, Hui; Wang, Mingyu
2014-01-01
This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...
Environmentally friendly disease control tactics are needed that are consistently effective in soils that vary with regard to their biotic and abiotic components. An ethanol extract of Serratia marcescens N4-5, when applied as a cucumber seed treatment, effectively suppressed damping-off of cucumbe...
DEFF Research Database (Denmark)
Wu, Weimin; Liu, Yuan; He, Yuanbin
2017-01-01
Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads...... innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability...
Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2009-01-01
dynamical system. Based on this model, a nonlinear controller is designed that will make the system asymptotically stable around its open-loop equilibrium. The control scheme handles the time-varying nature of the system in a suitable manner resulting in a large operational region. The performance...... of the closed loop system is treated using Floquet theory, investigating the closed loop properties for their dependency of the controller gain and orbit inclination.......Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...
International Nuclear Information System (INIS)
Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel
2012-01-01
Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)
DEFF Research Database (Denmark)
Sun, Y; Zhang, Y; Bao, L
2011-01-01
Abstract To study the associations between dorm environment and occupants' health, a nested case-control study on 348 college students was carried out in 2006-2007 at Tianjin University, China. Two hundred and twenty-three dorm rooms where the 'cases' and 'controls' resided were inspected. Measured...... the window) for wheezing was 3.56 [95% Confident Interval (CI): 1.56-8.14] and for rhinitis 2.81 (95% CI: 1.32-5.97). The AOR of a low air change rate (below the median value of 0.7/h) for wheezing was 2.28 (95% CI: 1.38-3.75) and for dry cough 2.26 (95% CI: 1.08-4.75). The prevalence of students...... with allergic symptoms in dorm rooms decreased with increasing ventilation rate. The combination of a 'localized moldy/moisture indicator' and a low air change rate significantly increased the AOR of case status to 13.35 (95% CI: 3.73-47.83), compared to the reference condition with no-dampness and high...
International Nuclear Information System (INIS)
Kamalzare, Mahmoud; Johnson, Erik A; Wojtkiewicz, Steven F
2014-01-01
Designing control strategies for smart structures, such as those with semiactive devices, is complicated by the nonlinear nature of the feedback control, secondary clipping control and other additional requirements such as device saturation. The usual design approach resorts to large-scale simulation parameter studies that are computationally expensive. The authors have previously developed an approach for state-feedback semiactive clipped-optimal control design, based on a nonlinear Volterra integral equation that provides for the computationally efficient simulation of such systems. This paper expands the applicability of the approach by demonstrating that it can also be adapted to accommodate more realistic cases when, instead of full state feedback, only a limited set of noisy response measurements is available to the controller. This extension requires incorporating a Kalman filter (KF) estimator, which is linear, into the nominal model of the uncontrolled system. The efficacy of the approach is demonstrated by a numerical study of a 100-degree-of-freedom frame model, excited by a filtered Gaussian random excitation, with noisy acceleration sensor measurements to determine the semiactive control commands. The results show that the proposed method can improve computational efficiency by more than two orders of magnitude relative to a conventional solver, while retaining a comparable level of accuracy. Further, the proposed approach is shown to be similarly efficient for an extensive Monte Carlo simulation to evaluate the effects of sensor noise levels and KF tuning on the accuracy of the response. (paper)
Damped nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nicholson, D.R.; Goldman, M.V.
1976-01-01
High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time
Damping in aerospace composite materials
Agneni, A.; Balis Crema, L.; Castellani, A.
Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.
Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier
De Vries, M. M. J.; Kransse, M. J.; Liserre, M.; Monopoli, V. G.; Scherpen, J. M. A.
2007-01-01
Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the
Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive
DEFF Research Database (Denmark)
Maheshwari, Ram Krishan; Munk-Nielsen, Stig
2010-01-01
be achieved either by modifying the machine current reference or by modifying the machine voltage. The correlation between these two methods is shown by using simple analysis and it is verified by experimental results in a three phase induction machine drive. The effect of current control loop bandwidth...
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Assessment of remedial control schemes for damping transient oscillations in the Mexican system
Energy Technology Data Exchange (ETDEWEB)
Castellanos, R.B.; Sarmiento, H.U.; Pampin, G. [Inst.de Investigaciones Electricas, Morelos (Mexico); Messina, A.R. [Cinvestav, San Pedro Zacatenco (Mexico)
2008-07-01
In order to enhance voltage control and power system dynamic performance, special protection systems (SPS) are increasingly being used in the Mexican Interconnected System (MIS). These include extensive use of direct load shedding schemes, generator tripping schemes, controlled disconnection of lines, and automatic generation rejection and single phase reclosing schemes. Generator tripping based on local detection of severe disturbance is of particular importance and has been used to enhance transient stability. In addition, the onset of system instability has become more complex, often involving interactions between major system modes. Post-fault transient oscillations have become more common following the loss of major system elements and may result in uncontrolled system separation. This has motivated the need to develop system-wide special protection systems. This paper explored the possible benefits and feasibility of employing SPSs to mitigate wide-area inter-area oscillations in the MIS. The paper described the exploratory studies such as the coordinated application of automatic generation tripping schemes and automatic load shedding to enhance system dynamic performance. The paper also explained sensitivity studies that were conducted to determine the amount and location of generation (load) to be shed and suggested extensions to the basic security criteria to maintain network stability. The proposed techniques were developed and tested on a large-scale representation of the Mexican system that included the operation of several FACTS controllers. It was concluded that automatic generation shedding and automatic loading shedding were efficient alternatives to improve generation and transmission use, reliability and flexibility. 7 refs., 1 tab., 3 figs.
Directory of Open Access Journals (Sweden)
Jian Zuo
2017-04-01
Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.
Modeling and control of Type-2 wind turbines for sub-synchronous resonance damping
International Nuclear Information System (INIS)
Mancilla-David, Fernando; Domínguez-García, José Luis; De Prada, Mikel; Gomis-Bellmunt, Oriol; Singh, Mohit; Muljadi, Eduard
2015-01-01
Highlights: • Dynamic modeling of Type-2 wind turbines for sub-synchronous resonance studies. • Systematic design of a power system stabilizer for Type-2 wind turbines. • Assessment of Type-2 wind turbines to suppress sub-synchronous resonance events. - Abstract: The rapid increase of wind power penetration into power systems around the world has led transmission system operators to enforce stringent grid codes requiring novel functionalities from renewable energy-based power generation. For this reason, there exists a need to asses whether wind turbines (WTs) will comply with such functionalities to ensure power system stability. This paper demonstrates that Type-2 WTs may induce sub-synchronous resonance (SSR) events when connected to a series-compensated transmission line, and with proper control, they may also suppress such events. The paper presents a complete dynamic model tailored to study, via eigenanalysis, SSR events in the presence of Type-2 WTs, and a systematic procedure to design a power system stabilizer using only local and measurable signals. Results are validated through a case study based on the IEEE first benchmark model for SSR studies, as well as with transient computer simulations
EJSCREEN Supplementary Indexes 2015 Public
U.S. Environmental Protection Agency — There are 40 supplementary EJSCREEN indexes that are divided into 5 categories: EJ Index with supplementary demographic index, Supplementary EJ Index 1 with...
Directory of Open Access Journals (Sweden)
Raimundo Ney de Macedo Lima
2007-09-01
Full Text Available
O incremento do reflorestamento e florestamento mediante o estímulo fiscal aumentou consideravelmente o plantio do eucalipto no Brasil, criando a necessidade de se produzir mudas em grande quantidades. Freqüentemente a ocorrência de tombamento de mudas, em pré ou pós-emergência, afetam os cronogramas de plantio, acarretando a morte de milhares de plântulas. No presente trabalho procurou-se verificar o efeito de sete fungicidas, aplicados em pulverizaçao a alto volume, no controle do tombamento causado por Cylindroctadium sp. e Fusarium sp. em mudas E. saligna Sm. nas sementeiras. O delineamento experimental usado foi o de blocos casualizados com quatro repetições. As sementes foram desinfectadas com Neantina seco a 0,3% e o leito da sementeira foi tratado com Brometo de metila (40ml/m² e depois inoculado com Cylindroctadium sp Fusarium sp. em meio de fubá-areia. Observou-se que os tratamentos mais eficientes no controle do tombamento foram Arasan — 75 a 0,3%, Cupravit azul a 0,4% e Miltox a 0,35% enquanto que o Batasan a 0,15% foi o mais fitotóxico. As plântulas apresentaram melhor aspecto vegetativo nas parcelas tratadas com Ferradol a 0,25%. A elevada densidade de semeadura (50g/m² e a ocorrência de tempo húmido e chuvoso parecem ter concorrido grandemente para a severa incidência do tombamento.
The increment of the growth of tree conservation by means of official incentive, greatly intensified the planting of eucalyptus in Brazil, creating the necessity of producing seedlings in great quantities. Frequently the incidence of damping - off in the seedbed, in pre or post-emergence, affect the chronogram of planting, causing death of thousands of plantules. In the present experiment, it was attempted to determine the effect of seven fungicides, applied by spray at high volume, on the control of
Directory of Open Access Journals (Sweden)
Chiradej Chamswarng
2007-07-01
Full Text Available Seven strains of Trichoderma virens were isolated from Chinese-kale planting soil in Nakhon Si Thammarat province. Efficacy of those isolates to inhibit mycelial growth and overgrow on mycelia ofPythium aphanidermatum, a causal agent of damping-off on Chinese-kale, were determined by a dual culture test. All strains significantly inhibited growth and overgrew on mycelia of P. aphanidermatum on potato dextrose agar (PDA as compared with the control. Strains T-NST-01, T-NST-05 and T-NST-07 gave high values of inhibition by 85.5, 82.5 and 78.5%, respectively. For efficacy to overgrow on mycelia of pathogen test, strains T-NST-05, T-NST-07 and T-NST-01 provided 48.3, 47.0 and 46.1% of mycelial overgrowth, respectively. Antifungal metabolites were extracted from three promising strains and tested against mycelial growth and sporangium production of P. aphanidermatum. The results showed that 1,000 mg/L of all metabolites completely inhibited mycelial growth and sporangium production. Under laboratory condition, all metabolites (1,000 mg/L significantly increased the number of Chinese-kale seedling germination, especially the metabolites from T-NST-01 and T-NST-07 provided germination of 92.5 and 87.5%, respectively. Under glasshouse conditions, Chinese-kale seedlings treated with 1,000 mg/L of metabolites from strains T-NST-01 and T-NST-07 survived by 90.5 and 87.5%, respectively, while the control 1 (sterile water and control 2 (2% methanol had 19.0 and 18.5% of survived seedlings, respectively. In P. aphanidermatum viability test, mycelia of P. aphanidermatum treated with antifungal metabolites from three strains of T. virens showed no visible growth, while the control with 2% methanol or sterile water, mycelia of P. aphanidermatum rapidly grew and covered whole surface of PDA in of the Petri dish within 4 days.
Pradhan, Menno; Brinkman, Sally A; Beatty, Amanda; Maika, Amelia; Satriawan, Elan; de Ree, Joppe; Hasan, Amer
2013-08-16
This paper presents the study protocol for a pragmatic cluster randomized controlled trial (RCT) with a supplementary matched control group. The aim of the trial is to evaluate a community-based early education and development program launched by the Government of Indonesia. The program was developed in collaboration with the World Bank with a total budget of US$127.7 million, and targets an estimated 738,000 children aged 0 to 6 years living in approximately 6,000 poor communities. The aim of the program is to increase access to early childhood services with the secondary aim of improving school readiness. The study is being conducted across nine districts. The baseline survey contained 310 villages, of which 100 were originally allocated to the intervention arm, 20 originally allocated to a 9-month delay staggered start, 100 originally allocated to an 18-month delay staggered start and 90 allocated to a matched control group (no intervention). The study consists of two cohorts, one comprising children aged 12 to 23 months and the other comprising children aged 48 to 59 months at baseline. The data collection instruments include child observations and task/game-based assessments as well as a questionnaire suite, village head questionnaire, service level questionnaires, household questionnaire, and child caretaker questionnaire. The baseline survey was conducted from March to April 2009, midline was conducted from April to August 2010 and endline conducted early 2013. The resultant participation rates at both the district and village levels were 90%. At the child level, the participation rate was 99.92%. The retention rate at the child level at midline was 99.67%. This protocol paper provides a detailed record of the trial design including a discussion regarding difficulties faced with compliance to the randomization, compliance to the dispersion schedule of community block grants, and procurement delays for baseline and midline data collections. Considering the
Parametric Landau damping of space charge modes
Energy Technology Data Exchange (ETDEWEB)
Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab
2016-09-23
Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.
International Nuclear Information System (INIS)
Banks, E.L. Jr.; Dowell, T.P.
1976-01-01
The description is given of a damper which includes a pair of telescopic components interconnected by relative linear movement one in relation to the other, by a screw and ball nut device, with a braking surface on one of the components, a brake engaging the braking surface, an inertia mass entrained by the other components, non-deformable and distinct brake actuating gear, independently mobile in relation to the other braking system and fixed and controlled by the inertia mass, positively to engage the braking surface. This damper is for retaining the parts of a nuclear power station so that can withstand earthquakes [fr
DEFF Research Database (Denmark)
Han, Yang; Shen, Pan; Guerrero, Josep M.
2016-01-01
Grid-connected inverters (GCIs) with LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion would be amplified significantly...... method is adopted. Furthermore, the grid voltage feed-forward and multiple PR controllers are integrated in the current loop to mitigate the current distortion introduced by the grid background distortion. Besides, the parameters design guidelines are presented to show the feasibility and effectiveness...
The damped wave equation with unbounded damping
Czech Academy of Sciences Publication Activity Database
Freitas, P.; Siegl, Petr; Tretter, C.
2018-01-01
Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016
Perfetto, Sara; Rohlfing, Jens; Infante, Francesco; Mayer, Dirk; Herold, Sven
2016-01-01
Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are...
Shape memory alloys as damping materials
International Nuclear Information System (INIS)
Humbeeck, J. van
2000-01-01
Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)
A Resonant Damping Study Using Piezoelectric Materials
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Labonnote, Nathalie
2012-01-01
Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
The damped wave equation with unbounded damping
Freitas, Pedro; Siegl, Petr; Tretter, Christiane
2018-06-01
We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.
Decoherence and Landau-Damping
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab
2005-12-01
The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.
Zhao, Min-Yi; Zhang, Peng; Li, Jing; Wang, Lin-Peng; Zhou, Wei; Wang, Yan-Xia; She, Yan-Fen; Ma, Liang-Xiao; Wang, Pei; Hu, Ni-Juan; Lin, Chi; Hu, Shang-Qin; Wu, Gui-Wen; Wang, Ya-Feng; Sun, Jun-Jun; Jiang, Si-Zhu; Zhu, Jiang
2017-10-01
The aim of this multicentre randomised controlled trial was to investigate the contribution of de qi to the immediate analgesic effect of acupuncture in patients with primary dysmenorrhoea and the specific traditional Chinese medicine diagnosis cold and dampness stagnation . Eighty-eight patients with primary dysmenorrhoea and cold and dampness stagnation were randomly assigned to de qi (n=43) or no de qi (n=45) groups and underwent 30 min of SP6 acupuncture. The de qi group received deep needling at SP6 with manipulation using thick needles; the no de qi group received shallow needling with no manipulation using thin needles. In both groups the pain scores and actual de qi sensation were evaluated using a visual analogue scale for pain (VAS-P) and the acupuncture de qi clinical assessment scale (ADCAS), respectively. Both groups showed reductions in VAS-P, with no signficant differences between groups. ADCAS scores showed 43/43 and 25/45 patients in de qi and no de qi groups, respectively, actually experienced de qi sensation. Independent of original group allocation, VAS-P reductions associated with actual de qi (n=68) were greater than those without (28.4±18.19 mm vs 14.6±12.28 mm, p=0.008). This study showed no significant difference in VAS-P scores in patients with primary dysmenorrhoea and cold and dampness stagnation immediately after SP6 acupuncture designed to induce or avoid de qi sensation. Both treatments significantly reduced VAS-P relative to baseline. Irrespective of group allocation, patients experiencing actual de qi sensation demonstrated larger reductions in pain score relative to those without, suggesting greater analgesic effects. Chinese Clinical Trial Registry (ChiCTR-TRC-13003086); Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Energy Technology Data Exchange (ETDEWEB)
Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping
Directory of Open Access Journals (Sweden)
Rajesh Kumari Manhas
2016-12-01
Full Text Available Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v of Streptomyces hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10% and streptomycete cells significantly improved seed germination (75-80% and vigour index (1167-1538. Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers.
International Nuclear Information System (INIS)
Chinchilla Vargas, Erick Gustavo
2014-01-01
A study was performed on the behavior of an internal combustion engine of a vehicle when has added oxyhydrogen (HHO) as a supplementary fuel, produced from a modified alkaline type electrolyser called HHO generator. The first stage is consisted of a theoretical and experimental analysis of the happened in the internal combustion engine by adding oxyhydrogen. The experimental part has performed road tests and equipment available were used in the engine test laboratories of RECOPE, as a roller dynamometer and a gas analyzer. The result from this first stage has found a slight increase in fuel performance and an unstable idling speed in the engine, this latest product in the vehicle's computer has been without design for the engine had operate with the addition of HHO. The second stage has designed one controller based in the diffuse logic with it is achieved in fuel performance and the flaws found are annulled. The third stage has involved the implementation of controller in the vehicle, which has involved taking the sensor signals of airflow and oxygen, pass by the controller, to be assigned new parameters and then deliver again to the vehicle computer without this notice the change. The performance of the designed controller is verified in the fourth stage, the same tests were made as in the first stage, in this way it was possible to verify and validate the data. Finally, a further increase is obtained in vehicle fuel efficiency, coupled with improved engine performance in different driving conditions without sacrificing power and torque. (author) [es
Parirokh, M; Sadr, S; Nakhaee, N; Abbott, P V; Askarifard, S
2014-10-01
This randomized double-blinded controlled trial was performed to compare the efficacy of inferior alveolar nerve block (IANB) injection for mandibular first molar teeth with irreversible pulpitis with or without supplementary buccal infiltration and intraligamentary injection. Eighty-two patients with asymptomatic irreversible pulpitis received either a combination of intraligamentary injection + buccal infiltration+ IANB or with traditional IANB injection in mandibular first molar teeth with irreversible pulpitis. Each patient recorded their pain score on a Heft-Parker visual analogue scale before commencing treatment, in response to a cold test 15 min after the designated anaesthetic injection, during access cavity preparation and during root canal instrumentation. No or mild pain at any stage was considered a success. Data were analysed by chi-square test. At the final stage of treatment, 69 of the 82 patients were eligible to be included in the study. No significant difference was found between age (P = 0.569) and gender (P = 0.570) amongst the patients in the two groups. The success rate of anaesthesia in the IANB and the combination groups were 22% and 58%, respectively. The success rate of anaesthesia in the combination group was significantly higher than the traditional IANB injection (P = 0.003). A combination of anaesthetic techniques can improve the success rate of anaesthesia for mandibular first molar teeth with irreversible pulpitis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Rees, John; Chao, Alexander
2008-01-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread
Multiparticle phenomena and Landau damping
International Nuclear Information System (INIS)
Talman, R.
1987-01-01
The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance
International Nuclear Information System (INIS)
Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de
2004-01-01
In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Extended Rayleigh Damping Model
Directory of Open Access Journals (Sweden)
Naohiro Nakamura
2016-07-01
Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.
Medoua, Gabriel Nama; Ntsama, Patricia M; Ndzana, Anne Christine A; Essa'a, Véronique J; Tsafack, Julie Judith T; Dimodi, Henriette T
2016-02-01
To compare an improved corn-soya blend (CSB+) with a ready-to-use supplementary food (RUSF) to test the hypothesis that satisfactory recovery rate will be achieved with CSB+ or RUSF when these foods provide 50 % of the child's energy requirement, the 50 % remaining coming from usual diet. A comparative efficacy trial study was conducted with moderately wasted children, using a controlled randomized design, with parallel assignment for RUSF or CSB+. Every child received a daily ration of 167 kJ (40 kcal)/kg body weight during 56 d with a follow-up performed every 14 d. Every caregiver received nutrition counselling at enrolment and at each follow-up visit. Health districts of Mvog-Beti and Evodoula in the Centre region of Cameroon. Eight hundred and thirty-three children aged 6-59 months were screened and eighty-one malnourished children (weight-for-height Z-score between -3 and -2) aged 25-59 months were selected. Of children treated with CSB+ and RUSF, 73 % (95 % CI 59 %, 87 %) and 85 % (95 % CI 73 %, 97 %), respectively, recovered from moderate acute malnutrition, with no significant difference between groups. The mean duration of treatment required to achieve recovery was 44 d in the RUSF group and 51 d in the CSB+ group (log-rank test, P=0·0048). There was no significant difference in recovery rate between the groups. Both CSB+ and RUSF were relatively successful for the treatment of moderate acute malnutrition in children. Despite the relatively low ration size provided, the recovery rates observed for both groups were comparable to or higher than those reported in previous studies, a probable effect of nutrition education.
Husárová, Ivica; Mikl, Michal; Lungu, Ovidiu V; Mareček, Radek; Vaníček, Jiří; Bareš, Martin
2013-10-01
The cerebellum, basal ganglia (BG), and other cortical regions, such as supplementary motor area (SMA) have emerged as important structures dealing with various aspects of timing, yet the modulation of functional connectivity between them during motor timing tasks remains unexplored. We used dynamic causal modeling to investigate the differences in effective connectivity (EC) between these regions and its modulation by behavioral outcome during a motor timing prediction task in a group of 16 patients with early Parkinson's disease (PD) and 17 healthy controls. Behavioral events (hits and errors) constituted the driving input connected to the cerebellum, and the modulation in connectivity was assessed relative to the hit condition (successful interception of target). The driving input elicited response in the target area, while modulatory input changed the specific connection strength. The neuroimaging data revealed similar structure of intrinsic connectivity in both groups with unidirectional connections from cerebellum to both sides of the BG, from BG to the SMA, and then from SMA to the cerebellum. However, the type of intrinsic connection was different between two groups. In the PD group, the connection between the SMA and cerebellum was inhibitory in comparison to the HC group, where the connection was activated. Furthermore, the modulation of connectivity by the performance in the task was different between the two groups, with decreased connectivity between the cerebellum and left BG and SMA and a more pronounced symmetry of these connections in controls. In the same time, there was an increased EC between the cerebellum and both sides of BG with more pronounced asymmetry (stronger connection with left BG) in patients. In addition, in the PD group the modulatory input strengthened inhibitory connectivity between the SMA and the cerebellum, while in the HC group the excitatory connection was slightly strengthened. Our findings indicate that although early PD
Directory of Open Access Journals (Sweden)
Lieven Huybregts
Full Text Available Recently, operational organizations active in child nutrition in developing countries have suggested that blanket feeding strategies be adopted to enable the prevention of child wasting. A new range of nutritional supplements is now available, with claims that they can prevent wasting in populations at risk of periodic food shortages. Evidence is lacking as to the effectiveness of such preventive interventions. This study examined the effect of a ready-to-use supplementary food (RUSF on the prevention of wasting in 6- to 36-mo-old children within the framework of a general food distribution program.We conducted a two-arm cluster-randomized controlled pragmatic intervention study in a sample of 1,038 children aged 6 to 36 mo in the city of Abeche, Chad. Both arms were included in a general food distribution program providing staple foods. The intervention group was given a daily 46 g of RUSF for 4 mo. Anthropometric measurements and morbidity were recorded monthly. Adding RUSF to a package of monthly household food rations for households containing a child assigned to the intervention group did not result in a reduction in cumulative incidence of wasting (incidence risk ratio: 0.86; 95% CI: 0.67, 1.11; p = 0.25. However, the intervention group had a modestly higher gain in height-for-age (+0.03 Z-score/mo; 95% CI: 0.01, 0.04; p<0.001. In addition, children in the intervention group had a significantly higher hemoglobin concentration at the end of the study than children in the control group (+3.8 g/l; 95% CI: 0.6, 7.0; p = 0.02, thereby reducing the odds of anemia (odds ratio: 0.52; 95% CI: 0.34, 0.82; p = 0.004. Adding RUSF also resulted in a significantly lower risk of self-reported diarrhea (-29.3%; 95% CI: 20.5, 37.2; p<0.001 and fever episodes (-22.5%; 95% CI: 14.0, 30.2; p<0.001. Limitations of this study include that the projected sample size was not fully attained and that significantly fewer children from the control group
International Nuclear Information System (INIS)
Ware, A.G.
1986-01-01
The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels
Bryan's effect and anisotropic nonlinear damping
Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.
2018-03-01
In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.
Roberts, Susan B; Franceschini, Maria Angela; Krauss, Amy; Lin, Pei-Yi; de Sa, Augusto Braima; Có, Raimundo; Taylor, Salima; Brown, Carrie; Chen, Oliver; Johnson, Elizabeth J; Pruzensky, William; Schlossman, Nina; Balé, Carlito; Wu, Kuan-Cheng Tony; Hagan, Katherine; Saltzman, Edward; Muentener, Paul
2017-11-01
Cognitive impairment associated with childhood malnutrition and stunting is generally considered irreversible. The aim was to test a new nutritional supplement for the prevention and treatment of moderate-acute malnutrition (MAM) focused on enhancing cognitive performance. An 11-wk, village-randomized, controlled pilot trial was conducted in 78 children aged 1-3 or 5-7 y living in villages in Guinea-Bissau. The supplement contained 291 kcal/d for young children and 350 kcal/d for older children and included 5 nutrients and 2 flavan-3-ol-rich ingredients not present in current food-based recommendations for MAM. Local bakers prepared the supplement from a combination of locally sourced items and an imported mix of ingredients, and it was administered by community health workers 5 d/wk. The primary outcome was executive function abilities at 11 wk. Secondary outcomes included additional cognitive measures and changes in z scores for weight (weight-for-age) and height (height-for-age) and hemoglobin concentrations at 11 wk. An index of cerebral blood flow (CBF) was also measured at 11 wk to explore the use of this measurement as a biological index of cognitive impairment. There were no significant differences in any outcome between groups at baseline. There was a beneficial effect of random assignment to the supplement group on working memory at 11 wk in children aged 1-3 y ( P < 0.05). This difference contrasted with no effect in older children and was not associated with faster growth rate. In addition, CBF correlated with task-switching performance ( P < 0.05). These preliminary data suggest that cognitive impairment can be monitored with measurement of CBF. In addition, the findings provide preliminary data that suggest that it may be possible to improve poor cognitive performance in young children through changes in the nutritional formulation of supplementary foods used to prevent and treat MAM. Powered studies of the new supplement formulation are needed. This
International Nuclear Information System (INIS)
Turner, Sam
2011-01-01
The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.
Rahimi, Z.; Rashahmadi, S.
2017-11-01
The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
Basic and supplementary sensory feedback in handwriting
Danna, Jérémy; Velay, Jean-Luc
2015-01-01
The mastering of handwriting is so essential in our society that it is important to try to find new methods for facilitating its learning and rehabilitation. The ability to control the graphic movements clearly impacts on the quality of the writing. This control allows both the programming of letter formation before movement execution and the online adjustments during execution, thanks to diverse sensory feedback (FB). New technologies improve existing techniques or enable new methods to supply the writer with real-time computer-assisted FB. The possibilities are numerous and various. Therefore, two main questions arise: (1) What aspect of the movement is concerned and (2) How can we best inform the writer to help them correct their handwriting? In a first step, we report studies on FB naturally used by the writer. The purpose is to determine which information is carried by each sensory modality, how it is used in handwriting control and how this control changes with practice and learning. In a second step, we report studies on supplementary FB provided to the writer to help them to better control and learn how to write. We suggest that, depending on their contents, certain sensory modalities will be more appropriate than others to assist handwriting motor control. We emphasize particularly the relevance of auditory modality as online supplementary FB on handwriting movements. Using real-time supplementary FB to assist in the handwriting process is probably destined for a brilliant future with the growing availability and rapid development of tablets. PMID:25750633
Non-Linear Slosh Damping Model Development and Validation
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can
Digital notch filter based active damping for LCL filters
DEFF Research Database (Denmark)
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2015-01-01
. In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....
Passivity-Based Control by Series/Parallel Damping of Single-Phase PWM Voltage Source Converter
del Puerto Flores, Dunstano; Scherpen, Jacqueline; Liserre, Marco; de Vries, Martijn M. J.; Kransse, Marco J.; Monopoli, Vito Giuseppe
This paper describes a detailed design procedure for passivity-based controllers developed using the Brayton-Moser (BM) framework. Several passivity-based feedback designs are presented for the voltage-source converter, specifically for the H-bridge converter, since nowadays it is one of the
Concrete with supplementary cementitious materials
Jensen, Ole M; Kovler, Konstantin; De Belie, Nele
2016-01-01
This volume contains the proceedings of the MSSCE 2016 conference segment on “Concrete with Supplementary Cementitious Materials” (SCM). The conference segment is organized by the RILEM technical committee TC 238-SCM: Hydration and microstructure of concrete with supplementary cementitious materials. TC 238-SCM started activities in 2011 and has about 50 members from all over the world. The main objective of the committee is to support the increasing utilisation of hydraulic...
Damping of Coherent oscillations
Vos, L
1996-01-01
Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.
Jowett, John M; Zimmermann, Frank; Owen, H
2001-01-01
The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.
Dislocation damping during irradiation
International Nuclear Information System (INIS)
Burdett, C.F.; Rahmatalla, H.
1977-01-01
The results of Simpson et al (Simpson, H.M., Sosin, A., Johnston, D.F., Phys.Rev. B, 5:1393 (1972)) on the damping produced during electron irradiation of copper are re-examined and it is shown that they can be explained in terms of the model of Granato and Lucke (Granato, A., Lucke, K., J.Appl.Phys., 27:583,789 (1958)). (author)
Design of the SLC damping ring to linac transport lines
International Nuclear Information System (INIS)
Fieguth, T.H.; Murray, J.J.
1983-07-01
The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described
Variable stiffness and damping MR isolator
Energy Technology Data Exchange (ETDEWEB)
Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au
2009-02-01
This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.
Energy Technology Data Exchange (ETDEWEB)
Castellanos B., R.; Calderon G., J.G.; Sarmiento U., H. [Instituto de Investigaciones Electricas, IIE,Cuernavaca, Mor. 62580 (Mexico); Olguin S., D. [Instituto Politecnico Nacional, Mexico D.F. 07300 (Mexico); Messina, A.R. [Graduate Program in Electrical Engineering, Cinvestav, P.O. Box 31-438, Plaza La Luna, Guadalajara, Jal. 44550 (Mexico)
2006-01-15
This paper documents research conducted to investigate the use and tuning of power system stabilizers (PSSs) to improve small-signal dynamic performance of the Mexican interconnected system (MIS). The analysis focuses on the control of a critical inter-area mode associated with the interaction between the southeastern and western regions of the system and a critical local mode. Study results include the determination of critical system modes more controllable by existing PSSs and the use of supplementary control actions to damp low-frequency inter-area modes of oscillation. Results for both, small and large perturbations are presented to illustrate the placement and tuning of PSSs at several appropriate locations throughout the system. (author)
Directory of Open Access Journals (Sweden)
Cleusa Maria Mantovanello Lucon
2008-06-01
Full Text Available O objetivo deste trabalho foi avaliar o efeito de rizobactérias, no crescimento de plântulas de pepino e no controle de tombamento, causado por Pythium aphanidermatum. Foram realizados em laboratório ensaios de: degradação de 1-aminociclopropano-1-carboxilato (ACC; colonização das raízes de plântulas de pepino; e pareamento de culturas. A identificação dos melhores isolados foi feita pela determinação das seqüências do gene 16S rDNA. Trinta e sete isolados, dos 165 testados, aumentaram a massa de matéria seca das plantas de pepino em até 63%. Desses, somente um isolado (N13 - Pseudomonas fluorescens reduziu o tombamento de plântulas em 25%; 21 isolados inibiram o crescimento micelial de P. aphanidermatum, colonizaram o sistema radicular das plantas de pepino e cresceram em presença de ACC como única fonte de nitrogênio. Dos dez isolados que apresentaram resultados satisfatórios, cinco foram identificados como pertencentes aos gêneros Bacillus, quatro Pseudomonas e um Stenotrophomonas. Dos 165 isolados de rizobactérias testados, sete possuem potencial para promover o crescimento de plantas de pepino e um para controlar o tombamento causado por P. aphanidermatum.The aim of this work was to evaluate the rhizobacteria effect on cucumber seedling growth and in the control of damping-off disease Pythium aphanidermatum. In laboratory, the following tests were carried out: degradation of 1-aminocyclopropane-1-carboxylate (ACC; colonization of cucumber root system; and, the capacity to antagonize the pathogen. The best isolates were identified through determination of 16S rDNA gene sequences. Thirty-seven isolates, among 165 tested, enhanced the dry weight of cucumber plants in up to 63%. From these 37, only one isolate (N13 - Pseudomonas fluorescens reduced the incidence of pre-emergence damping-off disease by 25%; 21 isolates antagonized P. aphanidermatum in vitro, colonized the cucumber roots, and degradated ACC, as the only
Damping measurements in flowing water
Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.
2012-11-01
Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.
Damping measurements in flowing water
International Nuclear Information System (INIS)
Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C
2012-01-01
Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.
Bounce-harmonic Landau Damping of Plasma Waves
Anderegg, Francois
2015-11-01
We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.
Directory of Open Access Journals (Sweden)
Sérgio Miguel Mazaro
2009-11-01
Full Text Available O objetivo deste trabalho foi avaliar o efeito do tratamento de sementes, com o indutor de resistência quitosana, sobre o tombamento de plântulas de beterraba e tomate, e sua relação com alterações bioquímicas e a defesa vegetal. Cada parcela foi representada por 25 sementes. Os tratamentos consistiram da imersão das sementes em quitosana nas concentrações de 0; 0,25; 0,5; 1; 2 e 4%. Posteriormente, as sementes foram semeadas em bandejas com o substrato infectado com Rhizoctonia sp., e mantidas em casa de vegetação por 14 dias. A quitosana induziu a resistência das plântulas de beterraba e tomate e reduziu a incidência de tombamento. As concentrações de 1,1 e 2,5% apresentaram maior eficiência na redução do tombamento, para as culturas da beterraba e tomate, respectivamente. O uso da quitosana induz o aumento na atividade da enzima fenilalanina amônia-liase (FAL e interfere nas variáveis bioquímicas foliares de proteínas e açúcares totais e redutores.The objective of this study was to evaluate the effect of seed treatment using the resistance inductor chitosan to control damping-off in tomato and beet seedlings, and its relationship with plant biochemical alterations and plant protection. Each plot was represented by twenty-five seeds. Treatments consisted of seed immersion in a chitosan suspension at 0, 0.25, 0.5, 1, 2 and 4% concentrations. Seeds were then sowed in trays with a substrate infected with Rhizoctonia sp. and maintained in greenhouse conditions for 14 days. Chitosan induced seedling resistance and reduced damping-off. The 1.1 and 2.5% concentrations were more efficient in controling the damping-off for beet and tomato crops respectively. Chitosan increases the phenylalanine ammonialyase (PAL activity and interferes with the total proteins and total and reduced sugars rates in the leaves.
Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis
Directory of Open Access Journals (Sweden)
WU Weiguo
2017-08-01
Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.
supplementary foods for weaning purposes
African Journals Online (AJOL)
DR. AMINU
Nigeria. ABSTRACT. The paper focuses on complementary and supplementary foods for weaning purposes. While ... decision, which guides when to introduce semi-solid foods to infants. It considers the .... readiness of many healthy infants. ... foods. However, caution should be exercised .... Attitudes and practices of infants.
SUPPLEMENTARY INFORMATION Dimethylglyoxime as an ...
Indian Academy of Sciences (India)
lenovo
1. SUPPLEMENTARY INFORMATION. Dimethylglyoxime as an Efficient Ligand for Copper-Catalyzed Hydroxylation of Aryl. Halides. SURESH S SHENDAGE*. Department of Chemistry, KET'S Vinayak Ganesh Vaze College of Arts, Science and. Commerce, Mithagar Road, Mulund (E) Mumbai, Maharashtra 400 081, India.
Power Oscillations Damping in DC Microgrids
DEFF Research Database (Denmark)
Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang
2016-01-01
This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transi...... of the proposed control scheme is verified using hardware-in-the-loop (HIL) simulations carried out in OPAL-RT technologies....
Directory of Open Access Journals (Sweden)
Shiyun Xu
2015-01-01
Full Text Available The present study proposes a hierarchical wide-area decentralized coordinated control framework for HVDC power system that is robust to multiple operating conditions. The upper level wide-area coordinated controller is designed in the form of dynamic output feedback control that coordinates the lower level HVDC supplementary controller, PSS, and SVC. In order to enhance the robustness of the designed controller under various operating conditions, the polytopic model is introduced such that the closed-loop control system can be operated under strong damping mode in virtue of the stability criterion based on damping ratio. Simulation results demonstrate that the proposed controller design algorithm is capable of enhancing the system damping over four different conditions.
Effects of bamboo substrate and supplementary feed on growth and ...
African Journals Online (AJOL)
application as control (C), control and substrate installation (C + S) and, control and substrate with supplementary feeding (C + S + F) were randomly allotted to six earthen ponds each with an area of 100m2. Catfish fingerlings of mean weight 27.5g + 1.25 were stocked at the rate of 80 fish per 100m2. Water temperature, pH ...
Probabilistic cloning with supplementary information
International Nuclear Information System (INIS)
Azuma, Koji; Shimamura, Junichi; Koashi, Masato; Imoto, Nobuyuki
2005-01-01
We consider probabilistic cloning of a state chosen from a mutually nonorthogonal set of pure states, with the help of a party holding supplementary information in the form of pure states. When the number of states is 2, we show that the best efficiency of producing m copies is always achieved by a two-step protocol in which the helping party first attempts to produce m-1 copies from the supplementary state, and if it fails, then the original state is used to produce m copies. On the other hand, when the number of states exceeds two, the best efficiency is not always achieved by such a protocol. We give examples in which the best efficiency is not achieved even if we allow any amount of one-way classical communication from the helping party
Klinar, Walter J.; Lee, Henry A.
1954-01-01
A supplementary investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F9F-6 airplane. The primary purpose of the investigation was to reevaluate the spin-recovery characteristics of the airplane in view of the fact that the ailerons had been eliminated from the flaperon-aileron lateral control system of the airplane. A spin-tunnel investigation on a model of the earlier version of the F9F-6 airplane had indicated that use of ailerons with the spin (stick right in a right spin) was essential to insure recovery. The results indicate that with.ailerons eliminated, it may be difficult to obtain an erect developed spin but if a fully developed spin is obtained on the airplane, recovery therefrom may be difficult or impossible. Flaperon deflection should have little effect on spins or recoveries.
Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping
2018-01-01
A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.
Supplementary physicians' fees: a sustainable system?
Calcoen, Piet; van de Ven, Wynand P M M
2018-01-25
In Belgium and France, physicians can charge a supplementary fee on top of the tariff set by the mandatory basic health insurance scheme. In both countries, the supplementary fee system is under pressure because of financial sustainability concerns and a lack of added value for the patient. Expenditure on supplementary fees is increasing much faster than total health expenditure. So far, measures taken to curb this trend have not been successful. For certain categories of physicians, supplementary fees represent one-third of total income. For patients, however, the added value of supplementary fees is not that clear. Supplementary fees can buy comfort and access to physicians who refuse to treat patients who are not willing to pay supplementary fees. Perceived quality of care plays an important role in patients' willingness to pay supplementary fees. Today, there is no evidence that physicians who charge supplementary fees provide better quality of care than physicians who do not. However, linking supplementary fees to objectively proven quality of care and limiting access to top quality care to patients able and willing to pay supplementary fees might not be socially acceptable in many countries. Our conclusion is that supplementary physicians' fees are not sustainable.
International Nuclear Information System (INIS)
Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.
1983-06-01
LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems
Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review
Directory of Open Access Journals (Sweden)
Qianfeng Fang
2009-08-01
Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.
DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS
Directory of Open Access Journals (Sweden)
JAGADEESH PASUPULETI
2006-06-01
Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.
DEFF Research Database (Denmark)
Su, Chi
and residue identification. Simulation results show the effectiveness of this damping controller under different operating conditions of the SSSC. Influence of a direct‐drive‐full‐convertor based wind farm ancillary frequency control and voltage control on power system oscillation performance is investigated...... oscillation mode damping ratio, respectively. The former controller is implemented in individual wind turbines; the latter controller is implemented in the wind farm level as a supplementary damping controller. Finally, the coordinating selection and parameter design strategy for PSS is extended for all types...... to this problem need to be implemented in the power systems. On the other hand, wind power especially largescale wind farms are increasingly integrated into modern power systems and bring new challenges to power system operation and control. The influence of wind power integration on system oscillation...
International Nuclear Information System (INIS)
Bullock, J.C.; Kelley, B.E.
1977-01-01
A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Amplitude damping of vortex modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-09-01
Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...
Emittance damping considerations for TESLA
International Nuclear Information System (INIS)
Floettmann, K.; Rossbach, J.
1993-03-01
Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)
Vibration damping method and apparatus
Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.
1999-01-01
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.
Public health and economic impact of dampness and mold
Energy Technology Data Exchange (ETDEWEB)
Mudarri, David; Fisk, William J.
2007-06-01
The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.
Damping Measurements of Plasma Modes
Anderegg, F.; Affolter, M.; Driscoll, C. F.
2010-11-01
For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.
de Goeje, Marius; van Overbeek, Michiel Wilbert R.M.; van der Waal, Adri; Berkhoff, Arthur P.; Nederveen, Peter J.
2005-01-01
A semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping the vibrations in the wall or the panel with frequencies which are at least partly audible, wherein the semimanufacture is provided with a plate wherein the plate is integrated with: at least one
Power Oscillations Damping in DC Microgrids
Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang; Sheshyekani, Keyhan; Guerrero, Josep M.
2016-01-01
This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to a...
Energy Technology Data Exchange (ETDEWEB)
Wildschut, J. [Praktijkonderzoek Plant en Omgeving PPO, Bloembollen, Boomkwekerij en Fruit, Lisse (Netherlands); Langner-Noort, L. [DLV Plant, Wageningen (Netherlands)
2007-11-15
The project ‘Close the Valve’ has been initiated with the aim of demonstrating the energy conservation options through ethylene-controlled ventilation of tulip flower bulb. During previous meetings on the ethylene analyzer, there were some urgent questions about practical use: What happens with the ethylene content during an Actellic treatment?; What is the influence of the ethylene content in outdoor air?; How is the ethylene distribution in the storage room?; The supplementary research involved the effect of ethylene in outdoor air, the distribution of ethylene in the cold store, and the behavior of ethylene during the period of the Actellic treatment (Actellic is an insecticide) [Dutch] Het project 'Klep Dicht' is opgezet met als doel de energiebesparingsmogelijkheden door ethyleengestuurde ventilatie van tulpenbollen te demonstreren. Tijdens eerdere bijeenkomsten over de ethyleenanalyser, kwamen een aantal dringende vragen uit de praktijk naar voren: Wat gebeurt er met het ethyleengehalte tijdens een Actellic-behandeling?; Hoe zit het met de invloed van het ethyleengehalte in de buitenlucht?; Hoe zit het met de ethyleenverdeling in de bewaarruimte? Het aanvullende onderzoek betrof het effect van ethyleen in de buitenlucht, de verdeling van het ethyleen in de bewaarcel, en het gedrag van ethyleen tijdens de periode van de actellicbehandeling (actellic is een insecticide)
International Nuclear Information System (INIS)
Huybregts, Lieven; Salpeteur, Cecile; Houngbe, Freddy Gloria; Ait Aissa, Myriam; Kolsteren, Patrick
2014-01-01
Full text: Background: In Abeche town in eastern Chad, Action contre la Faim - France (ACF-France) implemented a food-based intervention during the seasonal ‘hunger gap’ in 2010. The objectives were to assess the acceptability, effectiveness and cost-effectiveness of RUSF to prevent acute malnutrition or wasting (WH <80% of the median of NCHS reference and/or presence of bilateral pitting edema) among children 6-36 months living in vulnerable households. Method: The study was a two-arm cluster randomized controlled intervention. All enrolled households in the project received a monthly food package provided by World Food Program (WFP), estimated to cover approximately 1800 kcal/day. Number of food rations received per household was proportional to its size. The intervention group was given a daily 46g of RUSF (Plumpy Doz®, Nutriset, Malaunay, France) during 6 months. A follow up visit was organized 2 months after the last distribution. All analyses were done on an intention-to-treat basis. All the data were double entered in EpiData version 3.1. Statistical analyses were conducted using STATA 11.2 (Statacorp, USA). The statistical significance for all analyses was set at 5% and all tests were two-sided. Results: In the end, the intervention achieved a sample of 1038 children. Adding RUSF to a package of monthly household food rations did not result in an important reduction in cumulative incidence of wasting (Incidence Risk Ratio: 0.86; 95%CI: 0.67, 1.11; P = 0.25). However, the intervention group had a modestly higher Height-for-Age gain (+0.03 Z-score per month; 95%CI: 0.02, 0.05; P<0.001). In addition, children from the intervention group had a significantly higher hemoglobin concentration at the end of the study compared to children from the control group (+3.8g/L; 95%CI: 0.6, 7.0; P = 0.02), thereby reducing the odds of anemia (Odds Ratio: 0.52; 95%CI: 7.1, 23.9; P = 0.004). Adding RUSF also resulted in a significantly lower risk of self-reported diarrhea
Damping ring designs and issues
International Nuclear Information System (INIS)
Wolski, Andrzej; Decking, Winfried
2003-01-01
The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed
The Microstructural Basis of Damping in High Damping Alloys
1989-09-01
This transformation is diffusionless and is characterized by the cooperative movement of atoms in a given section of crystal. Removal of the stress...martensites. The cooperative movement of atoms causes large internal friction and high damping. The temperature range in which this transformation can
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-05-13
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design
Private Supplementary Tutoring in the Czech Republic
Štastný, Vít
2016-01-01
The study contributes to the literature on private supplementary tutoring by shedding light on this phenomenon in the Czech Republic. The aim of the paper is to identify the reasons for seeking out private supplementary tutoring and to assess the factors underlying its demand. In the representative sample of 1,265 senior upper-secondary school…
Entrywise Squared Transforms for GAMP Supplementary Material
DEFF Research Database (Denmark)
2016-01-01
Supplementary material for a study on Entrywise Squared Transforms for Generalized Approximate Message Passing (GAMP). See the README file for the details.......Supplementary material for a study on Entrywise Squared Transforms for Generalized Approximate Message Passing (GAMP). See the README file for the details....
Directory of Open Access Journals (Sweden)
Yu-qi Liu
2015-01-01
Full Text Available Deqi, according to traditional Chinese medicine, is a specific needle sensation during the retention of needles at certain acupoints and is considered to be necessary to produce therapeutic effects from acupuncture. Although some modern researches have showed that Deqi is essential for producing acupuncture analgesia and anesthesia, the data are not enough. It is a paper of a multicenter, randomized controlled study protocol, to evaluate the influences of Deqi on acupuncture SP6 in Cold and Dampness Stagnation pattern primary dysmenorrhea patients, in terms of reducing pain and anxiety, and to find out the relationship between Deqi and the temperature changes at SP6 (Sanyinjiao and CV4 (Guanyuan. The results of this trial will be helpful to explain the role of Deqi in acupuncture analgesia and may provide a new objective index for measuring Deqi in the future study. This trial is registered with ChiCTR-TRC-13003086.
High-performance feedback-type active damping of LCL-filtered voltage source converters
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2015-01-01
a generalized impedance-based model of grid current control with feedback-type active damping. Then, a controller design method based on the z-domain root contours and frequency-domain passivity theorem is proposed. It not only allows a co-design of the grid current controller and damping controller......Active damping of LCL-filter resonance based on single-state feedback control is widely used with voltage source converters. Its robustness against grid impedance variation has always been a major concern with its controller design. To deal with this issue, this paper begins by developing......, but ensures also a robust stabilization against the grid parameters variations. For illustration, the approach is applied to design three single-state feedback-damping schemes, and their damping robustness are compared under both inductive and resonant grid impedances. Experimental results validate...
Rotational damping motion in nuclei
International Nuclear Information System (INIS)
Egido, J.L.; Faessler, A.
1991-01-01
The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)
Dampness in buildings and health
DEFF Research Database (Denmark)
Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.
2001-01-01
Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem...
Nonlocal quasilinear damped differential inclusions
Directory of Open Access Journals (Sweden)
Mouffak Benchohra
2002-01-01
Full Text Available In this paper we investigate the existence of mild solutions to second order initial value problems for a class of damped differential inclusions with nonlocal conditions. By using suitable fixed point theorems, we study the case when the multivalued map has convex and nonconvex values.
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it
Damped Oscillator with Delta-Kicked Frequency
Manko, O. V.
1996-01-01
Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.
Nuclear piping system damping data studies
International Nuclear Information System (INIS)
Ware, A.G.; Arendts, J.G.
1985-01-01
A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)
Supplementary speed control for wind power smoothing
Haan, de J.E.S.; Frunt, J.; Kechroud, A.; Kling, W.L.
2010-01-01
Wind fluctuations result in even larger wind power fluctuations because the power of wind is proportional to the cube of the wind speed. This report analyzes wind power fluctuations to investigate inertial power smoothing, in particular for the frequency range of 0.08 - 0.5 Hz. Due to the growing
Ultra-low magnetic damping in metallic and half-metallic systems
Shaw, Justin
The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.
Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters
DEFF Research Database (Denmark)
Huang, Min; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL......-filter is introduced. Based on this active damping method, a design procedure for the controller is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....
Damping characteristics of reinforced concrete structures
International Nuclear Information System (INIS)
Hisano, M.; Nagashima, I.; Kawamura, S.
1987-01-01
Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant
Transit-Time Damping, Landau Damping, and Perturbed Orbits
Simon, A.; Short, R. W.
1997-11-01
Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.
Grid-Current-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
This paper investigates active damping of LCL-filter resonance in a grid-connected voltage-source converter with only grid-current feedback control. Basic analysis in the s-domain shows that the proposed damping technique with a negative high-pass filter along its damping path is equivalent...... of phase-lag, in turn, helps to shrink the region of nonminimum-phase behavior caused by negative virtual resistance inserted unintentionally by most digitally implemented active damping techniques. The presented high-pass-filtered active damping technique with a single grid-current feedback loop is thus...
Development of new damping devices for piping
International Nuclear Information System (INIS)
Kobayashi, Hiroe
1991-01-01
An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)
Route Flap Damping Made Usable
Pelsser, Cristel; Maennel, Olaf; Mohapatra, Pradosh; Bush, Randy; Patel, Keyur
The Border Gateway Protocol (BGP), the de facto inter-domain routing protocol of the Internet, is known to be noisy. The protocol has two main mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately, RFD was found to severely penalize sites for being well-connected because topological richness amplifies the number of update messages exchanged. So most operators have disabled it. Through measurement, this paper explores the avenue of absolutely minimal change to code, and shows that a few RFD algorithmic constants and limits can be trivially modified, with the result being damping a non-trivial amount of long term churn without penalizing well-behaved prefixes' normal convergence process.
Modelling of Dampers and Damping in Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess
2006-01-01
and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...
SUPPLEMENTARY INFORMATION Non-oxidative methane ...
Indian Academy of Sciences (India)
dell
SUPPLEMENTARY INFORMATION. Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1-x ZSM-5 derived from pretreatment. BUDDE PRADEEP KUMAR, ARVIND KUMAR SINGH and SREEDEVI UPADHYAYULA*. Heterogeneous Catalysis & Reaction Engineering Laboratory, Department of ...
Experiences from polio supplementary immunization activities in ...
African Journals Online (AJOL)
2014-05-31
May 31, 2014 ... lessons from supplementary immunization activities (SIAs) conducted in the State that will be useful to ... Poliovirus invades the central nervous system and causes ..... The vaccine wastage rate of 6.6% was slightly higher.
Convention on supplementary compensation for nuclear damage
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-07-22
The document reproduces the text of the Convention on Supplementary Compensation for Nuclear Damage which was adopted on 12 September 1997 by a Diplomatic Conference held between 8-12 September 1997 in Vienna
Convention on supplementary compensation for nuclear damage
International Nuclear Information System (INIS)
1998-01-01
The document reproduces the text of the Convention on Supplementary Compensation for Nuclear Damage which was adopted on 12 September 1997 by a Diplomatic Conference held between 8-12 September 1997 in Vienna
A Family of Resonant Vibration Control Formats
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
resulting modes exhibit identical damping ratio. This tuning is independent of the imposed controller damping. The controller damping is then selected as an optimal compromise between too small damping, and too large damping at which the modal frequencies coincide, and thereby produce undesirable...
Sheath waves, non collisional dampings
International Nuclear Information System (INIS)
Marec, Jean Lucien Ernest
1974-01-01
When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr
The DAMPE silicon tungsten tracker
Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D
2017-01-01
The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...
Nonlinear damping based semi-active building isolation system
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
Sound Power Minimization of Circular Plates Through Damping Layer Placement
Wodtke, H.-W.; Lamancusa, J. S.
1998-09-01
Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.
Enhanced Stability of Capacitor-Current Feedback Active Damping for LCL-Filtered Grid Converters
DEFF Research Database (Denmark)
Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve...
An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships
Directory of Open Access Journals (Sweden)
Jin Sun
2017-03-01
Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.
Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis
Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.
1994-01-01
Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.
Magnetically tuned mass dampers for optimal vibration damping of large structures
International Nuclear Information System (INIS)
Bourquin, Frederic; Siegert, Dominique; Caruso, Giovanni; Peigney, Michael
2014-01-01
This paper deals with the theoretical and experimental analysis of magnetically tuned mass dampers, applied to the vibration damping of large structures of civil engineering interest. Two devices are analysed, for which both the frequency tuning ratio and the damping coefficient can be easily and finely calibrated. They are applied for the damping of the vibrations along two natural modes of a mock-up of a bridge under construction. An original analysis, based on the Maxwell receding image method, is developed for estimating the drag force arising inside the damping devices. It also takes into account self-inductance effects, yielding a complex nonlinear dependence of the drag force on the velocity. The analysis highlights the range of velocities for which the drag force can be assumed of viscous type, and shows its dependence on the involved geometrical parameters of the dampers. The model outcomes are then compared to the corresponding experimental calibration curves. A dynamic model of the controlled structure equipped with the two damping devices is presented, and used for the development of original optimization expressions and for determining the corresponding maximum achievable damping. Finally, several experimental results are presented, concerning both the free and harmonically forced vibration damping of the bridge mock-up, and compared to the corresponding theoretical predictions. The experimental results reveal that the maximum theoretical damping performance can be achieved, when both the tuning frequencies and damping coefficients of each device are finely calibrated according to the optimization expressions. (paper)
0-6717 : investigation of alternative supplementary cementing materials (SCMs) : [project summary].
2014-08-01
In Texas, Class F fly ash is extensively used as a : supplementary cementing material (SCM) : because of its ability to control thermal cracking : in mass concrete and to mitigate deleterious : expansions in concrete from alkali-silica reaction : (AS...
Bunch length measurements in the SLC damping ring
International Nuclear Information System (INIS)
Decker, F.J.; Limberg, T.; Minty, M.; Ross, M.
1993-05-01
The synchrotron light of the SLC damping ring was used to measure the bunch length with a streak camera at different times in the damping cycle. There are bunch length oscillations after injection, different equilibrium length during the cycle due to rf manipulations to avoid microwave instability oscillations, and just before extraction there is a longitudinal phase space rotation (bunch muncher) to shorten the bunch length. Measurements under these different conditions are presented and compared with BPM pulse height signals. Calibration and adjustment issues and the connection of the streak camera to the SLC control system are also discussed
Structural Damping with Friction Beams
Directory of Open Access Journals (Sweden)
L. Gaul
2008-01-01
Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode
Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels
Gambino, Carlo
Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.
Environmentally friendly control measures for soil-borne plant pathogens are needed that are effective in different soils when applied alone or as components of an integrated disease control strategy. Ethanol extracts of Serratia marcescens N4-5 when applied as a cucumber seed treatment effectively ...
DEFF Research Database (Denmark)
Borg, Bindi; Mihrshahi, Seema; Griffin, Mark
2018-01-01
-based nutrient supplement (LNS) has been developed for use as an RUSF. Unlike most RUSFs, which contain milk, this product contains fish as the animal protein. Few RUSFs have been formulated using non-milk animal-source foods and they have not been widely tested. An acceptability trial that was conducted......-needed data on the effectiveness of supplementary foods with an animal-source food other than milk, by comparing a novel RUSF based on fish to one that uses milk (CSB++). Moreover, it will deepen the understanding of the impact of multiple micronutrients provided with or without macronutrients, by comparing......Background: Existing ready-to-use supplementary and therapeutic foods (RUSFs and RUTFs) have had limited acceptance and effectiveness in Cambodia. This has hampered the treatment and prevention of child malnutrition. An innovative, locally produced, multiple micronutrient fortified lipid...
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Damping rates of the SRRC storage ring
International Nuclear Information System (INIS)
Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.
1995-01-01
The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude
Anisotropic damping of Timoshenko beam elements
Energy Technology Data Exchange (ETDEWEB)
Hansen, M.H.
2001-05-01
This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)
Swing Damping for Helicopter Slung Load Systems using Delayed Feedback
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
2009-01-01
This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...
Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection
Energy Technology Data Exchange (ETDEWEB)
Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-12-01
This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.
1991-08-01
SUPPLEMENTARY NOTATION Pages AAC-1 through DCC-19 17. COSATI CODES FIELD GROUP SU8 -GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and...Direct Complex Stiffness Method Bradley R. Allen and Earl Pinson Direct Measurement of the Dynamic Material Properties of Polymers EB A for Low...half of the members are in nonmetallic industries ( many are in polymer industries ) and belong to the maker’s side of damping materials. About 35
Contribution to the damping identification: experimental and numerical approaches
International Nuclear Information System (INIS)
Crambuer, R.
2013-01-01
behaviour but also on the damping and the cracking. It was thereby possible to relate the damping to the damage, the intensity of the load and the erosion of the crack surfaces. These tests were then modeled on various physical laws of behaviour. One law proved to be relevant for this type of study, and this was backed-up during a numerical campaign of drop tests. In the latter, the energy dissipation that occurred during the loading/unloading cycle are taken into account on a hysteretic scheme, controlled in strain. The behaviour law thus identified allowed us to develop a simplified model to be used during probabilistic assessments. This model is based on a behaviour law without a hysteretic scheme, coupled with the updating of viscous damping. It is carried out according to the evolutions of the mechanical properties of the structure such as the damage or erosion of the crack surfaces and the load. Different updates of the damping were developed and subjected to a series of mono axial seismic tests on a column. The model in which the damping was achieved as a direct result of the damage caused and the intensity of the load displayed a realistic behaviour and can therefore be considered relevant. (author) [fr
An Empirical Method for Particle Damping Design
Directory of Open Access Journals (Sweden)
Zhi Wei Xu
2004-01-01
Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien
2016-01-01
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Bonnington, Colin; Gaston, Kevin J; Evans, Karl L
2014-01-01
Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds' nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK) we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding.
Directory of Open Access Journals (Sweden)
Colin Bonnington
Full Text Available Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds' nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding.
Novel cloning machine with supplementary information
International Nuclear Information System (INIS)
Qiu Daowen
2006-01-01
Probabilistic cloning was first proposed by Duan and Guo. Then Pati established a novel cloning machine (NCM) for copying superposition of multiple clones simultaneously. In this paper, we deal with the novel cloning machine with supplementary information (NCMSI). For the case of cloning two states, we demonstrate that the optimal efficiency of the NCMSI in which the original party and the supplementary party can perform quantum communication equals that achieved by a two-step cloning protocol wherein classical communication is only allowed between the original and the supplementary parties. From this equivalence, it follows that NCMSI may increase the success probabilities for copying. Also, an upper bound on the unambiguous discrimination of two nonorthogonal pure product states is derived. Our investigation generalizes and completes the results in the literature
Stability analysis and active damping for LLCL-filter based grid-connected inverters
DEFF Research Database (Denmark)
Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....
Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops
Energy Technology Data Exchange (ETDEWEB)
Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)
2017-09-10
We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.
Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops
International Nuclear Information System (INIS)
Montes-Solís, María; Arregui, Iñigo
2017-01-01
We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.
Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism
Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui
2012-09-01
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
SUPPLEMENTARY INFORMATION Synthesis and Molecular ...
Indian Academy of Sciences (India)
APOORVA MISRA
Effect of test compounds on growth pattern of E. coli and S. aureus……...19. S28: Binding mode ... cells after treatment with compound 6 at their respective IC50 ... l d e n s ity. (3. 2. 0 n m. ) 0. 4. 8. 12. 16. 20. 24. 0.0. 0.1. 0.2. 0.3. 0.4. 0.5. Control.
Damping-off in forest nurseries
Carl Hartley
1921-01-01
Damping-off is the commonest English name for a symptomatic group of diseases affecting great numbers of plant species of widely separated phylogenetic groups. It is commonly used for any disease which results in the rapid decay of young succulent seedlings or soft cuttings. Young shoots from underground rootstocks may also be damped-off before they break through the...
Beam dynamic issues in TESLA damping ring
International Nuclear Information System (INIS)
Shiltsev, V.
1996-05-01
In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs
On Collisionless Damping of Ion Acoustic Waves
DEFF Research Database (Denmark)
Jensen, Vagn Orla; Petersen, P.I.
1973-01-01
Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....
Study for ILC Damping Ring at KEKB
Energy Technology Data Exchange (ETDEWEB)
Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC
2011-11-04
ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.
7 CFR 1770.12 - Supplementary accounts.
2010-01-01
... AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS TELECOMMUNICATIONS BORROWERS Uniform System of... shall be changed to conform with the State's accounting system. (b) In addition to the accounts set forth in § 1770.15, cooperative or other nonprofit borrowers shall maintain the supplementary accounts...
SUPPLEMENTARY INFORMATION Protonation of the imino ...
Indian Academy of Sciences (India)
Ashish
SUPPLEMENTARY INFORMATION. Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. ASHISH SINGH, KHALID BADI-UZ ZAMA and GURUNATH RAMANATHAN*. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India. 208 016.
7 CFR 900.310 - Supplementary instructions.
2010-01-01
... Conduct of Referenda To Determine Producer Approval of Milk Marketing Orders To Be Made Effective Pursuant to Agricultural Marketing Agreement Act of 1937, as Amended § 900.310 Supplementary instructions. The... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...
18 CFR 706.405 - Supplementary statements.
2010-04-01
... employee shall at all times avoid acquiring a financial interest that could result, or taking an action... EMPLOYEE RESPONSIBILITIES AND CONDUCT Statements of Employment and Financial Interests § 706.405... employment and financial interests shall be reported in a supplementary statement, in the format prescribed...
Supplementary material for: The adaptive synchronization of ...
Indian Academy of Sciences (India)
Supplementary material for: The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters. ADELEH NOURIAN and SAEED BALOCHIAN. -50. -40. -30. -20. -10. 0. 10. 20. 30. 40. -25. -20. -15. -10. -5. 0. 5. 10. 15. 20. 25. Y. Z. -12. -10. -8. -6. -4. -2. 0. 2. 4. 6. 8. -25. -20. -15. -10. -5. 0. 5. 10. 15.
Supplementary data: Comparative studies on sequence ...
Indian Academy of Sciences (India)
Unknown
Page 1. Supplementary data: Comparative studies on sequence characteristics around translation initiation codon in four eukaryotes. Qingpo Liu and Qingzhong Xue. J. Genet. 84, 317–322. Table 1. Spearman's rank correlation coefficients of 39 base positions around the AUG codon in the four eukaryotic species studied.
Supplementary household water sources to augment potable ...
African Journals Online (AJOL)
This paper addresses on-site supplementary household water sources with a focus on groundwater abstraction, rainwater harvesting and greywater reuse as available non-potable water sources to residential consumers. An end-use model is presented and used to assess the theoretical impact of household water sources ...
SUPPLEMENTARY INFORMATION Temperature effects on the ...
Indian Academy of Sciences (India)
Windows User
SUPPLEMENTARY INFORMATION. Temperature effects on the hydrophobic force between two graphene-like surfaces in liquid water. TUHIN SAMANTA and BIMAN BAGCHI. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560. 012, India. Table of Contents. Figure S1. Page 2.
Supplementary data: Eucalyptus microsatellites mined in silico ...
Indian Academy of Sciences (India)
Supplementary data: Eucalyptus microsatellites mined in silico: survey and evaluation. R. Yasodha, R. Sumathi, P. Chezhian, S. Kavitha and M. Ghosh. J. Genet. 87, XX-XX. Tm. CT. 2222. NA. 60 125. 192. Table 1. List of EST-SSR primers developed for E. globulus. No. of. Tm Product. Acc. no. SSR repeats. Forward primer.
Supplementary data: Materials and methods RNA expression ...
Indian Academy of Sciences (India)
ritt8
Supplementary data: Materials and methods. RNA expression analysis. Freshly collected tissue was taken in TRIzol reagent for total RNA isolation according to the manufacturer's protocol. The cDNA synthesis was carried out in 1 μg total RNA using Random hexamer (Invitrogen, Carlsbad, USA) and Superscript III ...
29 CFR 1960.18 - Supplementary standards.
2010-07-01
... agency employees for which there exists no appropriate OSHA standards. In order to avoid any possible... adopted inconsistent with OSHA standards, or inconsistent with OSHA enforcement practices under section 5... of this finding. In such a case, the supplementary standard shall not be adopted, but the agency will...
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
Methods of and system for swing damping movement of suspended objects
Jones, J.F.; Petterson, B.J.; Strip, D.R.
1991-03-05
A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.
Identification of Damping from Structural Vibrations
DEFF Research Database (Denmark)
Bajric, Anela
Reliable predictions of the dynamic loads and the lifetime of structures are inﬂuenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from ﬁrst principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identiﬁcation of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The ﬁrst part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...
Swing damped movement of suspended objects
International Nuclear Information System (INIS)
Jones, J.F.; Petterson, B.J.; Werner, J.C.
1990-01-01
Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented
Overview on methods for formulating explicit damping matrices for non-classically damped structures
International Nuclear Information System (INIS)
Xu, J.
1998-04-01
In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature
Structural damage identification using damping: a compendium of uses and features
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions
Improving supplementary feeding in species conservation.
Ewen, John G; Walker, Leila; Canessa, Stefano; Groombridge, Jim J
2015-04-01
Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for
Yang, H. Q.; West, Jeff
2018-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Evaluation of TLCD Damping Factor from FRF Measurement Due to Variation of the Fluid Viscosity
Son, Lovely
2016-01-01
Tuned Liquid Column Damper (TLCD) has become an alternative solution for reducing low frequency vibration response of machines and structures. This is not surprisingly that the damper has simply structure and low maintenance cost. The main disadvantage of using TLCD is the complexity in controlling TLCD damping factor experimentally. Theoretically, damping factor can be controlled by adjusting the orifice dimension. However, this method is time consuming and not appropriate conducted in the r...
SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters
DEFF Research Database (Denmark)
Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....
Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants
DEFF Research Database (Denmark)
Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon
2016-01-01
The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...
Directory of Open Access Journals (Sweden)
Ika Rochdjatun Sastrahidayat
2011-02-01
Full Text Available One of the obstacles in the efforts to increase soybean production in Indonesia is disease such as damping off which is caused by Sclerotium rolfsii. In East Java, the intensity of S. Rolfsii reached approximately 8.61% that spread all over Indonesia region, even in our neighbor countries such as Malaysia, Thailand and the Philippines. This research was carried out to determine the efficacy of Actinomycetes and VAM (Vesicular Arbuscular Mycorrhizal against damping-off attack and the diversity of micro-organisms in rhizosfer. Research conducted in the laboratory and screen house on Plant Protection Department, Faculty of Agriculture, University of Brawijaya and in Lawang District Malang. Observation variables include level of pathogen attack and infection rate of damping-off pathogen. Plant height, number of pods, pod weight, seed weight and weight of 100 seeds from each treatment, diversity and identification of microorganisms in rhizosphere were also observed. The results showed that Actinomycetes and VAM application could decrease the percentage of plant death due to damping-off. Application of Actinomycetes and VAM gave effect on microorganism diversity of Ratai Rhizosphere but not on Wilis.
International Nuclear Information System (INIS)
Nazeer, M.M.; Khan, A.F.; Shah, R.H; Afzal, M.; Ahmed, N.
2001-01-01
The loose spring skirt clearance is the major factor effecting the damping and amplitude control of randomly excited vibrations in a vertically hanging cantilever. However, the spring's mounting position also has an important role to play. In this work, the results of computational model as well as that of experimental set-up for various spring mounting positions having optimum annular clearance between skirted member and the skirt are presented and their vibration damping response is analyzed. It is observed that lower is the mounting position, the better is the damping and its maximum value is attained when the bottom end of spring skirt and the hanging cantilever are mutually flushed. (author)
Enhanced damping for bridge cables using a self-sensing MR damper
Chen, Z. H.; Lam, K. H.; Ni, Y. Q.
2016-08-01
This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.
Lifetime measurement of ATF damping ring
International Nuclear Information System (INIS)
Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.
1998-06-01
The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements
Optimal Damping of Perturbations of Moving Thermoelastic Panel
Banichuk, N. V.; Ivanova, S. Yu.
2018-01-01
The translational motion of a thermoelastic web subject to transverse vibrations caused by initial perturbations is considered. It is assumed that a web moving with a constant translational velocity is described by the model of a thermoelastic panel simply supported at its ends. The problem of optimal damping of vibrations when applying active transverse actions is formulated. For solving the optimization problem, modern methods developed in control theory for systems with distributed parameters described by partial differential equations are used.
Electric Generator in the System for Damping Oscillations of Vehicles
Serebryakov A.; Kamolins E.; Levin N.
2017-01-01
The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...
Medical Progress and Supplementary Private Health Insurance
Reiner Leidl
2003-01-01
In many welfare states, tightening financial constraints suggest excluding some medical services, including new ones, from social security coverage. This may create opportunities for private health insurance. This study analyses the performance of supplementary private health insurance (SPHI) in markets for excluded services in terms of population covered, risk selection and insurer profits. Using a utility-based simulation model, the insurance market is described as a composite of sub-market...
Sub-synchronous resonance damping using high penetration PV plant
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
Resonant Electromagnetic Shunt Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...
Offline software for the DAMPE experiment
Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin
2017-10-01
A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science
Simplified Model of Nonlinear Landau Damping
International Nuclear Information System (INIS)
Yampolsky, N.A.; Fisch, N.J.
2009-01-01
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Electron beam depolarization in a damping ring
International Nuclear Information System (INIS)
Minty, M.
1993-04-01
Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms
Damping Wiggler Study at KEK-ATF
Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank
2005-01-01
The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.
Damping of type III solar radio bursts
International Nuclear Information System (INIS)
Levin, B.N.
1982-01-01
The meter- and decameter-wavelength damping of type III bursts may be attributable to stabilization of the Langmuir-wave instability of the fast-electron streams through excitation of cyclotron-branch plasma waves
International Nuclear Information System (INIS)
Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi
2010-01-01
This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system
Proceedings of Damping Volume 1 of 3
1993-06-01
paper. This work will present a passive piezoelectric damping implementation on ASTREX, a large space structure. The motivation behind this research is...Presented at Damping San Francisco, CA February 24-26, 1993 Motivation "• Accurate design of precision structures "* Computer modelling - Design...14) (KI f(0)/Fl,.) FRom equations (3) and (6), Young’s modulus of rubber specimen is written as; L Ea-K (15) A E - EJ(I+ PS4 ) (16) NONRESONANT TEST
Quantum damped oscillator I: Dissipation and resonances
International Nuclear Information System (INIS)
Chruscinski, Dariusz; Jurkowski, Jacek
2006-01-01
Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator
International Nuclear Information System (INIS)
Edme, R.
1983-01-01
If a dynamic response analysis (harmonic excitation) is carried out with the modal method, the modal damping coefficients must be approximated to match the structural damping. The program ASKA-Damping, which also supplies an error assessment of the approximation, was developed for this purpose. The modal method and the direct method are applied to a test example and their results compared. It is suggested that the ASKA manufacturers extend the spectral earthquake response analysis to take these modal damping coefficients into account so that the results become less conservative. (orig.) [de
Electromagnetic damping of neutron star oscillations
International Nuclear Information System (INIS)
McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.
1984-01-01
Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr
Piping system damping data at higher frequencies
International Nuclear Information System (INIS)
Ware, A.G.
1987-01-01
Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs
Supplementary oxygen and risk of childhood lymphatic leukaemia.
Naumburg, E; Bellocco, R; Cnattingius, S; Jonzon, A; Ekbom, A
2002-01-01
Childhood leukaemia has been linked to several factors, such as asphyxia and birthweight, which in turn are related to newborn resuscitation. Based on the findings from a previous study a population-based case-control study was performed to investigate the association between childhood leukaemia and exposure to supplementary oxygen and other birth-related factors. Children born in Sweden and diagnosed with lymphatic leukaemia between 1973 and 1989 (578 cases) were individually matched by gender and date of birth to a randomly selected control. Children with Down's syndrome were excluded. Exposure data were blindly gathered from antenatal, obstetric and other standardized medical records. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated by conditional logistic regression. Resuscitation with 100% oxygen with a facemask and bag immediately postpartum was significantly associated with an increased risk of childhood lymphatic leukaemia (OR = 2.57, 95% Cl 1.21-6.82). The oxygen-related risk further increased if the manual ventilation lasted for 3 min or more (OR = 3.54, 95% CI 1.16-10.80). Low Apgar scores at 1 and 5 min were associated with a non-significantly increased risk of lymphatic leukaemia. There were no associations between lymphatic leukaemia and supplementary oxygen later in the neonatal period or other birth-related factors. Resuscitation with 100% oxygen immediately postpartum is associated with childhood lymphatic leukaemia, but further studies are warranted to confirm the findings.
Some Passive Damping Sources on Flooring Systems besides the TMD
DEFF Research Database (Denmark)
Pedersen, Lars
2010-01-01
Impulsive loads and walking loads can generate problematic structural vibrations in flooring-systems. Measures that may be taken to mitigate the problem would often be to consider the implementation of a tuned mass damper or even more advanced vibration control technologies; this in order to add...... damping to the structure. Basically also passive humans on a floor act as a damping source, but it also turns out from doing system identification tests with a floor strip that a quite simple set-up installed on the floor (cheap and readily at hand) might do a good job in terms of reducing vertical floor...... vibrations for some floors. The paper describes the tests with the floor strip, and the results, in terms of dynamic floor behaviour, are compared with what would be expected had the floor instead been equipped with a tuned mass damper....
Vibration damping with negative capacitance shunts: theory and experiment
International Nuclear Information System (INIS)
De Marneffe, B; Preumont, A
2008-01-01
This paper analyzes in detail the enhancement of piezoelectric stack transducers by means of the well known 'negative' capacitive shunting. The stability is thoroughly studied: starting from the electrical admittance curve of the transducer, a method is introduced that quantifies the stability margins of the shunted structure. Two different implementations (series vs parallel) are investigated, and the lack of robustness of the parallel one is demonstrated. Next, this technique is experimentally applied on a truss structure. Its performances are compared with those of passive shunt circuits and with those of an active control law, the so-called Integral Force Feedback or IFF. As expected, the damping introduced by the negative capacitance shunt is larger than the damping obtained with the passive shunts; it remains, however, one order of magnitude smaller than that obtained with the IFF
Design for a practical, low-emittance damping ring
International Nuclear Information System (INIS)
Krejcik, P.
1988-01-01
The luminosity requirements for future high-energy linear colliders calls for very low emittances in the two beams. These low emittances can be achieved with damping rings, but, in order to reach the design goal of a factor 10 improvement over present day machines, great care must be taken in their design. This paper emphasizes the need to address simultaneously all of the factors which limit the operational emittance in the ring. Particularly since in standard designs there is a conflict between different design parameters which makes it difficult to extrapolate such designs to very low emittances. The approach chosen here is to resolve such conflicts by separating their design solutions. Wigglers are used predominantly in zero-dispersion regions to achieve the desired damping rate, whereas in the arcs high dispersion insertions are made in regions of zero curvature to allow for easier chromaticity control
Human-in-the-loop evaluation of RMS Active Damping Augmentation
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters
DEFF Research Database (Denmark)
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2017-01-01
Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the reso......Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp...... the resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating...... the original damping. In this paper, the effectiveness of the notch filter based active damping is firstly explored, considering the drifts of the resonant frequency. It is revealed that, when the resonant frequency drifts away from its nominal value, the phase lead or lag introduced by the notch filter may...
Modeling and analysis of rotating plates by using self sensing active constrained layer damping
Energy Technology Data Exchange (ETDEWEB)
Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)
2012-10-15
This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.
Modeling and analysis of rotating plates by using self sensing active constrained layer damping
International Nuclear Information System (INIS)
Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian
2012-01-01
This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics
Report of the supplementary measuring program Chernobyl
International Nuclear Information System (INIS)
Vaas, L.H.
1988-06-01
In this report, which is a continuation of the report of the Dutch Coordination Commission for measurement of Radioactivity and Xenobiotic materials (CCRX) ''Radioactive contamination in the Netherlands caused by the reactor accident in Chernobylsk'' of October 1986, the results are discussed of the supplementary measuring programme, till October 1st 1987, and a survey is given of the state of affairs with regard to the execution of the recommendations from the first Chernobylsk report. (H.W.). 53 refs.; 28 figs.; 50 tabs
Gamma irradiation induced effects of butyl rubber based damping material
Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong
2018-04-01
The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.
Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves
Fibich, G.; Ilan, B.; Tsynkov, S.
2002-01-01
The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.
DEFF Research Database (Denmark)
Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan
2002-01-01
Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....
Numerical studies of shear damped composite beams using a constrained damping layer
DEFF Research Database (Denmark)
Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard
2008-01-01
Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Damping in heat exchanger tube bundles. A review
International Nuclear Information System (INIS)
Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif
2007-01-01
Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)
Nuclear power plant piping damping parametric effects
International Nuclear Information System (INIS)
Ware, A.G.
1983-01-01
The NRC and EG and G Idaho are engaged in programs to evaluate piping-system damping, in order to provide realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping-system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping-system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects are included, and both short-and long-range goals of the program are outlined
Radiation damping in focusing-dominated systems
International Nuclear Information System (INIS)
Huang, Zhirong; Chen, Pisin; Ruth, R.D.
1995-01-01
A quasi-classical method is developed to calculate the radiation damping of a relativistic particle in a straight, continuous focusing system. In one limiting case where the pitch angle of the particle θ p is much larger than the radiation opening angle 1/γ, the radiation power spectrum is similar to synchrotron radiation and the relative damping rate of the transverse action is proportional to the relative energy loss rate. In the other limiting case where θ p much-lt 1/γ, the radiation is dipole in nature and the relative damping rate of the transverse action is energy-independent and is much faster than the relative energy rate. Quantum excitation to the transverse action is absent in this focusing channel. These results can be extended to bent systems provided that the focusing field dominates over the bending field
Damping of wind turbine tower vibrations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Pedersen, Mikkel Melters
Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...
Minimum wakefield achievable by waveguide damped cavity
International Nuclear Information System (INIS)
Lin, X.E.; Kroll, N.M.
1995-01-01
The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system
Quantization of the damped harmonic oscillator revisited
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Fresneda, R., E-mail: fresneda@gmail.co [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)
2011-04-11
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: We prove the local equivalence of two damped harmonic oscillator models. We find different high energy behaviors between the two models. Based on the local equivalence, we make a simple construction of the coherent states.
Quantization of the damped harmonic oscillator revisited
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Gitman, D.M.
2011-01-01
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: → We prove the local equivalence of two damped harmonic oscillator models. → We find different high energy behaviors between the two models. → Based on the local equivalence, we make a simple construction of the coherent states.
Damping in accelerators due to classical radiation
International Nuclear Information System (INIS)
Mills, F.E.
1962-01-01
The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)
Modulated Langmuir waves and nonlinear Landau damping
International Nuclear Information System (INIS)
Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.
1975-01-01
The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)
Damping of multispan heat exchanger tubes. Pt. 1: in gases
International Nuclear Information System (INIS)
Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.
1986-07-01
Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers
Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen
2017-12-01
As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
This paper investigates the active damping of LCL-filter resonance within single-loop grid current control of grid-connected voltage source converters. First, the basic analysis in the continuous s-domain reveals that the grid-current-feedback active damping forms a virtual impedance across...... in a digital control system. The instability induced by the negative virtual resistance, which is commonly experienced in the feedback-type active damping, can thus be avoided. A systematic design method of the highpass filter is also proposed by the help of root locus analysis in the discrete z-domain. Lastly...
Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter
DEFF Research Database (Denmark)
Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede
2016-01-01
For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...
DEFF Research Database (Denmark)
Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede
2014-01-01
that with grid-side current feedback the stability may be improved in parallel operation while for converter-side feedback, the stability of the current controller is always decreased compared with the single converter case. The proposed stability analysis and experimental tests demonstrates the theoretical......In this paper a comprehensive analysis of three passive damping methods is done under parallel operation of multiple current controlled voltage source converters. One could argue that a well damped LCL filter with no peaking in the output impedance and stable designed controllers will turn...
Swing Damping for Helicopter Slung Load Systems using Delayed Feedback
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
2009-01-01
of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...
National waste terminal storage program. Supplementary quality-assurance requirements
International Nuclear Information System (INIS)
Garland, D.L.
1980-01-01
The basic Quality Assurance Program Requirements standard for the National Waste Terminal Storage Program has been developed primarily for nuclear reactors and other fairly well established nuclear facilities. In the case of waste isolation, however, there are many ongoing investigations for which quality assurance practices and requirements have not been well defined. This paper points out these problems which require supplementary requirements. Briefly these are: (1) the language barrier, that is geologists and scientists are not familiar with quality assurance (QA) terminology; (2) earth sciences deal with materials that cannot be characterized as easily as metals or other materials that are reasonably homogeneous; (3) development and control of mathematical models and associated computer programs; (4) research and development
The Use of the Artificial Damped Outrigger Systems in Tall R.C Buildings Under Seismic Loading
Directory of Open Access Journals (Sweden)
Abbas Abd Elmajeed Allawi
2016-04-01
Full Text Available This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement. The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and this load will be applied at every floor of the building, giving a conservative solution. For dynamic study Response Spectrum Analysis was conducted and the behavior of the building was determined considering response parameters. MATLAB software, has been used in the dynamic analysis for three modes. For all modes, it is observed that the parallel system of dampers result in lower amplitude of vibration and achieved more efficiently compared to the damper is in series, until the parallel system arrives 100% damping for mode three.
Doubly Fed Induction Generator System Resonance Active Damping through Stator Virtual Impedance
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
(positive capacitor or negative inductor) into the stator branch through stator current feedforward control. The effectiveness of the DFIG system active damping control is verified by a 7.5 kW experimental down-scaled DFIG system, and simulation results of a commercial 2 MW DFIG system is provided as well....... converters/loads. This paper analyzes and explains first the HFR phenomenon between the DFIG system and a parallel compensated weak network (series RL + shunt C). Then on the basis of the DFIG system impedance modeling, an active damping control strategy is introduced by inserting a virtual impedance...... Frequency Resonance (HFR) due to the impedance interaction between the DFIG system and the weak grid network whose impedance is comparative large. Thus, it is important to implement an active damping for the HFR in order to ensure a safe and reliable operation of both the DFIG system and the grid connected...
Dry friction damping couple at high frequencies
Czech Academy of Sciences Publication Activity Database
Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena
2014-01-01
Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265
Chiral damping of magnetic domain walls
Jué , Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2015-01-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Piezoelectric RL shunt damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2015-01-01
in the present analysis is based on equal damping of the two modes associated with the resonant vibration form of the structure. An important result of the presented calibration procedure is the explicit inclusion of a quasi-static contribution from the non-resonant vibration modes of the structure via a single...
Stiffness and damping in mechanical design
National Research Council Canada - National Science Library
Rivin, Eugene I
1999-01-01
... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
BNS damping of beam breakup instability
International Nuclear Information System (INIS)
Stupakov, G.V.
1997-08-01
The author studies BNS damping of the beam breakup instability in a simple model assuming a constant beam energy, flat bunch distribution, and a smooth transverse focusing. The model allows an analytic solution for a constant and linear wake functions. Scaling dimensionless parameters are derived and the beam dynamics is illustrated for the range of parameters relevant to the Stanford Linear Collider
The DAMPE silicon–tungsten tracker
Energy Technology Data Exchange (ETDEWEB)
Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others
2016-09-21
The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.
Kicker for the SLC electron damping ring
International Nuclear Information System (INIS)
Bartelson, L.; Crawford, C.; Dinkel, J.; Kerns, Q.; Howell, J.; Snowdon, S.; Walton, J.
1987-01-01
The SLC electron damping ring requires two kickers each providing a 5 mr kick at 1.2 GEV to pairs of electron bunches spaced 61.63 nsec apart. The exact shape of the kick is unimportant, but the specification applies to the field the bunches see
Damping of liquid sloshing by foams
Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.
2015-02-01
When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.
Nuclear power plant piping damping parametric effects
International Nuclear Information System (INIS)
Ware, A.G.
1983-01-01
The present NRC guidelines for structural damping to be used in the dynamic stress analyses of nuclear power plant piping systems are generally considered to be overly conservative. As a result, plant designers have in many instances used a considerable number of seismic supports to keep stresses calculated by large scale piping computer codes below the allowable limits. In response to this problem, the NRC and EG and G Idaho are engaged in programs to evaluate piping system damping, in order to provide more realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects is included, and both short and long range goals of the program are outlined
Structural dynamic modification using additive damping
Indian Academy of Sciences (India)
elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.
Spatial Damping of Linear Compressional Magnetoacoustic Waves ...
Indian Academy of Sciences (India)
The uncertainty in the radiative relaxation time, how- ever, does .... For spatial damping, we take ω to be real and k to be complex as kR +ikI . The disper- ... bances may travel up in the solar atmosphere through the magnetic field lines that are.
A review of experimental soil-structure interaction damping
International Nuclear Information System (INIS)
Tsai, N.C.
1981-01-01
In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)
Damped time advance methods for particles and EM fields
International Nuclear Information System (INIS)
Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.
1990-01-01
Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Sté phane; Said-Houari, Belkacem
2011-01-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Improving supplementary feeding in species conservation
Ewen, John G; Walker, Leila; Canessa, Stefano; Groombridge, Jim J
2015-01-01
Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities. Mejoría de la Alimentación Suplementaria en la Conservación de Especies Resumen La alimentaci
Onset of chaos in Josephson junctions with intermediate damping
International Nuclear Information System (INIS)
Yao, X.; Wu, J.Z.; Ting, C.S.
1990-01-01
By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed
2011-05-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [Docket Number NIOSH-238] Draft Alert Entitled ``Preventing Occupational Respiratory Disease From Dampness in Office... Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. [FR Doc. 2011...
Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.
2012-01-01
In this paper, both collocated and noncollocated active vibration control (AVC) of a the vibrations in a motion system are considered. Pole-zero plots of both the AVC loop and the motion-control (MC) loop are used to analyze the effect of the applied active damping on the system dynamics. Using
12 CFR 528.1a - Supplementary guidelines.
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Supplementary guidelines. 528.1a Section 528.1a Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY NONDISCRIMINATION REQUIREMENTS § 528.1a Supplementary guidelines. The Office's policy statement found at 12 CFR 528.9 supplements...
19 CFR 200.735-117 - Supplementary statements.
2010-04-01
... under this section, each employee shall at all times avoid acquiring a financial interest that could... CONDUCT Provisions Governing Statements of Employment and Financial Interests § 200.735-117 Supplementary... and financial interests shall be reported in a supplementary statement as of June 30 each year. If no...
12038_2016_9620_Supplementary 1..3
Indian Academy of Sciences (India)
lactamases and integron-bearing gut bacteria. Supplementary material. Supplementary table 1. Prevalence of resistance factors in the bacterial strains isolated from Tilapia gut. Isolate code. Identification. IntI1. IntI2. blaSHV. blaOXA aac(6')-Ib-cr.
Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load
Directory of Open Access Journals (Sweden)
Zheng Lu
2017-02-01
Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.
Ottander, John A.; Hall, Robert A.; Powers, J. F.
2018-01-01
A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
DEFF Research Database (Denmark)
Ricchiuto, D.; Liserre, M.; Kerekes, Tamas
2011-01-01
Grid-connected converters usually employ an LCL-filter to reduce PWM harmonics. To avoid the wellknown stability problems it is requested to use either passive or active damping methods. Active damping methods avoid losses and preserve the filter effectiveness but they are more sensitive...... to parameters variation. In this paper the robustness of active damping methods is investigated considering those using only the same state variable (grid-side or converter-side current) normally used for current control (filter-based) or those methods using more state-variables (multiloop). Simulation...
Portability of supplementary pension rights in Europe
DEFF Research Database (Denmark)
Guardiancich, Igor
2015-01-01
In its effort to guarantee the free movement of workers, the European Union devised an advanced system of coordination of social security rights. Since 1958, statutory pensions are being aggregated for workers moving across the Member States. However, until mid-2014, the portability of supplement......In its effort to guarantee the free movement of workers, the European Union devised an advanced system of coordination of social security rights. Since 1958, statutory pensions are being aggregated for workers moving across the Member States. However, until mid-2014, the portability...... of supplementary pension rights was not assured, there by undermining the freedom to labor mobility. This impaired the efficient allocation of labor, prevented sound family planning, infringed the fundamental right to social protection and during the Great Recession, hindered the employability of workers across......, as opposed to the coordination of statutory ones, has been neglected and contested for a long time. Second, it illustrates the shortcomings of a patchy coordination- without-portability regime. Third, it enumerates the characteristics of the Portability Directive passed by the European Parliament in April...
Ismail, Nik Intan Nik; Kamaruddin, Shamsul
2017-12-01
Magnetorheological elastomers (MREs) are composite materials consist of micron-sized magnetizable particles carbonyl iron particles [CIPs]) embedded in a soft elastomer matrix. MRE technology offers variable stiffness and damping properties under the influence of a magnetic field. Herein, the feasibility of incorporating a new generation specialty rubber, Pureprena as a matrix for MREs was investigated. Pureprena or Deproteinised Natural Rubber (DPNR) is a specialty natural rubber that has good dynamic properties, particularly with respect to damping parameters. DPNR was compounded with 60 wt% of CIPs to fabricate MREs. The performance of the DPNR-based MRE was measured in terms of tensile strength, dynamic properties, and magnetorheological (MR) effect and compared with polyisoprene (IR)-based MRE with the same amount of CIPs. Dynamic Mechanical Analyzer (DMA) showed that the loss factor in the glass transition region of the DPNR-based MRE was higher than that of the IR-based MRE, indicating better damping properties. Further investigation was undertaken using a servo-hydraulic testing machine to characterise the effect of strain amplitude and frequency on the dynamic properties (e.g. damping coefficient) of MREs at zero magnetic fields. The results demonstrate that DPNR-based MREs possess a comparable damping coefficient to that of IR-based MREs. In addition, MR effect, which relates to the ratio between elastic modulus with applied magnetic field (on-state) to the same modulus without applied fields (off-state), was measured using a parallel plate rheometer. As a result, DPNR-based MREs have improved MR effect than that of IR-based MREs. Moreover, variable stiffness is obtained when the magnetic field was increased to 0.8T. Loss factor or tan δ of MREs was found to vary against different magnetic fields. Finally, MREs with varied stiffness and damping were found to have potential as active control devices for smart damping materials.
Energy Technology Data Exchange (ETDEWEB)
Paccini, Rodrigo de O.; Custodio, Diogo T.; Kopcak, Igor; Costa, Vivaldo F. da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Sistemas de Energia Eletrica], Emails: rodrigo@dsee.fee.unicamp.br, totti@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br.
2009-07-01
This article presents a study that evaluates the effectiveness of a DC link in order to damp power oscillations, of inter area exchange, under small disturbance conditions, operating with Automatic Control Generation. The DC link was represented by a power injection model included the Sensitivity Power Model. Through this representation, the DC link was inserted in the block diagram, modeled as an injection power in the bars terminals in the net active and reactive, closing a new power balance at every instant. It was also designed a controller for damping power oscillations (POD-Power Oscillation Damping Controller) for modulation the power of the DC link and, therefore, insertion of additional damping in a frequency oscillations of exchange lines. The results confirm that the DC link has a great potential for maintaining the damping of oscillations frequency so inter area when equipped with POD controllers.
Damping Estimation of Friction Systems in Random Vibrations
DEFF Research Database (Denmark)
Friis, Tobias; Katsanos, Evangelos; Amador, Sandro
Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...
An approach to the damping of local modes of oscillations resulting from large hydraulic transients
Energy Technology Data Exchange (ETDEWEB)
Dobrijevic, D.M.; Jankovic, M.V.
1999-09-01
A new method of damping of local modes of oscillations under large disturbance is presented in this paper. The digital governor controller is used. Controller operates in real time to improve the generating unit transients through the guide vane position and the runner blade position. The developed digital governor controller, whose control signals are adjusted using the on-line measurements, offers better damping effects for the generator oscillations under large disturbances than the conventional controller. Digital simulations of hydroelectric power plant equipped with low-head Kaplan turbine are performed and the comparisons between the digital governor control and the conventional governor control are presented. Simulation results show that the new controller offers better performances, than the conventional controller, when the system is subjected to large disturbances.
Damping of Crank–Nicolson error oscillations
DEFF Research Database (Denmark)
Britz, Dieter; Østerby, Ole; Strutwolf, J.
2003-01-01
The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one......-dimensional system with an initial singularity, subdivision of the first time interval into a number of equal subintervals (the Pearson method) works rather well, and so does division with exponentially increasing subintervals, where however an optimum expansion parameter must be found. This method can...... be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much...
Relativity damps OPEP in nuclear matter
International Nuclear Information System (INIS)
Banerjee, M.K.
1998-06-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M * /M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M * it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter
Damping system immersed in a fluid
International Nuclear Information System (INIS)
1980-01-01
The invention relates to a damping system which is immersed in a fluid and allows slow motion, while opposing fast motion of a mobile or deformable system immersed in a fluid. Nuclear reactors utilize fabricated assemblies immmersed in the spent fuel storage pool to support the fuel elements placed in the pool, e.g., when refueling the reactor. These fabricated assemblies must be held in position, relative to the concrete walls of the pool, so as to allow slow deformation of the assemblies due to thermal expansion, while curbing fast motion, e.g., earthquake-induced motion. Such fast motion due to earthquakes might be the cause of resonance phenomena involving the fuel storage rack structure and the pool walls, should the rack structure and pool walls have the same resonant frequency. In the event of an earthquake, the damping system would provide for fast curbing of structure motion to prevent uncontrolled deformation which might result in breaks and destruction [fr
Barotropic FRW cosmologies with Chiellini damping
Energy Technology Data Exchange (ETDEWEB)
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY
Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V
2009-01-01
A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.
System Reduction and Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... of the damped modes of the structure. The idea is to represent the damped mode as a linear combination of the modes that occur in two distinctly different situations representing extreme conditions: the mode shape of the structure without the damper(s), and the mode shape of the structure, when the damper...
Size effect related to damping caused by water submersion
International Nuclear Information System (INIS)
Dong, R.G.
1981-01-01
An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping
Tuned mass absorbers on damped structures under random load
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2008-01-01
the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....
Single bunch beam breakup in linacs and BNS damping
International Nuclear Information System (INIS)
Toyomasu, Takanori
1991-12-01
We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)
A review of damping of two-phase flows
International Nuclear Information System (INIS)
Hara, Fumio
1993-01-01
Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms
Multibunch resistive wall instability damping with feedback
International Nuclear Information System (INIS)
Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.
1992-01-01
The theory of multibunch transverse resistive wall instability damping with feedback is development. The system of coupling equations is obtained for description of bunched beam motion. The general solution and eigen frequencies are found. But for two bunches or multi bunches the tune splitting is found. The band of the tune splitting is calculated. The influence of the tune splitting on the damper system stability is discussed. 14 refs
A Family of Resonant Vibration Control Formats
Krenk, Steen; Høgsberg, Jan Becker
2012-01-01
Resonant control makes use of a controller with a resonance frequency and an equivalent damping ratio.A simple explicit calibration procedure is presented for a family of resonant controllers in which the frequencyis tuned to the natural frequency of the targeted mode in such a way that the two resulting modes exhibit identicaldamping ratio. This tuning is independent of the imposed controller damping. The controller damping is thenselected as an optimal compromise between too small damping, ...
Metallic materials for mechanical damping capacity applications
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Collisional damping rates for plasma waves
Energy Technology Data Exchange (ETDEWEB)
Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Limitations of modal analysis of damped structures
International Nuclear Information System (INIS)
Krapf, K.G.; Woelfel, H.
1983-01-01
Quite recently discrete spring-damper elements are increasingly used for the low-tuned supports of nuclear power-plant buildings and equipment (reactor building, turbine-fundaments etc.) to reduce the vibration response due to the dynamic load cases earthquake and airplane crash. Because of this development, it is to be investigated whether the usual modal analysis method is applicable within the design process or should be changed respectively replaced in special cases. The paper contributes to this discussion by demonstrating and valuing the discrepancies in the different ways for the implementation of damping. Different methods for uncoupling (energy weighting, reduction to Rayleigh-damping) are compared with the solution of the coupled equations of motion. In particular vertical vibrations of a spring-damper-supported building on foundation (including ground springs) are examined using a two-degree-of-freedom-system. The results of coupled and (by force) uncoupled methods are interpreted concerning free vibration by comparison of the damping of natural vibrations, natural frequencies and natural mode shapes. The effect on the forced vibrations is shown by floor response spectra to an earthquake accelerogram. (orig./HP)
Landau damping in trapped Bose condensed gases
Energy Technology Data Exchange (ETDEWEB)
Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)
2003-07-01
We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.
First Results from the DAMPE Mission
CERN. Geneva
2018-01-01
DAMPE (DArk Matter Particle Explorer) is a satellite mission of the Chinese Academy of Sciences (CAS) dedicated to high energy cosmic ray detections. Since its successful launch on December 17th, 2015 a large amount of cosmic ray data has been collected. With relatively large acceptance, DAMPE is designed to detect electrons (and positrons) up to 10 TeV with unprecedented energy resolution to search for new features in the cosmic ray electron plus positron (CRE) spectrum. It will also study cosmic ray nuclei up to 100 TeV with good precision, which will bring new input to the study of their still unknown origin and their propagation through the Galaxy. In this talk, the DAMPE mission will be introduced, together with some details of the construction and on-ground calibration of the detector subsystems. The in-orbit detector commissioning, calibration and operation will be described. First data analysis results, including the recently published CRE spectrum from 25 GeV to 4.6 TeV based on the data collected i...
DAMPs and influenza virus infection in ageing.
Samy, Ramar Perumal; Lim, Lina H K
2015-11-01
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Etiology of root parsley damping-off
Directory of Open Access Journals (Sweden)
Bogdan Nowicki
2013-12-01
Full Text Available The investigations were done between 1990-1994. Seedlings collected from 120 plantations were evaluated. The fungi responsible for seedling damping-off occurrening most often were Alternariu spp., Fusarium spp. and Pythium spp. isolated from 46,3, 32,2 and 16,6% of infected plants, respectively. The most important pathogens were A.petroselini which infected 33% of seedlings and A.radicina - 11%„ Among Fusarium species the most common was F.avenaceum, comprising 61% of total Fusarium isolates. The next were following: F.culmorum - 21%, F.solani - 12,6% and 3% for both F.equiseti and F.oxysporum. Damping-off of se,edlings was also caused by the other fungi but they were noted in low intensity. Among them were following: Phoma spp., A.alternata and Rhizoctonia solani on 2,8; 2,3 and 1,2% of tested seedlings. respectively. The species: Sclerotinia sclerotiorum, Botrytis cinerea, Bipolaris sorokinianu and Septoria petroselini were isolated in total from 0,9% of seedlings. Drechslera biseptata and Stemphylium botryosum caused seedling damping-off sporadically.
Possibility of Landau damping of gravitational waves
International Nuclear Information System (INIS)
Gayer, S.; Kennel, C.F.
1979-01-01
There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible
Radiative damping in plasma-based accelerators
Directory of Open Access Journals (Sweden)
I. Yu. Kostyukov
2012-11-01
Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.
Directory of Open Access Journals (Sweden)
Milinda Lakkam
Full Text Available Motivated by the lack of randomized controlled trials with an intervention-free control arm in the area of child undernutrition, we fit a trivariate model of weight-for-age z score (WAZ, height-for-age z score (HAZ and diarrhea status to data from an observational study of supplementary feeding (100 kCal/day for children with WAZ [Formula: see text] in 17 Guatemalan communities. Incorporating time lags, intention to treat (i.e., to give supplementary food, seasonality and age interactions, we estimate how the effect of supplementary food on WAZ, HAZ and diarrhea status varies with a child's age. We find that the effect of supplementary food on all 3 metrics decreases linearly with age from 6 to 20 mo and has little effect after 20 mo. We derive 2 food allocation policies that myopically (i.e., looking ahead 2 mo minimize either the underweight or stunting severity - i.e., the sum of squared WAZ or HAZ scores for all children with WAZ or HAZ [Formula: see text]. A simulation study based on the statistical model predicts that the 2 derived policies reduce the underweight severity (averaged over all ages by 13.6-14.1% and reduce the stunting severity at age 60 mo by 7.1-8.0% relative to the policy currently in use, where all policies have a budget that feeds [Formula: see text]% of children. While these findings need to be confirmed on additional data sets, it appears that in a low-dose (100 kCal/day supplementary feeding setting in Guatemala, allocating food primarily to 6-12 mo infants can reduce the severity of underweight and stunting.
Yew, Alvin G.; Chai, Dean J.; Olney, David J.
2010-01-01
The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.
Effects of high-frequency damping on iterative convergence of implicit viscous solver
Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko
2017-11-01
This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.
Main Determinants of Supplementary Health Insurance Demand: (Case of Iran)
Motlagh, Soraya Nouraei; Gorji, Hassan Abolghasem; Mahdavi, Ghadir; Ghaderi, Hossein
2015-01-01
Introduction: In the majority of developing countries, the volume of medical insurance services, provided by social insurance organizations is inadequate. Thus, supplementary medical insurance is proposed as a means to address inadequacy of medical insurance. Accordingly, in this article, we attempted to provide the context for expansion of this important branch of insurance through identification of essential factors affecting demand for supplementary medical insurance. Method: In this study, two methods were used to identify essential factors affecting choice of supplementary medical insurance including Classification and Regression Trees (CART) and Bayesian logit. To this end, Excel® software was used to refine data and R® software for estimation. The present study was conducted during 2012, covering all provinces in Iran. Sample size included 18,541 urban households, selected by Statistical Center of Iran using 3-stage cluster sampling approach. In this study, all data required were collected from the Statistical Center of Iran. Results: In 2012, an overall 8.04% of the Iranian population benefited from supplementary medical insurance. Demand for supplementary insurance is a concave function of age of the household head, and peaks in middle-age when savings and income are highest. The present study results showed greater likelihood of demand for supplementary medical insurance in households with better economic status, higher educated heads, female heads, and smaller households with greater expected medical expenses, and household income is the most important factor affecting demand for supplementary medical insurance. Conclusion: Since demand for supplementary medical insurance is hugely influenced by households’ economic status, policy-makers in the health sector should devise measures to improve households’ economic or financial access to supplementary insurance services, by identifying households in the lower economic deciles, and increasing their
Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles
DEFF Research Database (Denmark)
Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn
2002-01-01
This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...
Directory of Open Access Journals (Sweden)
Stefanov Predrag Č.
2014-01-01
Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.
DEFF Research Database (Denmark)
Li, Bin; Ravnskov, Sabine; Guanlin, X.
2011-01-01
The influence of the organic compounds tryptic soy broth, cellulose, glucose and chitosan on cucumber damping-off caused by Pythium aphanidermatum and biocontrol efficacy of the biocontrol agents (BCAs) Paenibacillus macerans and P. polymyxa were examined in a seedling emergence bioassay. Results...... showed that the organic compounds differentially affected both pathogen and BCAs. Tryptic soy broth, glucose and chitosan increased Pythium damping-off of cucumber, compared to the control treatment without organic compounds, whereas cellulose had no effect. Both Paenibacillus species had biocontrol...
Quasi-normal frequencies: Semi-analytic results for highly damped modes
International Nuclear Information System (INIS)
Skakala, Jozef; Visser, Matt
2011-01-01
Black hole highly-damped quasi-normal frequencies (QNFs) are very often of the form ω n = (offset) + in (gap). We have investigated the genericity of this phenomenon for the Schwarzschild-deSitter (SdS) black hole by considering a model potential that is piecewise Eckart (piecewise Poschl-Teller), and developing an analytic 'quantization condition' for the highly-damped quasi-normal frequencies. We find that the ω n = (offset) + in (gap) behaviour is common but not universal, with the controlling feature being whether or not the ratio of the surface gravities is a rational number. We furthermore observed that the relation between rational ratios of surface gravities and periodicity of QNFs is very generic, and also occurs within different analytic approaches applied to various types of black hole spacetimes. These observations are of direct relevance to any physical situation where highly-damped quasi-normal modes are important.
Study on the development of passive MR damper with displacement-dependent damping characteristics
International Nuclear Information System (INIS)
Murakami, Takahiro; Sakai, Michiya; Nakano, Masami
2010-01-01
In this paper, we propose a new concept of a magneto-rheological (MR) fluid damper, which is a passive MR fluid damper. The passive MR damper has no electrical devices, such as a sensor, power supply and controller, and hence, it has an advantage in reliability and cost compared with semi-active MR dampers. Moreover, the proposed MR damper can be designed to have a variable damping force in response to its displacement. In this paper, the dynamic performance of the passive MR damper is experimentally demonstrated. The prototype of the proposed damper has been manufactured in order to verify the dynamic performance. The displacement excitation test result of the damper demonstrates that the damping characteristics depend on its displacement amplitude, that is, the damper behaves as a linear viscous damper under small vibrations and develops much higher damping performance under large vibrations. (author)
Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6
Wolfe, A. M
1993-01-01
The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.
Operation and performance of the PEP-II prototype longitudinal damping system at ALS
International Nuclear Information System (INIS)
Teytelman, D.; Claus, R.; Fox, J.
1995-05-01
A modular programmable longitudinal feedback system has been developed as a component of the PEP-II R+D program. This system is based on a family of VME and VXI packaged signal processing functions which implement a general purpose digital feedback controller for accelerators with bunch spacings of 2 ns. A complete PEP-II prototype system has been configured and installed for use at the LBL Advanced Light Source. The system configuration used for tests at the ALS is described and results are presented showing the action of the feedback system. Open and closed loop results showing the detection and calculation of feedback signals from bunch motion are presented and the system is shown to damp coupled-bunch instabilities in the ALS. Use of the system for accelerator diagnostics is illustrated via measurement of grow-damp transients which quantify growth rates without feedback, damping rates with feedback, and identify unstable modes
International Nuclear Information System (INIS)
Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe
2008-01-01
Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot
Energy Technology Data Exchange (ETDEWEB)
Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)
2008-07-15
Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot
Qualification of high damping seismic isolation bearings for the ALMR
International Nuclear Information System (INIS)
Tajirian, F.F.; Gluekler, E.L.; Chen, W.P.; Kelly, J.M.
1992-01-01
The Advanced Liquid Metal Reactor (ALMR) seismic isolation system consists of high damping steel-laminated elastomeric bearings. This type of bearing is used worldwide to isolate buildings and large critical components. A comprehensive testing program has been developed to qualify the use of this system for the ALMR. The program includes material characterization tests, various scale bearing tests, full-size bearing tests, shake table tests, and long-term aging tests. The main tasks and objectives of this program are described in the paper. Additionally, a detailed assessment of completed ALMR bearing test results will be provided. This assessment will be mainly based on half-scale bearing tests performed at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley and at the Energy Technology Engineering Center (ETEC). These tests were funded by the U.S. Department of Energy (DOE). Both static and dynamic tests were performed. Bearings with two types of end connections were tested: dowelled and bolted. The parameters examined will include the vertical, horizontal stiffness and damping of the bearings under different loading conditions up to failure. This will determine the available margins in the bearings above the design vertical load and horizontal displacement. Additionally, the self-centering capability of the bearings after an earthquake will be addressed. On the basis of these findings, recommendations can be made if necessary, to improve current manufacturing procedures, quality control, and procurement specifications. (author)
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
Salt Damage and Rising Damp Treatment in Building Structures
Directory of Open Access Journals (Sweden)
J. M. P. Q. Delgado
2016-01-01
Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.
Pulse Power Modulator development for the CLIC Damping Ring Kickers
Holma, Janne
2012-01-01
The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...
International Nuclear Information System (INIS)
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
Active tuned mass damper for damping of offshore wind turbine vibrations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker
2017-01-01
An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent to the ...
Distribution of large-earthquake input energy in viscous damped outrigger structures
Morales Beltran, M.G.; Turan, Gursoy; Yildirim, Umut
2017-01-01
This article provides an analytical framework to assess the distribution of seismic energy in outrigger structures equipped with viscous dampers. The principle of damped outriggers for seismic control applications lies on the assumption that the total earthquake energy will be absorbed by the
2011-05-18
... NIOSH-238] Draft Alert Entitled ``Preventing Occupational Respiratory Disease From Dampness in Office... Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC), announces the availability of a draft Alert entitled ``Preventing Occupational Respiratory Disease from...
Negative Resistance Circuit for Damping an Array of Coupled FitzHugh-Nagumo Oscillators
DEFF Research Database (Denmark)
Tamaševičius, Arūnas; Adomaitienė, Elena; Bumelienė, Skaidra
2015-01-01
An analog circuit, based on a negative impedance converter and a capacitor, for damping oscillations in an array of mean-field coupled neuronal FitzHugh–Nagumo (FHN) type oscillators is described. The circuit is essentially a two-terminal feedback controller. When coupled to an array of the FHN...
Damping in building structures during earthquakes: test data and modeling
International Nuclear Information System (INIS)
Coats, D.W. Jr.
1982-01-01
A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties
Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian
2018-04-01
Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.
reaction of some rumen micro flora to different supplementary feeds
African Journals Online (AJOL)
Preferred Customer
purpose of this study was to evaluate rumen microbial changes as the function of varying supplementary .... conditions and altitude of 2400 m.a.s.l. Animal ... temperature in water bath with continuous supply ... llowed by boiling for 5 minutes.
Game farming as a supplementary farming activity in the Karoo ...
African Journals Online (AJOL)
Game farming as a supplementary farming activity in the Karoo. ... Veld management in a game farming situation poses problems due to the ineffectiveness of rotational grazing systems. Simplification of natural ... AJOL African Journals Online.
Electric Generator in the System for Damping Oscillations of Vehicles
Directory of Open Access Journals (Sweden)
Serebryakov A.
2017-04-01
Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.
Electric Generator in the System for Damping Oscillations of Vehicles
Serebryakov, A.; Kamolins, E.; Levin, N.
2017-04-01
The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.
Special class of nonlinear damping models in flexible space structures
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Magnon damping in two-dimensional Heisenberg ferromagnetic system
International Nuclear Information System (INIS)
Cheng, T.-M.; Li Lin; Ze Xianyu
2006-01-01
A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed
Collisional damping of Langmuir waves in the collisionless limit
International Nuclear Information System (INIS)
Auerbach, S.P.
1977-01-01
Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not
An experimental study on damping characteristics of thermal insulation
International Nuclear Information System (INIS)
Chiba, Toshio; Kobayashi, Hiroe; Aida, Shigekazu; Wada, Hidetoshi
1984-01-01
The damping ratio is one of the most important parameters in seismic analysis of piping systems in a nuclear power plant. Thermal insulation is considered contributing to the damping characteristics of piping systems. At the 6th SMiRT and 1983 ASME PVP conferences, the damping effect and damping estimating formula were presented as a result of regression analysis using the component test data for 2,4 and 8B diameter piping and the proof model test for 1,2 and 4B piping system. In this study, in order to clarify the damping characteristics of a larger diameter piping than 8B,the component test of 12 and 20B diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers, it was found that the damping ratio of anactual piping system with thermal insulation is at minimum 1% for all size diameter piping. (author)
An experimental study on damping characteristics of thermal insulation
International Nuclear Information System (INIS)
Chiba, T.; Kobayashi, H.
1985-01-01
The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping
Oscillation damping of chiral string loops
International Nuclear Information System (INIS)
Babichev, Eugeny; Dokuchaev, Vyacheslav
2002-01-01
Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations
Hyperchaotic circuit with damped harmonic oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
2001-01-01
A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....
System for damping vibrations in a turbine
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Status of the SLC damping rings
International Nuclear Information System (INIS)
Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.
1985-06-01
Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs
Coherent Synchrotron Radiation effect in damping rings
International Nuclear Information System (INIS)
Raubenheimer, T
2004-01-01
Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability in the damping rings of several linear collider projects. The threshold is determined by the instability with the longest possible wavelength
Transport description of damped nuclear reactions
International Nuclear Information System (INIS)
Randrup, J.
1983-04-01
Part I is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expression for the transport coefficients. The results can also be used in a wider context than the present one. Part II gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations
Thermal equilibrium in strongly damped collisions
International Nuclear Information System (INIS)
Samaddar, S.K.; De, J.N.; Krishan, K.
1985-01-01
Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data
Unexpected antitumorigenic effect of fenbendazole when combined with supplementary vitamins.
Gao, Ping; Dang, Chi V; Watson, Julie
2008-11-01
Diet containing the anthelminthic fenbendazole is used often to treat rodent pinworm infections because it is easy to use and has few reported adverse effects on research. However, during fenbendazole treatment at our institution, an established human lymphoma xenograft model in C.B-17/Icr-prkdcscid/Crl (SCID) mice failed to grow. Further investigation revealed that the fenbendazole had been incorporated into a sterilizable diet supplemented with additional vitamins to compensate for loss during autoclaving, but the diet had not been autoclaved. To assess the role of fenbendazole and supplementary vitamins on tumor suppression, 20 vendor-supplied 4-wk-old SCID mice were assigned to 4 treatment groups: standard diet, diet plus fenbendazole, diet plus vitamins, and diet plus both vitamins and fenbendazole. Diet treatment was initiated 2 wk before subcutaneous flank implantation with 3 x 107 lymphoma cells. Tumor size was measured by caliper at 4-d intervals until the largest tumors reached a calculated volume of 1500 mm3. Neither diet supplemented with vitamins alone nor fenbendazole alone caused altered tumor growth as compared with that of controls. However, the group supplemented with both vitamins and fenbendazole exhibited significant inhibition of tumor growth. The mechanism for this synergy is unknown and deserves further investigation. Fenbendazole should be used with caution during tumor studies because it may interact with other treatments and confound research results.
Phase compensated gas turbine governor for damping oscillatory modes
Energy Technology Data Exchange (ETDEWEB)
Yee, S.K. [Siemens Transmission and Distribution Limited, Manchester (United Kingdom); Milanovic, J.V. [School of Electrical and Electronic Engineering, University of Manchester, PO Box 88, Manchester M60 1 QD (United Kingdom); Hughes, F.M. [Manchester (United Kingdom)
2009-08-15
With market deregulation, there is constant pressure to utilise existing assets in more effective ways in order to achieve high levels of performance and as governor technologies mature the ability of governors to achieve much more than the standard power-frequency regulation function increases. Thus, this paper has focused on a more active use of governor control for a gas turbine to provide improved system stabilisation and performance via the inclusion of phase compensation in the governor control loop. Due to the decoupled nature of the mechanical power and excitation control loops, performance improvement via governor control does not interfere with generator voltage regulation, which is a drawback of conventional generator damping provision via a power system stabiliser (PSS). In addition, the mechanical power control loop is also less affected by the operating condition of the power system and is hence more robust. It is shown that inclusion of appropriate phase compensation in the governor control loop can improve dynamic and transient stability, either alone or in conjunction with a PSS in the exciter control loop, without adversely interfering with voltage control or changing steady state power-frequency regulation. (author)
Confirmation of soil radiation damping from test versus analysis
International Nuclear Information System (INIS)
Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.
1987-01-01
The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)
Rising damp in building walls: the wall base ventilation system
Energy Technology Data Exchange (ETDEWEB)
Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)
2012-12-15
This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)
Complex modes and frequencies in damped structural vibrations
DEFF Research Database (Denmark)
Krenk, Steen
2004-01-01
It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic forces....... The corresponding theory of complex modal analysis of continuous systems is developed and illustrated in relation to optimal damping and impulse response of cables and beams with discrete dampers....
Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes
DEFF Research Database (Denmark)
Holst, G; Høst, A; Doekes, G
2016-01-01
was identified based on technical inspection and bedroom dampness on parents' self-report. Classroom and bedroom dust was analysed for seven microbial components. Skin-prick-testing determined atopic sensitisation. Lung function was expressed as z-scores for forced expiratory volume in one second (zFEV1...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0...... (ETS) decreased zFEV1 (β-coef. -0.22; 95%CI -0.42- -0.02) and zFEV1 /zFVC-ratio (β-coef. -0.26; 95%CI -0.44 - -0.07) and increased upper airway symptoms (OR1.66; 95%CI 1.03-2.66). In conclusion, dampness in classrooms may have adverse respiratory health effects in pupils, but microbial agents...
Energy Technology Data Exchange (ETDEWEB)
Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com
2009-07-01
This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Dynamic apeerture in damping rings with realistic wigglers
Energy Technology Data Exchange (ETDEWEB)
Cai, Yunhai; /SLAC
2005-05-04
The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.
Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole
Vibrations, if undamped, might be annoying or even dangerous. Most often some kind of damping mechanism is applied in order to limit the vibration level. Vibration insulators, for instance of rubber material, have favorable damping characteristics but lack the structural stiffness often needed...... in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...
Amplitude dependent damping in single crystalline high purity molybdenum
International Nuclear Information System (INIS)
Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N
2004-01-01
Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)
Damping element for reducing the vibration of an airfoil
Campbell, Christian X; Marra, John J
2013-11-12
An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.
Small horizontal emittance in the TESLA damping ring
International Nuclear Information System (INIS)
Decking, W.
2001-01-01
The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given
Transport description of damped nuclear reactions
International Nuclear Information System (INIS)
Randrup, J.
1984-01-01
This lecture series is concerned with the transport description of damped nuclear reactions. Part 1 is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expressions for the transport coefficients. The results can also be used in a wider context than the present one. Part 2 gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. More detailed presentations are due to be published soon. By necessity entire topics have been omitted. For example, no discussion is given of the calculation of the form factors, and the several instructive applications of the theory to transport of mass and change are not covered at all. For these topics they refer to the literature. It is hoped that the present notes provide a sufficient basis to make the literature on the subject accessible to the student
Landau Damping of Beam Instabilities by Electron Lenses
Energy Technology Data Exchange (ETDEWEB)
Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab
2017-06-26
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.
Supplementary Computer Generated Cueing to Enhance Air Traffic Controller Efficiency
2013-03-01
has its own characteristics that determine its capacity of reproducing rich information ( Daft and Lengel, 1984). According to this theory, specific...Economic Quantification. Daft , R., & Lengel, R. 1984. Information richness: A new approach to managerial behavior and organization design. Research in
International Nuclear Information System (INIS)
Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.
1981-01-01
Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)
Directory of Open Access Journals (Sweden)
Taufiq Hidayat
2015-02-01
Full Text Available Sclerotium roflsii is the causal agent of damping-off disease on pepper which difficult to control. The use of chemical pesticides cause several damage to the environment. The used of Piper betle leaves extract which is contains antifungal compounds becomes one of the solution. The aim of this study to obtain the optimum concentration of piper betle leaves extract and dipping periode of chili seed in leaves extract to control damping off disease caused by Sclerotium rolfsii. The study consists of two experiments. The first experiment was isolation and multiplication of damping off disease in chilli, this stage was conducted in laboratorium. The second experiment was performed to investigate effectivity of piper betle leaf extract to control damping off using dipping method, this stage conducted in Greenhouse. The study arranged in Completely Randomized Design (CRD with single factor experimental design consist of 13 treatment, namely consentration of 0%, 40%, 60% and 80% Piper betle leaves extract (v/v with 1 hour, 2 hour, and 3 hour dipping time. The result showed that Piper betle leaves extract of 60% with 1 hour dipping time had the best ability among the other treatment to control damping off disease cause of Sclerotium rolfsii in chili seedlings.
Dynamic characteristics of a novel damped outrigger system
Tan, Ping; Fang, Chuangjie; Zhou, Fulin
2014-06-01
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
Semilinear damped wave equation in locally uniform spaces
Czech Academy of Sciences Publication Activity Database
Michálek, Martin; Pražák, D.; Slavík, J.
2017-01-01
Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110
Dynamic stability of a lightly damped column trapped by a ...
African Journals Online (AJOL)
In this paper we initiate an analytical approach for determining the dynamic buckling load of a finite viscously damped column acted upon by a harmonically slowly varying explicitly time dependent load. The viscous damping is considered light and the column rests on an elastic foundation that produces a nonlinear ...
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...
Quantum theory of damped harmonic oscillator | Antia | Global ...
African Journals Online (AJOL)
The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle ...
Simple model with damping of the mode-coupling instability
Energy Technology Data Exchange (ETDEWEB)
Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Stéphane
2011-10-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
Process Damping and Cutting Tool Geometry in Machining
Taylor, C. M.; Sims, N. D.; Turner, S.
2011-12-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
Equivalent viscous damping procedure for multi-material systems
International Nuclear Information System (INIS)
Ahmed, H.; Ma, D.
1979-01-01
The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail
Comparing Sources of Damping of Cross-Wind Motion
DEFF Research Database (Denmark)
Tarp-Johansen, Niels Jacob; Mørch, Christian; Andersen, Lars
2009-01-01
practise plays a key role in this. The questions are: does more damping exist and is one of the sources of damping the main contributor allowing for site-independent guidelines. The aim of this paper is to address these issues. It is demonstrated that tower dampers are important in order to tackle...
Dynamic response analysis of a 24-story damped steel structure
Feng, Demin; Miyama, Takafumi
2017-10-01
In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.
Canonical quantization of the Bateman-Morse-Feshbach damped oscillator
International Nuclear Information System (INIS)
Rideau, G.; Anderson, R.L.; Hebda, P.W.
1991-01-01
The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)
Exploring damping characteristics of composite tower of cable ...
Indian Academy of Sciences (India)
SHEHATA E ABDEL RAHEEM
the seismic design [1–7] by dividing the cable-stayed bridge into several ..... damping characteristics is represented by a simple model to study the effect of ...... lent modal damping of short-span bridges subjected to strong motion. J. Bridge ...
Study of Ion Acoustic Wave Damping through Green's Functions
DEFF Research Database (Denmark)
Hsuan, H.C.S.; Jensen, Vagn Orla
1973-01-01
Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....
Design guide for calculating fluid damping for circular cylindrical structures
International Nuclear Information System (INIS)
Chen, S.S.
1983-06-01
Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow
Process Damping and Cutting Tool Geometry in Machining
International Nuclear Information System (INIS)
Taylor, C M; Sims, N D; Turner, S
2011-01-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
Foucault pendulum with eddy-current damping of the elliptical motion
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
Effects of Active Sting Damping on Common Research Model Data Quality
Acheson, Michael J.; Balakrishna, S.
2011-01-01
Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.