WorldWideScience

Sample records for supervised learning system

  1. Supervised Learning for Dynamical System Learning.

    Science.gov (United States)

    Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J

    2015-01-01

    Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.

  2. Supervised Learning

    Science.gov (United States)

    Rokach, Lior; Maimon, Oded

    This chapter summarizes the fundamental aspects of supervised methods. The chapter provides an overview of concepts from various interrelated fields used in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.

  3. Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System.

    Science.gov (United States)

    Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong

    2017-12-01

    Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.

  4. Weakly Supervised Dictionary Learning

    Science.gov (United States)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  5. Learning Dynamics in Doctoral Supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie

    investigates learning opportunities in supervision with multiple supervisors. This was investigated through observations and recording of supervision, and subsequent analysis of transcripts. The analyses used different perspectives on learning; learning as participation, positioning theory and variation theory....... The research illuminates how learning opportunities are created in the interaction through the scientific discussions. It also shows how multiple supervisors can contribute to supervision by providing new perspectives and opinions that have a potential for creating new understandings. The combination...... of different theoretical frameworks from the perspectives of learning as individual acquisition and a sociocultural perspective on learning contributed to a nuanced illustration of the otherwise implicit practices of supervision....

  6. Learning rates in supervised and unsupervised intelligent systems

    International Nuclear Information System (INIS)

    Hora, S.C.

    1986-01-01

    Classifying observations from a mixture distribution is considered a simple model for learning. Existing results are integrated to obtain asymptotically optimal estimators of the classification rule. The asymptotic relative efficiencies show that a tutored learner is considerably more efficient on difficult problems, but only slightly more efficient on easy problems. This suggests a combined method that seeks instruction on hard cases

  7. Using Supervised Learning Techniques for Diagnosis of Dynamic Systems

    Science.gov (United States)

    2002-05-04

    diagnosis task is to determine the system elements that could cause decision trees [14], where classification is the result of a series of the erroneous...Rodriguez, Carlos J. Alonso y Q. Isaac Moro. Clasificaci6n de patrones temporales en sistemas dinimicos mediante Boosting y Alineamiento dinamico

  8. Human semi-supervised learning.

    Science.gov (United States)

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  9. Sampling algorithms for validation of supervised learning models for Ising-like systems

    Science.gov (United States)

    Portman, Nataliya; Tamblyn, Isaac

    2017-12-01

    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).

  10. A SURVEY OF SEMI-SUPERVISED LEARNING

    OpenAIRE

    Amrita Sadarangani *, Dr. Anjali Jivani

    2016-01-01

    Semi Supervised Learning involves using both labeled and unlabeled data to train a classifier or for clustering. Semi supervised learning finds usage in many applications, since labeled data can be hard to find in many cases. Currently, a lot of research is being conducted in this area. This paper discusses the different algorithms of semi supervised learning and then their advantages and limitations are compared. The differences between supervised classification and semi-supervised classific...

  11. Computerized breast cancer analysis system using three stage semi-supervised learning method.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2016-10-01

    A large number of labeled medical image data is usually a requirement to train a well-performed computer-aided detection (CAD) system. But the process of data labeling is time consuming, and potential ethical and logistical problems may also present complications. As a result, incorporating unlabeled data into CAD system can be a feasible way to combat these obstacles. In this study we developed a three stage semi-supervised learning (SSL) scheme that combines a small amount of labeled data and larger amount of unlabeled data. The scheme was modified on our existing CAD system using the following three stages: data weighing, feature selection, and newly proposed dividing co-training data labeling algorithm. Global density asymmetry features were incorporated to the feature pool to reduce the false positive rate. Area under the curve (AUC) and accuracy were computed using 10 fold cross validation method to evaluate the performance of our CAD system. The image dataset includes mammograms from 400 women who underwent routine screening examinations, and each pair contains either two cranio-caudal (CC) or two mediolateral-oblique (MLO) view mammograms from the right and the left breasts. From these mammograms 512 regions were extracted and used in this study, and among them 90 regions were treated as labeled while the rest were treated as unlabeled. Using our proposed scheme, the highest AUC observed in our research was 0.841, which included the 90 labeled data and all the unlabeled data. It was 7.4% higher than using labeled data only. With the increasing amount of labeled data, AUC difference between using mixed data and using labeled data only reached its peak when the amount of labeled data was around 60. This study demonstrated that our proposed three stage semi-supervised learning can improve the CAD performance by incorporating unlabeled data. Using unlabeled data is promising in computerized cancer research and may have a significant impact for future CAD system

  12. Coupled Semi-Supervised Learning

    Science.gov (United States)

    2010-05-01

    Additionally, specify the expected category of each relation argument to enable type-checking. Subsystem components and the KI can benefit from methods that...confirm that our coupled semi-supervised learning approaches can scale to hun- dreds of predicates and can benefit from using a diverse set of...organization yes California Institute of Technology vegetable food yes carrots vehicle item yes airplanes vertebrate animal yes videoGame product yes

  13. Security system signal supervision

    International Nuclear Information System (INIS)

    Chritton, M.R.; Matter, J.C.

    1991-09-01

    This purpose of this NUREG is to present technical information that should be useful to NRC licensees for understanding and applying line supervision techniques to security communication links. A review of security communication links is followed by detailed discussions of link physical protection and DC/AC static supervision and dynamic supervision techniques. Material is also presented on security for atmospheric transmission and video line supervision. A glossary of security communication line supervision terms is appended. 16 figs

  14. Semi-supervised Learning for Phenotyping Tasks.

    Science.gov (United States)

    Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K

    2015-01-01

    Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.

  15. Action learning in undergraduate engineering thesis supervision

    Directory of Open Access Journals (Sweden)

    Brad Stappenbelt

    2017-03-01

    Full Text Available In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative, investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and student adoption of the action learning process were also examined. The action learning environment implemented had a measurable significant positive effect on student academic performance, their ability to cope with the stresses associated with conducting a research thesis, the depth of learning, the development of autonomous learners and student perception of the research thesis experience. The present study acts as an addendum to a smaller scale implementation of this action learning approach, applied to supervision of third and fourth year research projects and theses, published in 2010.

  16. Performance Monitoring Applied to System Supervision

    Directory of Open Access Journals (Sweden)

    Bertille Somon

    2017-07-01

    Full Text Available Nowadays, automation is present in every aspect of our daily life and has some benefits. Nonetheless, empirical data suggest that traditional automation has many negative performance and safety consequences as it changed task performers into task supervisors. In this context, we propose to use recent insights into the anatomical and neurophysiological substrates of action monitoring in humans, to help further characterize performance monitoring during system supervision. Error monitoring is critical for humans to learn from the consequences of their actions. A wide variety of studies have shown that the error monitoring system is involved not only in our own errors, but also in the errors of others. We hypothesize that the neurobiological correlates of the self-performance monitoring activity can be applied to system supervision. At a larger scale, a better understanding of system supervision may allow its negative effects to be anticipated or even countered. This review is divided into three main parts. First, we assess the neurophysiological correlates of self-performance monitoring and their characteristics during error execution. Then, we extend these results to include performance monitoring and error observation of others or of systems. Finally, we provide further directions in the study of system supervision and assess the limits preventing us from studying a well-known phenomenon: the Out-Of-the-Loop (OOL performance problem.

  17. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  18. Balancing Design Project Supervision and Learning Facilitation

    DEFF Research Database (Denmark)

    Nielsen, Louise Møller

    2012-01-01

    experiences and expertise to guide the students’ decisions in relation to the design project. This paper focuses on project supervision in the context of design education – and more specifically on how this supervision is unfolded in a Problem Based Learning culture. The paper explores the supervisor......’s balance between the roles: 1) Design Project Supervisor – and 2) Learning Facilitator – with the aim to understand when to apply the different roles, and what to be aware of when doing so. This paper represents the first pilot-study of a larger research effort. It is based on a Lego Serious Play workshop......In design there is a long tradition for apprenticeship, as well as tradition for learning through design projects. Today many design educations are positioned within the University context, and have to be aligned with the learning culture and structure, which they represent. This raises a specific...

  19. Supervised Learning for Visual Pattern Classification

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    This chapter presents an overview of the topics and major ideas of supervised learning for visual pattern classification. Two prevalent algorithms, i.e., the support vector machine (SVM) and the boosting algorithm, are briefly introduced. SVMs and boosting algorithms are two hot topics of recent research in supervised learning. SVMs improve the generalization of the learning machine by implementing the rule of structural risk minimization (SRM). It exhibits good generalization even when little training data are available for machine training. The boosting algorithm can boost a weak classifier to a strong classifier by means of the so-called classifier combination. This algorithm provides a general way for producing a classifier with high generalization capability from a great number of weak classifiers.

  20. Wage Payment Systems. Supervising: Economic and Financial Aspects. The Choice Series #73. A Self Learning Opportunity.

    Science.gov (United States)

    Carlisle, Ysanne

    This student guide is intended to assist persons employed as supervisors in understanding various wage payment systems. Discussed in the first four sections are the following topics: the aims and determination of payment (aims of a payment system, the economy and wage levels, the government and wage levels, and method of pay and wage levels); main…

  1. Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision

    Science.gov (United States)

    Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…

  2. Self-Supervised Dynamical Systems

    Science.gov (United States)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and

  3. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  4. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij

    2016-01-01

    Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

  5. Graph-based semi-supervised learning

    CERN Document Server

    Subramanya, Amarnag

    2014-01-01

    While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi

  6. Self-supervised dynamical systems

    International Nuclear Information System (INIS)

    Zak, Michail

    2004-01-01

    A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed

  7. QUEST : Eliminating online supervised learning for efficient classification algorithms

    NARCIS (Netherlands)

    Zwartjes, Ardjan; Havinga, Paul J.M.; Smit, Gerard J.M.; Hurink, Johann L.

    2016-01-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting

  8. Self-supervised Chinese ontology learning from online encyclopedias.

    Science.gov (United States)

    Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.

  9. Supervised spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule for function approximation and decisions.

    Science.gov (United States)

    Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo

    2013-12-01

    How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.

  10. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Genetic classification of populations using supervised learning.

    Directory of Open Access Journals (Sweden)

    Michael Bridges

    2011-05-01

    Full Text Available There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories. This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines to the classification of three populations (two from Scotland and one from Bulgaria. The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  12. Genetic classification of populations using supervised learning.

    LENUS (Irish Health Repository)

    Bridges, Michael

    2011-01-01

    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  13. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    Science.gov (United States)

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  14. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  15. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  16. Semi-supervised Learning with Deep Generative Models

    NARCIS (Netherlands)

    Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M.

    2014-01-01

    The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and

  17. Opportunities to learn scientific thinking in joint doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Grout, Brian William Wilson; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual...... supervision. While joint supervision has become widely used, its learning dynamics remains under-researched and this paper aims to address these gaps in research by exploring learning opportunities in doctoral supervision with two supervisors. The study explores how the tensions in scientific discussion...... between supervisors can become learning opportunities. We combine two different theoretical perspectives, using participation and positioning theory as a sociocultural perspective and variation theory as an individual constructivist perspective on learning. Based on our analysis of a complex episode we...

  18. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    Science.gov (United States)

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  19. A new supervised learning algorithm for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  20. Integrating the Supervised Information into Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    Ping Ling

    2013-01-01

    Full Text Available This paper presents an assembling unsupervised learning framework that adopts the information coming from the supervised learning process and gives the corresponding implementation algorithm. The algorithm consists of two phases: extracting and clustering data representatives (DRs firstly to obtain labeled training data and then classifying non-DRs based on labeled DRs. The implementation algorithm is called SDSN since it employs the tuning-scaled Support vector domain description to collect DRs, uses spectrum-based method to cluster DRs, and adopts the nearest neighbor classifier to label non-DRs. The validation of the clustering procedure of the first-phase is analyzed theoretically. A new metric is defined data dependently in the second phase to allow the nearest neighbor classifier to work with the informed information. A fast training approach for DRs’ extraction is provided to bring more efficiency. Experimental results on synthetic and real datasets verify that the proposed idea is of correctness and performance and SDSN exhibits higher popularity in practice over the traditional pure clustering procedure.

  1. The LHC string2 supervision system

    CERN Document Server

    Mayya, Y S; Sicard, Claude Henri

    2002-01-01

    This paper describes the implementation of the supervision system for the LHC Prototype Full-Cell also known as String 2. The supervision application is based on a commercial package targeted to industrial controls, but because of the complexity and the specifics of such a system, integration with custom components is necessary in order to merge the industrial requirements with the specificity of the accelerator controls.

  2. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  3. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  4. Weakly supervised visual dictionary learning by harnessing image attributes.

    Science.gov (United States)

    Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang

    2014-12-01

    Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.

  5. Subsampled Hessian Newton Methods for Supervised Learning.

    Science.gov (United States)

    Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen

    2015-08-01

    Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.

  6. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2017-01-01

    Highlights: • Energy efficiency classification sustainability benefits from knowledge prediction. • Diagnostic classification can be validated with its dynamics and current data. • Diagnostic classification dynamics provides novelty extraction for knowledge update. • Data mining comparison can be performed with knowledge dynamics and uncertainty. • Diagnostic information refinement benefits form comparing classifiers dynamics. - Abstract: Modern ways of exploring the diagnostic knowledge provided by data mining and machine learning raise some concern about the ways of evaluating the quality of output knowledge, usually represented by information systems. Especially in district heating, the stationarity of efficiency models, and thus the relevance of diagnostic classification system, cannot be ensured due to the impact of social, economic or technological changes, which are hard to identify or predict. Therefore, data mining and machine learning have become an attractive strategy for automatically and continuously absorbing such dynamics. This paper presents a new method of evaluation and comparison of diagnostic information systems gathered algorithmically in district heating efficiency supervision based on exploring the evolution of information system and analyzing its dynamic features. The process of data mining and knowledge discovery was applied to the data acquired from district heating substations’ energy meters to provide the automated discovery of diagnostic knowledge base necessary for the efficiency supervision of district heating-supplied buildings. The implemented algorithm consists of several steps of processing the billing data, including preparation, segmentation, aggregation and knowledge discovery stage, where classes of abstract models representing energy efficiency constitute an information system representing diagnostic knowledge about the energy efficiency of buildings favorably operating under similar climate conditions and

  7. Safe semi-supervised learning based on weighted likelihood.

    Science.gov (United States)

    Kawakita, Masanori; Takeuchi, Jun'ichi

    2014-05-01

    We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')

  8. Supervised learning of probability distributions by neural networks

    Science.gov (United States)

    Baum, Eric B.; Wilczek, Frank

    1988-01-01

    Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.

  9. Availability analysis of supervised protective systems

    International Nuclear Information System (INIS)

    Kontoleon, N.; Kontoleon, J.M.; Chrysochoides, N.G.

    1975-01-01

    The behaviour in time of a nuclear reactor supervised protective system is modelled mathematically by a Markov process, continuous in time and with three discrete states. Failure and repair rates are assumed to be exponentially distributed. An analytical expression of system availability as a function of failure and repair rates as well as the inspection intervals and duration is derived. An optimization problem is then discussed in order to maximize system availability with respect to imposed cost constraints. Finally, an example of a supervised protective system with short inactive times is given, which may be found in many practical situations of modern protective systems. (author)

  10. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    Science.gov (United States)

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  11. Teacher and learner: Supervised and unsupervised learning in communities.

    Science.gov (United States)

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  12. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    Science.gov (United States)

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  13. Semi-supervised and unsupervised extreme learning machines.

    Science.gov (United States)

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  14. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms

    Directory of Open Access Journals (Sweden)

    Ardjan Zwartjes

    2016-10-01

    Full Text Available In this work, we introduce QUEST (QUantile Estimation after Supervised Training, an adaptive classification algorithm for Wireless Sensor Networks (WSNs that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  15. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.

    Science.gov (United States)

    Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L

    2016-10-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  16. Action learning in undergraduate engineering thesis supervision

    OpenAIRE

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and s...

  17. Can Semi-Supervised Learning Explain Incorrect Beliefs about Categories?

    Science.gov (United States)

    Kalish, Charles W.; Rogers, Timothy T.; Lang, Jonathan; Zhu, Xiaojin

    2011-01-01

    Three experiments with 88 college-aged participants explored how unlabeled experiences--learning episodes in which people encounter objects without information about their category membership--influence beliefs about category structure. Participants performed a simple one-dimensional categorization task in a brief supervised learning phase, then…

  18. Label Information Guided Graph Construction for Semi-Supervised Learning.

    Science.gov (United States)

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  19. Study and development of equipment supervision technique system and its management software for nuclear electricity production

    International Nuclear Information System (INIS)

    Zhang Liying; Zou Pingguo; Zhu Chenghu; Lu Haoliang; Wu Jie

    2008-01-01

    The equipment supervision technique system, which standardized the behavior of supervision organizations in planning and implementing of equipment supervision, is built up based on equipment supervision technique documents, such as Quality Supervision Classifications, Special Supervision Plans and Supervision Guides. Furthermore, based on the research, the equipment supervision management information system is developed by Object Oriented Programming, which consists of supervision information, supervision technique, supervision implementation, quality statistics and analysis module. (authors)

  20. Robust Semi-Supervised Manifold Learning Algorithm for Classification

    Directory of Open Access Journals (Sweden)

    Mingxia Chen

    2018-01-01

    Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.

  1. Action Learning in Undergraduate Engineering Thesis Supervision

    Science.gov (United States)

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…

  2. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  3. Transfer learning improves supervised image segmentation across imaging protocols.

    Science.gov (United States)

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  4. Improving Semi-Supervised Learning with Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more...... expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary variable we demonstrate how to train discriminative classifiers resulting in state-of-the-art performance within semi-supervised learning exemplified by an 0.96% error on MNIST using 100 labeled data points. Furthermore...

  5. Assessment of various supervised learning algorithms using different performance metrics

    Science.gov (United States)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  6. Semi-Supervised Learning to Identify UMLS Semantic Relations.

    Science.gov (United States)

    Luo, Yuan; Uzuner, Ozlem

    2014-01-01

    The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).

  7. Supervised Learning Applied to Air Traffic Trajectory Classification

    Science.gov (United States)

    Bosson, Christabelle; Nikoleris, Tasos

    2018-01-01

    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.

  8. Semi-supervised Eigenvectors for Locally-biased Learning

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mahoney, Michael W.

    2012-01-01

    In many applications, one has side information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks "nearby" that pre-specified target region. Locally-biased problems of t...

  9. Generalization of Supervised Learning for Binary Mask Estimation

    DEFF Research Database (Denmark)

    May, Tobias; Gerkmann, Timo

    2014-01-01

    This paper addresses the problem of speech segregation by es- timating the ideal binary mask (IBM) from noisy speech. Two methods will be compared, one supervised learning approach that incorporates a priori knowledge about the feature distri- bution observed during training. The second method...

  10. Robust semi-supervised learning : projections, limits & constraints

    NARCIS (Netherlands)

    Krijthe, J.H.

    2018-01-01

    In many domains of science and society, the amount of data being gathered is increasing rapidly. To estimate input-output relationships that are often of interest, supervised learning techniques rely on a specific type of data: labeled examples for which we know both the input and an outcome. The

  11. Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics

    NARCIS (Netherlands)

    Strickert, M.; Schneider, P.; Keilwagen, J.; Villmann, T.; Biehl, M.; Hammer, B.

    2008-01-01

    Supervised attribute relevance detection using cross-comparisons (SARDUX), a recently proposed method for data-driven metric learning, is extended from dimension-weighted Minkowski distances to metrics induced by a data transformation matrix Ω for modeling mutual attribute dependence. Given class

  12. Arabic Supervised Learning Method Using N-Gram

    Science.gov (United States)

    Sanan, Majed; Rammal, Mahmoud; Zreik, Khaldoun

    2008-01-01

    Purpose: Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts…

  13. An online learning space facilitating supervision pedagogies in ...

    African Journals Online (AJOL)

    Quality research supervision leading to timely completion and student satisfaction involves explicit pedagogy and effective communication. This article describes the development within an action research cycle of an online learning space designed to achieve these goals. The research 'spirals' involved interventions in the ...

  14. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  15. Enhancing fieldwork learning using blended learning, GIS and remote supervision

    Science.gov (United States)

    Marra, Wouter A.; Alberti, Koko; Karssenberg, Derek

    2015-04-01

    Fieldwork is an important part of education in geosciences and essential to put theoretical knowledge into an authentic context. Fieldwork as teaching tool can take place in various forms, such as field-tutorial, excursion, or supervised research. Current challenges with fieldwork in education are to incorporate state-of-the art methods for digital data collection, on-site GIS-analysis and providing high-quality feedback to large groups of students in the field. We present a case on first-year earth-sciences fieldwork with approximately 80 students in the French Alps focused on geological and geomorphological mapping. Here, students work in couples and each couple maps their own fieldwork area to reconstruct the formative history. We present several major improvements for this fieldwork using a blended-learning approach, relying on open source software only. An important enhancement to the French Alps fieldwork is improving students' preparation. In a GIS environment, students explore their fieldwork areas using existing remote sensing data, a digital elevation model and derivatives to formulate testable hypotheses before the actual fieldwork. The advantage of this is that the students already know their area when arriving in the field, have started to apply the empirical cycle prior to their field visit, and are therefore eager to investigate their own research questions. During the fieldwork, students store and analyze their field observations in the same GIS environment. This enables them to get a better overview of their own collected data, and to integrate existing data sources also used in the preparation phase. This results in a quicker and enhanced understanding by the students. To enable remote access to observational data collected by students, the students synchronize their data daily with a webserver running a web map application. Supervisors can review students' progress remotely, examine and evaluate their observations in a GIS, and provide

  16. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  17. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  18. Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems

    Directory of Open Access Journals (Sweden)

    Shashank Vyas

    2016-01-01

    Full Text Available Integration of solar photovoltaic (PV generation with power distribution networks leads to many operational challenges and complexities. Unintentional islanding is one of them which is of rising concern given the steady increase in grid-connected PV power. This paper builds up on an exploratory study of unintentional islanding on a modeled radial feeder having large PV penetration. Dynamic simulations, also run in real time, resulted in exploration of unique potential causes of creation of accidental islands. The resulting voltage and current data underwent dimensionality reduction using principal component analysis (PCA which formed the basis for the application of Q statistic control charts for detecting the anomalous currents that could island the system. For reducing the false alarm rate of anomaly detection, Kullback-Leibler (K-L divergence was applied on the principal component projections which concluded that Q statistic based approach alone is not reliable for detection of the symptoms liable to cause unintentional islanding. The obtained data was labeled and a K-nearest neighbor (K-NN binomial classifier was then trained for identification and classification of potential islanding precursors from other power system transients. The three-phase short-circuit fault case was successfully identified as statistically different from islanding symptoms.

  19. Supervised learning with restricted training sets: a generating functional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heimel, J.A.F.; Coolen, A.C.C. [Department of Mathematics, King' s College London, Strand, London (United Kingdom)

    2001-10-26

    We study the dynamics of supervised on-line learning of realizable tasks in feed-forward neural networks. We focus on the regime where the number of examples used for training is proportional to the number of input channels N. Using generating functional techniques from spin glass theory, we are able to average over the composition of the training set and transform the problem for N{yields}{infinity} to an effective single pattern system described completely by the student autocovariance, the student-teacher overlap and the student response function with exact closed equations. Our method applies to arbitrary learning rules, i.e., not necessarily of a gradient-descent type. The resulting exact macroscopic dynamical equations can be integrated without finite-size effects up to any degree of accuracy, but their main value is in providing an exact and simple starting point for analytical approximation schemes. Finally, we show how, in the region of absent anomalous response and using the hypothesis that (as in detailed balance systems) the short-time part of the various operators can be transformed away, one can describe the stationary state of the network successfully by a set of coupled equations involving only four scalar order parameters. (author)

  20. Learning Semantic Segmentation with Diverse Supervision

    OpenAIRE

    Ye, Linwei; Liu, Zhi; Wang, Yang

    2018-01-01

    Models based on deep convolutional neural networks (CNN) have significantly improved the performance of semantic segmentation. However, learning these models requires a large amount of training images with pixel-level labels, which are very costly and time-consuming to collect. In this paper, we propose a method for learning CNN-based semantic segmentation models from images with several types of annotations that are available for various computer vision tasks, including image-level labels fo...

  1. Effects of coaching supervision, mentoring supervision and abusive supervision on talent development among trainee doctors in public hospitals: moderating role of clinical learning environment.

    Science.gov (United States)

    Subramaniam, Anusuiya; Silong, Abu Daud; Uli, Jegak; Ismail, Ismi Arif

    2015-08-13

    Effective talent development requires robust supervision. However, the effects of supervisory styles (coaching, mentoring and abusive supervision) on talent development and the moderating effects of clinical learning environment in the relationship between supervisory styles and talent development among public hospital trainee doctors have not been thoroughly researched. In this study, we aim to achieve the following, (1) identify the extent to which supervisory styles (coaching, mentoring and abusive supervision) can facilitate talent development among trainee doctors in public hospital and (2) examine whether coaching, mentoring and abusive supervision are moderated by clinical learning environment in predicting talent development among trainee doctors in public hospital. A questionnaire-based critical survey was conducted among trainee doctors undergoing housemanship at six public hospitals in the Klang Valley, Malaysia. Prior permission was obtained from the Ministry of Health Malaysia to conduct the research in the identified public hospitals. The survey yielded 355 responses. The results were analysed using SPSS 20.0 and SEM with AMOS 20.0. The findings of this research indicate that coaching and mentoring supervision are positively associated with talent development, and that there is no significant relationship between abusive supervision and talent development. The findings also support the moderating role of clinical learning environment on the relationships between coaching supervision-talent development, mentoring supervision-talent development and abusive supervision-talent development among public hospital trainee doctors. Overall, the proposed model indicates a 26 % variance in talent development. This study provides an improved understanding on the role of the supervisory styles (coaching and mentoring supervision) on facilitating talent development among public hospital trainee doctors. Furthermore, this study extends the literature to better

  2. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  3. Supervised Machine Learning for Population Genetics: A New Paradigm

    Science.gov (United States)

    Schrider, Daniel R.; Kern, Andrew D.

    2018-01-01

    As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490

  4. Transfer learning improves supervised image segmentation across imaging protocols

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2015-01-01

    with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation......The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform...... well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore...

  5. A supervised learning rule for classification of spatiotemporal spike patterns.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  6. Stochastic microstructure characterization and reconstruction via supervised learning

    International Nuclear Information System (INIS)

    Bostanabad, Ramin; Bui, Anh Tuan; Xie, Wei; Apley, Daniel W.; Chen, Wei

    2016-01-01

    Microstructure characterization and reconstruction have become indispensable parts of computational materials science. The main contribution of this paper is to introduce a general methodology for practical and efficient characterization and reconstruction of stochastic microstructures based on supervised learning. The methodology is general in that it can be applied to a broad range of microstructures (clustered, porous, and anisotropic). By treating the digitized microstructure image as a set of training data, we generically learn the stochastic nature of the microstructure via fitting a supervised learning model to it (we focus on classification trees). The fitted supervised learning model provides an implicit characterization of the joint distribution of the collection of pixel phases in the image. Based on this characterization, we propose two different approaches to efficiently reconstruct any number of statistically equivalent microstructure samples. We test the approach on five examples and show that the spatial dependencies within the microstructures are well preserved, as evaluated via correlation and lineal-path functions. The main advantages of our approach stem from having a compact empirically-learned model that characterizes the stochastic nature of the microstructure, which not only makes reconstruction more computationally efficient than existing methods, but also provides insight into morphological complexity.

  7. Automated Spirometry Quality Assurance: Supervised Learning From Multiple Experts.

    Science.gov (United States)

    Velickovski, Filip; Ceccaroni, Luigi; Marti, Robert; Burgos, Felip; Gistau, Concepcion; Alsina-Restoy, Xavier; Roca, Josep

    2018-01-01

    Forced spirometry testing is gradually becoming available across different healthcare tiers including primary care. It has been demonstrated in earlier work that commercially available spirometers are not fully able to assure the quality of individual spirometry manoeuvres. Thus, a need to expand the availability of high-quality spirometry assessment beyond specialist pulmonary centres has arisen. In this paper, we propose a method to select and optimise a classifier using supervised learning techniques by learning from previously classified forced spirometry tests from a group of experts. Such a method is able to take into account the shape of the curve as an expert would during visual inspection. We evaluated the final classifier on a dataset put aside for evaluation yielding an area under the receiver operating characteristic curve of 0.88 and specificities of 0.91 and 0.86 for sensitivities of 0.60 and 0.82. Furthermore, other specificities and sensitivities along the receiver operating characteristic curve were close to the level of the experts when compared against each-other, and better than an earlier rules-based method assessed on the same dataset. We foresee key benefits in raising diagnostic quality, saving time, reducing cost, and also improving remote care and monitoring services for patients with chronic respiratory diseases in the future if a clinical decision support system with the encapsulated classifier is to be integrated into the work-flow of forced spirometry testing.

  8. Modeling Time Series Data for Supervised Learning

    Science.gov (United States)

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  9. Applying active learning to supervised word sense disambiguation in MEDLINE

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  10. Applying active learning to supervised word sense disambiguation in MEDLINE.

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  11. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  12. Optimum supervision intervals and order of supervision in nuclear reactor protective systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.

    1978-01-01

    The optimum inspection strategy of an m-out-of-n:G nuclear reactor protective system with nonidentical units is analyzed. A 2-out-of-4:G system is used to formulate a multi-variable optimization problem to determine (a) the optimum order of supervision of the units and (b) the optimum supervision intervals between units. The case of systems with identical units is a special case of the above. Numerical results are derived using a computer algorithm

  13. Using Supervised Deep Learning for Human Age Estimation Problem

    Science.gov (United States)

    Drobnyh, K. A.; Polovinkin, A. N.

    2017-05-01

    Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popular publicly available FG-NET database, which contains 1002 images with a broad variety of light, pose, and expression. LOPO (leave-one-person-out) method was used to estimate the accuracy. Experiments demonstrated that adding supervised deep learning features has improved accuracy for some basic models. For example, adding the features to an active appearance model gave the 4% gain (the error decreased from 4.59 to 4.41).

  14. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  15. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  16. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    Science.gov (United States)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  17. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  18. Supervised machine learning and active learning in classification of radiology reports.

    Science.gov (United States)

    Nguyen, Dung H M; Patrick, Jon D

    2014-01-01

    This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NARCIS (Netherlands)

    Gomez Puente, S.M.; Eijck, van M.W.; Jochems, W.M.G.

    2013-01-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether

  20. Predicting the Failure of Dental Implants Using Supervised Learning Techniques

    Directory of Open Access Journals (Sweden)

    Chia-Hui Liu

    2018-05-01

    Full Text Available Prosthodontic treatment has been a crucial part of dental treatment for patients with full mouth rehabilitation. Dental implant surgeries that replace conventional dentures using titanium fixtures have become the top choice. However, because of the wide-ranging scope of implant surgeries, patients’ body conditions, surgeons’ experience, and the choice of implant system should be considered during treatment. The higher price charged by dental implant treatments compared to conventional dentures has led to a rush among medical staff; therefore, the future impact of surgeries has not been analyzed in detail, resulting in medial disputes. Previous literature on the success factors of dental implants is mainly focused on single factors such as patients’ systemic diseases, operation methods, or prosthesis types for statistical correlation significance analysis. This study developed a prediction model for providing an early warning mechanism to reduce the chances of dental implant failure. We collected the clinical data of patients who received artificial dental implants at the case hospital for a total of 8 categories and 20 variables. Supervised learning techniques such as decision tree (DT, support vector machines, logistic regressions, and classifier ensembles (i.e., Bagging and AdaBoost were used to analyze the prediction of the failure of dental implants. The results show that DT with both Bagging and Adaboost techniques possesses the highest prediction performance for the failure of dental implant (area under the receiver operating characteristic curve, AUC: 0.741; the analysis also revealed that the implant systems affect dental implant failure. The model can help clinical surgeons to reduce medical failures by choosing the optimal implant system and prosthodontics treatments for their patients.

  1. Function approximation using combined unsupervised and supervised learning.

    Science.gov (United States)

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  2. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

    NARCIS (Netherlands)

    Cheplygina, Veronika; de Bruijne, Marleen; Pluim, Josien P. W.

    2018-01-01

    Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods which can learn

  3. Maximum margin semi-supervised learning with irrelevant data.

    Science.gov (United States)

    Yang, Haiqin; Huang, Kaizhu; King, Irwin; Lyu, Michael R

    2015-10-01

    Semi-supervised learning (SSL) is a typical learning paradigms training a model from both labeled and unlabeled data. The traditional SSL models usually assume unlabeled data are relevant to the labeled data, i.e., following the same distributions of the targeted labeled data. In this paper, we address a different, yet formidable scenario in semi-supervised classification, where the unlabeled data may contain irrelevant data to the labeled data. To tackle this problem, we develop a maximum margin model, named tri-class support vector machine (3C-SVM), to utilize the available training data, while seeking a hyperplane for separating the targeted data well. Our 3C-SVM exhibits several characteristics and advantages. First, it does not need any prior knowledge and explicit assumption on the data relatedness. On the contrary, it can relieve the effect of irrelevant unlabeled data based on the logistic principle and maximum entropy principle. That is, 3C-SVM approaches an ideal classifier. This classifier relies heavily on labeled data and is confident on the relevant data lying far away from the decision hyperplane, while maximally ignoring the irrelevant data, which are hardly distinguished. Second, theoretical analysis is provided to prove that in what condition, the irrelevant data can help to seek the hyperplane. Third, 3C-SVM is a generalized model that unifies several popular maximum margin models, including standard SVMs, Semi-supervised SVMs (S(3)VMs), and SVMs learned from the universum (U-SVMs) as its special cases. More importantly, we deploy a concave-convex produce to solve the proposed 3C-SVM, transforming the original mixed integer programming, to a semi-definite programming relaxation, and finally to a sequence of quadratic programming subproblems, which yields the same worst case time complexity as that of S(3)VMs. Finally, we demonstrate the effectiveness and efficiency of our proposed 3C-SVM through systematical experimental comparisons. Copyright

  4. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  6. Combining theories to reach multi-faceted insights into learning opportunities in doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Rump, Camilla Østerberg

    The aim of this paper is to illustrate how theories can be combined to explore opportunities for learning in doctoral supervision. While our earlier research into learning dynamics in doctoral supervision in life science research (Kobayashi, 2014) has focused on illustrating learning opportunitie...

  7. Semi-Supervised Multitask Learning for Scene Recognition.

    Science.gov (United States)

    Lu, Xiaoqiang; Li, Xuelong; Mou, Lichao

    2015-09-01

    Scene recognition has been widely studied to understand visual information from the level of objects and their relationships. Toward scene recognition, many methods have been proposed. They, however, encounter difficulty to improve the accuracy, mainly due to two limitations: 1) lack of analysis of intrinsic relationships across different scales, say, the initial input and its down-sampled versions and 2) existence of redundant features. This paper develops a semi-supervised learning mechanism to reduce the above two limitations. To address the first limitation, we propose a multitask model to integrate scene images of different resolutions. For the second limitation, we build a model of sparse feature selection-based manifold regularization (SFSMR) to select the optimal information and preserve the underlying manifold structure of data. SFSMR coordinates the advantages of sparse feature selection and manifold regulation. Finally, we link the multitask model and SFSMR, and propose the semi-supervised learning method to reduce the two limitations. Experimental results report the improvements of the accuracy in scene recognition.

  8. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  9. Supervised learning with decision margins in pools of spiking neurons.

    Science.gov (United States)

    Le Mouel, Charlotte; Harris, Kenneth D; Yger, Pierre

    2014-10-01

    Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.

  10. Multicultural supervision: lessons learned about an ongoing struggle.

    Science.gov (United States)

    Christiansen, Abigail Tolhurst; Thomas, Volker; Kafescioglu, Nilufer; Karakurt, Gunnur; Lowe, Walter; Smith, William; Wittenborn, Andrea

    2011-01-01

    This article examines the experiences of seven diverse therapists in a supervision course as they wrestled with the real-world application of multicultural supervision. Existing literature on multicultural supervision does not address the difficulties that arise in addressing multicultural issues in the context of the supervision relationship. The experiences of six supervisory candidates and one mentoring supervisor in addressing multicultural issues in supervision are explored. Guidelines for conversations regarding multicultural issues are provided. © 2011 American Association for Marriage and Family Therapy.

  11. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  12. Optimizing area under the ROC curve using semi-supervised learning.

    Science.gov (United States)

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M

    2015-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.

  13. Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression.

    Science.gov (United States)

    Zhen, Xiantong; Yu, Mengyang; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-09-01

    Multioutput regression has recently shown great ability to solve challenging problems in both computer vision and medical image analysis. However, due to the huge image variability and ambiguity, it is fundamentally challenging to handle the highly complex input-target relationship of multioutput regression, especially with indiscriminate high-dimensional representations. In this paper, we propose a novel supervised descriptor learning (SDL) algorithm for multioutput regression, which can establish discriminative and compact feature representations to improve the multivariate estimation performance. The SDL is formulated as generalized low-rank approximations of matrices with a supervised manifold regularization. The SDL is able to simultaneously extract discriminative features closely related to multivariate targets and remove irrelevant and redundant information by transforming raw features into a new low-dimensional space aligned to targets. The achieved discriminative while compact descriptor largely reduces the variability and ambiguity for multioutput regression, which enables more accurate and efficient multivariate estimation. We conduct extensive evaluation of the proposed SDL on both synthetic data and real-world multioutput regression tasks for both computer vision and medical image analysis. Experimental results have shown that the proposed SDL can achieve high multivariate estimation accuracy on all tasks and largely outperforms the algorithms in the state of the arts. Our method establishes a novel SDL framework for multioutput regression, which can be widely used to boost the performance in different applications.

  14. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  15. Unsupervised/supervised learning concept for 24-hour load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Babic, B [Electrical Power Industry of Serbia, Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Computer Science

    1993-07-01

    An application of artificial neural networks in short-term load forecasting is described. An algorithm using an unsupervised/supervised learning concept and historical relationship between the load and temperature for a given season, day type and hour of the day to forecast hourly electric load with a lead time of 24 hours is proposed. An additional approach using functional link net, temperature variables, average load and last one-hour load of previous day is introduced and compared with the ANN model with one hidden layer load forecast. In spite of limited available weather variables (maximum, minimum and average temperature for the day) quite acceptable results have been achieved. The 24-hour-ahead forecast errors (absolute average) ranged from 2.78% for Saturdays and 3.12% for working days to 3.54% for Sundays. (Author)

  16. Diapason: an assistant system for supervision

    International Nuclear Information System (INIS)

    Coudouneau, L.; Leyval, L.; Montmain, J.; Penalva, J.M.

    1990-01-01

    Simulation and assisted diagnosis are the contributions DIAPASON provides to supervision. The reasonings are based on a qualitative model, a knowledge base and a set of constraints on the values of the process variables, all three issued from a single representation of the process. After an overview of the qualitative simulation, the on line interpretation of the latter and the heuristic diagnosis, the cooperation of these three units is pointed out [fr

  17. Supervised dictionary learning for inferring concurrent brain networks.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  18. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  19. Healthcare students' evaluation of the clinical learning environment and supervision - a cross-sectional study.

    Science.gov (United States)

    Pitkänen, Salla; Kääriäinen, Maria; Oikarainen, Ashlee; Tuomikoski, Anna-Maria; Elo, Satu; Ruotsalainen, Heidi; Saarikoski, Mikko; Kärsämänoja, Taina; Mikkonen, Kristina

    2018-03-01

    The purpose of clinical placements and supervision is to promote the development of healthcare students´ professional skills. High-quality clinical learning environments and supervision were shown to have significant influence on healthcare students´ professional development. This study aimed to describe healthcare students` evaluation of the clinical learning environment and supervision, and to identify the factors that affect these. The study was performed as a cross-sectional study. The data (n = 1973) were gathered through an online survey using the Clinical Learning Environment, Supervision and Nurse Teacher scale during the academic year 2015-2016 from all healthcare students (N = 2500) who completed their clinical placement at a certain university hospital in Finland. The data were analysed using descriptive statistics and binary logistic regression analysis. More than half of the healthcare students had a named supervisor and supervision was completed as planned. The students evaluated the clinical learning environment and supervision as 'good'. The students´ readiness to recommend the unit to other students and the frequency of separate private unscheduled sessions with the supervisor were the main factors that affect healthcare students` evaluation of the clinical learning environment and supervision. Individualized and goal-oriented supervision in which the student had a named supervisor and where supervision was completed as planned in a positive environment that supported learning had a significant impact on student's learning. The clinical learning environment and supervision support the development of future healthcare professionals' clinical competence. The supervisory relationship was shown to have a significant effect on the outcomes of students' experiences. We recommend the planning of educational programmes for supervisors of healthcare students for the enhancement of supervisors' pedagogical competencies in supervising students in

  20. Learning How to Supervise: Midlevel Managers' Individual Learning Journeys

    Science.gov (United States)

    David, Keegan

    2010-01-01

    The purpose of this study was to explore how midlevel managers in student affairs learn supervisory skills. Student affairs professionals are given tremendous responsibility for the lives of students outside the classroom. The Association of College Personnel Administrators and other sources outlined the necessary competencies for student affairs…

  1. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

    Science.gov (United States)

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S

    2014-03-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

  2. Learning outcomes using video in supervision and peer feedback during clinical skills training

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein; Toftgård, Rie Castella; Nørgaard, Cita

    supervision of clinical skills (formative assessment). Demonstrations of these principles will be presented as video podcasts during the session. The learning outcomes of video supervision and peer-feedback were assessed in an online questionnaire survey. Results Results of the supervision showed large self......Objective New technology and learning principles were introduced in a clinical skills training laboratory (iLab). The intension was to move from apprenticeship to active learning principles including peer feedback and supervision using video. The objective of this study was to evaluate student...... learning outcomes in a manual skills training subject using video during feedback and supervision. Methods The iLab classroom was designed to fit four principles of teaching using video. Two of these principles were (a) group work using peer-feedback on videos produced by the students and, (b) video...

  3. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  4. Building an Arabic Sentiment Lexicon Using Semi-supervised Learning

    Directory of Open Access Journals (Sweden)

    Fawaz H.H. Mahyoub

    2014-12-01

    Full Text Available Sentiment analysis is the process of determining a predefined sentiment from text written in a natural language with respect to the entity to which it is referring. A number of lexical resources are available to facilitate this task in English. One such resource is the SentiWordNet, which assigns sentiment scores to words found in the English WordNet. In this paper, we present an Arabic sentiment lexicon that assigns sentiment scores to the words found in the Arabic WordNet. Starting from a small seed list of positive and negative words, we used semi-supervised learning to propagate the scores in the Arabic WordNet by exploiting the synset relations. Our algorithm assigned a positive sentiment score to more than 800, a negative score to more than 600 and a neutral score to more than 6000 words in the Arabic WordNet. The lexicon was evaluated by incorporating it into a machine learning-based classifier. The experiments were conducted on several Arabic sentiment corpora, and we were able to achieve a 96% classification accuracy.

  5. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  6. A numeric comparison of variable selection algorithms for supervised learning

    International Nuclear Information System (INIS)

    Palombo, G.; Narsky, I.

    2009-01-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.

  7. Competencies to enable learning-focused clinical supervision: a thematic analysis of the literature.

    Science.gov (United States)

    Pront, Leeanne; Gillham, David; Schuwirth, Lambert W T

    2016-04-01

    Clinical supervision is essential for development of health professional students and widely recognised as a significant factor influencing student learning. Although considered important, delivery is often founded on personal experience or a series of predetermined steps that offer standardised behavioural approaches. Such a view may limit the capacity to promote individualised student learning in complex clinical environments. The objective of this review was to develop a comprehensive understanding of what is considered 'good' clinical supervision, within health student education. The literature provides many perspectives, so collation and interpretation were needed to aid development and understanding for all clinicians required to perform clinical supervision within their daily practice. A comprehensive thematic literature review was carried out, which included a variety of health disciplines and geographical environments. Literature addressing 'good' clinical supervision consists primarily of descriptive qualitative research comprising mostly small studies that repeated descriptions of student and supervisor opinions of 'good' supervision. Synthesis and thematic analysis of the literature resulted in four 'competency' domains perceived to inform delivery of learning-focused or 'good' clinical supervision. Domains understood to promote student learning are co-dependent and include 'to partner', 'to nurture', 'to engage' and 'to facilitate meaning'. Clinical supervision is a complex phenomenon and establishing a comprehensive understanding across health disciplines can influence the future health workforce. The learning-focused clinical supervision domains presented here provide an alternative perspective of clinical supervision of health students. This paper is the first step in establishing a more comprehensive understanding of learning-focused clinical supervision, which may lead to development of competencies for clinical supervision. © 2016 John Wiley

  8. How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.

    Science.gov (United States)

    Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E

    2017-09-01

    Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.

  9. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  10. Supervision of the ATLAS High Level Trigger System

    CERN Document Server

    Wheeler, S.; Meessen, C.; Qian, Z.; Touchard, F.; Negri, France A.; Zobernig, H.; CHEP 2003 Computing in High Energy Physics; Negri, France A.

    2003-01-01

    The ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter. The HLT is implemented as software tasks running on large processor farms. An essential part of the HLT is the supervision system, which is responsible for configuring, coordinating, controlling and monitoring the many hundreds of processes running in the HLT. A prototype implementation of the supervision system, using tools from the ATLAS Online Software system is presented. Results from scalability tests are also presented where the supervision system was shown to be capable of controlling over 1000 HLT processes running on 230 nodes.

  11. An invitation to design LHC systems for TCR supervision

    CERN Document Server

    Bätz, M

    1999-01-01

    With the LHC technical infrastructure in place, one of the main concerns is to achieve maximum availability and reliability through, for example, appropriate operation and supervision. This paper is intended to draw the attention of the experts to the shortcomings of the existing remote supervision of the technical infrastructure. These reduce the efficiency of the Technical Control Room (TCR) due to the large number of alarms. There are alarms generated by maintenance or shutdown activities, those connected to disused hardware and others not indicating an intervention or without sufficient documentation. Systems optimized not only for nominal load but also for operation modes such as accelerator shutdown and system maintenance could significantly decrease the number of alarms and thus reduce system downtime and operational costs. Additionally more sophisticated local and remote control systems could improve the supervision and the analysis of Repetitive Alarms.

  12. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  13. Classification and Diagnostic Output Prediction of Cancer Using Gene Expression Profiling and Supervised Machine Learning Algorithms

    DEFF Research Database (Denmark)

    Yoo, C.; Gernaey, Krist

    2008-01-01

    importance in the projection (VIP) information of the DPLS method. The power of the gene selection method and the proposed supervised hierarchical clustering method is illustrated on a three microarray data sets of leukemia, breast, and colon cancer. Supervised machine learning algorithms thus enable...

  14. The Practice of Supervision for Professional Learning: The Example of Future Forensic Specialists

    Science.gov (United States)

    Köpsén, Susanne; Nyström, Sofia

    2015-01-01

    Supervision intended to support learning is of great interest in professional knowledge development. No single definition governs the implementation and enactment of supervision because of different conditions, intentions, and pedagogical approaches. Uncertainty exists at a time when knowledge and methods are undergoing constant development. This…

  15. Just How Much Can School Pupils Learn from School Gardening? A Study of Two Supervised Agricultural Experience Approaches in Uganda

    Science.gov (United States)

    Okiror, John James; Matsiko, Biryabaho Frank; Oonyu, Joseph

    2011-01-01

    School systems in Africa are short of skills that link well with rural communities, yet arguments to vocationalize curricula remain mixed and school agriculture lacks the supervised practical component. This study, conducted in eight primary (elementary) schools in Uganda, sought to compare the learning achievement of pupils taught using…

  16. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    Science.gov (United States)

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  17. Regular graph construction for semi-supervised learning

    International Nuclear Information System (INIS)

    Vega-Oliveros, Didier A; Berton, Lilian; Eberle, Andre Mantini; Lopes, Alneu de Andrade; Zhao, Liang

    2014-01-01

    Semi-supervised learning (SSL) stands out for using a small amount of labeled points for data clustering and classification. In this scenario graph-based methods allow the analysis of local and global characteristics of the available data by identifying classes or groups regardless data distribution and representing submanifold in Euclidean space. Most of methods used in literature for SSL classification do not worry about graph construction. However, regular graphs can obtain better classification accuracy compared to traditional methods such as k-nearest neighbor (kNN), since kNN benefits the generation of hubs and it is not appropriate for high-dimensionality data. Nevertheless, methods commonly used for generating regular graphs have high computational cost. We tackle this problem introducing an alternative method for generation of regular graphs with better runtime performance compared to methods usually find in the area. Our technique is based on the preferential selection of vertices according some topological measures, like closeness, generating at the end of the process a regular graph. Experiments using the global and local consistency method for label propagation show that our method provides better or equal classification rate in comparison with kNN

  18. Semi-Supervised Learning for Classification of Protein Sequence Data

    Directory of Open Access Journals (Sweden)

    Brian R. King

    2008-01-01

    Full Text Available Protein sequence data continue to become available at an exponential rate. Annotation of functional and structural attributes of these data lags far behind, with only a small fraction of the data understood and labeled by experimental methods. Classification methods that are based on semi-supervised learning can increase the overall accuracy of classifying partly labeled data in many domains, but very few methods exist that have shown their effect on protein sequence classification. We show how proven methods from text classification can be applied to protein sequence data, as we consider both existing and novel extensions to the basic methods, and demonstrate restrictions and differences that must be considered. We demonstrate comparative results against the transductive support vector machine, and show superior results on the most difficult classification problems. Our results show that large repositories of unlabeled protein sequence data can indeed be used to improve predictive performance, particularly in situations where there are fewer labeled protein sequences available, and/or the data are highly unbalanced in nature.

  19. Experiments on Supervised Learning Algorithms for Text Categorization

    Science.gov (United States)

    Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.

    2005-01-01

    Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.

  20. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  1. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    Science.gov (United States)

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  2. Student nurses' experience of a system of peer group supervision ...

    African Journals Online (AJOL)

    Recommendations were made to change the system in order to eliminate the negative aspects and after careful consideration and programme changes, implemented in 2001. It therefore became necessary to evaluate the revised system of peer group supervision and guidance for effectiveness. A qualitative, descriptive ...

  3. Baccalaureate nursing students' perceptions of learning and supervision in the clinical environment.

    Science.gov (United States)

    Dimitriadou, Maria; Papastavrou, Evridiki; Efstathiou, Georgios; Theodorou, Mamas

    2015-06-01

    This study is an exploration of nursing students' experiences within the clinical learning environment (CLE) and supervision provided in hospital settings. A total of 357 second-year nurse students from all universities in Cyprus participated in the study. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher instrument. The dimension "supervisory relationship (mentor)", as well as the frequency of individualized supervision meetings, were found to be important variables in the students' clinical learning. However, no statistically-significant connection was established between successful mentor relationship and team supervision. The majority of students valued their mentor's supervision more highly than a nurse teacher's supervision toward the fulfillment of learning outcomes. The dimensions "premises of nursing care" and "premises of learning" were highly correlated, indicating that a key component of a quality clinical learning environment is the quality of care delivered. The results suggest the need to modify educational strategies that foster desirable learning for students in response to workplace demands. © 2014 Wiley Publishing Asia Pty Ltd.

  4. A Study of Supervision of China's Commercial Banks from the Perspective of the Trinity-Characteristics of Bank Supervision System

    Institute of Scientific and Technical Information of China (English)

    LV Jianglin; HUANG Guang

    2015-01-01

    Based on the theoretical analysis,this paper applies the entropy method to establish a comprehensive index system for the evaluation of the overall level of risk control and comprehensive efficiency of the supervision of China's commercial banks.Considering the trinity-characteristics of bank supervision system consisting of the People's Bank of China(PBC),the CBRC and the financial offices of local governments,the following conclusions have been drawn:the amount of penalties on banking illegal transactions is not correlated with the supervision efficiency of China's commercial banks;the capital adequacy ratio,the loan to deposit ratio,the percentage point of the non-performing loan rate of urban commercial banks higher than that of the national joint-stock banks are negatively correlated with the supervision efficiency of China 's commercial banks;the total asset variation of the PBC and the different loan balance in local and foreign currency of the banks are positively correlated with the supervision efficiency of China's commercial banks,but the effect is minor.Therefore,China should give the capital adequacy ratio a full play in the bank supervision,accelerate the construction of supervision information system and improve the supervision function of the local governments.

  5. The Costs of Supervised Classification: The Effect of Learning Task on Conceptual Flexibility

    Science.gov (United States)

    Hoffman, Aaron B.; Rehder, Bob

    2010-01-01

    Research has shown that learning a concept via standard supervised classification leads to a focus on diagnostic features, whereas learning by inferring missing features promotes the acquisition of within-category information. Accordingly, we predicted that classification learning would produce a deficit in people's ability to draw "novel…

  6. I’m just thinking - How learning opportunities are created in doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Berge, Maria; Grout, Brian William Wilson

    for learning. Earlier research into doctoral supervision has been rather vague on how doctoral students learn to carry out research. Empirically, we have based the study on four cases each with one doctoral student and their supervisors. The supervision sessions were captured on video and audio to provide...... for verbatim transcripts that were subsequently analysed. Our results illustrate how supervisors and doctoral students create learning opportunities by varying aspects of research in the discussion. Better understanding of this mechanism whereby learning opportunities are created by bringing aspects......With this paper we aim to contribute towards an understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction. We analyse interaction between supervisors and doctoral students using the notion of experiencing variation as a key...

  7. Assisted supervision of a computer aided tele-operation system

    Energy Technology Data Exchange (ETDEWEB)

    Le Bars, H; Gravez, P; Fournier, R

    1994-12-31

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs.

  8. Assisted supervision of a computer aided tele-operation system

    International Nuclear Information System (INIS)

    Le Bars, H.; Gravez, P.; Fournier, R.

    1994-01-01

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs

  9. Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.

    Science.gov (United States)

    Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo

    2016-08-26

    Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.

  10. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification.

    Science.gov (United States)

    Peikari, Mohammad; Salama, Sherine; Nofech-Mozes, Sharon; Martel, Anne L

    2018-05-08

    Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using clustering analysis to identify the underlying structure of the data space for SSL. A cluster-then-label method was proposed to identify high-density regions in the data space which were then used to help a supervised SVM in finding the decision boundary. We have compared our method with other supervised and semi-supervised state-of-the-art techniques using two different classification tasks applied to breast pathology datasets. We found that compared with other state-of-the-art supervised and semi-supervised methods, our SSL method is able to improve classification performance when a limited number of labeled data instances are made available. We also showed that it is important to examine the underlying distribution of the data space before applying SSL techniques to ensure semi-supervised learning assumptions are not violated by the data.

  11. Supervising System Stress in Multiple Markets

    Directory of Open Access Journals (Sweden)

    Mikhail V. Oet

    2015-09-01

    Full Text Available This paper develops an extended financial stress measure that considers the supervisory objective of identifying risks to the stability of the financial system. The measure provides a continuous and bounded signal of financial stress using daily public market data. Broad coverage of material financial system markets over time is achieved by leveraging dynamic credit weights. We consider how this measure can be used to monitor, analyze, and alert financial system stress.

  12. Supervision functions - Secure operation of sustainable power systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Zhang, Xinxin; Lind, Morten

    2013-01-01

    of power systems operation control. The use of PMUs allows more penetration of DG mainly, with technologies based on renewable resources with intermittent and unpredictable operation such a wind power. This paper introduces the Secure Operation of Sustainable Power Systems (SOSPO) project. The SOSPO...... project tries to respond to the question "How to ensure a secure operation of the future power system where the operating point is heavily is fluctuating?" focusing in the Supervision module architecture and in the power system operation states. The main goal of Supervision module is to determine...... the power system operation state based on new stability and security parameters derived from PMUs measurement and coordinate the use of automatic and manual control actions. The coordination of the control action is based not only in the static indicators but also in the performance evaluation of control...

  13. DIAPASON: a continuous process supervision system

    International Nuclear Information System (INIS)

    Mathieu, D.; Penalva, J.M.; Coudouneau, L.; Leyval, L.; Montmain, J.

    1991-01-01

    DIAPASON is a system for the simulation and diagnosis aid of industrial processes. Qualitative simulation and defect diagnosis are briefly presented taking as an example a pulse column for liquid-liquid extraction in spent fuel reprocessing

  14. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Science.gov (United States)

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  15. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. RESULTS: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. CONCLUSIONS: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  16. WLAN Fingerprint Indoor Positioning Strategy Based on Implicit Crowdsourcing and Semi-Supervised Learning

    Directory of Open Access Journals (Sweden)

    Chunjing Song

    2017-11-01

    Full Text Available Wireless local area network (WLAN fingerprint positioning is an indoor localization technique with high accuracy and low hardware requirements. However, collecting received signal strength (RSS samples for the fingerprint database is time-consuming and labor-intensive, hindering the use of this technique. The popular crowdsourcing sampling technique has been introduced to reduce the workload of sample collection, but has two challenges: one is the heterogeneity of devices, which can significantly affect the positioning accuracy; the other is the requirement of users’ intervention in traditional crowdsourcing, which reduces the practicality of the system. In response to these challenges, we have proposed a new WLAN indoor positioning strategy, which incorporates a new preprocessing method for RSS samples, the implicit crowdsourcing sampling technique, and a semi-supervised learning algorithm. First, implicit crowdsourcing does not require users’ intervention. The acquisition program silently collects unlabeled samples, the RSS samples, without information about the position. Secondly, to cope with the heterogeneity of devices, the preprocessing method maps all the RSS values of samples to a uniform range and discretizes them. Finally, by using a large number of unlabeled samples with some labeled samples, Co-Forest, the introduced semi-supervised learning algorithm, creates and repeatedly refines a random forest ensemble classifier that performs well for location estimation. The results of experiments conducted in a real indoor environment show that the proposed strategy reduces the demand for large quantities of labeled samples and achieves good positioning accuracy.

  17. A Supervised Machine Learning Study of Online Discussion Forums about Type-2 Diabetes

    DEFF Research Database (Denmark)

    Reichert, Jonathan-Raphael; Kristensen, Klaus Langholz; Mukkamala, Raghava Rao

    2017-01-01

    supervised machine learning techniques to analyze the online conversations. In order to analyse these online textual conversations, we have chosen four domain specific models (Emotions, Sentiment, Personality Traits and Patient Journey). As part of text classification, we employed the ensemble learning...... method by using 5 different supervised machine learning algorithms to build a set of text classifiers by using the voting method to predict most probable label for a given textual conversation from the online discussion forums. Our findings show that there is a high amount of trust expressed by a subset...

  18. Doctoral learning: a case for a cohort model of supervision and support

    Directory of Open Access Journals (Sweden)

    Naydene de Lange

    2011-01-01

    Full Text Available We document the efforts of the faculty of education of a large research-oriented university in supporting doctoral learning. The development of a space for doctoral learning is in line with the need to develop a community of researchers in South Africa. We describe the historical origins of this cohort model of doctoral supervision and support, draw on literature around doctoral learning, and analyse a cohort of doctoral students' evaluation of the seminarsoverthree years. The findings indicate that the model has great value in developing scholarship and reflective practice in candidates, in providing support and supervision, and in sustaining students towards the completion of their doctorates.

  19. Australia's Supervising Teachers: Motivators and Challenges to Inform Professional Learning

    Science.gov (United States)

    Nielsen, Wendy; Mena, Juanjo; Clarke, Anthony; O'Shea, Sarah; Hoban, Garry; Collins, John

    2017-01-01

    This paper offers an overview of what motivates and challenges Australian supervising teachers to work with preservice teachers in their classrooms. In the contemporary Australian context of new National Professional Standards for Teachers, a new national curriculum and new standards for Initial Teacher Education programs, what motivates and…

  20. Postgraduate supervision at an open distance e-learning institution ...

    African Journals Online (AJOL)

    Effective postgraduate supervision is a concern at universities worldwide, even under optimal conditions where post-graduate students are studying full-time. Universities are being pressured by their governments to increase the throughput of postgraduates where there is a need for supervisory guidance in order to produce ...

  1. Supervised learning of tools for content-based search of image databases

    Science.gov (United States)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  2. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  3. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    Science.gov (United States)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  4. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    Science.gov (United States)

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  5. Model of Supervision Based on Primary School Teacher Professional Competency in Tematic Learning in Curriculum 2013

    Directory of Open Access Journals (Sweden)

    Meilani Hartono

    2017-08-01

    Full Text Available This study aims to find the Supervision Model Based on Primary Teacher Professional Competence which effective on integrated learning. This study use research and development with qualitative approach which will be carried out in the Palmerah, West Jakarta. The techniques used to collect data are interviews, questionnaires, observation and documentation. Data v alidity is tested with credibility, transferability, dependability, and comfortability. The model developed will be validated using the Delphi technique. The result of this research is the discovery of the model and device-based supervision model of professional competence of primary teachers in integrated learning. The long-term goal of this research is to improve the teachers’ competence and the supervision quality for primary teachers in integrated learning

  6. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    Science.gov (United States)

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  7. Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning.

    Science.gov (United States)

    Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge

    2013-04-01

    Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark

  8. Innovation of Supervision System for Quality and Safety of Edible Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Xingxing; MEI; Zhongchao; FENG

    2014-01-01

    This paper elaborated multidimensional characteristics of quality and safety of agricultural products,introduced current situation of quality and safety supervision of edible agricultural products in China,analyzed existing problems of quality and safety supervision system and corresponding reasons,and finally came up with recommendations for innovation of supervision system for quality and safety of agricultural products.

  9. Supervision and atuomatic control of robotics systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    The paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  10. Supervision and automatic control of robotic systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    This paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  11. Design and development of the network based system for the supervision of radioactive sources

    International Nuclear Information System (INIS)

    Yang Yaoyun; Su Genghua; Zhang Hui; Li Junli; Zhu Li

    2010-01-01

    Objective: To help the environmental protection authorities to upgrade the management of the related organizations and radioactive sources and improve the information level of nuclear technology utilization's supervision. Methods: On the basis of investigation of requirements, the network based system for the supervision of radioactive sources was divided into application system and supervision system, based on MYSQL and SQL Server2005 respectively. Results: The system satisfied the current requirements of the nuclear technology utilization's supervision and is in nationwide operation. Conclusion: The system achieved the dynamic tracking management of radioactive sources and improved the efficiency and level of radiation safety supervision in nuclear technology utilizations. (authors)

  12. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2014-05-01

    Full Text Available Single nucleotide polymorphisms (SNPs are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs have been found near or inside the protein-protein interaction (PPI interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor. Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1 a 2-class problem (strengthening/weakening PPI mutations, (2 another 2-class problem (mutations that disrupt/preserve a PPI, and (3 a 3-class classification (detrimental/neutral/beneficial mutation effects. In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the

  13. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    Science.gov (United States)

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of

  14. Semi-supervised learning and domain adaptation in natural language processing

    CERN Document Server

    Søgaard, Anders

    2013-01-01

    This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias.This book is intended to be both

  15. Bank, Banking System, Macroprudential Supervision, Stability of Banking System

    Directory of Open Access Journals (Sweden)

    Tetiana Vasilyeva

    2016-10-01

    assets to short term liabilities ratio and cost to income ratio. Empirical results of the research found out that grate damage to the stability of banking system has some parameters of banking activity, that’s why the main purpose of the regulation by the National Bank of Ukraine should be strengthening of macroprudential supervision and intensification of adaptation of Basel II and Basel III requirements

  16. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS and Supervised Learning Techniques

    Directory of Open Access Journals (Sweden)

    Sebastian Varela

    2018-02-01

    Full Text Available Corn (Zea mays L. is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants. Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude; higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.

  18. Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD.

    Science.gov (United States)

    Cao, Peng; Liu, Xiaoli; Bao, Hang; Yang, Jinzhu; Zhao, Dazhe

    2015-01-01

    The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the proposed method, we conducted a comprehensive performance study and compared its results with the commonly used techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD.

  19. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Zhi He

    2017-10-01

    Full Text Available Classification of hyperspectral image (HSI is an important research topic in the remote sensing community. Significant efforts (e.g., deep learning have been concentrated on this task. However, it is still an open issue to classify the high-dimensional HSI with a limited number of training samples. In this paper, we propose a semi-supervised HSI classification method inspired by the generative adversarial networks (GANs. Unlike the supervised methods, the proposed HSI classification method is semi-supervised, which can make full use of the limited labeled samples as well as the sufficient unlabeled samples. Core ideas of the proposed method are twofold. First, the three-dimensional bilateral filter (3DBF is adopted to extract the spectral-spatial features by naturally treating the HSI as a volumetric dataset. The spatial information is integrated into the extracted features by 3DBF, which is propitious to the subsequent classification step. Second, GANs are trained on the spectral-spatial features for semi-supervised learning. A GAN contains two neural networks (i.e., generator and discriminator trained in opposition to one another. The semi-supervised learning is achieved by adding samples from the generator to the features and increasing the dimension of the classifier output. Experimental results obtained on three benchmark HSI datasets have confirmed the effectiveness of the proposed method , especially with a limited number of labeled samples.

  20. Expert Students in Social Learning Management Systems

    Science.gov (United States)

    Avogadro, Paolo; Calegari, Silvia; Dominoni, Matteo Alessandro

    2016-01-01

    Purpose: A social learning management system (social LMS) is a tool which favors social interactions and allows scholastic institutions to supervise and guide the learning process. The inclusion of the social feature to a "normal" LMS leads to the creation of educational social networks (EduSN), where the students interact and learn. The…

  1. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Houacine, Amrane; Sun, Ying

    2017-01-01

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  2. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  3. Indonesian name matching using machine learning supervised approach

    Science.gov (United States)

    Alifikri, Mohamad; Arif Bijaksana, Moch.

    2018-03-01

    Most existing name matching methods are developed for English language and so they cover the characteristics of this language. Up to this moment, there is no specific one has been designed and implemented for Indonesian names. The purpose of this thesis is to develop Indonesian name matching dataset as a contribution to academic research and to propose suitable feature set by utilizing combination of context of name strings and its permute-winkler score. Machine learning classification algorithms is taken as the method for performing name matching. Based on the experiments, by using tuned Random Forest algorithm and proposed features, there is an improvement of matching performance by approximately 1.7% and it is able to reduce until 70% misclassification result of the state of the arts methods. This improving performance makes the matching system more effective and reduces the risk of misclassified matches.

  4. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil

    2017-01-05

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  5. Data driven information system for supervision of judicial open

    Directory of Open Access Journals (Sweden)

    Ming LI

    2016-08-01

    Full Text Available Aiming at the four outstanding problems of informationized supervision for judicial publicity, the judicial public data is classified based on data driven to form the finally valuable data. Then, the functional structure, technical structure and business structure of the data processing system are put forward, including data collection module, data reduction module, data analysis module, data application module and data security module, etc. The development of the data processing system based on these structures can effectively reduce work intensity of judicial open iformation management, summarize the work state, find the problems, and promote the level of judicial publicity.

  6. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    Science.gov (United States)

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely

  7. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    Science.gov (United States)

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Future of European Financial Supervision, Towards a European System of Financial Supervisors

    NARCIS (Netherlands)

    Arons, T.M.C.

    The 2008 financial crisis made clear the shortcomings in the European structure of financial supervision. In the cur­rent system of financial supervision the financial supervi­sor of the home Member State is in principle the only autho­rity entitled to supervise financial institutions even in case

  9. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768

  10. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

  11. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  12. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Predicting incomplete gene microarray data with the use of supervised learning algorithms

    CSIR Research Space (South Africa)

    Twala, B

    2010-10-01

    Full Text Available that prediction using supervised learning can be improved in probabilistic terms given incomplete microarray data. This imputation approach is based on the a priori probability of each value determined from the instances at that node of a decision tree (PDT...

  14. Multiclass semi-supervised learning for animal behavior recognition from accelerometer data

    NARCIS (Netherlands)

    Tanha, J.; van Someren, M.; de Bakker, M.; Bouten, W.; Shamoun-Baranes, J.; Afsarmanesh, H.

    2012-01-01

    In this paper we present a new Multiclass semi-supervised learning algorithm that uses a base classifier in combination with a similarity function applied to all data to find a classifier that maximizes the margin and consistency over all data. A novel multiclass loss function is presented and used

  15. Undergraduate Internship Supervision in Psychology Departments: Use of Experiential Learning Best Practices

    Science.gov (United States)

    Bailey, Sarah F.; Barber, Larissa K.; Nelson, Videl L.

    2017-01-01

    This study examined trends in how psychology internships are supervised compared to current experiential learning best practices in the literature. We sent a brief online survey to relevant contact persons for colleges/universities with psychology departments throughout the United States (n = 149 responded). Overall, the majority of institutions…

  16. Using supervised machine learning to code policy issues: Can classifiers generalize across contexts?

    NARCIS (Netherlands)

    Burscher, B.; Vliegenthart, R.; de Vreese, C.H.

    2015-01-01

    Content analysis of political communication usually covers large amounts of material and makes the study of dynamics in issue salience a costly enterprise. In this article, we present a supervised machine learning approach for the automatic coding of policy issues, which we apply to news articles

  17. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    Science.gov (United States)

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  18. Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar

    Directory of Open Access Journals (Sweden)

    Jacquomo Monk

    2012-11-01

    Full Text Available An understanding of the distribution and extent of marine habitats is essential for the implementation of ecosystem-based management strategies. Historically this had been difficult in marine environments until the advancement of acoustic sensors. This study demonstrates the applicability of supervised learning techniques for benthic habitat characterization using angular backscatter response data. With the advancement of multibeam echo-sounder (MBES technology, full coverage datasets of physical structure over vast regions of the seafloor are now achievable. Supervised learning methods typically applied to terrestrial remote sensing provide a cost-effective approach for habitat characterization in marine systems. However the comparison of the relative performance of different classifiers using acoustic data is limited. Characterization of acoustic backscatter data from MBES using four different supervised learning methods to generate benthic habitat maps is presented. Maximum Likelihood Classifier (MLC, Quick, Unbiased, Efficient Statistical Tree (QUEST, Random Forest (RF and Support Vector Machine (SVM were evaluated to classify angular backscatter response into habitat classes using training data acquired from underwater video observations. Results for biota classifications indicated that SVM and RF produced the highest accuracies, followed by QUEST and MLC, respectively. The most important backscatter data were from the moderate incidence angles between 30° and 50°. This study presents initial results for understanding how acoustic backscatter from MBES can be optimized for the characterization of marine benthic biological habitats.

  19. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Adal, Kedir M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sidebe, Desire [Univ. of Burgundy, Dijon (France); Ali, Sharib [Univ. of Burgundy, Dijon (France); Chaum, Edward [Univ. of Tennessee, Knoxville, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meriaudeau, Fabrice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  20. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    Science.gov (United States)

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Semi-supervised eigenvectors for large-scale locally-biased learning

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mahoney, Michael W.

    2014-01-01

    improved scaling properties. We provide several empirical examples demonstrating how these semi-supervised eigenvectors can be used to perform locally-biased learning; and we discuss the relationship between our results and recent machine learning algorithms that use global eigenvectors of the graph......In many applications, one has side information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks nearby that prespecified target region. For example, one might......-based machine learning and data analysis tools. At root, the reason is that eigenvectors are inherently global quantities, thus limiting the applicability of eigenvector-based methods in situations where one is interested in very local properties of the data. In this paper, we address this issue by providing...

  2. Source localization in an ocean waveguide using supervised machine learning.

    Science.gov (United States)

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  3. Apply Functional Modelling to Consequence Analysis in Supervision Systems

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Gola, Giulio

    2013-01-01

    This paper will first present the purpose and goals of applying functional modelling approach to consequence analysis by adopting Multilevel Flow Modelling (MFM). MFM Models describe a complex system in multiple abstraction levels in both means-end dimension and whole-part dimension. It contains...... consequence analysis to practical or online applications in supervision systems. It will also suggest a multiagent solution as the integration architecture for developing tools to facilitate the utilization results of functional consequence analysis. Finally a prototype of the multiagent reasoning system...... causal relations between functions and goals. A rule base system can be developed to trace the causal relations and perform consequence propagations. This paper will illustrate how to use MFM for consequence reasoning by using rule base technology and describe the challenges for integrating functional...

  4. Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

    Directory of Open Access Journals (Sweden)

    ZALL, R.

    2016-05-01

    Full Text Available Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE. SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.

  5. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  6. Supervised orthogonal discriminant subspace projects learning for face recognition.

    Science.gov (United States)

    Chen, Yu; Xu, Xiao-Hong

    2014-02-01

    In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Contaminant source identification using semi-supervised machine learning

    International Nuclear Information System (INIS)

    Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan

    2017-01-01

    Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).

  8. Aspects of the European system of financial supervision

    Directory of Open Access Journals (Sweden)

    Nagy Zoltán B.

    2016-01-01

    Full Text Available The study presents the main stages of the development of the European financial supervisory regulation and the current European System of Financial Supervision. The financial economic crisis highlighted the weaknesses in the supervisory system and the fact that the supervisor has an important role in consumer protection and in the mitigation of risk-taking by financial institutions. The European Union has developed a new financial strategy known as Banking Union, which has a three-pillar framework. These three pillars are the Single Supervisory Mechanism, the Single Resolution Mechanism and the Common Deposit Guarantee Scheme. This system is intended to achieve a single economic and monetary union at supranational level and to avoid the emergence of a new crisis as far as possible.

  9. Information-theoretic semi-supervised metric learning via entropy regularization.

    Science.gov (United States)

    Niu, Gang; Dai, Bo; Yamada, Makoto; Sugiyama, Masashi

    2014-08-01

    We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize SERAPH by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that SERAPH compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.

  10. Research of the Communication Middleware of the Yacht Supervision Management System Based on DDS

    Directory of Open Access Journals (Sweden)

    Wang Yan-Ru

    2016-01-01

    Full Text Available The communication middleware of the yacht supervision management system (YSM which is based on the DDS is the communication management software of the yacht supervision center system and the ship monitoring system. In order to ensure the high efficiency and high reliability of communication middleware, the paper for the first time introduced DDS communication framework to the yacht supervision system in the process of software design and implementation, and designed and implemented more flexible and reliable communication management interface for the DDS communication framework. Through practical test, each performance index of DDS communication middleware software of the yacht supervision management system has reached the design requirements.

  11. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail

    2018-03-19

    Cognitive radio attracts researchers\\' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system parameters\\' adaptation using optimization and machine learning techniques. However, these techniques have strengths and weaknesses depending on the experienced network scenario that make one more appropriate than others. In this paper, we propose a novel design for the cognitive system called supervised cognitive system (SCS), which aims to perform radio parameters adaptation with the most appropriate CE learning technique for the encountered network scenario. To realize SCS, it is required to evaluate the performance of different CEs in different network scenarios and according to certain performance objectives. In addition, the ability to select the most appropriate CE learning technique for adaptation in the current network scenario is also a priority in our design. Therefore, SCS investigates the relationship between learning and performance improvement and it employs online learning to classify scenarios and select the most appropriate CE learning technique. The testbed implementation and evaluation results in terms of goodput, packet error rate, and spectral efficiency show that the proposed SCS achieves more than 50% in performance gain compared to the best standalone CE.

  12. Problems of Rural Food Safety and Strategies of Constructing Supervision System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper expounds the practical necessity of constructing diversified rural food safety supervision system as follows: it is the necessary requirements of guaranteeing people’s health and life safety; it is an important component of governmental function of social management and the logical extension of administrative responsibilities; it is the basis of maintaining order of rural society and constructing harmonious society. The main problems existing in the supervision of rural food safety are analyzed as follows: first, the legislative work of rural food safety lags behind to some extent; second, the supervision of governmental departments on rural food safety is insufficient; third, the industrial supervision mechanism of rural food security is not perfect; fourth, the role of rural social organizations in supervising food safety is limited; fifth, the farmers’ awareness of food safety supervision is not strong. Based on these problems, the targeted strategies of constructing diversified rural food safety supervision system are put forward as follows: accelerate the legislation of rural food safety, and ensure that there are laws to go by; give play to the dominant role of government, and strengthen administrative supervision on rural food safety; perfect industrial convention of rural food safety, and improve industrial supervision mechanism; actively support the fostering of social organizations, and give play to the role of supervision of organizations; cultivate correct concept of rights and obligations of farmers, and form awareness of food safety supervision.

  13. Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees

    Directory of Open Access Journals (Sweden)

    Philip H. Williams

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require “read count” to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA∗ duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.

  14. Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.

    Science.gov (United States)

    Williams, Philip H; Eyles, Rod; Weiller, Georg

    2012-01-01

    MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(∗) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.

  15. CONSIDERATIONS REGARDING THE REFORM OF THE EUROPEAN FINANCIAL SUPERVISION SYSTEM

    Directory of Open Access Journals (Sweden)

    Persida Cechin Crista

    2012-01-01

    Full Text Available Financial stability has a crucial role in the financial system and in the economy as a whole, as shown by the current worldwide economic crisis. Therefore, in order to protect the financial system and to ensure financial stability, the identification of the main risk and vulnerability sources is of utmost importance. All involved parties, as well as financial institutions and supervision authorities need to be informed about the risks.Banks, insurance companies and other financial institutions represent the first line of defence against financial crises. These institutions are responsible for maintaining their viability and solvency, as well as for checking the debtors’ credit worthiness and for managing the undertaken risks.

  16. Outdoor Learning: Supervision Is More than Watching Children Play

    Science.gov (United States)

    Olsen, Heather; Thompson, Donna; Hudson, Susan

    2011-01-01

    Early childhood programs strive to provide good-quality care and education as young children develop their physical, emotional, social, and intellectual skills. In order to provide children with positive, developmentally appropriate learning opportunities, educators ensure the safety and security of children, indoors and outdoors. The outdoor…

  17. Improving orbit prediction accuracy through supervised machine learning

    Science.gov (United States)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  18. Generating a Spanish Affective Dictionary with Supervised Learning Techniques

    Science.gov (United States)

    Bermudez-Gonzalez, Daniel; Miranda-Jiménez, Sabino; García-Moreno, Raúl-Ulises; Calderón-Nepamuceno, Dora

    2016-01-01

    Nowadays, machine learning techniques are being used in several Natural Language Processing (NLP) tasks such as Opinion Mining (OM). OM is used to analyse and determine the affective orientation of texts. Usually, OM approaches use affective dictionaries in order to conduct sentiment analysis. These lexicons are labeled manually with affective…

  19. Emotional Literacy Support Assistants' Views on Supervision Provided by Educational Psychologists: What EPs Can Learn from Group Supervision

    Science.gov (United States)

    Osborne, Cara; Burton, Sheila

    2014-01-01

    The Educational Psychology Service in this study has responsibility for providing group supervision to Emotional Literacy Support Assistants (ELSAs) working in schools. To date, little research has examined this type of inter-professional supervision arrangement. The current study used a questionnaire to examine ELSAs' views on the supervision…

  20. Extended apprenticeship learning in doctoral training and supervision - moving beyond 'cookbook recipes'

    DEFF Research Database (Denmark)

    Tanggaard, Lene; Wegener, Charlotte

    An apprenticeship perspective on learning in academia sheds light on the potential for mutual learning and production, and also reveals the diverse range of learning resources beyond the formal novice-–expert relationship. Although apprenticeship is a well-known concept in educational research......, in this case apprenticeship offers an innovative perspective on future practice and research in academia allowing more students access to high high-quality research training and giving supervisors a chance to combine their own research with their supervision obligations....

  1. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  2. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    Science.gov (United States)

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  3. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning

    OpenAIRE

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian; Augustson, Erik

    2015-01-01

    Background Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public?s knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Objective Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess T...

  4. A functional supervised learning approach to the study of blood pressure data.

    Science.gov (United States)

    Papayiannis, Georgios I; Giakoumakis, Emmanuel A; Manios, Efstathios D; Moulopoulos, Spyros D; Stamatelopoulos, Kimon S; Toumanidis, Savvas T; Zakopoulos, Nikolaos A; Yannacopoulos, Athanasios N

    2018-04-15

    In this work, a functional supervised learning scheme is proposed for the classification of subjects into normotensive and hypertensive groups, using solely the 24-hour blood pressure data, relying on the concepts of Fréchet mean and Fréchet variance for appropriate deformable functional models for the blood pressure data. The schemes are trained on real clinical data, and their performance was assessed and found to be very satisfactory. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Out-of-Sample Generalizations for Supervised Manifold Learning for Classification.

    Science.gov (United States)

    Vural, Elif; Guillemot, Christine

    2016-03-01

    Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with an iterative process. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets.

  6. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    Science.gov (United States)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  7. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.

    Science.gov (United States)

    Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas

    2011-10-01

    The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm

  9. Clinical learning environment and supervision of international nursing students: A cross-sectional study.

    Science.gov (United States)

    Mikkonen, Kristina; Elo, Satu; Miettunen, Jouko; Saarikoski, Mikko; Kääriäinen, Maria

    2017-05-01

    Previously, it has been shown that the clinical learning environment causes challenges for international nursing students, but there is a lack of empirical evidence relating to the background factors explaining and influencing the outcomes. To describe international and national students' perceptions of their clinical learning environment and supervision, and explain the related background factors. An explorative cross-sectional design was used in a study conducted in eight universities of applied sciences in Finland during September 2015-May 2016. All nursing students studying English language degree programs were invited to answer a self-administered questionnaire based on both the clinical learning environment, supervision and nurse teacher scale and Cultural and Linguistic Diversity scale with additional background questions. Participants (n=329) included international (n=231) and Finnish (n=98) nursing students. Binary logistic regression was used to identify background factors relating to the clinical learning environment and supervision. International students at a beginner level in Finnish perceived the pedagogical atmosphere as worse than native speakers. In comparison to native speakers, these international students generally needed greater support from the nurse teacher at their university. Students at an intermediate level in Finnish reported two times fewer negative encounters in cultural diversity at their clinical placement than the beginners. To facilitate a successful learning experience, international nursing students require a sufficient level of competence in the native language when conducting clinical placements. Educational interventions in language education are required to test causal effects on students' success in the clinical learning environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    Science.gov (United States)

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  11. 76 FR 1431 - Public Water System Supervision Program Revision for the State of New Mexico

    Science.gov (United States)

    2011-01-10

    ... Public Water System Supervision Program. New Mexico has adopted the Ground Water Rule (GWR), the Long... the following offices: New Mexico Environment Department, Drinking Water Bureau, 525 Camino De Los... of New Mexico proposes to revise its approved Public Water System Supervision Primacy Program. This...

  12. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    Science.gov (United States)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  13. Per-service supervised learning for identifying desired WoT apps from user requests in natural language.

    Directory of Open Access Journals (Sweden)

    Young Yoon

    Full Text Available Web of Things (WoT platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user's requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF. However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions.

  14. Per-service supervised learning for identifying desired WoT apps from user requests in natural language.

    Science.gov (United States)

    Yoon, Young

    2017-01-01

    Web of Things (WoT) platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user's requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF). However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions.

  15. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    Science.gov (United States)

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    Science.gov (United States)

    Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.

    2009-01-01

    Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.

  17. An online supervised learning method based on gradient descent for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Supervised learning for infection risk inference using pathology data.

    Science.gov (United States)

    Hernandez, Bernard; Herrero, Pau; Rawson, Timothy Miles; Moore, Luke S P; Evans, Benjamin; Toumazou, Christofer; Holmes, Alison H; Georgiou, Pantelis

    2017-12-08

    Antimicrobial Resistance is threatening our ability to treat common infectious diseases and overuse of antimicrobials to treat human infections in hospitals is accelerating this process. Clinical Decision Support Systems (CDSSs) have been proven to enhance quality of care by promoting change in prescription practices through antimicrobial selection advice. However, bypassing an initial assessment to determine the existence of an underlying disease that justifies the need of antimicrobial therapy might lead to indiscriminate and often unnecessary prescriptions. From pathology laboratory tests, six biochemical markers were selected and combined with microbiology outcomes from susceptibility tests to create a unique dataset with over one and a half million daily profiles to perform infection risk inference. Outliers were discarded using the inter-quartile range rule and several sampling techniques were studied to tackle the class imbalance problem. The first phase selects the most effective and robust model during training using ten-fold stratified cross-validation. The second phase evaluates the final model after isotonic calibration in scenarios with missing inputs and imbalanced class distributions. More than 50% of infected profiles have daily requested laboratory tests for the six biochemical markers with very promising infection inference results: area under the receiver operating characteristic curve (0.80-0.83), sensitivity (0.64-0.75) and specificity (0.92-0.97). Standardization consistently outperforms normalization and sensitivity is enhanced by using the SMOTE sampling technique. Furthermore, models operated without noticeable loss in performance if at least four biomarkers were available. The selected biomarkers comprise enough information to perform infection risk inference with a high degree of confidence even in the presence of incomplete and imbalanced data. Since they are commonly available in hospitals, Clinical Decision Support Systems could

  19. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.

    Science.gov (United States)

    Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar

    2016-05-01

    Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.

  20. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  1. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  2. Exploiting Attribute Correlations: A Novel Trace Lasso-Based Weakly Supervised Dictionary Learning Method.

    Science.gov (United States)

    Wu, Lin; Wang, Yang; Pan, Shirui

    2017-12-01

    It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.

  3. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    Science.gov (United States)

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  4. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    International Nuclear Information System (INIS)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T

    2014-01-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays

  5. Graph-Based Semi-Supervised Learning for Indoor Localization Using Crowdsourced Data

    Directory of Open Access Journals (Sweden)

    Liye Zhang

    2017-04-01

    Full Text Available Indoor positioning based on the received signal strength (RSS of the WiFi signal has become the most popular solution for indoor localization. In order to realize the rapid deployment of indoor localization systems, solutions based on crowdsourcing have been proposed. However, compared to conventional methods, lots of different devices are used in crowdsourcing system and less RSS values are collected by each device. Therefore, the crowdsourced RSS values are more erroneous and can result in significant localization errors. In order to eliminate the signal strength variations across diverse devices, the Linear Regression (LR algorithm is proposed to solve the device diversity problem in crowdsourcing system. After obtaining the uniform RSS values, a graph-based semi-supervised learning (G-SSL method is used to exploit the correlation between the RSS values at nearby locations to estimate an optimal RSS value at each location. As a result, the negative effect of the erroneous measurements could be mitigated. Since the AP locations need to be known in G-SSL algorithm, the Compressed Sensing (CS method is applied to precisely estimate the location of the APs. Based on the location of the APs and a simple signal propagation model, the RSS difference between different locations is calculated and used as an additional constraint to improve the performance of G-SSL. Furthermore, to exploit the sparsity of the weights used in the G-SSL, we use the CS method to reconstruct these weights more accurately and make a further improvement on the performance of the G-SSL. Experimental results show improved results in terms of the smoothness of the radio map and the localization accuracy.

  6. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.

  7. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa

    2014-04-01

    This article describes a machine learning approach to water level estimation in a dual ultrasonic/passive infrared urban flood sensor system. We first show that an ultrasonic rangefinder alone is unable to accurately measure the level of water on a road due to thermal effects. Using additional passive infrared sensors, we show that ground temperature and local sensor temperature measurements are sufficient to correct the rangefinder readings and improve the flood detection performance. Since floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm. © 2014 IEEE.

  8. Counterbalancing clinical supervision and independent practice: case studies in learning thoracic epidural catheter insertion.

    Science.gov (United States)

    Johnson, T

    2010-12-01

    Thoracic epidural catheter placement is an example of a demanding and high-risk clinical skill that junior anaesthetists need to learn by experience and under the supervision of consultants. This learning is known to present challenges that require further study. Ten consultant and 10 trainee anaesthetists in a teaching hospital were interviewed about teaching and learning this skill in the operating theatre, and a phenomenological analysis of their experience was performed. Trainee participation was limited by time pressure, lack of familiarity with consultants, and consultants' own need for clinical experience. There was a particular tension between safe and effective consultant practice and permitting trainees' independence. Three distinct stages of participation and assistance were identified from reports of ideal practice: early (part-task or basic procedure, consultant always present giving instruction and feedback), middle (independent practice with straightforward cases without further instruction), and late (skill extension and transfer). Learning assistance provided by consultants varied, but it was often not matched to the trainees' stages of learning. Negotiation of participation and assistance was recognized as being useful, but it did not happen routinely. There are many obstacles to trainees' participation in thoracic epidural catheter insertion, and learning assistance is not matched to need. A more explicit understanding of stages of learning is required to benefit the learning of this and other advanced clinical skills.

  9. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  10. Prototype-based Models for the Supervised Learning of Classification Schemes

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2017-06-01

    An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

  11. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.

    Science.gov (United States)

    Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui

    2018-03-01

    Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.

  12. Identification of Village Building via Google Earth Images and Supervised Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Zhiling Guo

    2016-03-01

    Full Text Available In this study, a method based on supervised machine learning is proposed to identify village buildings from open high-resolution remote sensing images. We select Google Earth (GE RGB images to perform the classification in order to examine its suitability for village mapping, and investigate the feasibility of using machine learning methods to provide automatic classification in such fields. By analyzing the characteristics of GE images, we design different features on the basis of two kinds of supervised machine learning methods for classification: adaptive boosting (AdaBoost and convolutional neural networks (CNN. To recognize village buildings via their color and texture information, the RGB color features and a large number of Haar-like features in a local window are utilized in the AdaBoost method; with multilayer trained networks based on gradient descent algorithms and back propagation, CNN perform the identification by mining deeper information from buildings and their neighborhood. Experimental results from the testing area at Savannakhet province in Laos show that our proposed AdaBoost method achieves an overall accuracy of 96.22% and the CNN method is also competitive with an overall accuracy of 96.30%.

  13. Test-retest reliability of the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale.

    Science.gov (United States)

    Gustafsson, Margareta; Blomberg, Karin; Holmefur, Marie

    2015-07-01

    The Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale evaluates the student nurses' perception of the learning environment and supervision within the clinical placement. It has never been tested in a replication study. The aim of the present study was to evaluate the test-retest reliability of the CLES + T scale. The CLES + T scale was administered twice to a group of 42 student nurses, with a one-week interval. Test-retest reliability was determined by calculations of Intraclass Correlation Coefficients (ICCs) and weighted Kappa coefficients. Standard Error of Measurements (SEM) and Smallest Detectable Difference (SDD) determined the precision of individual scores. Bland-Altman plots were created for analyses of systematic differences between the test occasions. The results of the study showed that the stability over time was good to excellent (ICC 0.88-0.96) in the sub-dimensions "Supervisory relationship", "Pedagogical atmosphere on the ward" and "Role of the nurse teacher". Measurements of "Premises of nursing on the ward" and "Leadership style of the manager" had lower but still acceptable stability (ICC 0.70-0.75). No systematic differences occurred between the test occasions. This study supports the usefulness of the CLES + T scale as a reliable measure of the student nurses' perception of the learning environment within the clinical placement at a hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    Science.gov (United States)

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.

    Science.gov (United States)

    Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume

    2017-02-15

    Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Local dimensionality reduction and supervised learning within natural clusters for biomedical data analysis

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.

    2006-01-01

    Inductive learning systems were successfully applied in a number of medical domains. Nevertheless, the effective use of these systems often requires data preprocessing before applying a learning algorithm. This is especially important for multidimensional heterogeneous data presented by a large

  17. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    Science.gov (United States)

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Principles and models of a co-operative systems of a supervision aid; SCAS: principes et modeles d`un systeme cooperatif d`assistance a la supervision

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, J.M. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Cases, E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement]|[Paris-6 Univ., 75 (France); Brezillon, P. [Paris-6 Univ., 75 (France); Minault, S.

    1994-12-31

    This paper presents the functioning principles and the necessary models for a cooperative system of supervision aid (SCAS) used for a high-automated workshop. A meta-system of supervision is made up of the operator and the SCAS. The SCAS can operate under 2 different modes: wakefulness and cooperation. On the first one the behaviours of the process and the operator is observed and analysed. On the second one, it helps to solve the problems occurred by the operator. (TEC). 3 refs.

  19. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  20. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction

    Science.gov (United States)

    Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria

    2018-01-01

    This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.

  1. Optimal robustness of supervised learning from a noniterative point of view

    Science.gov (United States)

    Hu, Chia-Lun J.

    1995-08-01

    In most artificial neural network applications, (e.g. pattern recognition) if the dimension of the input vectors is much larger than the number of patterns to be recognized, generally, a one- layered, hard-limited perceptron is sufficient to do the recognition job. As long as the training input-output mapping set is numerically given, and as long as this given set satisfies a special linear-independency relation, the connection matrix to meet the supervised learning requirements can be solved by a noniterative, one-step, algebra method. The learning of this noniterative scheme is very fast (close to real-time learning) because the learning is one-step and noniterative. The recognition of the untrained patterns is very robust because a universal geometrical optimization process of selecting the solution can be applied to the learning process. This paper reports the theoretical foundation of this noniterative learning scheme and focuses the result at the optimal robustness analysis. A real-time character recognition scheme is then designed along this line. This character recognition scheme will be used (in a movie presentation) to demonstrate the experimental results of some theoretical parts reported in this paper.

  2. Visual texture perception via graph-based semi-supervised learning

    Science.gov (United States)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  3. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  4. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  5. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    Science.gov (United States)

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  6. A semi-supervised learning approach for RNA secondary structure prediction.

    Science.gov (United States)

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  8. Development and implementation of full-automatic supervision and control programme for CEFR refueling control system

    International Nuclear Information System (INIS)

    Zhu Hao; Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2011-01-01

    In order to make the process of CEFR refueling more convenient and reliable, the computer supervision and control system was designed according to the CEFR refueling technology. Meanwhile, the supervision and control function and database function were developed on the basis of KingView and SQL Server2000. The fuel of reactor core was fully loaded by the system, and full-automation of CEFR refueling process was implemented. (authors)

  9. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    Science.gov (United States)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  10. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    Science.gov (United States)

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  11. The helpfulness of category labels in semi-supervised learning depends on category structure.

    Science.gov (United States)

    Vong, Wai Keen; Navarro, Daniel J; Perfors, Amy

    2016-02-01

    The study of semi-supervised category learning has generally focused on how additional unlabeled information with given labeled information might benefit category learning. The literature is also somewhat contradictory, sometimes appearing to show a benefit to unlabeled information and sometimes not. In this paper, we frame the problem differently, focusing on when labels might be helpful to a learner who has access to lots of unlabeled information. Using an unconstrained free-sorting categorization experiment, we show that labels are useful to participants only when the category structure is ambiguous and that people's responses are driven by the specific set of labels they see. We present an extension of Anderson's Rational Model of Categorization that captures this effect.

  12. Learning a Markov Logic network for supervised gene regulatory network inference.

    Science.gov (United States)

    Brouard, Céline; Vrain, Christel; Dubois, Julie; Castel, David; Debily, Marie-Anne; d'Alché-Buc, Florence

    2013-09-12

    Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate "regulates", starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a

  13. Deep Learning @15 Petaflops/second: Semi-supervised pattern detection for 15 Terabytes of climate data

    Science.gov (United States)

    Collins, W. D.; Wehner, M. F.; Prabhat, M.; Kurth, T.; Satish, N.; Mitliagkas, I.; Zhang, J.; Racah, E.; Patwary, M.; Sundaram, N.; Dubey, P.

    2017-12-01

    Anthropogenically-forced climate changes in the number and character of extreme storms have the potential to significantly impact human and natural systems. Current high-performance computing enables multidecadal simulations with global climate models at resolutions of 25km or finer. Such high-resolution simulations are demonstrably superior in simulating extreme storms such as tropical cyclones than the coarser simulations available in the Coupled Model Intercomparison Project (CMIP5) and provide the capability to more credibly project future changes in extreme storm statistics and properties. The identification and tracking of storms in the voluminous model output is very challenging as it is impractical to manually identify storms due to the enormous size of the datasets, and therefore automated procedures are used. Traditionally, these procedures are based on a multi-variate set of physical conditions based on known properties of the class of storms in question. In recent years, we have successfully demonstrated that Deep Learning produces state of the art results for pattern detection in climate data. We have developed supervised and semi-supervised convolutional architectures for detecting and localizing tropical cyclones, extra-tropical cyclones and atmospheric rivers in simulation data. One of the primary challenges in the applicability of Deep Learning to climate data is in the expensive training phase. Typical networks may take days to converge on 10GB-sized datasets, while the climate science community has ready access to O(10 TB)-O(PB) sized datasets. In this work, we present the most scalable implementation of Deep Learning to date. We successfully scale a unified, semi-supervised convolutional architecture on all of the Cori Phase II supercomputer at NERSC. We use IntelCaffe, MKL and MLSL libraries. We have optimized single node MKL libraries to obtain 1-4 TF on single KNL nodes. We have developed a novel hybrid parameter update strategy to improve

  14. Improvement program of state supervision system for radioactive and nuclear installations

    International Nuclear Information System (INIS)

    Cardenas, J.

    1993-01-01

    The current program begins as part of a policy to take care of the development of the cuban nuclear program and with the objective of improving the state supervision system of nuclear and radioactive facilities on the basis of the national experience, good skills internationally accepted and taking into account IAEA recommendations. The program develops the following topics: reorientation and restructure of state supervision, review of the current nuclear legislature, update of regulations of facility safety and qualification and training of state supervision personnel

  15. Towards a supervised rescoring system for unstructured data bases used to build specialized dictionaries

    Directory of Open Access Journals (Sweden)

    Antonio Rico-Sulayes

    2014-12-01

    Full Text Available This article proposes the architecture for a system that uses previously learned weights to sort query results from unstructured data bases when building specialized dictionaries. A common resource in the construction of dictionaries, unstructured data bases have been especially useful in providing information about lexical items frequencies and examples in use. However, when building specialized dictionaries, whose selection of lexical items does not rely on frequency, the use of these data bases gets restricted to a simple provider of examples. Even in this task, the information unstructured data bases provide may not be very useful when looking for specialized uses of lexical items with various meanings and very long lists of results. In the face of this problem, long lists of hits can be rescored based on a supervised learning model that relies on previously helpful results. The allocation of a vast set of high quality training data for this rescoring system is reported here. Finally, the architecture of sucha system,an unprecedented tool in specialized lexicography, is proposed.

  16. The Consolidation on Banking Supervision in the Context of a Pan European Banking System

    Directory of Open Access Journals (Sweden)

    Teodora Barbu

    2007-03-01

    Full Text Available The diversity of national banking systems in the European banking system and the absence of consolidated supervision creates the premises for a series of interrogations whose essence is the same: Is it possible to discuss about a Pan European Banking System? The starting point in answering this question was the efforts to create a single banking market, which took place in 1973-1999, and the impact of integration on the European Banking Industry. Among the most representative aspects, it must be emphasized the necessity of consolidating banking supervision at an European level, considering that the International Banking Community studies the problematic of banking regulations at a global level. The two dimensions of the prudential and European bank supervision device – the geographic and the institutional – demand the creation of a structural reform in order to ensure the functioning of a Pan European system of banking supervision and regulations. The considerations on the Consolidation of European Banking Supervision draws into discussion the Financial Supervision Authority which has generalized as an applicable model in numerous European countries and has been mentioned as an alternative of Pan European banking supervision. In the process of the integration of the banking sector, the Basel II Accord represents an opportunity in reaching a convergence of national regulations and practices in matters of risk management, considering that these actions are in line with the preoccupations of realizing a Pan European banking system. Thus, the creation of Pan European banking system involves actions in more directions: legal, institutional, operational meant to ensure the consolidation of banking supervision.

  17. THE COMPARISON OF BANKING SUPERVISION MODEL IN INDONESIA, UNITED KINGDOM, SOUTH KOREA AS EFORTS TO IMPROVE INDONESIAN SUPERVISION SYSTEM

    OpenAIRE

    Sulistyandari; Arief Suryono

    2015-01-01

    This study aims to revise banking supervision by conducting comparative studies research model of banking supervision in Indonesia, the UK, South Korea and the aspirations of the respondents (Bank, OJK, theorist) in Central Java on efforts to improve banking supervision is now done in Indonesia. The results show Indonesian comparison with the UK and South Korea gives the idea that the OJK in charge of education and consumer protection to enhance its role as practiced by the FCA in...

  18. The Comparison of Banking Supervision Model in Indonesia, United Kingdom, South Korea as Eforts to Improve Indonesian Supervision System

    OpenAIRE

    Sulistyandari, Sulistyandari

    2015-01-01

    This study aims to improve banking supervision by conductingcomparative studies research model of banking supervision in Indonesia, the UK, South Korea and the aspirations of the respondents (Bank, OJK, theorist) in Central Java on efforts to improve banking supervision is now done in Indonesia. The results show Indonesian comparison with the UK and South Korea gives the idea that the OJK in charge of education and consumer protection to enhance its role as practiced by the FCA in the UK, and...

  19. Clinical learning environment and supervision: experiences of Norwegian nursing students - a questionnaire survey.

    Science.gov (United States)

    Skaalvik, Mari Wolff; Normann, Hans Ketil; Henriksen, Nils

    2011-08-01

    To measure nursing students' experiences and satisfaction with their clinical learning environments. The primary interest was to compare the results between students with respect to clinical practice in nursing homes and hospital wards. Clinical learning environments are important for the learning processes of nursing students and for preferences for future workplaces. Working with older people is the least preferred area of practice among nursing students in Norway. A cross-sectional design. A validated questionnaire was distributed to all nursing students from five non-randomly selected university colleges in Norway. A total of 511 nursing students completed a Norwegian version of the questionnaire, Clinical Learning Environment, Supervision and Nurse Teacher (CLES+T) evaluation scale in 2009. Data including descriptive statistics were analysed using the Statistical Program for the Social Sciences. Factor structure was analysed by principal component analysis. Differences across sub-groups were tested with chi-square tests and Mann-Whitney U test for categorical variables and t-tests for continuous variables. Ordinal logistic regression analysis of perceptions of the ward as a good learning environment was performed with supervisory relationships and institutional contexts as independent variables, controlling for age, sex and study year. The participating nursing students with clinical placements in nursing homes assessed their clinical learning environment significantly more negatively than those with hospital placements on nearby all sub-dimensions. The evidence found in this study indicates that measures should be taken to strengthen nursing homes as learning environments for nursing students. To recruit more graduated nurses to work in nursing homes, actions to improve the learning environment are needed. © 2011 Blackwell Publishing Ltd.

  20. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification

    OpenAIRE

    Zhang, Chenrui; Peng, Yuxin

    2018-01-01

    Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific feat...

  1. Semi-supervised learning of hyperspectral image segmentation applied to vine tomatoes and table grapes

    Directory of Open Access Journals (Sweden)

    Jeroen van Roy

    2018-03-01

    Full Text Available Nowadays, quality inspection of fruit and vegetables is typically accomplished through visual inspection. Automation of this inspection is desirable to make it more objective. For this, hyperspectral imaging has been identified as a promising technique. When the field of view includes multiple objects, hypercubes should be segmented to assign individual pixels to different objects. Unsupervised and supervised methods have been proposed. While the latter are labour intensive as they require masking of the training images, the former are too computationally intensive for in-line use and may provide different results for different hypercubes. Therefore, a semi-supervised method is proposed to train a computationally efficient segmentation algorithm with minimal human interaction. As a first step, an unsupervised classification model is used to cluster spectra in similar groups. In the second step, a pixel selection algorithm applied to the output of the unsupervised classification is used to build a supervised model which is fast enough for in-line use. To evaluate this approach, it is applied to hypercubes of vine tomatoes and table grapes. After first derivative spectral preprocessing to remove intensity variation due to curvature and gloss effects, the unsupervised models segmented 86.11% of the vine tomato images correctly. Considering overall accuracy, sensitivity, specificity and time needed to segment one hypercube, partial least squares discriminant analysis (PLS-DA was found to be the best choice for in-line use, when using one training image. By adding a second image, the segmentation results improved considerably, yielding an overall accuracy of 96.95% for segmentation of vine tomatoes and 98.52% for segmentation of table grapes, demonstrating the added value of the learning phase in the algorithm.

  2. Literature mining of protein-residue associations with graph rules learned through distant supervision

    Directory of Open Access Journals (Sweden)

    Ravikumar KE

    2012-10-01

    Full Text Available Abstract Background We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. Results The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. Conclusions The primary contributions of this work are to (1 demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2 show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  3. Literature mining of protein-residue associations with graph rules learned through distant supervision.

    Science.gov (United States)

    Ravikumar, Ke; Liu, Haibin; Cohn, Judith D; Wall, Michael E; Verspoor, Karin

    2012-10-05

    We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. The primary contributions of this work are to (1) demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2) show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  4. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  5. Interorganizational learning systems

    DEFF Research Database (Denmark)

    Hjalager, Anne-Mette

    1999-01-01

    The occurrence of organizational and interorganizational learning processes is not only the result of management endeavors. Industry structures and market related issues have substantial spill-over effects. The article reviews literature, and it establishes a learning model in which elements from...... organizational environments are included into a systematic conceptual framework. The model allows four types of learning to be identified: P-learning (professional/craft systems learning), T-learning (technology embedded learning), D-learning (dualistic learning systems, where part of the labor force is exclude...... from learning), and S-learning (learning in social networks or clans). The situation related to service industries illustrates the typology....

  6. A Supervised Multiclass Classifier for an Autocoding System

    Directory of Open Access Journals (Sweden)

    Yukako Toko

    2017-11-01

    Full Text Available Classification is often required in various contexts, including in the field of official statistics. In the previous study, we have developed a multiclass classifier that can classify short text descriptions with high accuracy. The algorithm borrows the concept of the naïve Bayes classifier and is so simple that its structure is easily understandable. The proposed classifier has the following two advantages. First, the processing times for both learning and classifying are extremely practical. Second, the proposed classifier yields high-accuracy results for a large portion of a dataset. We have previously developed an autocoding system for the Family Income and Expenditure Survey in Japan that has a better performing classifier. While the original system was developed in Perl in order to improve the efficiency of the coding process of short Japanese texts, the proposed system is implemented in the R programming language in order to explore versatility and is modified to make the system easily applicable to English text descriptions, in consideration of the increasing number of R users in the field of official statistics. We are planning to publish the proposed classifier as an R-package. The proposed classifier would be generally applicable to other classification tasks including coding activities in the field of official statistics, and it would contribute greatly to improving their efficiency.

  7. Student nurses' experiences of the clinical learning environment in relation to the organization of supervision: a questionnaire survey.

    Science.gov (United States)

    Sundler, Annelie J; Björk, Maria; Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Gustafsson, Margareta

    2014-04-01

    The aim was to investigate student nurses' experiences of the clinical learning environment in relation to how the supervision was organized. The clinical environment plays an essential part in student nurses' learning. Even though different models for supervision have been previously set forth, it has been stressed that there is a need both of further empirical studies on the role of preceptorship in undergraduate nursing education and of studies comparing different models. A cross-sectional study with comparative design was carried out with a mixed method approach. Data were collected from student nurses in the final term of the nursing programme at three universities in Sweden by means of a questionnaire. In general the students had positive experiences of the clinical learning environment with respect to pedagogical atmosphere, leadership style of the ward manager, premises of nursing, supervisory relationship, and role of the nurse preceptor and nurse teacher. However, there were significant differences in their ratings of the supervisory relationship (ppedagogical atmosphere (p 0.025) depending on how the supervision was organized. Students who had the same preceptor all the time were more satisfied with the supervisory relationship than were those who had different preceptors each day. Students' comments on the supervision confirmed the significance of the preceptor and the supervisory relationship. The organization of the supervision was of significance with regard to the pedagogical atmosphere and the students' relation to preceptors. Students with the same preceptor throughout were more positive concerning the supervisory relationship and the pedagogical atmosphere. © 2013.

  8. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  9. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    Science.gov (United States)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  10. A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training

    Directory of Open Access Journals (Sweden)

    Pengfei Jia

    2016-03-01

    Full Text Available When an electronic nose (E-nose is used to distinguish different kinds of gases, the label information of the target gas could be lost due to some fault of the operators or some other reason, although this is not expected. Another fact is that the cost of getting the labeled samples is usually higher than for unlabeled ones. In most cases, the classification accuracy of an E-nose trained using labeled samples is higher than that of the E-nose trained by unlabeled ones, so gases without label information should not be used to train an E-nose, however, this wastes resources and can even delay the progress of research. In this work a novel multi-class semi-supervised learning technique called M-training is proposed to train E-noses with both labeled and unlabeled samples. We employ M-training to train the E-nose which is used to distinguish three indoor pollutant gases (benzene, toluene and formaldehyde. Data processing results prove that the classification accuracy of E-nose trained by semi-supervised techniques (tri-training and M-training is higher than that of an E-nose trained only with labeled samples, and the performance of M-training is better than that of tri-training because more base classifiers can be employed by M-training.

  11. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Science.gov (United States)

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Automatic supervision and fault detection of PV systems based on power losses analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chouder, A.; Silvestre, S. [Electronic Engineering Department, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord UPC, 08034 Barcelona (Spain)

    2010-10-15

    In this work, we present a new automatic supervision and fault detection procedure for PV systems, based on the power losses analysis. This automatic supervision system has been developed in Matlab and Simulink environment. It includes parameter extraction techniques to calculate main PV system parameters from monitoring data in real conditions of work, taking into account the environmental irradiance and module temperature evolution, allowing simulation of the PV system behaviour in real time. The automatic supervision method analyses the output power losses, presents in the DC side of the PV generator, capture losses. Two new power losses indicators are defined: thermal capture losses (L{sub ct}) and miscellaneous capture losses (L{sub cm}). The processing of these indicators allows the supervision system to generate a faulty signal as indicator of fault detection in the PV system operation. Two new indicators of the deviation of the DC variables respect to the simulated ones have been also defined. These indicators are the current and voltage ratios: R{sub C} and R{sub V}. Analysing both, the faulty signal and the current/voltage ratios, the type of fault can be identified. The automatic supervision system has been successfully tested experimentally. (author)

  13. Automatic supervision and fault detection of PV systems based on power losses analysis

    International Nuclear Information System (INIS)

    Chouder, A.; Silvestre, S.

    2010-01-01

    In this work, we present a new automatic supervision and fault detection procedure for PV systems, based on the power losses analysis. This automatic supervision system has been developed in Matlab and Simulink environment. It includes parameter extraction techniques to calculate main PV system parameters from monitoring data in real conditions of work, taking into account the environmental irradiance and module temperature evolution, allowing simulation of the PV system behaviour in real time. The automatic supervision method analyses the output power losses, presents in the DC side of the PV generator, capture losses. Two new power losses indicators are defined: thermal capture losses (L ct ) and miscellaneous capture losses (L cm ). The processing of these indicators allows the supervision system to generate a faulty signal as indicator of fault detection in the PV system operation. Two new indicators of the deviation of the DC variables respect to the simulated ones have been also defined. These indicators are the current and voltage ratios: R C and R V . Analysing both, the faulty signal and the current/voltage ratios, the type of fault can be identified. The automatic supervision system has been successfully tested experimentally.

  14. Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne

    of sensors, as the sensors are designed to provide robust and reliable measurements. That means, the sensors are designed to have repeated measurement clusters. Sensor fusion is presented for the sensor based on chemoselective compounds. An array of color changing compounds are handled and in unity they make......This Ph.D. thesis titled “Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection” is a part of the strategic research project “Miniaturized sensors for explosives detection in air” funded by the Danish Agency for Science and Technology...... emanated by explosives and drugs, similar to an electronic nose. To evaluate sensor responses a data processing and evaluation pipeline is required. The work presented herein focuses on the feature extraction, feature representation and sensor accuracy. Thus the primary aim of this thesis is twofold...

  15. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  16. Analysed potential of big data and supervised machine learning techniques in effectively forecasting travel times from fused data

    Directory of Open Access Journals (Sweden)

    Ivana Šemanjski

    2015-12-01

    Full Text Available Travel time forecasting is an interesting topic for many ITS services. Increased availability of data collection sensors increases the availability of the predictor variables but also highlights the high processing issues related to this big data availability. In this paper we aimed to analyse the potential of big data and supervised machine learning techniques in effectively forecasting travel times. For this purpose we used fused data from three data sources (Global Positioning System vehicles tracks, road network infrastructure data and meteorological data and four machine learning techniques (k-nearest neighbours, support vector machines, boosting trees and random forest. To evaluate the forecasting results we compared them in-between different road classes in the context of absolute values, measured in minutes, and the mean squared percentage error. For the road classes with the high average speed and long road segments, machine learning techniques forecasted travel times with small relative error, while for the road classes with the small average speeds and segment lengths this was a more demanding task. All three data sources were proven itself to have a high impact on the travel time forecast accuracy and the best results (taking into account all road classes were achieved for the k-nearest neighbours and random forest techniques.

  17. Impact of data transformation and preprocessing in supervised ...

    African Journals Online (AJOL)

    Impact of data transformation and preprocessing in supervised learning ... Nowadays, the ideas of integrating machine learning techniques in power system has ... The proposed algorithm used Python-based split train and k-fold model ...

  18. Fieldwork online: a GIS-based electronic learning environment for supervising fieldwork

    Science.gov (United States)

    Alberti, Koko; Marra, Wouter; Baarsma, Rein; Karssenberg, Derek

    2016-04-01

    Fieldwork comes in many forms: individual research projects in unique places, large groups of students on organized fieldtrips, and everything in between those extremes. Supervising students in often distant places can be a logistical challenge and requires a significant time investment of their supervisors. We developed an online application for remote supervision of students on fieldwork. In our fieldworkonline webapp, which is accessible through a web browser, students can upload their field data in the form of a spreadsheet with coordinates (in a system of choice) and data-fields. Field data can be any combination of quantitative or qualitative data, and can contain references to photos or other documents uploaded to the app. The student's data is converted to a map with data-points that contain all the data-fields and links to photos and documents associated with that location. Supervisors can review the data of their students and provide feedback on observations, or geo-referenced feedback on the map. Similarly, students can ask geo-referenced questions to their supervisors. Furthermore, supervisors can choose different basemaps or upload their own. Fieldwork online is a useful tool for supervising students at a distant location in the field and is most suitable for first-order feedback on students' observations, can be used to guide students to interesting locations, and allows for short discussions on phenomena observed in the field. We seek user that like to use this system, we are able to provide support and add new features if needed. The website is built and controlled using Flask, an open-source Python Framework. The maps are generated and controlled using MapServer and OpenLayers, and the database is built in PostgreSQL with PostGIS support. Fieldworkonline and all tools used to create it are open-source. Experience fieldworkonline at our demo during this session, or online at fieldworkonline.geo.uu.nl (username: EGU2016, password: Vienna).

  19. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.

    Science.gov (United States)

    Zhao, Xiaowei; Ning, Qiao; Chai, Haiting; Ma, Zhiqiang

    2015-06-07

    As a widespread type of protein post-translational modifications (PTMs), succinylation plays an important role in regulating protein conformation, function and physicochemical properties. Compared with the labor-intensive and time-consuming experimental approaches, computational predictions of succinylation sites are much desirable due to their convenient and fast speed. Currently, numerous computational models have been developed to identify PTMs sites through various types of two-class machine learning algorithms. These methods require both positive and negative samples for training. However, designation of the negative samples of PTMs was difficult and if it is not properly done can affect the performance of computational models dramatically. So that in this work, we implemented the first application of positive samples only learning (PSoL) algorithm to succinylation sites prediction problem, which was a special class of semi-supervised machine learning that used positive samples and unlabeled samples to train the model. Meanwhile, we proposed a novel succinylation sites computational predictor called SucPred (succinylation site predictor) by using multiple feature encoding schemes. Promising results were obtained by the SucPred predictor with an accuracy of 88.65% using 5-fold cross validation on the training dataset and an accuracy of 84.40% on the independent testing dataset, which demonstrated that the positive samples only learning algorithm presented here was particularly useful for identification of protein succinylation sites. Besides, the positive samples only learning algorithm can be applied to build predictors for other types of PTMs sites with ease. A web server for predicting succinylation sites was developed and was freely accessible at http://59.73.198.144:8088/SucPred/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil

    Science.gov (United States)

    Kaul, Upender K.; Nguyen, Nhan T.

    2017-01-01

    This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside

  1. THE COMPARISON OF BANKING SUPERVISION MODEL IN INDONESIA, UNITED KINGDOM, SOUTH KOREA AS EFORTS TO IMPROVE INDONESIAN SUPERVISION SYSTEM

    Directory of Open Access Journals (Sweden)

    Sulistyandari

    2015-05-01

    Full Text Available This study aims to revise banking supervision by conducting comparative studies research model of banking supervision in Indonesia, the UK, South Korea and the aspirations of the respondents (Bank, OJK, theorist in Central Java on efforts to improve banking supervision is now done in Indonesia. The results show Indonesian comparison with the UK and South Korea gives the idea that the OJK in charge of education and consumer protection to enhance its role as practiced by the FCA in the UK, and the LPS assignments need to be expanded in order to ensure that all consumers of financial institutions as was done by the FSCS in the UK and KDIC in South Korea. Aspirations of the people of the regulation and supervision of banking include aspects of regulatory, law enforcement, infrastructure, community (the Bank and culture.

  2. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions.

    Science.gov (United States)

    Box, Simon

    2014-12-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.

  3. Construction of experience feedback system for equipment supervision in nuclear engineering

    International Nuclear Information System (INIS)

    Zou Pingguo; Zhang Liying; Zhang Wenzhong

    2009-01-01

    Based on the analysis of the experience sources on equipment supervision in nuclear engineering, the details of the organization principle, working flow, and report requirement for the experience feedback system are introduced. The function range and its roll in the experience feedback system of the nuclear authority, nuclear power plant owners and equipment supervision organizations are illustrated. The standardization working requirements in the information gathering, analyzing, feedback and tracking process, and the characteristics and form of the incident report and feedback report are proposed. It emphasizes that the method for combined analysis of one significant incident and the whole incidents shall be adopted in the information analysis, and the experience feedback shall be considered in the development of equipment supervision technique and the equipment manufacturing, thus to maximize the use of experience feedback information to improve the pertinency and effectiveness of the experience feedback system. (authors)

  4. Study on structuring the supervision system of coal mine associated with radionuclides in Xinjiang

    International Nuclear Information System (INIS)

    Feng Guangwen; Jia Xiahui

    2012-01-01

    Xinjiang is one of China's rich coal provinces (areas) and it accounts for about 40% national coal reserves. In the long-term radioactive scientific research, monitoring and environmental impact assessment works, we found parts of Yili and Hetian's coal was associated with higher radionuclide, and parts of coal seam even reached nuclear mining level. However the laws and regulations about associated radioactive coal mine supervision were not perfect, and the supervision system is still in the exploration. This article mainly started with the coal mine enterprises' geological prospecting reports, radiation environmental impact assessment and monitoring report preparation for environment acceptance checking and supervisory monitoring, controlled the coal radioactive pollution from the sources, and carried out the research of building Xinjiang associated radioactive coal mine supervision system. The establishment of supervision system will provide technical guidance for the enterprises' coal exploitation and cinders using on the one hand, and on the other hand will provide decision-making basis for strengthening the associated radioactive coal mine supervision for Xinjiang environmental regulators. (authors)

  5. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  6. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    Science.gov (United States)

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  7. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.

    Science.gov (United States)

    Ross, Tobias; Zimmerer, David; Vemuri, Anant; Isensee, Fabian; Wiesenfarth, Manuel; Bodenstedt, Sebastian; Both, Fabian; Kessler, Philip; Wagner, Martin; Müller, Beat; Kenngott, Hannes; Speidel, Stefanie; Kopp-Schneider, Annette; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-04-27

    Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a conditional generative adversarial network (cGAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI EndoVis2017 challenge) using the target task (in this instance: segmentation). As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.

  8. Whither Supervision?

    Directory of Open Access Journals (Sweden)

    Duncan Waite

    2006-11-01

    Full Text Available This paper inquires if the school supervision is in decadence. Dr. Waite responds that the answer will depend on which perspective you look at it. Dr. Waite suggests taking in consideration three elements that are related: the field itself, the expert in the field (the professor, the theorist, the student and the administrator, and the context. When these three elements are revised, it emphasizes that there is not a consensus about the field of supervision, but there are coincidences related to its importance and that it is related to the improvement of the practice of the students in the school for their benefit. Dr. Waite suggests that the practice on this field is not always in harmony with what the theorists affirm. When referring to the supervisor or the skilled person, the author indicates that his or her perspective depends on his or her epistemological believes or in the way he or she conceives the learning; that is why supervision can be understood in different ways. About the context, Waite suggests that there have to be taken in consideration the social or external forces that influent the people and the society, because through them the education is affected. Dr. Waite concludes that the way to understand the supervision depends on the performer’s perspective. He responds to the initial question saying that the supervision authorities, the knowledge on this field, the performers, and its practice, are maybe spread but not extinct because the supervision will always be part of the great enterprise that we called education.

  9. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    Science.gov (United States)

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time

  10. Application of semi-supervised deep learning to lung sound analysis.

    Science.gov (United States)

    Chamberlain, Daniel; Kodgule, Rahul; Ganelin, Daniela; Miglani, Vivek; Fletcher, Richard Ribon

    2016-08-01

    The analysis of lung sounds, collected through auscultation, is a fundamental component of pulmonary disease diagnostics for primary care and general patient monitoring for telemedicine. Despite advances in computation and algorithms, the goal of automated lung sound identification and classification has remained elusive. Over the past 40 years, published work in this field has demonstrated only limited success in identifying lung sounds, with most published studies using only a small numbers of patients (typically Ndeep learning algorithm for automatically classify lung sounds from a relatively large number of patients (N=284). Focusing on the two most common lung sounds, wheeze and crackle, we present results from 11,627 sound files recorded from 11 different auscultation locations on these 284 patients with pulmonary disease. 890 of these sound files were labeled to evaluate the model, which is significantly larger than previously published studies. Data was collected with a custom mobile phone application and a low-cost (US$30) electronic stethoscope. On this data set, our algorithm achieves ROC curves with AUCs of 0.86 for wheeze and 0.74 for crackle. Most importantly, this study demonstrates how semi-supervised deep learning can be used with larger data sets without requiring extensive labeling of data.

  11. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  12. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  13. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    Science.gov (United States)

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  14. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Kelwin Fernandes

    2018-05-01

    Full Text Available Cervical cancer remains a significant cause of mortality all around the world, even if it can be prevented and cured by removing affected tissues in early stages. Providing universal and efficient access to cervical screening programs is a challenge that requires identifying vulnerable individuals in the population, among other steps. In this work, we present a computationally automated strategy for predicting the outcome of the patient biopsy, given risk patterns from individual medical records. We propose a machine learning technique that allows a joint and fully supervised optimization of dimensionality reduction and classification models. We also build a model able to highlight relevant properties in the low dimensional space, to ease the classification of patients. We instantiated the proposed approach with deep learning architectures, and achieved accurate prediction results (top area under the curve AUC = 0.6875 which outperform previously developed methods, such as denoising autoencoders. Additionally, we explored some clinical findings from the embedding spaces, and we validated them through the medical literature, making them reliable for physicians and biomedical researchers.

  15. The effects of supervised learning on event-related potential correlates of music-syntactic processing.

    Science.gov (United States)

    Guo, Shuang; Koelsch, Stefan

    2015-11-11

    Humans process music even without conscious effort according to implicit knowledge about syntactic regularities. Whether such automatic and implicit processing is modulated by veridical knowledge has remained unknown in previous neurophysiological studies. This study investigates this issue by testing whether the acquisition of veridical knowledge of a music-syntactic irregularity (acquired through supervised learning) modulates early, partly automatic, music-syntactic processes (as reflected in the early right anterior negativity, ERAN), and/or late controlled processes (as reflected in the late positive component, LPC). Excerpts of piano sonatas with syntactically regular and less regular chords were presented repeatedly (10 times) to non-musicians and amateur musicians. Participants were informed by a cue as to whether the following excerpt contained a regular or less regular chord. Results showed that the repeated exposure to several presentations of regular and less regular excerpts did not influence the ERAN elicited by less regular chords. By contrast, amplitudes of the LPC (as well as of the P3a evoked by less regular chords) decreased systematically across learning trials. These results reveal that late controlled, but not early (partly automatic), neural mechanisms of music-syntactic processing are modulated by repeated exposure to a musical piece. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  17. Proposal of a national system to supervise nuclear installations out of international safeguards

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-01-01

    It is proposed a national system to safeguard, supervise and inspect nuclear facilities in Brazil, apart from international safeguards. It discusses also the military nuclear activities and the uranium enrichment plants. The system should be controlled by Brazilian CNEN. (A.C.A.S.)

  18. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S.; Ragin, Ann B.; Hao, Zhifeng; Yang, Xiaowei

    2015-01-01

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (i.e., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes. PMID:25927014

  19. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages.

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S; Ragin, Ann B; Hao, Zhifeng; Yang, Xiaowei

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases ( i.e ., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.

  20. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    Science.gov (United States)

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  1. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Science.gov (United States)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  2. Master's Thesis Supervision: Relations between Perceptions of the Supervisor-Student Relationship, Final Grade, Perceived Supervisor Contribution to Learning and Student Satisfaction

    Science.gov (United States)

    de Kleijn, Renske A. M.; Mainhard, M. Tim; Meijer, Paulien C.; Pilot, Albert; Brekelmans, Mieke

    2012-01-01

    Master's thesis supervision is a complex task given the two-fold goal of the thesis (learning and assessment). An important aspect of supervision is the supervisor-student relationship. This quantitative study (N = 401) investigates how perceptions of the supervisor-student relationship are related to three dependent variables: final grade,…

  3. Self-Supervised Video Representation Learning With Odd-One-Out Networks : CVPR 2017 : 21-26 July 2016, Honolulu, Hawaii : proceedings

    NARCIS (Netherlands)

    Fernando, B.; Bilen, H.; Gavves, E.; Gould, S.

    2017-01-01

    We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video

  4. 75 FR 23264 - Public Water System Supervision Program Revision for the State of Alabama

    Science.gov (United States)

    2010-05-03

    ... Public Water System Supervision Program. Alabama has adopted the following rules: Arsenic Rule, Lead and... motion, this determination shall become final and effective on June 2, 2010. Any request for a public... the Regional Administrator's determination and a brief statement of the information that the...

  5. 78 FR 73858 - Public Water System Supervision Program Revision for the State of Oklahoma

    Science.gov (United States)

    2013-12-09

    ... approved Public Water System Supervision Program. Oklahoma has adopted three EPA drinking water rules... and Disinfection Byproducts Rule (DBP2), and (3) the Ground Water Rule (GWR). EPA has determined that... Protection Agency, Region 6, Drinking Water Section (6WQ-SD), 1445 Ross Avenue, Suite 1200, Dallas, Texas...

  6. 78 FR 9047 - Public Water System Supervision Program Revision for the State of Texas

    Science.gov (United States)

    2013-02-07

    ... Water System Supervision Program. Texas has adopted three EPA drinking water rules, namely the: (1) Long Term 2 Enhanced Surface Water Treatment Rule (LT2), (2) the Stage 2 Disinfectants and Disinfection... Drinking Water Section (MC-155), Building F, 12100 Park 35 Circle, Austin, TX 78753; and United States...

  7. 76 FR 69734 - Public Water System Supervision Program Revision for the State of New Mexico

    Science.gov (United States)

    2011-11-09

    ... Water System Supervision Program. New Mexico has adopted the Lead and Copper Rule Short Term Revisions... water. EPA has determined that this rule revision submitted by New Mexico is no less stringent than the... the following offices: New Mexico Environment Department, Drinking Water Bureau, 525 Camino De Los...

  8. Computerized system for supervision of energy conservation; Sistema computacional para supervisao da conservacao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Freire Junior, Jose Celso; Cassula, Agnelo Marotta; Cardoso, Ademir Donisete [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2006-06-15

    This article presents a low cost methodology for supervision and control of the electric power demand in buildings connected to medium and high voltage. The proposed system uses the free information available on the energy meter itself. The data referred to the consumption are electronically transmitted from a serial output with defined protocol.

  9. Including Pressure Measurements in Supervision of Energy Efficiency of Wastewater Pump Systems

    DEFF Research Database (Denmark)

    Larsen, Torben; Arensman, Mareike; Nerup-Jensen, Ole

    2016-01-01

    energy). This article presents a method for a continuous supervision of the performance of both the pump and the pipeline in order to maintain the initial specific energy consumption as close as possible to the original value from when the system was commissioned. The method is based on pressure...

  10. Automatic learning rate adjustment for self-supervising autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  11. An Adaptive Privacy Protection Method for Smart Home Environments Using Supervised Learning

    Directory of Open Access Journals (Sweden)

    Jingsha He

    2017-03-01

    Full Text Available In recent years, smart home technologies have started to be widely used, bringing a great deal of convenience to people’s daily lives. At the same time, privacy issues have become particularly prominent. Traditional encryption methods can no longer meet the needs of privacy protection in smart home applications, since attacks can be launched even without the need for access to the cipher. Rather, attacks can be successfully realized through analyzing the frequency of radio signals, as well as the timestamp series, so that the daily activities of the residents in the smart home can be learnt. Such types of attacks can achieve a very high success rate, making them a great threat to users’ privacy. In this paper, we propose an adaptive method based on sample data analysis and supervised learning (SDASL, to hide the patterns of daily routines of residents that would adapt to dynamically changing network loads. Compared to some existing solutions, our proposed method exhibits advantages such as low energy consumption, low latency, strong adaptability, and effective privacy protection.

  12. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.

    Science.gov (United States)

    Macedo, Maysa M G; Guimarães, Welingson V N; Galon, Micheli Z; Takimura, Celso K; Lemos, Pedro A; Gutierrez, Marco Antonio

    2015-12-01

    Intravascular optical coherence tomography (IV-OCT) is an in-vivo imaging modality based on the intravascular introduction of a catheter which provides a view of the inner wall of blood vessels with a spatial resolution of 10-20 μm. Recent studies in IV-OCT have demonstrated the importance of the bifurcation regions. Therefore, the development of an automated tool to classify hundreds of coronary OCT frames as bifurcation or nonbifurcation can be an important step to improve automated methods for atherosclerotic plaques quantification, stent analysis and co-registration between different modalities. This paper describes a fully automated method to identify IV-OCT frames in bifurcation regions. The method is divided into lumen detection; feature extraction; and classification, providing a lumen area quantification, geometrical features of the cross-sectional lumen and labeled slices. This classification method is a combination of supervised machine learning algorithms and feature selection using orthogonal least squares methods. Training and tests were performed in sets with a maximum of 1460 human coronary OCT frames. The lumen segmentation achieved a mean difference of lumen area of 0.11 mm(2) compared with manual segmentation, and the AdaBoost classifier presented the best result reaching a F-measure score of 97.5% using 104 features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation

    Institute of Scientific and Technical Information of China (English)

    Tian Dongping

    2017-01-01

    In recent years, multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas, especially for automatic image annotation, whose purpose is to provide an efficient and effective searching environment for users to query their images more easily.In this paper, a semi-supervised learning based probabilistic latent semantic analysis ( PL-SA) model for automatic image annotation is presenred.Since it' s often hard to obtain or create la-beled images in large quantities while unlabeled ones are easier to collect, a transductive support vector machine ( TSVM) is exploited to enhance the quality of the training image data.Then, differ-ent image features with different magnitudes will result in different performance for automatic image annotation.To this end, a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible.Finally, a PLSA model with asymmetric mo-dalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores.Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PL-SA for the task of automatic image annotation.

  14. Supervised learning for the automated transcription of spacer classification from spoligotype films

    Directory of Open Access Journals (Sweden)

    Abernethy Neil

    2009-08-01

    Full Text Available Abstract Background Molecular genotyping of bacteria has revolutionized the study of tuberculosis epidemiology, yet these established laboratory techniques typically require subjective and laborious interpretation by trained professionals. In the context of a Tuberculosis Case Contact study in The Gambia we used a reverse hybridization laboratory assay called spoligotype analysis. To facilitate processing of spoligotype images we have developed tools and algorithms to automate the classification and transcription of these data directly to a database while allowing for manual editing. Results Features extracted from each of the 1849 spots on a spoligo film were classified using two supervised learning algorithms. A graphical user interface allows manual editing of the classification, before export to a database. The application was tested on ten films of differing quality and the results of the best classifier were compared to expert manual classification, giving a median correct classification rate of 98.1% (inter quartile range: 97.1% to 99.2%, with an automated processing time of less than 1 minute per film. Conclusion The software implementation offers considerable time savings over manual processing whilst allowing expert editing of the automated classification. The automatic upload of the classification to a database reduces the chances of transcription errors.

  15. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

    Science.gov (United States)

    Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico

    2014-08-01

    Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.

  16. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    Science.gov (United States)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  17. 17 CFR 240.17i-4 - Internal risk management control system requirements for supervised investment bank holding...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Internal risk management... Supervised Investment Bank Holding Company Rules § 240.17i-4 Internal risk management control system...) As part of its internal risk management control system, a supervised investment bank holding company...

  18. Learning through simulated independent practice leads to better future performance in a simulated crisis than learning through simulated supervised practice.

    Science.gov (United States)

    Goldberg, A; Silverman, E; Samuelson, S; Katz, D; Lin, H M; Levine, A; DeMaria, S

    2015-05-01

    Anaesthetists may fail to recognize and manage certain rare intraoperative events. Simulation has been shown to be an effective educational adjunct to typical operating room-based education to train for these events. It is yet unclear, however, why simulation has any benefit. We hypothesize that learners who are allowed to manage a scenario independently and allowed to fail, thus causing simulated morbidity, will consequently perform better when re-exposed to a similar scenario. Using a randomized, controlled, observer-blinded design, 24 first-year residents were exposed to an oxygen pipeline contamination scenario, either where patient harm occurred (independent group, n=12) or where a simulated attending anaesthetist intervened to prevent harm (supervised group, n=12). Residents were brought back 6 months later and exposed to a different scenario (pipeline contamination) with the same end point. Participants' proper treatment, time to diagnosis, and non-technical skills (measured using the Anaesthetists' Non-Technical Skills Checklist, ANTS) were measured. No participants provided proper treatment in the initial exposure. In the repeat encounter 6 months later, 67% in the independent group vs 17% in the supervised group resumed adequate oxygen delivery (P=0.013). The independent group also had better ANTS scores [median (interquartile range): 42.3 (31.5-53.1) vs 31.3 (21.6-41), P=0.015]. There was no difference in time to treatment if proper management was provided [602 (490-820) vs 610 (420-800) s, P=0.79]. Allowing residents to practise independently in the simulation laboratory, and subsequently, allowing them to fail, can be an important part of simulation-based learning. This is not feasible in real clinical practice but appears to have improved resident performance in this study. The purposeful use of independent practice and its potentially negative outcomes thus sets simulation-based learning apart from traditional operating room learning. © The Author

  19. Supervision--growing and building a sustainable general practice supervisor system.

    Science.gov (United States)

    Thomson, Jennifer S; Anderson, Katrina J; Mara, Paul R; Stevenson, Alexander D

    2011-06-06

    This article explores various models and ideas for future sustainable general practice vocational training supervision in Australia. The general practitioner supervisor in the clinical practice setting is currently central to training the future general practice workforce. Finding ways to recruit, retain and motivate both new and experienced GP teachers is discussed, as is the creation of career paths for such teachers. Some of the newer methods of practice-based teaching are considered for further development, including vertically integrated teaching, e-learning, wave consulting and teaching on the run, teaching teams and remote teaching. Approaches to supporting and resourcing teaching and the required infrastructure are also considered. Further research into sustaining the practice-based general practice supervision model will be required.

  20. Remote Supervision and Control of Air Conditioning Systems in Different Modes

    Science.gov (United States)

    Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree

    2018-01-01

    In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.

  1. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning.

    Science.gov (United States)

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian; Augustson, Erik

    2015-08-25

    Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public's knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess Twitter data for a range of factors related to e-cigarettes. Manual content analysis was conducted for 17,098 tweets. These tweets were coded for five categories: e-cigarette relevance, sentiment, user description, genre, and theme. Machine learning classification models were then built for each of these five categories, and word groupings (n-grams) were used to define the feature space for each classifier. Predictive performance scores for classification models indicated that the models correctly labeled the tweets with the appropriate variables between 68.40% and 99.34% of the time, and the percentage of maximum possible improvement over a random baseline that was achieved by the classification models ranged from 41.59% to 80.62%. Classifiers with the highest performance scores that also achieved the highest percentage of the maximum possible improvement over a random baseline were Policy/Government (performance: 0.94; % improvement: 80.62%), Relevance (performance: 0.94; % improvement: 75.26%), Ad or Promotion (performance: 0.89; % improvement: 72.69%), and Marketing (performance: 0.91; % improvement: 72.56%). The most appropriate word-grouping unit (n-gram) was 1 for the majority of classifiers. Performance continued to marginally increase with the size of the training dataset of manually annotated data, but eventually leveled off. Even at low dataset sizes of 4000 observations, performance characteristics were fairly sound. Social media outlets like Twitter can uncover real-time snapshots of

  2. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning

    Science.gov (United States)

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian

    2015-01-01

    Background Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public’s knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Objective Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess Twitter data for a range of factors related to e-cigarettes. Methods Manual content analysis was conducted for 17,098 tweets. These tweets were coded for five categories: e-cigarette relevance, sentiment, user description, genre, and theme. Machine learning classification models were then built for each of these five categories, and word groupings (n-grams) were used to define the feature space for each classifier. Results Predictive performance scores for classification models indicated that the models correctly labeled the tweets with the appropriate variables between 68.40% and 99.34% of the time, and the percentage of maximum possible improvement over a random baseline that was achieved by the classification models ranged from 41.59% to 80.62%. Classifiers with the highest performance scores that also achieved the highest percentage of the maximum possible improvement over a random baseline were Policy/Government (performance: 0.94; % improvement: 80.62%), Relevance (performance: 0.94; % improvement: 75.26%), Ad or Promotion (performance: 0.89; % improvement: 72.69%), and Marketing (performance: 0.91; % improvement: 72.56%). The most appropriate word-grouping unit (n-gram) was 1 for the majority of classifiers. Performance continued to marginally increase with the size of the training dataset of manually annotated data, but eventually leveled off. Even at low dataset sizes of 4000 observations, performance characteristics were fairly sound. Conclusions Social media outlets

  3. Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization.

    Science.gov (United States)

    Cai, Yun; Gu, Hong; Kenney, Toby

    2017-08-31

    Learning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems. The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw meaningful biological conclusions and discover hitherto unidentified patterns in the data. Comparing whole metagenomes of various mammals, (Muegge et al., Science 332:970-974, 2011), the biosynthesis of macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and healthy controls (Qin et al., Nature 464:59-65, 2010), we identify differences in a number of pathways (some known, others new). NMF is a powerful tool for identifying the key features of microbial communities. These identified features can not only be used to perform difficult

  4. The Consolidation on Banking Supervision in the Context of a Pan European Banking System

    OpenAIRE

    Teodora Barbu; Georgeta Vintila

    2007-01-01

    The diversity of national banking systems in the European banking system and the absence of consolidated supervision creates the premises for a series of interrogations whose essence is the same: Is it possible to discuss about a Pan European Banking System? The starting point in answering this question was the efforts to create a single banking market, which took place in 1973-1999, and the impact of integration on the European Banking Industry. Among the most representative aspects, it must...

  5. ARCHITECTURE OF EUROPEAN SYSTEM OF FINANCIAL SUPERVISION AFTER THE GLOBAL ECONOMIC CRISIS

    Directory of Open Access Journals (Sweden)

    Mateusz Muszyński

    2015-12-01

    Full Text Available This paper indicates how the last global financial crisis has affected the european financial system. As the depression evolved it brought all the weaknesses in the system of financial supervision to the surface. Then it became clear that deeper integration of the banking system was strongly needed. To mitigate systemic stability risk and improve the coordination process with international organizations, the European Commission decided to establish the European System of Financial Supervision. However, it seemed that it was not sufficient to prevent from further fragmentation of the financial market in Europe. As a result, in 2012 the European Commission initiated the banking union, a new form of political and economic integration.

  6. A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis.

    Science.gov (United States)

    Chai, Hua; Li, Zi-Na; Meng, De-Yu; Xia, Liang-Yong; Liang, Yong

    2017-10-12

    Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.

  7. SUPERVISION IMPLEMENTATION IN MANAGEMENT QUALITY: AN ATTEMPT TO IMPROVE THE QUALITY OF LEARNING AT MADRASAH ALIYAH DARUL A’MAL METRO

    Directory of Open Access Journals (Sweden)

    Subandi Subandi

    2016-03-01

    Full Text Available The primary purpose of this qualitative study is to identify and analyze supervision by implementing management quality to improve the quality of learning at Madrasah Aliyah Darul A’mal Metro, Lampung. The quality of management implementation is elaborated in the steps of assurance of learning quality. Two instruments, which consist of observation and questionnaire, were used in this study of which each instrument was analyzed based the deductive framework. The results of this study from each instrument revealed four steps of assurance of learning quality, among others (1 by socializing academic supervision program and its advantages to all stake holders, and (2 by implementing stages of assurance through academic supervision by the principals of Madrasah Aliyah Darul A’mal and supervisor, (3 performing supervision that is equipped with valid instrument to measure learning success, (4 performing the follow-up program by clinical and group discussion to provide appropriate model of performance.

  8. Anticipatory Driving for a Robot-Car Based on Supervised Learning

    DEFF Research Database (Denmark)

    Markelic, I.; Kulvicius, Tomas; Tamosiunaite, M.

    2009-01-01

    Using look ahead information and plan making improves hu- man driving. We therefore propose that also autonomously driving systems should dispose over such abilities. We adapt a machine learning approach, where the system, a car-like robot, is trained by an experienced driver by correlating visual...

  9. A new microcontroller supervised thermoelectric renal hypothermia system.

    Science.gov (United States)

    Işik, Hakan

    2005-10-01

    In the present study, a thermoelectric system controlled by a microcontroller is developed to induce renal hypothermia. Temperature value was managed by 8-byte microcontroller, PIC16F877, and was programmed using microcontroller MPASM package. In order to ensure hypothermia in the kidney 1-4 modules and sensors perceiving temperature of the area can be selected. Temperature values are arranged proportionately for the selected area and the determined temperature values can be monitored from an Liquid Crystal Display (LCD) screen. The temperature range of the system is between -50 and +50 degrees C. Renal hypothermia system was tried under in vivo conditions on the kidney of a dog.

  10. Core supervision methods and future improvements of the core master/presto system at KKB

    International Nuclear Information System (INIS)

    Lundberg, S.; Wenisch, J.; Teeffelen, W.V.

    2000-01-01

    Kernkraftwerk Brunsbuettel (KKB) is a KWU 806 MW e BWR located at the lower river Elbe, in Germany. The reactor has been in operation since 1976 and is now operating in its 14. cycle. The core supervision at KKB is performed with the ABB CORE MASTER system. This system mainly contains the 3-D simulator PRESTO supplied by Studsvik Scandpower A/S. The core supervision is performed by periodic PRESTO 3-D evaluations of the reactor operation state. The power distribution calculated by PRESTO is adapted with the ABB UPDAT program using the on-line LPRM readings. The thermal margins are based on this adapted power distribution. Related to core supervision, the function of the PRESTO/UPDAT codes is presented. The UPDAT method is working well and is capable of reproducing the true core power distribution. The quality of the 3-D calculation is, however, an important ingredient of the quality of the adapted power distribution. The adaptation method as such is also important for this quality. The data quality of this system during steady state and off-rate states (reactor manoeuvres) are discussed by presenting comparisons between PRESTO and UPDAT thermal margin utilisation from Cycle 13. Recently analysed asymmetries in the UPDAT evaluated MCPR values are also presented and discussed. Improvements in the core supervision such as the introduction of advanced modern nodal methods (PRESTO-2) are presented and an alternative core supervision philosophy is discussed. An ongoing project with the goal to update the data and result presentation interface (GUI) is also presented. (authors)

  11. An integrated system for land resources supervision based on the IoT and cloud computing

    Science.gov (United States)

    Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie

    2017-01-01

    Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.

  12. Developing a practice of supervision in university as a collective learning process

    DEFF Research Database (Denmark)

    Lund, Birthe; Jensen, Annie Aarup

    2009-01-01

    of the framework surrounding the supervision process, both as regards the students and the teachers; to de-privatize the problems encountered by the individual teacher during the supervision; to ensure that students would be able to graduate within the timeframe of the education (the institutional economic......The point of departure of the paper is a university pedagogical course established with the purpose of strengthening the university teachers’ competence regarding the supervision of students working on their master’s thesis. The purpose of the course is furthermore to ensure the improvement...

  13. Web-based ground loop supervision system for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Pena, A. de la; Lapayese, F.; Pacios, L.; Carrasco, R.

    2005-01-01

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation

  14. Web-based ground loop supervision system for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A. de la [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)]. E-mail: a.delapena@ciemat.es; Lapayese, F. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Carrasco, R. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-11-15

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation.

  15. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos

    Directory of Open Access Journals (Sweden)

    B. Ravi Kiran

    2018-02-01

    Full Text Available Videos represent the primary source of information for surveillance applications. Video material is often available in large quantities but in most cases it contains little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.

  16. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  17. N-grams Based Supervised Machine Learning Model for Mobile Agent Platform Protection against Unknown Malicious Mobile Agents

    Directory of Open Access Journals (Sweden)

    Pallavi Bagga

    2017-12-01

    Full Text Available From many past years, the detection of unknown malicious mobile agents before they invade the Mobile Agent Platform has been the subject of much challenging activity. The ever-growing threat of malicious agents calls for techniques for automated malicious agent detection. In this context, the machine learning (ML methods are acknowledged more effective than the Signature-based and Behavior-based detection methods. Therefore, in this paper, the prime contribution has been made to detect the unknown malicious mobile agents based on n-gram features and supervised ML approach, which has not been done so far in the sphere of the Mobile Agents System (MAS security. To carry out the study, the n-grams ranging from 3 to 9 are extracted from a dataset containing 40 malicious and 40 non-malicious mobile agents. Subsequently, the classification is performed using different classifiers. A nested 5-fold cross validation scheme is employed in order to avoid the biasing in the selection of optimal parameters of classifier. The observations of extensive experiments demonstrate that the work done in this paper is suitable for the task of unknown malicious mobile agent detection in a Mobile Agent Environment, and also adds the ML in the interest list of researchers dealing with MAS security.

  18. The Consolidation on Banking Supervision in the Context of a Pan European Banking System

    Directory of Open Access Journals (Sweden)

    Teodora Barbu

    2007-03-01

    In the process of the integration of the banking sector, the Basel II Accord represents an opportunity in reaching a convergence of national regulations and practices in matters of risk management, considering that these actions are in line with the preoccupations of realizing a Pan European banking system. Thus, the creation of Pan European banking system involves actions in more directions: legal, institutional, operational meant to ensure the consolidation of banking supervision.

  19. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2018-01-01

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input ‘for processing’ DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice’s coefficient (DC) of 0.79  ±  0.13 and Pearson’s correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as

  20. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning.

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A; Roubidoux, Marilyn A; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M; Samala, Ravi K

    2018-01-09

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input 'for processing' DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice's coefficient (DC) of 0.79  ±  0.13 and Pearson's correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as

  1. Decision support systems for cyber-risk supervision in banks

    OpenAIRE

    Košak, Matjaž

    2016-01-01

    Cyber risk has been increasing due to fast development of information technology, increased using of smart gadgets, advanced way of communication, changing habits of users, and inventiveness of cyber criminals. Nowadays, cyber criminals are highly motivated professionals who are frequently financed by wealthy criminal organizations, or even states, and have clear goals and strategies. False working of critical systems might have important consequences for the whole society, therefore the ...

  2. Supervised learning based model for predicting variability-induced timing errors

    NARCIS (Netherlands)

    Jiao, X.; Rahimi, A.; Narayanaswamy, B.; Fatemi, H.; Pineda de Gyvez, J.; Gupta, R.K.

    2015-01-01

    Circuit designers typically combat variations in hardware and workload by increasing conservative guardbanding that leads to operational inefficiency. Reducing this excessive guardband is highly desirable, but causes timing errors in synchronous circuits. We propose a methodology for supervised

  3. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  4. Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods.

    Science.gov (United States)

    Honnorat, Nicolas; Dong, Aoyan; Meisenzahl-Lechner, Eva; Koutsouleris, Nikolaos; Davatzikos, Christos

    2017-12-20

    Schizophrenia is associated with heterogeneous clinical symptoms and neuroanatomical alterations. In this work, we aim to disentangle the patterns of neuroanatomical alterations underlying a heterogeneous population of patients using a semi-supervised clustering method. We apply this strategy to a cohort of patients with schizophrenia of varying extends of disease duration, and we describe the neuroanatomical, demographic and clinical characteristics of the subtypes discovered. We analyze the neuroanatomical heterogeneity of 157 patients diagnosed with Schizophrenia, relative to a control population of 169 subjects, using a machine learning method called CHIMERA. CHIMERA clusters the differences between patients and a demographically-matched population of healthy subjects, rather than clustering patients themselves, thereby specifically assessing disease-related neuroanatomical alterations. Voxel-Based Morphometry was conducted to visualize the neuroanatomical patterns associated with each group. The clinical presentation and the demographics of the groups were then investigated. Three subgroups were identified. The first two differed substantially, in that one involved predominantly temporal-thalamic-peri-Sylvian regions, whereas the other involved predominantly frontal regions and the thalamus. Both subtypes included primarily male patients. The third pattern was a mix of these two and presented milder neuroanatomic alterations and comprised a comparable number of men and women. VBM and statistical analyses suggest that these groups could correspond to different neuroanatomical dimensions of schizophrenia. Our analysis suggests that schizophrenia presents distinct neuroanatomical variants. This variability points to the need for a dimensional neuroanatomical approach using data-driven, mathematically principled multivariate pattern analysis methods, and should be taken into account in clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Unbiased and non-supervised learning methods for disruption prediction at JET

    International Nuclear Information System (INIS)

    Murari, A.; Vega, J.; Ratta, G.A.; Vagliasindi, G.; Johnson, M.F.; Hong, S.H.

    2009-01-01

    The importance of predicting the occurrence of disruptions is going to increase significantly in the next generation of tokamak devices. The expected energy content of ITER plasmas, for example, is such that disruptions could have a significant detrimental impact on various parts of the device, ranging from erosion of plasma facing components to structural damage. Early detection of disruptions is therefore needed with evermore increasing urgency. In this paper, the results of a series of methods to predict disruptions at JET are reported. The main objective of the investigation consists of trying to determine how early before a disruption it is possible to perform acceptable predictions on the basis of the raw data, keeping to a minimum the number of 'ad hoc' hypotheses. Therefore, the chosen learning techniques have the common characteristic of requiring a minimum number of assumptions. Classification and Regression Trees (CART) is a supervised but, on the other hand, a completely unbiased and nonlinear method, since it simply constructs the best classification tree by working directly on the input data. A series of unsupervised techniques, mainly K-means and hierarchical, have also been tested, to investigate to what extent they can autonomously distinguish between disruptive and non-disruptive groups of discharges. All these independent methods indicate that, in general, prediction with a success rate above 80% can be achieved not earlier than 180 ms before the disruption. The agreement between various completely independent methods increases the confidence in the results, which are also confirmed by a visual inspection of the data performed with pseudo Grand Tour algorithms.

  6. Protein complex detection in PPI networks based on data integration and supervised learning method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Hu, Xiao; Sun, Yuan; Lin, Hong; Wang, Jian

    2015-01-01

    Revealing protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, which makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small amount of known physical interactions may limit protein complex detection. The new PPI networks are constructed by integrating PPI datasets with the large and readily available PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex detection (SLPC), which can make full use of the information of available known complexes, is applied to detect protein complex on the new PPI networks. The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75 percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40 percentage units in the F-score and MMR are achieved respectively. The experimental results show that the performances of SLPC have a large improvement through integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.

  7. Seeing It All: Evaluating Supervised Machine Learning Methods for the Classification of Diverse Otariid Behaviours.

    Directory of Open Access Journals (Sweden)

    Monique A Ladds

    Full Text Available Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns of acceleration. However, when analysing data derived from accelerometers, there are many statistical techniques available which when applied to different data sets produce different classification accuracies. We investigated a selection of supervised machine learning methods for interpreting behavioural data from captive otariids (fur seals and sea lions. We conducted controlled experiments with 12 seals, where their behaviours were filmed while they were wearing 3-axis accelerometers. From video we identified 26 behaviours that could be grouped into one of four categories (foraging, resting, travelling and grooming representing key behaviour states for wild seals. We used data from 10 seals to train four predictive classification models: stochastic gradient boosting (GBM, random forests, support vector machine using four different kernels and a baseline model: penalised logistic regression. We then took the best parameters from each model and cross-validated the results on the two seals unseen so far. We also investigated the influence of feature statistics (describing some characteristic of the seal, testing the models both with and without these. Cross-validation accuracies were lower than training accuracy, but the SVM with a polynomial kernel was still able to classify seal behaviour with high accuracy (>70%. Adding feature statistics improved accuracies across all models tested. Most categories of behaviour -resting, grooming and feeding-were all predicted with reasonable accuracy (52-81% by the SVM while travelling was poorly categorised (31-41%. These results show that model selection is important when classifying behaviour and that by using

  8. Kollegial supervision

    DEFF Research Database (Denmark)

    Andersen, Ole Dibbern; Petersson, Erling

    Publikationen belyser, hvordan kollegial supervision i en kan organiseres i en uddannelsesinstitution......Publikationen belyser, hvordan kollegial supervision i en kan organiseres i en uddannelsesinstitution...

  9. Computer interfacing of the unified systems for personnel supervising in nuclear units

    International Nuclear Information System (INIS)

    Staicu, M.

    1997-01-01

    The dosimetric supervising of the personnel working in nuclear units is based on the information supplied by: 1) the dosimetric data obtained by the method of thermoluminescence; 2) the dosimetric data obtained by the method of photo dosimetry: 3) the records from medical periodic control. To create a unified system of supervising the following elements were combined: a) an Automatic System of TLD Reading and Data Processing (SACDTL). The data from this system are transmitted 'on line' to the computer; b) the measuring line of the optical density of exposed dosimetric films. The interface achieved within the general ensemble SACDTL could be adapted to this line of measurement. The transmission of the data from the measurement line to the computer is made 'on line'; c) the medical surveillance data for each person transmitted 'off line' to the database computer. The unified system resulting from the unification of the three supervising systems will achieve the following general functions: - registering of the personnel working in the nuclear field; - recording the dosimetric data; - processing and presentation of the data; - issuing of measurement bulletins. Thus, by means of unified database, dosimetric intercomparison and correlative studies can be undertaken. (author)

  10. Role of communication systems in coordinating supervising anesthesiologists' activities outside of operating rooms.

    Science.gov (United States)

    Smallman, Bettina; Dexter, Franklin; Masursky, Danielle; Li, Fenghua; Gorji, Reza; George, Dave; Epstein, Richard H

    2013-04-01

    Theoretically, communication systems have the potential to increase the productivity of anesthesiologists supervising anesthesia providers. We evaluated the maximal potential of communication systems to increase the productivity of anesthesia care by enhancing anesthesiologists' coordination of care (activities) among operating rooms (ORs). At hospital A, data for 13,368 pages were obtained from files recorded in the internal alphanumeric text paging system. Pages from the postanesthesia care unit were processed through a numeric paging system and thus not included. At hospital B, in a different US state, 3 of the authors categorized each of 898 calls received using the internal wireless audio system (Vocera(®)). Lower and upper 95% confidence limits for percentages are the values reported. At least 45% of pages originated from outside the ORs (e.g., 20% from holding area) at hospital A and at least 56% of calls (e.g., 30% administrative) at hospital B. In contrast, requests from ORs for urgent presence of the anesthesiologist were at most 0.2% of pages at hospital A and 1.8% of calls at hospital B. Approximately half of messages to supervising anesthesiologists are for activity originating outside the ORs being supervised. To use communication tools to increase anesthesia productivity on the day of surgery, their use should include a focus on care coordination outside ORs (e.g., holding area) and among ORs (e.g., at the control desk).

  11. Applications of learning based systems at AREVA group

    International Nuclear Information System (INIS)

    Jeanmart, F.; Leclerc, C.

    2006-01-01

    As part of its work on advanced information systems, AREVA is exploring the use of computerized tools based on 'machine learning' techniques. Some of these studies are being carried out by EURIWARE - continuing on from previous work done by AREVA NC - focused on the supervision of complex systems. Systems based on machine learning techniques are one of the possible solutions being investigated by AREVA: knowing that the stakes are high and involve better anticipation and control and high financial considerations. (authors)

  12. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  13. Alzheimer's Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning.

    Science.gov (United States)

    Khajehnejad, Moein; Saatlou, Forough Habibollahi; Mohammadzade, Hoda

    2017-08-20

    Alzheimer's disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of the condition of the brain through the classification of magnetic resonance imaging (MRI) images is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses label propagation in a manifold-based semi-supervised learning framework. We first apply voxel morphometry analysis to extract some of the most critical AD-related features of brain images from the original MRI volumes and also gray matter (GM) segmentation volumes. The features must capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain. Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted features for faster yet sufficiently accurate analysis. To make the best use of the captured features, we present a hybrid manifold learning framework which embeds the feature vectors in a subspace. Next, using a small set of labeled training data, we apply a label propagation method in the created manifold space to predict the labels of the remaining images and classify them in the two groups of mild Alzheimer's and normal condition (MCI/NC). The accuracy of the classification using the proposed method is 93

  14. Value of supervised learning events in predicting doctors in difficulty.

    Science.gov (United States)

    Patel, Mumtaz; Agius, Steven; Wilkinson, Jack; Patel, Leena; Baker, Paul

    2016-07-01

    In the UK, supervised learning events (SLE) replaced traditional workplace-based assessments for foundation-year trainees in 2012. A key element of SLEs was to incorporate trainee reflection and assessor feedback in order to drive learning and identify training issues early. Few studies, however, have investigated the value of SLEs in predicting doctors in difficulty. This study aimed to identify principles that would inform understanding about how and why SLEs work or not in identifying doctors in difficulty (DiD). A retrospective case-control study of North West Foundation School trainees' electronic portfolios was conducted. Cases comprised all known DiD. Controls were randomly selected from the same cohort. Free-text supervisor comments from each SLE were assessed for the four domains defined in the General Medical Council's Good Medical Practice Guidelines and each scored blindly for level of concern using a three-point ordinal scale. Cumulative scores for each SLE were then analysed quantitatively for their predictive value of actual DiD. A qualitative thematic analysis was also conducted. The prevalence of DiD in this sample was 6.5%. Receiver operator characteristic curve analysis showed that Team Assessment of Behaviour (TAB) was the only SLE strongly predictive of actual DiD status. The Educational Supervisor Report (ESR) was also strongly predictive of DiD status. Fisher's test showed significant associations of TAB and ESR for both predicted and actual DiD status and also the health and performance subtypes. None of the other SLEs showed significant associations. Qualitative data analysis revealed inadequate completion and lack of constructive, particularly negative, feedback. This indicated that SLEs were not used to their full potential. TAB and the ESR are strongly predictive of DiD. However, SLEs are not being used to their full potential, and the quality of completion of reports on SLEs and feedback needs to be improved in order to better identify

  15. Radiation source states on-line supervision system design and implementation based on RFID technology

    International Nuclear Information System (INIS)

    Yang Binhua; Ling Qiu; Yin Guoli; Yang Kun; Wan Xueping; Wang Kan

    2011-01-01

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  16. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali

    2017-11-01

    Full Text Available Current transformer (CT saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL methods have brought a subversive revolution in the field of artificial intelligence (AI. This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

  17. Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing

    Science.gov (United States)

    Liu, Junchi; Zarshenas, Amin; Qadir, Ammar; Wei, Zheng; Yang, Limin; Fajardo, Laurie; Suzuki, Kenji

    2018-03-01

    To reduce cumulative radiation exposure and lifetime risks for radiation-induced cancer from breast cancer screening, we developed a deep-learning-based supervised image-processing technique called neural network convolution (NNC) for radiation dose reduction in DBT. NNC employed patched-based neural network regression in a convolutional manner to convert lower-dose (LD) to higher-dose (HD) tomosynthesis images. We trained our NNC with quarter-dose (25% of the standard dose: 12 mAs at 32 kVp) raw projection images and corresponding "teaching" higher-dose (HD) images (200% of the standard dose: 99 mAs at 32 kVp) of a breast cadaver phantom acquired with a DBT system (Selenia Dimensions, Hologic, CA). Once trained, NNC no longer requires HD images. It converts new LD images to images that look like HD images; thus the term "virtual" HD (VHD) images. We reconstructed tomosynthesis slices on a research DBT system. To determine a dose reduction rate, we acquired 4 studies of another test phantom at 4 different radiation doses (1.35, 2.7, 4.04, and 5.39 mGy entrance dose). Structural SIMilarity (SSIM) index was used to evaluate the image quality. For testing, we collected half-dose (50% of the standard dose: 32+/-14 mAs at 33+/-5 kVp) and full-dose (standard dose: 68+/-23 mAs at 33+/-5 kvp) images of 10 clinical cases with the DBT system at University of Iowa Hospitals and Clinics. NNC converted half-dose DBT images of 10 clinical cases to VHD DBT images that were equivalent to full dose DBT images. Our cadaver phantom experiment demonstrated 79% dose reduction.

  18. Collective academic supervision

    DEFF Research Database (Denmark)

    Nordentoft, Helle Merete; Thomsen, Rie; Wichmann-Hansen, Gitte

    2013-01-01

    Supervision of students is a core activity in higher education. Previous research on student supervision in higher education focus on individual and relational aspects in the supervisory relationship rather than collective, pedagogical and methodical aspects of the planning of the supervision...... process. This article fills these gaps by discussing potentials and challenges in “Collective Academic Supervision”, a model for supervision at the Master of Education in Guidance at Aarhus University in Denmark. The pedagogical rationale behind the model is that students’ participation and learning...

  19. Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI

    Science.gov (United States)

    Daniel L. Schmoldt

    1997-01-01

    Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...

  20. Accurate Traffic Flow Prediction in Heterogeneous Vehicular Networks in an Intelligent Transport System Using a Supervised Non-Parametric Classifier

    Directory of Open Access Journals (Sweden)

    Hesham El-Sayed

    2018-05-01

    Full Text Available Heterogeneous vehicular networks (HETVNETs evolve from vehicular ad hoc networks (VANETs, which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs. The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM kernels with a radial basis function (RBF. The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy.

  1. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  2. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  3. Prediction of interactions between viral and host proteins using supervised machine learning methods.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Barman

    Full Text Available BACKGROUND: Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs has great implication for therapeutics. METHODS: In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques. RESULTS: Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49% and Random Forest (55.66%. However the specificity of Naïve Bayes was the highest (99.52% as compared with SVM (74% and Random Forest (89.08%. Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively. CONCLUSION: The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV, interacting partners of host

  4. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  5. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-01-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  6. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2018-01-01

    coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements

  7. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    Science.gov (United States)

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    Science.gov (United States)

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  9. Supervision in banking industry

    OpenAIRE

    Šmída, David

    2012-01-01

    The aim of submitted thesis Supervision in banking is to define the nature and the importance of banking supervision, to justify its existence and to analyze the applicable mechanisms while the system of banking regulation and supervision in this thesis is primarily examined in the European context, with a focus on the Czech Republic. The thesis is divided into five main chapters. The first chapter is devoted to the financial system and the importance of banks in this system, it defines the c...

  10. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.

    Science.gov (United States)

    Liu, Jing; Zhao, Songzheng; Wang, Gang

    2018-01-01

    With the development of Web 2.0 technology, social media websites have become lucrative but under-explored data sources for extracting adverse drug events (ADEs), which is a serious health problem. Besides ADE, other semantic relation types (e.g., drug indication and beneficial effect) could hold between the drug and adverse event mentions, making ADE relation extraction - distinguishing ADE relationship from other relation types - necessary. However, conducting ADE relation extraction in social media environment is not a trivial task because of the expertise-dependent, time-consuming and costly annotation process, and the feature space's high-dimensionality attributed to intrinsic characteristics of social media data. This study aims to develop a framework for ADE relation extraction using patient-generated content in social media with better performance than that delivered by previous efforts. To achieve the objective, a general semi-supervised ensemble learning framework, SSEL-ADE, was developed. The framework exploited various lexical, semantic, and syntactic features, and integrated ensemble learning and semi-supervised learning. A series of experiments were conducted to verify the effectiveness of the proposed framework. Empirical results demonstrate the effectiveness of each component of SSEL-ADE and reveal that our proposed framework outperforms most of existing ADE relation extraction methods The SSEL-ADE can facilitate enhanced ADE relation extraction performance, thereby providing more reliable support for pharmacovigilance. Moreover, the proposed semi-supervised ensemble methods have the potential of being applied to effectively deal with other social media-based problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  12. The role of Geographic Information Systems in the Office of the Supervising Scientist

    International Nuclear Information System (INIS)

    Riley, S.J.

    1992-01-01

    A Geographic Information System (GIS), embedded in a Decision Support System linking spatial data bases and biophysical models of the environment, will be an important tool in the design and assessment of rehabilitation of uranium mines in the Alligator Rivers Region. The Office of the Supervising Scientist (OSS) and the Northern Territory of University are collaborating in the development of GIS and its introduction into rehabilitation planning. The achievements obtained to date are briefly outlined. There is every expectation that the system developed by OSS will be of general use in environmental assessment and management. 33 refs., 1 fig

  13. Performance analyses of the communication networks of a modern supervision and control system of research reactors

    International Nuclear Information System (INIS)

    El-Madbouly, E.I.; Shaat, M.K.; Shokr, A.M.; Elrefaei, G.H.

    2009-01-01

    The functions of the Instrumentation and Control (I and C) system in research reactors, the changes in its design according to the advances in the technology, and the internationally established safety requirements on the design and operational performance of this system are reviewed. The main features of the communication networks commonly used in the Supervision and Control systems (SCS) are presented. A methodology for the performance analysis of the communication networks of computer-based distributed SCS is developed and presented along with discussions. Application of this methodology to a modern SCS of a typical research reactor is illustrated. (orig.)

  14. Performance analyses of the communication networks of a modern supervision and control system of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    El-Madbouly, E.I. [Menoufia Univ., Menouf (Egypt). Faculty of Electronics Engineering; Shaat, M.K.; Shokr, A.M.; Elrefaei, G.H. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor

    2009-04-15

    The functions of the Instrumentation and Control (I and C) system in research reactors, the changes in its design according to the advances in the technology, and the internationally established safety requirements on the design and operational performance of this system are reviewed. The main features of the communication networks commonly used in the Supervision and Control systems (SCS) are presented. A methodology for the performance analysis of the communication networks of computer-based distributed SCS is developed and presented along with discussions. Application of this methodology to a modern SCS of a typical research reactor is illustrated. (orig.)

  15. Recommender Systems for Learning

    CERN Document Server

    Manouselis, Nikos; Verbert, Katrien; Duval, Erik

    2013-01-01

    Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.

  16. Fieldwork online: a GIS-based electronic learning environment for supervising fieldwork

    NARCIS (Netherlands)

    Alberti, K.; Marra, W.A.; Baarsma, R.J.; Karssenberg, D.J.

    2016-01-01

    Fieldwork comes in many forms: individual research projects in unique places, large groups of students on organized fieldtrips, and everything in between those extremes. Supervising students in often distant places can be a logistical challenge and requires a significant time investment of their

  17. Don't Leave Teaching to Chance: Learning Objectives for Psychodynamic Psychotherapy Supervision

    Science.gov (United States)

    Rojas, Alicia; Arbuckle, Melissa; Cabaniss, Deborah

    2010-01-01

    Objective: The way in which the competencies for psychodynamic psychotherapy specified by the Psychiatry Residency Review Committee of the Accreditation Council for Graduate Medical Education translate into the day-to-day work of individual supervision remains unstudied and unspecified. The authors hypothesized that despite the existence of…

  18. Constrained parameter estimation for semi-supervised learning : The case of the nearest mean classifier

    NARCIS (Netherlands)

    Loog, M.

    2011-01-01

    A rather simple semi-supervised version of the equally simple nearest mean classifier is presented. However simple, the proposed approach is of practical interest as the nearest mean classifier remains a relevant tool in biomedical applications or other areas dealing with relatively high-dimensional

  19. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    NARCIS (Netherlands)

    Twellmann, T.; Meyer-Bäse, A.; Lange, O.; Foo, S.; Nattkemper, T.W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition

  20. An Early Historical Examination of the Educational Intent of Supervised Agricultural Experiences (SAEs) and Project-Based Learning in Agricultural Education

    Science.gov (United States)

    Smith, Kasee L.; Rayfield, John

    2016-01-01

    Project-based learning has been a component of agricultural education since its inception. In light of the current call for additional emphasis of the Supervised Agricultural Experience (SAE) component of agricultural education, there is a need to revisit the roots of project-based learning. This early historical research study was conducted to…

  1. Learning Content Management Systems

    Directory of Open Access Journals (Sweden)

    Tache JURUBESCU

    2008-01-01

    Full Text Available The paper explains the evolution of e-Learning and related concepts and tools and its connection with other concepts such as Knowledge Management, Human Resources Management, Enterprise Resource Planning, and Information Technology. The paper also distinguished Learning Content Management Systems from Learning Management Systems and Content Management Systems used for general web-based content. The newest Learning Content Management System, very expensive and yet very little implemented is one of the best tools that helps us to cope with the realities of the 21st Century in what learning concerns. The debates over how beneficial one or another system is for an organization, can be driven by costs involved, efficiency envisaged, and availability of the product on the market.

  2. A new open GKS-based supervision system in use at GANIL

    International Nuclear Information System (INIS)

    Lecorche, E.

    1990-01-01

    Since the beginning of 1989, a new supervision system has been added to the GANIL control system in order to get a better view of data handled by programmable controllers. This supervisory system has been designed around software named IMAGIN, provided by the French company Sferca. IMAGIN runs on VAX/VMS workstations and its graphic capabilities are based on the GKS IIc standard. It consists of software modules, including a graphic editor and a 'configurer' used to create dynamic objects associated with external variables. The real-time display achieved by an 'animator' process is synchronized with user software programs by means of mailboxes. This gives the whole system the capability of meeting any specific requirement. Moreover, this supervisory system is capable of controlling the programmable controllers as well as any processor which can be reached from the workstations. This paper describes the main features of IMAGIN software and then emphasizes some implementations which have been carried out at GANIL, to supervise either the programmable controllers or the existing control system. (orig.)

  3. Supervising and Controlling Unmanned Systems: A Multi-Phase Study with Subject Matter Experts

    Science.gov (United States)

    Porat, Talya; Oron-Gilad, Tal; Rottem-Hovev, Michal; Silbiger, Jacob

    2016-01-01

    Proliferation in the use of Unmanned Aerial Systems (UASs) in civil and military operations has presented a multitude of human factors challenges; from how to bridge the gap between demand and availability of trained operators, to how to organize and present data in meaningful ways. Utilizing the Design Research Methodology (DRM), a series of closely related studies with subject matter experts (SMEs) demonstrate how the focus of research gradually shifted from “how many systems can a single operator control” to “how to distribute missions among operators and systems in an efficient way”. The first set of studies aimed to explore the modal number, i.e., how many systems can a single operator supervise and control. It was found that an experienced operator can supervise up to 15 UASs efficiently using moderate levels of automation, and control (mission and payload management) up to three systems. Once this limit was reached, a single operator's performance was compared to a team controlling the same number of systems. In general, teams led to better performances. Hence, shifting design efforts toward developing tools that support teamwork environments of multiple operators with multiple UASs (MOMU). In MOMU settings, when the tasks are similar or when areas of interest overlap, one operator seems to have an advantage over a team who needs to collaborate and coordinate. However, in all other cases, a team was advantageous over a single operator. Other findings and implications, as well as future directions for research are discussed. PMID:27252662

  4. Supervising and Controlling Unmanned Systems: A Multi-Phase Study with Subject Matter Experts.

    Science.gov (United States)

    Porat, Talya; Oron-Gilad, Tal; Rottem-Hovev, Michal; Silbiger, Jacob

    2016-01-01

    Proliferation in the use of Unmanned Aerial Systems (UASs) in civil and military operations has presented a multitude of human factors challenges; from how to bridge the gap between demand and availability of trained operators, to how to organize and present data in meaningful ways. Utilizing the Design Research Methodology (DRM), a series of closely related studies with subject matter experts (SMEs) demonstrate how the focus of research gradually shifted from "how many systems can a single operator control" to "how to distribute missions among operators and systems in an efficient way". The first set of studies aimed to explore the modal number, i.e., how many systems can a single operator supervise and control. It was found that an experienced operator can supervise up to 15 UASs efficiently using moderate levels of automation, and control (mission and payload management) up to three systems. Once this limit was reached, a single operator's performance was compared to a team controlling the same number of systems. In general, teams led to better performances. Hence, shifting design efforts toward developing tools that support teamwork environments of multiple operators with multiple UASs (MOMU). In MOMU settings, when the tasks are similar or when areas of interest overlap, one operator seems to have an advantage over a team who needs to collaborate and coordinate. However, in all other cases, a team was advantageous over a single operator. Other findings and implications, as well as future directions for research are discussed.

  5. Cost benefit analysis of instrumentation, supervision and control systems for nuclear power plants

    International Nuclear Information System (INIS)

    Hagen, P.

    1973-08-01

    A cost benefit analysis is carried out on a BWR type reactor power plant in which an on-line computer performs plant supervision, reporting, logging, calibration and control functions, using display devices and plotters, while an off-line computer is available for bigger jobs such as fuel management calculations. All on-line functions are briefly described and specified. Three types of computer system are considered, a simplex system, a dual computer system and a multi-processor system. These systems are analysed with respect to reliability, back-up instrumentation requirements and costs. While the multiprocessor system gave in all cases the lowest annual failure costs, the margin to the duplex system was so small that hardware, maintenance and software costs would play an important role in making a decision. (JIW)

  6. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    Science.gov (United States)

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  7. Nepalese undergraduate nursing students' perceptions of the clinical learning environment, supervision and nurse teachers: A questionnaire survey.

    Science.gov (United States)

    Nepal, Bijeta; Taketomi, Kikuko; Ito, Yoichi M; Kohanawa, Masashi; Kawabata, Hidenobu; Tanaka, Michiko; Otaki, Junji

    2016-04-01

    Clinical practice enables nursing students to acquire essential professional skills, but little is known about nursing students' perceptions of the clinical learning environment (CLE) in Nepal. To examine Nepalese nursing students' perceptions regarding the CLE and supervision. A cross-sectional questionnaire design was used. Government and private hospitals in Nepal where the undergraduate nursing college students undertook their clinical practice. Students with clinical practice experience were recruited from years 2-4 of the B.Sc. nursing program in Nepal (n=350). The final sample comprised 263 students. A self-administered questionnaire including demographic characteristics, latest clinical practice site, and general satisfaction was administered February-March 2014. The previously validated Clinical Learning Environment, Supervision and Nurse Teacher evaluation scale was used in the questionnaire. The analytical approach used exploratory factor analysis, assessments of the scale and sub-dimension reliability, correlations of factors between scale sub-dimensions, and multiple regression analysis. Students' practicum satisfaction level at government hospitals was significantly higher than those at private hospitals (prelationship between satisfaction and pedagogical atmosphere (ppedagogical atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study.

    Science.gov (United States)

    Pekkala, Timo; Hall, Anette; Lötjönen, Jyrki; Mattila, Jussi; Soininen, Hilkka; Ngandu, Tiia; Laatikainen, Tiina; Kivipelto, Miia; Solomon, Alina

    2017-01-01

    This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study. The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n = 39). An extended population (n = 1009, incident dementia 151) included non-participants/non-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC). AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype. The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions.

  9. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.

    Science.gov (United States)

    Premaladha, J; Ravichandran, K S

    2016-04-01

    Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies.

  10. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming

    Energy Technology Data Exchange (ETDEWEB)

    Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.; Ginneken, Bram van [Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, 6525 GA (Netherlands); Jong, Pim A. de [Department of Radiology, University Medical Center Utrecht, 3584 CX (Netherlands); Peters-Bax, Liesbeth [Department of Radiology, Radboud University Medical Center, Nijmegen, 6525 GA (Netherlands); Dawson, Rodney [University of Cape Town Lung Institute, Cape Town 7700 (South Africa); Ayles, Helen [Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT (United Kingdom)

    2014-07-15

    Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihood value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were

  11. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming

    International Nuclear Information System (INIS)

    Maduskar, Pragnya; Hogeweg, Laurens; Sánchez, Clara I.; Ginneken, Bram van; Jong, Pim A. de; Peters-Bax, Liesbeth; Dawson, Rodney; Ayles, Helen

    2014-01-01

    Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihood value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were

  12. An Industrial Control System for the Supervision of the CERN Electrical Distribution Network

    CERN Document Server

    Poulsen, S

    1999-01-01

    CERN operates a large distribution network for the supply of electricity to the particle accelerators, experiments and the associated infrastructure. The distribution network operates on voltage levels from 400 V to 400 kV with a total yearly consumption of near to 1000 GWh. In the past, the laboratory has developed an in-house control system for this network, using the technologies applied to the accelerator control system. However, CERN is now working on a project to purchase, configure and install an industrial Electrical Network Supervisor (ENS). This is a state-of-the-art industrial control system completely developed and supported by an external contractor. The system - based on a scalable and distributed architecture - will allow the installation to be performed gradually, and will be tested while the existing system is fully operational. Ultimately, the complete electrical distribution network will be supervised with this new system, the maintenance and further development of which will be the complet...

  13. Design of agricultural product quality safety retrospective supervision system of Jiangsu province

    Science.gov (United States)

    Wang, Kun

    2017-08-01

    In store and supermarkets to consumers can trace back agricultural products through the electronic province card to query their origin, planting, processing, packaging, testing and other important information and found that the problems. Quality and safety issues can identify the responsibility of the problem. This paper designs a retroactive supervision system for the quality and safety of agricultural products in Jiangsu Province. Based on the analysis of agricultural production and business process, the goal of Jiangsu agricultural product quality safety traceability system construction is established, and the specific functional requirements and non-functioning requirements of the retroactive system are analyzed, and the target is specified for the specific construction of the retroactive system. The design of the quality and safety traceability system in Jiangsu province contains the design of the overall design, the trace code design and the system function module.

  14. Regulation and Supervision of The Global Financial System. A Proposal for Institutional Reform

    NARCIS (Netherlands)

    Denters, H.M.G.

    2009-01-01

    nternational financial markets are supervised primarily by national authorities. However, national authorities are inherently incapable to regulate and supervise seamless globalised financial markets. To the extent international regulators exist, they constitute a disorderly patchwork of

  15. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Kiluk, S.

    2014-01-01

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  16. Development of a web-based remote load supervision and control system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Fu; Wu, Yu-Chi; Chiu, Chui-Wen [National United University, Miao-Li (Taiwan). Department of Electrical Engineering

    2006-07-15

    The ability to remotely acquire information and even to control appliances/devices at fingertips over the Internet is becoming desirable to the general public as well as professionals. In this paper, a web-based remote electric load supervision and control (WBRELSAC) system with automatic meter reading and demand control via programmable logic controllers (PLCs) is presented. For both utilities and industrial/commercial customers, the electric load supervision and control (ELSAC) system is a critical function to their load management. However, most high voltage customers do not have enough capital to build a regular-scale supervisory control and data acquisition system as the one for utilities. Therefore, we adopt the industrial-widely-used PLCs in WBRELSAC. In order to make a non-web-based PLC become web-controllable, we develop a graphical-control interface and utilize Internet techniques to implement our system. Based on the performance test conducted under the Laboratory environment, the proposed WBRELSAC architecture is cost-effective and suitable for industrial applications. (author)

  17. Machine learning systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R

    1984-05-01

    With the dramatic rise of expert systems has come a renewed interest in the fuel that drives them-knowledge. For it is specialist knowledge which gives expert systems their power. But extracting knowledge from human experts in symbolic form has proved arduous and labour-intensive. So the idea of machine learning is enjoying a renaissance. Machine learning is any automatic improvement in the performance of a computer system over time, as a result of experience. Thus a learning algorithm seeks to do one or more of the following: cover a wider range of problems, deliver more accurate solutions, obtain answers more cheaply, and simplify codified knowledge. 6 references.

  18. Optimistic semi-supervised least squares classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant ...

  19. The acquisition and supervision system of S.A.R.A.'s (Accelerator system Rhone-Alpes) parameters

    International Nuclear Information System (INIS)

    Iazzourene, F.

    1982-01-01

    The acquisition and supervision system of SARA's (Systeme Accelerateur Rhone-Alpes) parameters is built up. The basic hardware consists of: - A PDP 11/10 computer with a 64 K bytes memory capacity. The system and load device is a floppy disk of 28 megabytes capacity. - A CAMAC crate including a data logger with 224 input channels, a terminal driver (JTY21) and three modules designed for reading out a few digital data, for instance polarities of power supplies. The software provides three distinct programs: AKITS, which uses 3 commands, detects and signals functioning defects in the CAMAC modules used. AKIDO which uses 11 commands, is the acquisition and organization program of the accelerator's functioning parameters. AKISUR is the supervision program of the functioning parameter's stability, within a fixed gap, during the accelerator running [fr

  20. Quality assurance of the clinical learning environment in Austria: Construct validity of the Clinical Learning Environment, Supervision and Nurse Teacher Scale (CLES+T scale).

    Science.gov (United States)

    Mueller, Gerhard; Mylonas, Demetrius; Schumacher, Petra

    2018-04-21

    Within nursing education, the clinical learning environment is of a high importance in regards to the development of competencies and abilities. The organization, atmosphere, and supervision in the clinical learning environment are only a few factors that influence this development. In Austria there is currently no valid instrument available for the evaluation of influencing factors. The aim of the study was to test the construct validity with principal component analysis as well as the internal consistency of the German Clinical Learning Environment, Supervision and Teacher Scale (CLES+T scale) in Austria. The present validation study has a descriptive-quantitative cross-sectional design. The sample consisted of 385 nursing students from thirteen training institutions in Austria. The data collection was carried out online between March and April 2016. Starting with a polychoric correlation matrix, a parallel analysis with principal component extraction and promax rotation was carried out due to the ordinal data. The exploratory ordinal factor analysis supported a four-component solution and explained 73% of the total variance. The internal consistency of all 25 items reached a Cronbach's α of 0.95 and the four components ranged between 0.83 and 0.95. The German version of the CLES+T scale seems to be a useful instrument for identifying potential areas of improvement in clinical practice in order to derive specific quality measures for the practical learning environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Adaptation and validation of the instrument Clinical Learning Environment and Supervision for medical students in primary health care

    Directory of Open Access Journals (Sweden)

    Eva Öhman

    2016-12-01

    Full Text Available Abstract Background Clinical learning takes place in complex socio-cultural environments that are workplaces for the staff and learning places for the students. In the clinical context, the students learn by active participation and in interaction with the rest of the community at the workplace. Clinical learning occurs outside the university, therefore is it important for both the university and the student that the student is given opportunities to evaluate the clinical placements with an instrument that allows evaluation from many perspectives. The instrument Clinical Learning Environment and Supervision (CLES was originally developed for evaluation of nursing students’ clinical learning environment. The aim of this study was to adapt and validate the CLES instrument to measure medical students’ perceptions of their learning environment in primary health care. Methods In the adaptation process the face validity was tested by an expert panel of primary care physicians, who were also active clinical supervisors. The adapted CLES instrument with 25 items and six background questions was sent electronically to 1,256 medical students from one university. Answers from 394 students were eligible for inclusion. Exploratory factor analysis based on principal component methods followed by oblique rotation was used to confirm the adequate number of factors in the data. Construct validity was assessed by factor analysis. Confirmatory factor analysis was used to confirm the dimensions of CLES instrument. Results The construct validity showed a clearly indicated four-factor model. The cumulative variance explanation was 0.65, and the overall Cronbach’s alpha was 0.95. All items loaded similarly with the dimensions in the non-adapted CLES except for one item that loaded to another dimension. The CLES instrument in its adapted form had high construct validity and high reliability and internal consistency. Conclusion CLES, in its adapted form, appears

  2. A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification

    Science.gov (United States)

    Shyu, Mei-Ling; Sainani, Varsha

    The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.

  3. The off-line computation system for supervising performance of JOYO: JOYPAC system, 2

    International Nuclear Information System (INIS)

    Suzuki, Tomoo; Hasegawa, Akira; Akimoto, Masayuki; Miyamoto, Yoshiaki; Katsuragi, Satoru

    1976-10-01

    HONEYCOMB is a code for detailed calculations in analyzing nuclear characteristics of the reactor. It performs criticality calculation in diffusion model and burn up calculation, for 3-dimensional hexagonal-z geometry. It can predict the critical insertion depth of control rods and calculate the 3-dimensional power distribution required by thermo-hydraulic calculation. Power distribution and burn up are also obtained for fuel pins, if necessary, as well as for assemblies. FDCAL-2 predicts coolant flow distribution in every coolant channel between inlet and outlet plenums in the reactor vessel. In calculating the flow distribution in the assemblies, the subchannel model is used, and the thermal mixing effect is expressed in terms of an apparent heat transfer coefficient. FATEC-3 calculates temperature distribution within some assemblies, optionally specified in the given core matrix. At the same time, it estimates the hot-spot temperature, one of the informations for confirming the safe operation. FACAL-2 and FATEC-3 have been combined so as to remove their unnecessary overlapping parts, and have consequently formed a detailed calculation code for analyzing thermo-hydraulic characteristics of the reactor, FDCAL-3. FDCAL-3 has been linked to HONEYCOMB as a segment of overlay structure, and this combination of HONEYCOMB and FDCAL-3 forms the detailed calculation subsystem in the JOYPAC system. The detailed calculation subsystem produces the data file of the detailed fundamental informations such as distributions of neutron flux, power etc. about the reactor under stationary performance. This file is required by the quick and simple calculation subsystem SMART and the recording subsystem MASTOR described in Part I. Thus, times of resorting to the time-consuming detailed calculation are reduced as far as possible, and supervision of reactor performance is realized in both features of practically sufficient accuracy and reasonable computer cost. (JPN)

  4. THE IMPACT OF THE FINANCIAL CRISIS ON THE THEORY AND PRACTICE OF FINANCIAL SYSTEM SUPERVISION

    Directory of Open Access Journals (Sweden)

    Roxana Heteș

    2013-04-01

    Full Text Available The recent global financial crisis has reopened the debate about macroeconomic policies’ objectives, but also the need and extent of state involvement in the functioning of the economy, either directly or indirectly. This has exposed some weaknesses in the system of regulation and supervision of the financial system and the its architecture, especially in the treatment of systemic risks and vulnerabilities, but also the financial implications of the globalization process. The global nature of financial crisis highlighted the fact that, although integrated financial markets offer a number of significant benefits, risks involved are not negligible. Therefore, to ensure the financial stability of an increasingly integrated landscape there was felt the need for reform of the financial system architecture, both nationally and internationally.

  5. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    Science.gov (United States)

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  6. Keys to Successful Community Health Worker Supervision

    Science.gov (United States)

    Duthie, Patricia; Hahn, Janet S.; Philippi, Evelyn; Sanchez, Celeste

    2012-01-01

    For many years community health workers (CHW) have been important to the implementation of many of our health system's community health interventions. Through this experience, we have recognized some unique challenges in community health worker supervision and have highlighted what we have learned in order to help other organizations effectively…

  7. Remote Video Supervision in Adapted Physical Education

    Science.gov (United States)

    Kelly, Luke; Bishop, Jason

    2013-01-01

    Supervision for beginning adapted physical education (APE) teachers and inservice general physical education teachers who are learning to work with students with disabilities poses a number of challenges. The purpose of this article is to describe a project aimed at developing a remote video system that could be used by a university supervisor to…

  8. Exploration of joint redundancy but not task space variability facilitates supervised motor learning.

    Science.gov (United States)

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-12-13

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.

  9. The Moderating Role of Non-Controlling Supervision and Organizational Learning Culture on Employee Creativity: The Influences of Domain Expertise and Creative Personality

    Science.gov (United States)

    Jeong, Shinhee; McLean, Gary N.; McLean, Laird D.; Yoo, Sangok; Bartlett, Kenneth

    2017-01-01

    Purpose: By adopting a multilevel approach, this paper aims to examine the relationships among employee creativity and creative personality, domain expertise (i.e. individual-level factors), non-controlling supervision style and organizational learning culture (i.e. team-level factors). It also investigates the cross-level interactions between…

  10. Constrained Deep Weak Supervision for Histopathology Image Segmentation.

    Science.gov (United States)

    Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan

    2017-11-01

    In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

  11. Moment constrained semi-supervised LDA

    DEFF Research Database (Denmark)

    Loog, Marco

    2012-01-01

    This BNAIC compressed contribution provides a summary of the work originally presented at the First IAPR Workshop on Partially Supervised Learning and published in [5]. It outlines the idea behind supervised and semi-supervised learning and highlights the major shortcoming of many current methods...

  12. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.

    Science.gov (United States)

    Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak

    2016-03-01

    One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised

  13. Supervised-machine Learning for Intelligent Collision Avoidance Decision-making and Sensor Tasking

    Data.gov (United States)

    National Aeronautics and Space Administration — Building an autonomous architecture that uses directed self-learning neuro-fuzzy networks with the aim of developing an intelligent autonomous collision avoidance...

  14. Final touch for a new electricity supervision system; Siste finpuss for nytt eltilsyn

    Energy Technology Data Exchange (ETDEWEB)

    Valestrand, Morten

    2006-07-01

    The local electricity supervision in Norway has up until now been organized in an unclear manner. A new regime is about to be established, and will provide the electricity industry with clearer regulations. DSB (Directorate for Civil Protection and Emergency Planning) will have the supervisory control, and the local supervising authority (DLE) will be managed by the network companies.

  15. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Andrew J, E-mail: akilgour@csu.edu.au [Charles Sturt University, Wagga Wagga, NSW (Australia); Kilgour, Peter W [Avondale College of Higher Education, Cooranbong, NSW (Australia); Gerzina, Tania [Dental Educational Research, Faculty of Dentistry, Jaw Function and Orofacial Pain Research Unit, Westmead Centre for Oral Health, C24- Westmead Hospital, The University of Sydney, Sydney, NSW, 2006 (Australia); Christian, Beverly [Avondale College of Higher Education, Cooranbong, NSW (Australia); Charles Sturt University, Wagga Wagga, NSW (Australia)

    2014-02-15

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  16. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Andrew J, E-mail: akilgour@csu.edu.au [Charles Sturt University, Wagga Wagga, NSW (Australia); Kilgour, Peter W [Avondale College of Higher Education, Cooranbong, NSW (Australia); Gerzina, Tania [Dental Educational Research, Faculty of Dentistry, Jaw Function and Orofacial Pain Research Unit, Westmead Centre for Oral Health, C24- Westmead Hospital, The University of Sydney, Sydney, NSW, 2006 (Australia); Christian, Beverly [Avondale College of Higher Education, Cooranbong, NSW (Australia); Charles Sturt University, Wagga Wagga, NSW (Australia)

    2014-02-15

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  17. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    International Nuclear Information System (INIS)

    Kilgour, Andrew J; Kilgour, Peter W; Gerzina, Tania; Christian, Beverly

    2014-01-01

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  18. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  19. Scada Systems – Control, Supervision and Data Acquisition for the Power Plants Settled on a Stream (Part 2

    Directory of Open Access Journals (Sweden)

    Cosmin Ursoniu

    2015-09-01

    Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and controls an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.

  20. Scada Systems – Control, Supervision and Data Acquisition for the Power Plants Settled on a Stream (Part 1

    Directory of Open Access Journals (Sweden)

    Cosmin Ursoniu

    2015-09-01

    Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and control an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.

  1. HISTORICAL SKETCH OF THE SUPERVISION PROCESS IN THE EDUCATIONAL VENEZUELAN SYSTEM / ESBOZO HISTÓRICO DEL PROCESO DE SUPERVISIÓN EN EL SISTEMA EDUCATIVO VENEZOLANO

    Directory of Open Access Journals (Sweden)

    Rosa Elena Rodríguez De acuña

    2013-06-01

    Full Text Available The purpose of the present paper is make public the main characteristics, stages and legal regulations that constitute landmarks in the historical course of the supervision process in the Bolivarian Educational System, so it becomes an important reference for the study and the research of the Venezuelan education in general and of the educational supervision process in particular. The carried out analysis shows that the supervision process has moved from the concept of autocratic inspection throughout the liberal inspection to democratic supervision. In the last years, the Bolivarian government has granted authority to the supervision service, with enough concepts and precisions that convert it in a permanent and indispensable activity for the improvement of the new educational system. The operated changes in the legal framework and official standards state the supervision as a political and strategic process in order to increase the quality of the Venezuelan education.

  2. Evaluating students' perception of their clinical placements - testing the clinical learning environment and supervision and nurse teacher scale (CLES + T scale) in Germany.

    Science.gov (United States)

    Bergjan, Manuela; Hertel, Frank

    2013-11-01

    Clinical nursing education in Germany has not received attention in nursing science and practice for a long time, as it often seems to be a more or less "formalized appendix" of nursing education. Several development projects of clinical education taking place are mainly focused on the qualification of clinical preceptors. However, the clinical context and its influence on learning processes have still not been sufficiently investigated. The aim of this study was the testing of a German version of the clinical learning environment and supervision and nurse teacher scale (CLES + T scale). The sample of the pilot study consists of first-, second- and third-year student nurses (n=240) of a university nursing school from January to March 2011. Psychometric testing of the instrument is carried out by selected methods of classical testing theories using SPPS 19. The results show transferability of all subcategories of the CLES + T scale in the non-academic nursing education system of a university hospital in Germany, without the teacher scale. The strongest factor is "supervisory relationship". The German version of the CLES + T scale may help to evaluate and compare traditional and new models in clinical nursing education. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. On combining principal components with Fisher's linear discriminants for supervised learning

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.

    2006-01-01

    "The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic increase of computational complexity and classification error in high dimensions. In this paper, principal component analysis (PCA), parametric feature extraction (FE) based on Fisher’s linear

  4. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  5. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network

    Directory of Open Access Journals (Sweden)

    Han Kyungsook

    2010-06-01

    Full Text Available Abstract Background Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to the relationship between double concurrent perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such as synthetic genetic arrays (SGA can help us to understand the phenotype caused by combined gene mutations. Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on experiment design. Results In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise synthetic genetic interactions (SGI. First, a high-coverage and high-precision functional gene network (FGN is constructed by integrating protein-protein interaction (PPI, protein complex and gene expression data; then, a graph-based semi-supervised learning (SSL classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM, on a benchmark dataset in S. cerevisiae to validate our method's ability to distinguish synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can accurately predict genetic interactions in S. cerevisiae (with a sensitivity of 92% and specificity of 91%. Noticeably, the SSL method is more efficient than SVM, especially for

  6. MACHINE LEARNING FOR THE SELF-ORGANIZATION OF DISTRIBUTED SYSTEMS IN ECONOMIC APPLICATIONS

    OpenAIRE

    Jerzy Balicki; Waldemar Korłub

    2017-01-01

    In this paper, an application of machine learning to the problem of self-organization of distributed systems has been discussed with regard to economic applications, with particular emphasis on supervised neural network learning to predict stock investments and some ratings of companies. In addition, genetic programming can play an important role in the preparation and testing of several financial information systems. For this reason, machine learning applications have been discussed because ...

  7. Combining Unsupervised and Supervised Statistical Learning Methods for Currency Exchange Rate Forecasting

    OpenAIRE

    Vasiljeva, Polina

    2016-01-01

    In this thesis we revisit the challenging problem of forecasting currency exchange rate. We combine machine learning methods such as agglomerative hierarchical clustering and random forest to construct a two-step approach for predicting movements in currency exchange prices of the Swedish krona and the US dollar. We use a data set with over 200 predictors comprised of different financial and macro-economic time series and their transformations. We perform forecasting for one week ahead with d...

  8. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    Science.gov (United States)

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification.

  9. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  10. Energy-efficiency supervision systems for energy management in large public buildings. Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Yan-ping, Feng [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China); Yong, Wu [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Chang-bin, Liu [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized. (author)

  11. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yanping [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China)], E-mail: fengyanping10@sohu.com; Wu Yong [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Liu Changbin [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  12. Whither Supervision?

    OpenAIRE

    Duncan Waite

    2006-01-01

    This paper inquires if the school supervision is in decadence. Dr. Waite responds that the answer will depend on which perspective you look at it. Dr. Waite suggests taking in consideration three elements that are related: the field itself, the expert in the field (the professor, the theorist, the student and the administrator), and the context. When these three elements are revised, it emphasizes that there is not a consensus about the field of supervision, but there are coincidences related...

  13. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  14. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  15. Increasing the Safety in Recycling of Construction and Demolition Waste by Using Supervised Machine Learning

    International Nuclear Information System (INIS)

    Kuritcyn, P; Anding, K; Linß, E; Latyev, S M

    2015-01-01

    This paper discusses the possibility of the optical identification of recycled aggregates of construction and demolition waste (CDW) using methods of image processing, spectral analysis and machine learning. The classification performances in colour images shown, that we have to use other added spectral information to solve the recognition task in a satisfactory manner. In addition to investigations on a large colour image dataset first investigations in visible (VIS) and infrared (IR) spectrum were done for analysing significant characteristics in spectrum, which are useful for classification the C and D aggregates

  16. Combination of mass spectrometry-based targeted lipidomics and supervised machine learning algorithms in detecting adulterated admixtures of white rice.

    Science.gov (United States)

    Lim, Dong Kyu; Long, Nguyen Phuoc; Mo, Changyeun; Dong, Ziyuan; Cui, Lingmei; Kim, Giyoung; Kwon, Sung Won

    2017-10-01

    The mixing of extraneous ingredients with original products is a common adulteration practice in food and herbal medicines. In particular, authenticity of white rice and its corresponding blended products has become a key issue in food industry. Accordingly, our current study aimed to develop and evaluate a novel discrimination method by combining targeted lipidomics with powerful supervised learning methods, and eventually introduce a platform to verify the authenticity of white rice. A total of 30 cultivars were collected, and 330 representative samples of white rice from Korea and China as well as seven mixing ratios were examined. Random forests (RF), support vector machines (SVM) with a radial basis function kernel, C5.0, model averaged neural network, and k-nearest neighbor classifiers were used for the classification. We achieved desired results, and the classifiers effectively differentiated white rice from Korea to blended samples with high prediction accuracy for the contamination ratio as low as five percent. In addition, RF and SVM classifiers were generally superior to and more robust than the other techniques. Our approach demonstrated that the relative differences in lysoGPLs can be successfully utilized to detect the adulterated mixing of white rice originating from different countries. In conclusion, the present study introduces a novel and high-throughput platform that can be applied to authenticate adulterated admixtures from original white rice samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  18. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2018-06-01

    Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.

  19. Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods.

    Science.gov (United States)

    Lin, Tong; Liu, Tiebing; Lin, Yucheng; Yan, Lailai; Chen, Zhongxue; Wang, Jingyu

    2017-09-01

    The etiology and pathophysiology of schizophrenia (SCZ) remain obscure. This study explored the associations between SCZ risk and serum levels of 39 macro and trace elements (MTE). A 1:1 matched case-control study was conducted among 114 schizophrenia patients and 114 healthy controls matched by age, sex and region. Blood samples were collected to determine the concentrations of 39 MTE by ICP-AES and ICP-MS. Both supervised learning methods and classical statistical testing were used to uncover the difference of MTE levels between cases and controls. The best prediction accuracies were 99.21% achieved by support vector machines in the original feature space (without dimensionality reduction), and 98.82% achieved by Naive Bayes with dimensionality reduction. More than half of MTE were found to be significantly different between SCZ patients and the controls. The presented investigation showed that there existed remarkable differences in concentrations of MTE between SCZ patients and healthy controls. The results of this study might be useful to diagnosis and prognosis of SCZ; they also indicated other promising applications in pharmacy and nutrition. However, the results should be interpreted with caution due to limited sample size and the lack of potential confounding factors, such as alcohol, smoking, body mass index (BMI), use of antipsychotics and dietary intakes. In the future the application of the analyses will be useful in designs that have larger sample sizes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    Science.gov (United States)

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. A MACROPRUDENTIAL SUPERVISION MODEL. EMPIRICAL EVIDENCE FROM THE CENTRAL AND EASTERN EUROPEAN BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Trenca Ioan

    2013-07-01

    Full Text Available One of the positive effects of the financial crises is the increasing concern of the supervisors regarding the financial system’s stability. There is a need to strengthen the links between different financial components of the financial system and the macroeconomic environment. Banking systems that have an adequate capitalization and liquidity level may face easier economic and financial shocks. The purpose of this empirical study is to identify the main determinants of the banking system’s stability and soundness in the Central and Eastern Europe countries. We asses the impact of different macroeconomic variables on the quality of capital and liquidity conditions and examine the behaviour of these financial stability indicators, by analyzing a sample of 10 banking systems during 2000-2011. The availability of banking capital signals the banking system’s resiliency to shocks. Capital adequacy ratio is the main indicator used to assess the banking fragility. One of the causes of the 2008-2009 financial crisis was the lack of liquidity in the banking system which led to the collapse of several banking institutions and macroeconomic imbalances. Given the importance of liquidity for the banking system, we propose several models in order to determine the macroeconomic variables that have a significant influence on the liquid reserves to total assets ratio. We found evidence that GDP growth, inflation, domestic credit to private sector, as well as the money and quasi money aggregate indicator have significant impact on the banking stability. The empirical regression confirms the high level of interdependence of the real sector with the financial-banking sector. Also, they prove the necessity for an effective macro prudential supervision at country level which enables the supervisory authorities to have an adequate control over the macro prudential indicators and to take appropriate decisions at the right time.

  2. Impact of corpus domain for sentiment classification: An evaluation study using supervised machine learning techniques

    Science.gov (United States)

    Karsi, Redouane; Zaim, Mounia; El Alami, Jamila

    2017-07-01

    Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.

  3. Unsupervised Labeling Of Data For Supervised Learning And Its Application To Medical Claims Prediction

    Directory of Open Access Journals (Sweden)

    Che Ngufor

    2013-01-01

    Full Text Available The task identifying changes and irregularities in medical insurance claim pay-ments is a difficult process of which the traditional practice involves queryinghistorical claims databases and flagging potential claims as normal or abnor-mal. Because what is considered as normal payment is usually unknown andmay change over time, abnormal payments often pass undetected; only to bediscovered when the payment period has passed.This paper presents the problem of on-line unsupervised learning from datastreams when the distribution that generates the data changes or drifts overtime. Automated algorithms for detecting drifting concepts in a probabilitydistribution of the data are presented. The idea behind the presented driftdetection methods is to transform the distribution of the data within a slidingwindow into a more convenient distribution. Then, a test statistics p-value ata given significance level can be used to infer the drift rate, adjust the windowsize and decide on the status of the drift. The detected concepts drifts areused to label the data, for subsequent learning of classification models by asupervised learner. The algorithms were tested on several synthetic and realmedical claims data sets.

  4. Separation of pulsar signals from noise using supervised machine learning algorithms

    Science.gov (United States)

    Bethapudi, S.; Desai, S.

    2018-04-01

    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP), Adaboost, Gradient Boosting Classifier (GBC), and XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pipeline. This dataset was previously used for the cross-validation of the SPINN-based machine learning engine, obtained from the reprocessing of the HTRU-S survey data (Morello et al., 2014). We have used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with high-class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean for both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in Morello et al. (2014), for the same recall value.

  5. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong, E-mail: yzgao@cs.unc.edu [Department of Computer Science, Department of Radiology, and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shi, Yinghuan, E-mail: syh@nju.edu.cn [State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-11-01

    Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to

  6. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Gao, Yaozong; Shi, Yinghuan; Shen, Dinggang

    2014-01-01

    Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to

  7. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection.

    Science.gov (United States)

    Park, Sang Hyun; Gao, Yaozong; Shi, Yinghuan; Shen, Dinggang

    2014-11-01

    Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to evaluate both the efficiency

  8. The perceptions of nurses in a district health system in KwaZulu-Natal of their supervision, self-esteem and job satisfaction

    Directory of Open Access Journals (Sweden)

    L.R. Uys

    2004-09-01

    Full Text Available Supervision has been identified as a major issue in quality of care. Although increasing attention is being given to supervision in the District Health System, there have been no studies describing the current situation. This article describes a survey done in two health districts in KwaZulu-Natal involving 319 nurses from all types of government health care settings.

  9. Feature extraction for SAR target recognition based on supervised manifold learning

    International Nuclear Information System (INIS)

    Du, C; Zhou, S; Sun, J; Zhao, J

    2014-01-01

    On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition

  10. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    Science.gov (United States)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal

  11. Supervised learning methods in modeling of CD4+ T cell heterogeneity

    OpenAIRE

    Lu, Pinyi; Abedi, Vida; Mei, Yongguo; Hontecillas, Raquel; Hoops, Stefan; Carbo, Adria; Bassaganya-Riera, Josep

    2015-01-01

    Background Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into T...

  12. TargetSpy: a supervised machine learning approach for microRNA target prediction.

    Science.gov (United States)

    Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij

    2010-05-28

    Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila

  13. TargetSpy: a supervised machine learning approach for microRNA target prediction

    Directory of Open Access Journals (Sweden)

    Langenberger David

    2010-05-01

    Full Text Available Abstract Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I no seed match requirement, II seed match requirement, and III conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on

  14. Deep supervised dictionary learning for no-reference image quality assessment

    Science.gov (United States)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  15. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.

    Science.gov (United States)

    Schrider, Daniel R; Ayroles, Julien; Matute, Daniel R; Kern, Andrew D

    2018-04-01

    Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.

  16. Automatic Quantification of Tumour Hypoxia From Multi-Modal Microscopy Images Using Weakly-Supervised Learning Methods.

    Science.gov (United States)

    Carneiro, Gustavo; Peng, Tingying; Bayer, Christine; Navab, Nassir

    2017-07-01

    In recently published clinical trial results, hypoxia-modified therapies have shown to provide more positive outcomes to cancer patients, compared with standard cancer treatments. The development and validation of these hypoxia-modified therapies depend on an effective way of measuring tumor hypoxia, but a standardized measurement is currently unavailable in clinical practice. Different types of manual measurements have been proposed in clinical research, but in this paper we focus on a recently published approach that quantifies the number and proportion of hypoxic regions using high resolution (immuno-)fluorescence (IF) and hematoxylin and eosin (HE) stained images of a histological specimen of a tumor. We introduce new machine learning-based methodologies to automate this measurement, where the main challenge is the fact that the clinical annotations available for training the proposed methodologies consist of the total number of normoxic, chronically hypoxic, and acutely hypoxic regions without any indication of their location in the image. Therefore, this represents a weakly-supervised structured output classification problem, where training is based on a high-order loss function formed by the norm of the difference between the manual and estimated annotations mentioned above. We propose four methodologies to solve this problem: 1) a naive method that uses a majority classifier applied on the nodes of a fixed grid placed over the input images; 2) a baseline method based on a structured output learning formulation that relies on a fixed grid placed over the input images; 3) an extension to this baseline based on a latent structured output learning formulation that uses a graph that is flexible in terms of the amount and positions of nodes; and 4) a pixel-wise labeling based on a fully-convolutional neural network. Using a data set of 89 weakly annotated pairs of IF and HE images from eight tumors, we show that the quantitative results of methods (3) and (4

  17. Intelligent multivariate process supervision

    International Nuclear Information System (INIS)

    Visuri, Pertti.

    1986-01-01

    This thesis addresses the difficulties encountered in managing large amounts of data in supervisory control of complex systems. Some previous alarm and disturbance analysis concepts are reviewed and a method for improving the supervision of complex systems is presented. The method, called multivariate supervision, is based on adding low level intelligence to the process control system. By using several measured variables linked together by means of deductive logic, the system can take into account the overall state of the supervised system. Thus, it can present to the operators fewer messages with higher information content than the conventional control systems which are based on independent processing of each variable. In addition, the multivariate method contains a special information presentation concept for improving the man-machine interface. (author)

  18. Supervised Learning of Two-Layer Perceptron under the Existence of External Noise — Learning Curve of Boolean Functions of Two Variables in Tree-Like Architecture —

    Science.gov (United States)

    Uezu, Tatsuya; Kiyokawa, Shuji

    2016-06-01

    We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α C)bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.

  19. Color-based free-space segmentation using online disparity-supervised learning

    NARCIS (Netherlands)

    Sanberg, W.P.; Dubbelman, G.; de With, P.H.N.

    2015-01-01

    This work contributes to vision processing for Advanced Driver Assist Systems (ADAS) and intelligent vehicle applications. We propose a color-only stixel segmentation framework to segment traffic scenes into free, drivable space and obstacles, which has a reduced latency to improve the real-time

  20. Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data.

    Science.gov (United States)

    Jeantet, L; Dell'Amico, F; Forin-Wiart, M-A; Coutant, M; Bonola, M; Etienne, D; Gresser, J; Regis, S; Lecerf, N; Lefebvre, F; de Thoisy, B; Le Maho, Y; Brucker, M; Châtelain, N; Laesser, R; Crenner, F; Handrich, Y; Wilson, R; Chevallier, D

    2018-05-23

    Accelerometers are becoming ever more important sensors in animal-attached technology, providing data that allow determination of body posture and movement and thereby helping to elucidate behaviour in animals that are difficult to observe. We sought to validate the identification of sea turtle behaviours from accelerometer signals by deploying tags on the carapace of a juvenile loggerhead ( Caretta caretta ), an adult hawksbill ( Eretmochelys imbricata ) and an adult green turtle ( Chelonia mydas ) at Aquarium La Rochelle, France. We recorded tri-axial acceleration at 50 Hz for each species for a full day while two fixed cameras recorded their behaviours. We identified behaviours from the acceleration data using two different supervised learning algorithms, Random Forest and Classification And Regression Tree (CART), treating the data from the adult animals as separate from the juvenile data. We achieved a global accuracy of 81.30% for the adult hawksbill and green turtle CART model and 71.63% for the juvenile loggerhead, identifying 10 and 12 different behaviours, respectively. Equivalent figures were 86.96% for the adult hawksbill and green turtle Random Forest model and 79.49% for the juvenile loggerhead, for the same behaviours. The use of Random Forest combined with CART algorithms allowed us to understand the decision rules implicated in behaviour discrimination, and thus remove or group together some 'confused' or under--represented behaviours in order to get the most accurate models. This study is the first to validate accelerometer data to identify turtle behaviours and the approach can now be tested on other captive sea turtle species. © 2018. Published by The Company of Biologists Ltd.

  1. The Team-Based Internal Supervision System Development for the Primary Schools under the Office of the Basic Education Commission

    Science.gov (United States)

    Tubsuli, Nattapong; Julsuwan, Suwat; Tesaputa, Kowat

    2017-01-01

    Internal supervision in the school is currently experiencing various problems. Supervision preparation problems are related to: lacking of supervision plan, lacking of holistic and systematic planning, and lacking of analysis in current conditions or requirements. While supervision operational problems are included: lacking of supervision…

  2. Modeling learning technology systems as business systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papaspyrou, Nikolaos

    2003-01-01

    The design of Learning Technology Systems, and the Software Systems that support them, is largely conducted on an intuitive, ad hoc basis, thus resulting in inefficient systems that defectively support the learning process. There is now justifiable, increasing effort in formalizing the engineering

  3. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud

    2011-01-01

    and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success......We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings....... These arguments are illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split...

  4. How to Build a Supervised Autonomous System for Robot-Enhanced Therapy for Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Esteban Pablo G.

    2017-04-01

    Full Text Available Robot-Assisted Therapy (RAT has successfully been used to improve social skills in children with autism spectrum disorders (ASD through remote control of the robot in so-called Wizard of Oz (WoZ paradigms.However, there is a need to increase the autonomy of the robot both to lighten the burden on human therapists (who have to remain in control and, importantly, supervise the robot and to provide a consistent therapeutic experience. This paper seeks to provide insight into increasing the autonomy level of social robots in therapy to move beyond WoZ. With the final aim of improved human-human social interaction for the children, this multidisciplinary research seeks to facilitate the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.We introduce the clinical framework in which the developments are tested, alongside initial data obtained from patients in a first phase of the project using a WoZ set-up mimicking the targeted supervised-autonomy behaviour. We further describe the implemented system architecture capable of providing the robot with supervised autonomy.

  5. Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems

    International Nuclear Information System (INIS)

    Traore, M.; Chammas, A.; Duviella, E.

    2015-01-01

    In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify the key components of the systems. A component is defined as an element of the system that can be impacted by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The application on this real system highlights the interests and the performances of the proposed architecture

  6. New Informative Features for Fault Diagnosis of Industrial Systems by Supervised Classification

    OpenAIRE

    Verron , Sylvain; Tiplica , Teodor; Kobi , Abdessamad

    2009-01-01

    International audience; The purpose of this article is to present a method for industrial process diagnosis. We are interested in fault diagnosis considered as a supervised classication task. The interest of the proposed method is to take into account new features (and so new informations) in the classifier. These new features are probabilities extracted from a Bayesian network comparing the faulty observations to the normal operating conditions. The performances of this method are evaluated ...

  7. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  8. The off-line computation system for supervising performance of JOYO: JOYPAC system, 1

    International Nuclear Information System (INIS)

    Katsuragi, Satoru; Inoue, Teruji; Shimizu, Akinao; Yoshino, Fujio; Suzuki, Masao.

    1976-10-01

    A code system JOYPAC for monitoring the operation of the fast experimental reactor JOYO has been developed. This is an off-line code system designed for use in making calculation of the nuclear and thermohydraulic characteristics of the reactor core and also to make computation of the history of core irradiation after reactor operation. The use of the code system makes it possible to calculate the various core characteristics with a high degree of accuracy by simplified procedure for the diverse operation patterns of JOYO to confirm its safety. It also enables the details of the history of irradiation of the core to be obtained quickly and accurately after reactor operation. The above include all the operation data and in-pile characteristics that are required for the irradiation test. Furthermore, it is also possible to provide the data for the on-line computer system of JOYO and the data for nuclear material accountability. The code system consists of the detailed subsystem and the simplified subsystem. The former is used for obtaining the nuclear and thermohydraulic characteristics of the core by use of a detailed calculation model such as three-dimensional hexagonal lattice, for instance, in order to back up the simplified subsystem. On the other hand, the latter is designed to obtain the various core characteristics by use of simple extrapolation and interpolation methods, whose conception is based on the great deal of information obtained by the design calculation of JOYO and the many parameter surveys. The system is used for the normal cycle operation. (J.P.N.)

  9. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran

    Science.gov (United States)

    Fatehi, Moslem; Asadi, Hooshang H.

    2017-04-01

    In this study, the application of a transductive support vector machine (TSVM), an innovative semi-supervised learning algorithm, has been proposed for mapping the potential drill targets at a detailed exploration stage. The semi-supervised learning method is a hybrid of supervised and unsupervised learning approach that simultaneously uses both training and non-training data to design a classifier. By using the TSVM algorithm, exploration layers at the Dalli porphyry Cu-Au deposit in the central Iran were integrated to locate the boundary of the Cu-Au mineralization for further drilling. By applying this algorithm on the non-training (unlabeled) and limited training (labeled) Dalli exploration data, the study area was classified in two domains of Cu-Au ore and waste. Then, the results were validated by the earlier block models created, using the available borehole and trench data. In addition to TSVM, the support vector machine (SVM) algorithm was also implemented on the study area for comparison. Thirty percent of the labeled exploration data was used to evaluate the performance of these two algorithms. The results revealed 87 percent correct recognition accuracy for the TSVM algorithm and 82 percent for the SVM algorithm. The deepest inclined borehole, recently drilled in the western part of the Dalli deposit, indicated that the boundary of Cu-Au mineralization, as identified by the TSVM algorithm, was only 15 m off from the actual boundary intersected by this borehole. According to the results of the TSVM algorithm, six new boreholes were suggested for further drilling at the Dalli deposit. This study showed that the TSVM algorithm could be a useful tool for enhancing the mineralization zones and consequently, ensuring a more accurate drill hole planning.

  10. Quality-Related Monitoring and Grading of Granulated Products by Weibull-Distribution Modeling of Visual Images with Semi-Supervised Learning.

    Science.gov (United States)

    Liu, Jinping; Tang, Zhaohui; Xu, Pengfei; Liu, Wenzhong; Zhang, Jin; Zhu, Jianyong

    2016-06-29

    The topic of online product quality inspection (OPQI) with smart visual sensors is attracting increasing interest in both the academic and industrial communities on account of the natural connection between the visual appearance of products with their underlying qualities. Visual images captured from granulated products (GPs), e.g., cereal products, fabric textiles, are comprised of a large number of independent particles or stochastically stacking locally homogeneous fragments, whose analysis and understanding remains challenging. A method of image statistical modeling-based OPQI for GP quality grading and monitoring by a Weibull distribution(WD) model with a semi-supervised learning classifier is presented. WD-model parameters (WD-MPs) of GP images' spatial structures, obtained with omnidirectional Gaussian derivative filtering (OGDF), which were demonstrated theoretically to obey a specific WD model of integral form, were extracted as the visual features. Then, a co-training-style semi-supervised classifier algorithm, named COSC-Boosting, was exploited for semi-supervised GP quality grading, by integrating two independent classifiers with complementary nature in the face of scarce labeled samples. Effectiveness of the proposed OPQI method was verified and compared in the field of automated rice quality grading with commonly-used methods and showed superior performance, which lays a foundation for the quality control of GP on assembly lines.

  11. [Validity and Reliability of the Korean Version Scale of the Clinical Learning Environment, Supervision and Nurse Teacher Evaluation Scale (CLES+T)].

    Science.gov (United States)

    Kim, Sun Hee; Yoo, So Yeon; Kim, Yae Young

    2018-02-01

    This study was conducted to evaluate the validity and reliability of the Korean version of the clinical learning environment, supervision and nurse teacher evaluation scale (CLES+T) that measures the clinical learning environment and the conditions associated with supervision and nurse teachers. The English CLES+T was translated into Korean with forward and back translation. Survey data were collected from 434 nursing students who had more than four days of clinical practice in Korean hospitals. Internal consistency reliability and construct validity using confirmatory and exploratory factor analysis were conducted. SPSS 20.0 and AMOS 22.0 programs were used for data analysis. The exploratory factor analysis revealed seven factors for the thirty three-item scale. Confirmatory factor analysis supported good convergent and discriminant validities. The Cronbach's alpha for the overall scale was .94 and for the seven subscales ranged from .78 to .94. The findings suggest that the 33-items Korean CLES+T is an appropriate instrument to measure Korean nursing students'clinical learning environment with good validity and reliability. © 2018 Korean Society of Nursing Science.

  12. Comparison between Two Linear Supervised Learning Machines' Methods with Principle Component Based Methods for the Spectrofluorimetric Determination of Agomelatine and Its Degradants.

    Science.gov (United States)

    Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M

    2017-05-01

    Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.

  13. Microprocessor supervised stability control system for the united power system of Middle Volga in fault conditions

    Energy Technology Data Exchange (ETDEWEB)

    Berdnikov, V I; Birgel, E R; Kovalev, V D; Kuznestov, A N

    1994-12-31

    The development of the 500 kV UPS of Middle Volga, the complication of its configuration and operating conditions particularly in connection with concentration of the generating power at Balakovo NPS have aggravated the problem of stability of the Middle Volga UPS when high power is transmitted along the 500 kV transient system. In this case the necessity for improving control actions` dosage accuracy has also appeared. This work discusses solution to the above mentioned issue. (author) 3 figs.

  14. Recommendation System for Adaptive Learning.

    Science.gov (United States)

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-01-01

    An adaptive learning system aims at providing instruction tailored to the current status of a learner, differing from the traditional classroom experience. The latest advances in technology make adaptive learning possible, which has the potential to provide students with high-quality learning benefit at a low cost. A key component of an adaptive learning system is a recommendation system, which recommends the next material (video lectures, practices, and so on, on different skills) to the learner, based on the psychometric assessment results and possibly other individual characteristics. An important question then follows: How should recommendations be made? To answer this question, a mathematical framework is proposed that characterizes the recommendation process as a Markov decision problem, for which decisions are made based on the current knowledge of the learner and that of the learning materials. In particular, two plain vanilla systems are introduced, for which the optimal recommendation at each stage can be obtained analytically.

  15. The Learning Process of Supervisees Who Engage in the Reflecting Team Model within Group Supervision: A Grounded Theory Inquiry

    Science.gov (United States)

    Pender, Rebecca Lynn

    2012-01-01

    In recent years, counselor educators have begun to incorporate the use of the reflecting team process with the training of counselors. Specifically, the reflecting team has been used in didactic courses (Cox, 2003; Landis & Young, 1994; Harrawood, Wilde & Parmanand, 2011) and in supervision (Cox, 1997; Prest, Darden, & Keller, 1990;…

  16. Learning Companion Systems, Social Learning Systems, and the Global Social Learning Club.

    Science.gov (United States)

    Chan, Tak-Wai

    1996-01-01

    Describes the development of learning companion systems and their contributions to the class of social learning systems that integrate artificial intelligence agents and use machine learning to tutor and interact with students. Outlines initial social learning projects, their programming languages, and weakness. Future improvements will include…

  17. An Automated Self-Learning Quantification System to Identify Visible Areas in Capsule Endoscopy Images.

    Science.gov (United States)

    Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-08-01

    Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.

  18. Consolidation and acceptance of Endesa independent safety supervision system; Consolidacion y aceptacion del sistema de supervision dependiente de la seguridad de Endesa

    Energy Technology Data Exchange (ETDEWEB)

    O' Doneell, P.; Lequerica, I.

    2012-07-01

    Creating multiple levels of independent oversight (Nuclear Oversight-NOS) in operating NPPs has consolidated in recent years. Therefore, within the strategic objectives of DGEN, include strengthening independent oversight mechanisms of nuclear power plants operated by ENDESA. Since its inception in early 2009, Endesa nuclear oversight supervision is working to improve its ability to influence, to impact positively in the operation of the plants, the valuation of its directors and the active response of the line to the issues identified in their activities. In this paper we review the enhancements of NOS.

  19. CLASSIFICATION OF LEARNING MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yu. B. Popova

    2016-01-01

    Full Text Available Using of information technologies and, in particular, learning management systems, increases opportunities of teachers and students in reaching their goals in education. Such systems provide learning content, help organize and monitor training, collect progress statistics and take into account the individual characteristics of each user. Currently, there is a huge inventory of both paid and free systems are physically located both on college servers and in the cloud, offering different features sets of different licensing scheme and the cost. This creates the problem of choosing the best system. This problem is partly due to the lack of comprehensive classification of such systems. Analysis of more than 30 of the most common now automated learning management systems has shown that a classification of such systems should be carried out according to certain criteria, under which the same type of system can be considered. As classification features offered by the author are: cost, functionality, modularity, keeping the customer’s requirements, the integration of content, the physical location of a system, adaptability training. Considering the learning management system within these classifications and taking into account the current trends of their development, it is possible to identify the main requirements to them: functionality, reliability, ease of use, low cost, support for SCORM standard or Tin Can API, modularity and adaptability. According to the requirements at the Software Department of FITR BNTU under the guidance of the author since 2009 take place the development, the use and continuous improvement of their own learning management system.

  20. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    Directory of Open Access Journals (Sweden)

    Fabian Horst

    Full Text Available Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours.Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins. For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns.Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales.Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the