WorldWideScience

Sample records for supervised feature selection

  1. Discriminative semi-supervised feature selection via manifold regularization.

    Science.gov (United States)

    Xu, Zenglin; King, Irwin; Lyu, Michael Rung-Tsong; Jin, Rong

    2010-07-01

    Feature selection has attracted a huge amount of interest in both research and application communities of data mining. We consider the problem of semi-supervised feature selection, where we are given a small amount of labeled examples and a large amount of unlabeled examples. Since a small number of labeled samples are usually insufficient for identifying the relevant features, the critical problem arising from semi-supervised feature selection is how to take advantage of the information underneath the unlabeled data. To address this problem, we propose a novel discriminative semi-supervised feature selection method based on the idea of manifold regularization. The proposed approach selects features through maximizing the classification margin between different classes and simultaneously exploiting the geometry of the probability distribution that generates both labeled and unlabeled data. In comparison with previous semi-supervised feature selection algorithms, our proposed semi-supervised feature selection method is an embedded feature selection method and is able to find more discriminative features. We formulate the proposed feature selection method into a convex-concave optimization problem, where the saddle point corresponds to the optimal solution. To find the optimal solution, the level method, a fairly recent optimization method, is employed. We also present a theoretic proof of the convergence rate for the application of the level method to our problem. Empirical evaluation on several benchmark data sets demonstrates the effectiveness of the proposed semi-supervised feature selection method.

  2. GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting

    Directory of Open Access Journals (Sweden)

    Lintao Yang

    2018-01-01

    Full Text Available With the development of smart power grids, communication network technology and sensor technology, there has been an exponential growth in complex electricity load data. Irregular electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of the power companies. To deal with these challenges, this paper investigates a day-ahead electricity peak load interval forecasting problem. It transforms the conventional continuous forecasting problem into a novel interval forecasting problem, and then further converts the interval forecasting problem into the classification forecasting problem. In addition, an indicator system influencing the electricity load is established from three dimensions, namely the load series, calendar data, and weather data. A semi-supervised feature selection algorithm is proposed to address an electricity load classification forecasting issue based on the group method of data handling (GMDH technology. The proposed algorithm consists of three main stages: (1 training the basic classifier; (2 selectively marking the most suitable samples from the unclassified label data, and adding them to an initial training set; and (3 training the classification models on the final training set and classifying the test samples. An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show that the proposed model can address the electricity load classification forecasting problem more efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection and GMDH-U (GMDH-based semi-supervised feature selection for customer classification models.

  3. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  4. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    Science.gov (United States)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  5. Pairwise Constraint-Guided Sparse Learning for Feature Selection.

    Science.gov (United States)

    Liu, Mingxia; Zhang, Daoqiang

    2016-01-01

    Feature selection aims to identify the most informative features for a compact and accurate data representation. As typical supervised feature selection methods, Lasso and its variants using L1-norm-based regularization terms have received much attention in recent studies, most of which use class labels as supervised information. Besides class labels, there are other types of supervised information, e.g., pairwise constraints that specify whether a pair of data samples belong to the same class (must-link constraint) or different classes (cannot-link constraint). However, most of existing L1-norm-based sparse learning methods do not take advantage of the pairwise constraints that provide us weak and more general supervised information. For addressing that problem, we propose a pairwise constraint-guided sparse (CGS) learning method for feature selection, where the must-link and the cannot-link constraints are used as discriminative regularization terms that directly concentrate on the local discriminative structure of data. Furthermore, we develop two variants of CGS, including: 1) semi-supervised CGS that utilizes labeled data, pairwise constraints, and unlabeled data and 2) ensemble CGS that uses the ensemble of pairwise constraint sets. We conduct a series of experiments on a number of data sets from University of California-Irvine machine learning repository, a gene expression data set, two real-world neuroimaging-based classification tasks, and two large-scale attribute classification tasks. Experimental results demonstrate the efficacy of our proposed methods, compared with several established feature selection methods.

  6. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    Science.gov (United States)

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  7. Penalized feature selection and classification in bioinformatics

    OpenAIRE

    Ma, Shuangge; Huang, Jian

    2008-01-01

    In bioinformatics studies, supervised classification with high-dimensional input variables is frequently encountered. Examples routinely arise in genomic, epigenetic and proteomic studies. Feature selection can be employed along with classifier construction to avoid over-fitting, to generate more reliable classifier and to provide more insights into the underlying causal relationships. In this article, we provide a review of several recently developed penalized feature selection and classific...

  8. Feature selection is the ReliefF for multiple instance learning

    NARCIS (Netherlands)

    Zafra, A.; Pechenizkiy, M.; Ventura, S.

    2010-01-01

    Dimensionality reduction and feature selection in particular are known to be of a great help for making supervised learning more effective and efficient. Many different feature selection techniques have been proposed for the traditional settings, where each instance is expected to have a label. In

  9. Feature-space transformation improves supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Achterberg, Hakim C.; de Bruijne, Marleen

    2015-01-01

    Image-segmentation techniques based on supervised classification generally perform well on the condition that training and test samples have the same feature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions...

  10. Toward optimal feature selection using ranking methods and classification algorithms

    Directory of Open Access Journals (Sweden)

    Novaković Jasmina

    2011-01-01

    Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.

  11. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.

    Science.gov (United States)

    Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin

    2018-05-03

    The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were

  12. Active link selection for efficient semi-supervised community detection

    Science.gov (United States)

    Yang, Liang; Jin, Di; Wang, Xiao; Cao, Xiaochun

    2015-01-01

    Several semi-supervised community detection algorithms have been proposed recently to improve the performance of traditional topology-based methods. However, most of them focus on how to integrate supervised information with topology information; few of them pay attention to which information is critical for performance improvement. This leads to large amounts of demand for supervised information, which is expensive or difficult to obtain in most fields. For this problem we propose an active link selection framework, that is we actively select the most uncertain and informative links for human labeling for the efficient utilization of the supervised information. We also disconnect the most likely inter-community edges to further improve the efficiency. Our main idea is that, by connecting uncertain nodes to their community hubs and disconnecting the inter-community edges, one can sharpen the block structure of adjacency matrix more efficiently than randomly labeling links as the existing methods did. Experiments on both synthetic and real networks demonstrate that our new approach significantly outperforms the existing methods in terms of the efficiency of using supervised information. It needs ~13% of the supervised information to achieve a performance similar to that of the original semi-supervised approaches. PMID:25761385

  13. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    Science.gov (United States)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  14. An Ensemble Method with Integration of Feature Selection and Classifier Selection to Detect the Landslides

    Science.gov (United States)

    Zhongqin, G.; Chen, Y.

    2017-12-01

    Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.

  15. Semi-Supervised Multitask Learning for Scene Recognition.

    Science.gov (United States)

    Lu, Xiaoqiang; Li, Xuelong; Mou, Lichao

    2015-09-01

    Scene recognition has been widely studied to understand visual information from the level of objects and their relationships. Toward scene recognition, many methods have been proposed. They, however, encounter difficulty to improve the accuracy, mainly due to two limitations: 1) lack of analysis of intrinsic relationships across different scales, say, the initial input and its down-sampled versions and 2) existence of redundant features. This paper develops a semi-supervised learning mechanism to reduce the above two limitations. To address the first limitation, we propose a multitask model to integrate scene images of different resolutions. For the second limitation, we build a model of sparse feature selection-based manifold regularization (SFSMR) to select the optimal information and preserve the underlying manifold structure of data. SFSMR coordinates the advantages of sparse feature selection and manifold regulation. Finally, we link the multitask model and SFSMR, and propose the semi-supervised learning method to reduce the two limitations. Experimental results report the improvements of the accuracy in scene recognition.

  16. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  17. Feature selection and nearest centroid classification for protein mass spectrometry

    Directory of Open Access Journals (Sweden)

    Levner Ilya

    2005-03-01

    Full Text Available Abstract Background The use of mass spectrometry as a proteomics tool is poised to revolutionize early disease diagnosis and biomarker identification. Unfortunately, before standard supervised classification algorithms can be employed, the "curse of dimensionality" needs to be solved. Due to the sheer amount of information contained within the mass spectra, most standard machine learning techniques cannot be directly applied. Instead, feature selection techniques are used to first reduce the dimensionality of the input space and thus enable the subsequent use of classification algorithms. This paper examines feature selection techniques for proteomic mass spectrometry. Results This study examines the performance of the nearest centroid classifier coupled with the following feature selection algorithms. Student-t test, Kolmogorov-Smirnov test, and the P-test are univariate statistics used for filter-based feature ranking. From the wrapper approaches we tested sequential forward selection and a modified version of sequential backward selection. Embedded approaches included shrunken nearest centroid and a novel version of boosting based feature selection we developed. In addition, we tested several dimensionality reduction approaches, namely principal component analysis and principal component analysis coupled with linear discriminant analysis. To fairly assess each algorithm, evaluation was done using stratified cross validation with an internal leave-one-out cross-validation loop for automated feature selection. Comprehensive experiments, conducted on five popular cancer data sets, revealed that the less advocated sequential forward selection and boosted feature selection algorithms produce the most consistent results across all data sets. In contrast, the state-of-the-art performance reported on isolated data sets for several of the studied algorithms, does not hold across all data sets. Conclusion This study tested a number of popular feature

  18. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  19. New Informative Features for Fault Diagnosis of Industrial Systems by Supervised Classification

    OpenAIRE

    Verron , Sylvain; Tiplica , Teodor; Kobi , Abdessamad

    2009-01-01

    International audience; The purpose of this article is to present a method for industrial process diagnosis. We are interested in fault diagnosis considered as a supervised classication task. The interest of the proposed method is to take into account new features (and so new informations) in the classifier. These new features are probabilities extracted from a Bayesian network comparing the faulty observations to the normal operating conditions. The performances of this method are evaluated ...

  20. Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM

    Science.gov (United States)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.

  1. Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.

    Science.gov (United States)

    Youji Feng; Lixin Fan; Yihong Wu

    2016-01-01

    The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key

  2. Machinery running state identification based on discriminant semi-supervised local tangent space alignment for feature fusion and extraction

    International Nuclear Information System (INIS)

    Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua

    2017-01-01

    Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification. (paper)

  3. Genetic Counseling Supervisors' Self-Efficacy for Select Clinical Supervision Competencies.

    Science.gov (United States)

    Finley, Sabra Ledare; Veach, Pat McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S; Callanan, Nancy

    2016-04-01

    Supervision is a primary instructional vehicle for genetic counseling student clinical training. Approximately two-thirds of genetic counselors report teaching and education roles, which include supervisory roles. Recently, Eubanks Higgins and colleagues published the first comprehensive list of empirically-derived genetic counseling supervisor competencies. Studies have yet to evaluate whether supervisors possess these competencies and whether their competencies differ as a function of experience. This study investigated three research questions: (1) What are genetic counselor supervisors' perceptions of their capabilities (self-efficacy) for a select group of supervisor competencies?, (2) Are there differences in self-efficacy as a function of their supervision experience or their genetic counseling experience, and 3) What training methods do they use and prefer to develop supervision skills? One-hundred thirty-one genetic counselor supervisors completed an anonymous online survey assessing demographics, self-efficacy (self-perceived capability) for 12 goal setting and 16 feedback competencies (Scale: 0-100), competencies that are personally challenging, and supervision training experiences and preferences (open-ended). A MANOVA revealed significant positive effects of supervision experience but not genetic counseling experience on participants' self-efficacy. Although mean self-efficacy ratings were high (>83.7), participant comments revealed several challenging competencies (e.g., incorporating student's report of feedback from previous supervisors into goal setting, and providing feedback about student behavior rather than personal traits). Commonly preferred supervision training methods included consultation with colleagues, peer discussion, and workshops/seminars.

  4. Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling.

    Science.gov (United States)

    Zhou, Fuqun; Zhang, Aining

    2016-10-25

    Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2-3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests' features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.

  5. Are qualitative and quantitative sleep problems associated with delinquency when controlling for psychopathic features and parental supervision?

    Science.gov (United States)

    Backman, Heidi; Laajasalo, Taina; Saukkonen, Suvi; Salmi, Venla; Kivivuori, Janne; Aronen, Eeva T

    2015-10-01

    The aim of this study was to explore the relationship between sleep, including both qualitative and quantitative aspects, and delinquent behaviour while controlling for psychopathic features of adolescents and parental supervision at bedtime. We analysed data from a nationally representative sample of 4855 Finnish adolescents (mean age 15.3 years, 51% females). Sleep problems, hours of sleep and delinquency were evaluated via self-report. Psychopathic features were measured with the Antisocial Process Screening Device - Self-Report. In negative binomial regressions, gender and sleep-related variables acted as predictors for both property and violent crime after controlling for psychopathic features and parental supervision at bedtime. The results suggest that both sleep problems (at least three times per week, at least for a year) and an insufficient amount of sleep (less than 7 h) are associated with property crime and violent behaviour, and the relationship is not explained by gender, degree of parental supervision at bedtime or co-occurring psychopathic features. These results suggest that sleep difficulties and insufficient amount of sleep are associated with delinquent behaviour in adolescents. The significance of addressing sleep-related problems, both qualitative and quantitative, among adolescents is thus highlighted. Implications for a prevention technique of delinquent behaviour are discussed. © 2015 European Sleep Research Society.

  6. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection.

    Science.gov (United States)

    Park, Sang Hyun; Gao, Yaozong; Shi, Yinghuan; Shen, Dinggang

    2014-11-01

    Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to evaluate both the efficiency

  7. Regularized generalized eigen-decomposition with applications to sparse supervised feature extraction and sparse discriminant analysis

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2015-01-01

    We propose a general technique for obtaining sparse solutions to generalized eigenvalue problems, and call it Regularized Generalized Eigen-Decomposition (RGED). For decades, Fisher's discriminant criterion has been applied in supervised feature extraction and discriminant analysis, and it is for...

  8. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong, E-mail: yzgao@cs.unc.edu [Department of Computer Science, Department of Radiology, and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shi, Yinghuan, E-mail: syh@nju.edu.cn [State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-11-01

    Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to

  9. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Gao, Yaozong; Shi, Yinghuan; Shen, Dinggang

    2014-01-01

    Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to

  10. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  11. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  12. Some Specific Features of the Object of Prosecutorial Supervision over the Observance of Constitutional Rights of the Individual to Work

    Directory of Open Access Journals (Sweden)

    Daniil S. Tishkov

    2017-08-01

    Full Text Available The article defines the place of supervision functions within the system of the functions of prosecution bodies of the Russian Federation as one of the priority sectors of prosecutorial supervision. The legal regulation of prosecutorial supervision of the rights and freedoms of Russian Federation citizens is examined. The Author reveals the specific features of the subject of prosecutorial supervision in compliance with the constitutional rights of the individual to work based on the results of the current legislation system analysis. The assumption of the need for changes to the Prosecutor General of the Russian Federation organizational and administrative documents in order to increase the efficiency of prosecutorial supervision over the observance of individual’s constitutional rights to work is expressed.

  13. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    Science.gov (United States)

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those

  14. Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

    Directory of Open Access Journals (Sweden)

    Jaesung Lee

    2016-11-01

    Full Text Available Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computational cost of multi-label feature selection increases according to the number of labels, the algorithm may suffer from a degradation in performance when processing very large datasets. In this study, we propose an efficient multi-label feature selection method based on an information-theoretic label selection strategy. By identifying a subset of labels that significantly influence the importance of features, the proposed method efficiently outputs a feature subset. Experimental results demonstrate that the proposed method can identify a feature subset much faster than conventional multi-label feature selection methods for large multi-label datasets.

  15. Rolling Bearing Fault Diagnosis Using Modified Neighborhood Preserving Embedding and Maximal Overlap Discrete Wavelet Packet Transform with Sensitive Features Selection

    Directory of Open Access Journals (Sweden)

    Fei Dong

    2018-01-01

    Full Text Available In order to enhance the performance of bearing fault diagnosis and classification, features extraction and features dimensionality reduction have become more important. The original statistical feature set was calculated from single branch reconstruction vibration signals obtained by using maximal overlap discrete wavelet packet transform (MODWPT. In order to reduce redundancy information of original statistical feature set, features selection by adjusted rand index and sum of within-class mean deviations (FSASD was proposed to select fault sensitive features. Furthermore, a modified features dimensionality reduction method, supervised neighborhood preserving embedding with label information (SNPEL, was proposed to realize low-dimensional representations for high-dimensional feature space. Finally, vibration signals collected from two experimental test rigs were employed to evaluate the performance of the proposed procedure. The results show that the effectiveness, adaptability, and superiority of the proposed procedure can serve as an intelligent bearing fault diagnosis system.

  16. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    Science.gov (United States)

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  17. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  18. Sparse supervised principal component analysis (SSPCA) for dimension reduction and variable selection

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Ghodsi, Ali; Clemmensen, Line H.

    2017-01-01

    Principal component analysis (PCA) is one of the main unsupervised pre-processing methods for dimension reduction. When the training labels are available, it is worth using a supervised PCA strategy. In cases that both dimension reduction and variable selection are required, sparse PCA (SPCA...

  19. FEATURE SELECTION METHODS BASED ON MUTUAL INFORMATION FOR CLASSIFYING HETEROGENEOUS FEATURES

    Directory of Open Access Journals (Sweden)

    Ratri Enggar Pawening

    2016-06-01

    Full Text Available Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI for classifying heterogeneous features. We use unsupervised feature transformation (UFT methods and joint mutual information maximation (JMIM methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.

  20. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning.

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A; Roubidoux, Marilyn A; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M; Samala, Ravi K

    2018-01-09

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input 'for processing' DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice's coefficient (DC) of 0.79  ±  0.13 and Pearson's correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as

  1. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2018-01-01

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input ‘for processing’ DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice’s coefficient (DC) of 0.79  ±  0.13 and Pearson’s correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as

  2. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    Science.gov (United States)

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  3. Unsupervised Feature Subset Selection

    DEFF Research Database (Denmark)

    Søndberg-Madsen, Nicolaj; Thomsen, C.; Pena, Jose

    2003-01-01

    This paper studies filter and hybrid filter-wrapper feature subset selection for unsupervised learning (data clustering). We constrain the search for the best feature subset by scoring the dependence of every feature on the rest of the features, conjecturing that these scores discriminate some ir...... irrelevant features. We report experimental results on artificial and real data for unsupervised learning of naive Bayes models. Both the filter and hybrid approaches perform satisfactorily....

  4. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua

    2014-01-01

    The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.

  5. Feature Selection by Reordering

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2005-01-01

    Roč. 2, č. 1 (2005), s. 155-161 ISSN 1738-6438 Institutional research plan: CEZ:AV0Z10300504 Keywords : feature selection * data reduction * ordering of features Subject RIV: BA - General Mathematics

  6. Principal Feature Analysis: A Multivariate Feature Selection Method for fMRI Data

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2013-01-01

    Full Text Available Brain decoding with functional magnetic resonance imaging (fMRI requires analysis of complex, multivariate data. Multivoxel pattern analysis (MVPA has been widely used in recent years. MVPA treats the activation of multiple voxels from fMRI data as a pattern and decodes brain states using pattern classification methods. Feature selection is a critical procedure of MVPA because it decides which features will be included in the classification analysis of fMRI data, thereby improving the performance of the classifier. Features can be selected by limiting the analysis to specific anatomical regions or by computing univariate (voxel-wise or multivariate statistics. However, these methods either discard some informative features or select features with redundant information. This paper introduces the principal feature analysis as a novel multivariate feature selection method for fMRI data processing. This multivariate approach aims to remove features with redundant information, thereby selecting fewer features, while retaining the most information.

  7. Hidden discriminative features extraction for supervised high-order time series modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2016-11-01

    In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative subspaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction (TDFE). TDFE relies on the employment of category information for the maximization of the between-class scatter and the minimization of the within-class scatter to extract optimal hidden discriminative feature subspaces that are simultaneously spanned by every modality for supervised tensor modeling. In this context, the proposed tensor-decomposition method provides the following benefits: i) reduces dimensionality while robustly mining the underlying discriminative features, ii) results in effective interpretable features that lead to an improved classification and visualization, and iii) reduces the processing time during the training stage and the filtering of the projection by solving the generalized eigenvalue issue at each alternation step. Two real third-order tensor-structures of time series datasets (an epilepsy electroencephalogram (EEG) that is modeled as channel×frequency bin×time frame and a microarray data that is modeled as gene×sample×time) were used for the evaluation of the TDFE. The experiment results corroborate the advantages of the proposed method with averages of 98.26% and 89.63% for the classification accuracies of the epilepsy dataset and the microarray dataset, respectively. These performance averages represent an improvement on those of the matrix-based algorithms and recent tensor-based, discriminant-decomposition approaches; this is especially the case considering the small number of samples that are used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A numeric comparison of variable selection algorithms for supervised learning

    International Nuclear Information System (INIS)

    Palombo, G.; Narsky, I.

    2009-01-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.

  9. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data.

    Directory of Open Access Journals (Sweden)

    Qingzhong Liu

    Full Text Available Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA, which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods: Support Vector Machine Recursive Feature Elimination (SVMRFE, Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS, Gradient based Leave-one-out Gene Selection (GLGS. To evaluate the performance of these gene selection methods, we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling (MAQC-II breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC is a good choice due to its prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and

  10. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali

    2017-11-01

    Full Text Available Current transformer (CT saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL methods have brought a subversive revolution in the field of artificial intelligence (AI. This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

  11. Medical supervision of radiation workers

    International Nuclear Information System (INIS)

    Santani, S.B.; Nandakumar, A.N.; Subramanian, G.

    1982-01-01

    The basic elements of an occupational medical supervision programme for radiation workers are very much the same as those relevant to other professions with some additional special features. This paper cites examples from literature and recommends measures such as spot checks and continuance of medical supervision even after a radiation worker leaves this profession. (author)

  12. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  13. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  14. EEG feature selection method based on decision tree.

    Science.gov (United States)

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  15. Feature Import Vector Machine: A General Classifier with Flexible Feature Selection.

    Science.gov (United States)

    Ghosh, Samiran; Wang, Yazhen

    2015-02-01

    The support vector machine (SVM) and other reproducing kernel Hilbert space (RKHS) based classifier systems are drawing much attention recently due to its robustness and generalization capability. General theme here is to construct classifiers based on the training data in a high dimensional space by using all available dimensions. The SVM achieves huge data compression by selecting only few observations which lie close to the boundary of the classifier function. However when the number of observations are not very large (small n ) but the number of dimensions/features are large (large p ), then it is not necessary that all available features are of equal importance in the classification context. Possible selection of an useful fraction of the available features may result in huge data compression. In this paper we propose an algorithmic approach by means of which such an optimal set of features could be selected. In short, we reverse the traditional sequential observation selection strategy of SVM to that of sequential feature selection. To achieve this we have modified the solution proposed by Zhu and Hastie (2005) in the context of import vector machine (IVM), to select an optimal sub-dimensional model to build the final classifier with sufficient accuracy.

  16. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  17. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection

    Directory of Open Access Journals (Sweden)

    Abdullah M. Iliyasu

    2017-12-01

    Full Text Available A quantum hybrid (QH intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO method with the intuitionistic rationality of traditional fuzzy k-nearest neighbours (Fuzzy k-NN algorithm (known simply as the Q-Fuzzy approach is proposed for efficient feature selection and classification of cells in cervical smeared (CS images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection and another hybrid technique combining the standard PSO algorithm with the Fuzzy k-NN technique (P-Fuzzy approach. In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k-NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.

  18. Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease.

    Science.gov (United States)

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2013-01-01

    Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.

  19. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    Science.gov (United States)

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  20. Supervised hub-detection for brain connectivity

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Liptrot, Matthew George; Reislev, Nina Linde

    2016-01-01

    , but can smooth discriminative signals in the population, degrading predictive performance. We present a novel hub-detection optimized for supervised learning that both clusters network nodes based on population level variation in connectivity and also takes the learning problem into account. The found......A structural brain network consists of physical connections between brain regions. Brain network analysis aims to find features associated with a parameter of interest through supervised prediction models such as regression. Unsupervised preprocessing steps like clustering are often applied...... hubs are a low-dimensional representation of the network and are chosen based on predictive performance as features for a linear regression. We apply our method to the problem of finding age-related changes in structural connectivity. We compare our supervised hub-detection (SHD) to an unsupervised hub...

  1. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...

  2. Man-machine supervision; Supervision homme-machine

    Energy Technology Data Exchange (ETDEWEB)

    Montmain, J. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN), 30 - Marcoule (France)

    2005-05-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  3. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Ahmed Majid Taha

    2013-01-01

    Full Text Available When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.

  4. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Science.gov (United States)

    Taha, Ahmed Majid; Mustapha, Aida; Chen, Soong-Der

    2013-01-01

    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets. PMID:24396295

  5. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  6. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  7. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  8. A New Method for Solving Supervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2014-01-01

    Full Text Available Supervised data classification is one of the techniques used to extract nontrivial information from data. Classification is a widely used technique in various fields, including data mining, industry, medicine, science, and law. This paper considers a new algorithm for supervised data classification problems associated with the cluster analysis. The mathematical formulations for this algorithm are based on nonsmooth, nonconvex optimization. A new algorithm for solving this optimization problem is utilized. The new algorithm uses a derivative-free technique, with robustness and efficiency. To improve classification performance and efficiency in generating classification model, a new feature selection algorithm based on techniques of convex programming is suggested. Proposed methods are tested on real-world datasets. Results of numerical experiments have been presented which demonstrate the effectiveness of the proposed algorithms.

  9. Application of Contingency Theories to the Supervision of Student Teachers.

    Science.gov (United States)

    Phelps, Julia D.

    1985-01-01

    This article examines selected approaches to student teacher supervision within the context of contingency theory. These include authentic supervision, developmental supervision, and supervision based on the student's level of maturity. (MT)

  10. Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang

    2015-01-01

    Full Text Available Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs. Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.

  11. Classification Influence of Features on Given Emotions and Its Application in Feature Selection

    Science.gov (United States)

    Xing, Yin; Chen, Chuang; Liu, Li-Long

    2018-04-01

    In order to solve the problem that there is a large amount of redundant data in high-dimensional speech emotion features, we analyze deeply the extracted speech emotion features and select better features. Firstly, a given emotion is classified by each feature. Secondly, the recognition rate is ranked in descending order. Then, the optimal threshold of features is determined by rate criterion. Finally, the better features are obtained. When applied in Berlin and Chinese emotional data set, the experimental results show that the feature selection method outperforms the other traditional methods.

  12. Manifold Regularized Multi-Task Feature Selection for Multi-Modality Classification in Alzheimer’s Disease

    Science.gov (United States)

    Jie, Biao; Cheng, Bo

    2014-01-01

    Accurate diagnosis of Alzheimer’s disease (AD), as well as its pro-dromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method. PMID:24505676

  13. Weakly supervised visual dictionary learning by harnessing image attributes.

    Science.gov (United States)

    Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang

    2014-12-01

    Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.

  14. Distant supervision for neural relation extraction integrated with word attention and property features.

    Science.gov (United States)

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Semi-Supervised Multiple Feature Analysis for Action Recognition

    Science.gov (United States)

    2013-11-26

    in saving la- beling costs while simultaneously achieving good performance. Most semi-supervised learning methods assume that nearby points are likely...3, 5, 10 and 15) per category in the training set, thus resulting in , , , and randomly la- beled videos, with the remaining training videos unlabeled...with the increase of la- beled training samples, the performance of all algorithms rises. Meanwhile, the performance differences between our method and

  16. Feature Selection via Chaotic Antlion Optimization.

    Directory of Open Access Journals (Sweden)

    Hossam M Zawbaa

    Full Text Available Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting while minimizing the number of features used.We propose an optimization approach for the feature selection problem that considers a "chaotic" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.

  17. Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Directory of Open Access Journals (Sweden)

    Rouzé Pierre

    2004-05-01

    Full Text Available Abstract Background The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. Results In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. Conclusion We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features.

  18. Online Feature Selection for Classifying Emphysema in HRCT Images

    Directory of Open Access Journals (Sweden)

    M. Prasad

    2008-06-01

    Full Text Available Feature subset selection, applied as a pre- processing step to machine learning, is valuable in dimensionality reduction, eliminating irrelevant data and improving classifier performance. In the classic formulation of the feature selection problem, it is assumed that all the features are available at the beginning. However, in many real world problems, there are scenarios where not all features are present initially and must be integrated as they become available. In such scenarios, online feature selection provides an efficient way to sort through a large space of features. It is in this context that we introduce online feature selection for the classification of emphysema, a smoking related disease that appears as low attenuation regions in High Resolution Computer Tomography (HRCT images. The technique was successfully evaluated on 61 HRCT scans and compared with different online feature selection approaches, including hill climbing, best first search, grafting, and correlation-based feature selection. The results were also compared against ldensity maskr, a standard approach used for emphysema detection in medical image analysis.

  19. SIP-FS: a novel feature selection for data representation

    Directory of Open Access Journals (Sweden)

    Yiyou Guo

    2018-02-01

    Full Text Available Abstract Multiple features are widely used to characterize real-world datasets. It is desirable to select leading features with stability and interpretability from a set of distinct features for a comprehensive data description. However, most of existing feature selection methods focus on the predictability (e.g., prediction accuracy of selected results yet neglect stability. To obtain compact data representation, a novel feature selection method is proposed to improve stability, and interpretability without sacrificing predictability (SIP-FS. Instead of mutual information, generalized correlation is adopted in minimal redundancy maximal relevance to measure the relation between different feature types. Several feature types (each contains a certain number of features can then be selected and evaluated quantitatively to determine what types contribute to a specific class, thereby enhancing the so-called interpretability of features. Moreover, stability is introduced in the criterion of SIP-FS to obtain consistent results of ranking. We conduct experiments on three publicly available datasets using one-versus-all strategy to select class-specific features. The experiments illustrate that SIP-FS achieves significant performance improvements in terms of stability and interpretability with desirable prediction accuracy and indicates advantages over several state-of-the-art approaches.

  20. Doubly sparse factor models for unifying feature transformation and feature selection

    International Nuclear Information System (INIS)

    Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato; Matsumoto, Narihisa; Sugase-Miyamoto, Yasuko

    2010-01-01

    A number of unsupervised learning methods for high-dimensional data are largely divided into two groups based on their procedures, i.e., (1) feature selection, which discards irrelevant dimensions of the data, and (2) feature transformation, which constructs new variables by transforming and mixing over all dimensions. We propose a method that both selects and transforms features in a common Bayesian inference procedure. Our method imposes a doubly automatic relevance determination (ARD) prior on the factor loading matrix. We propose a variational Bayesian inference for our model and demonstrate the performance of our method on both synthetic and real data.

  1. Doubly sparse factor models for unifying feature transformation and feature selection

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato [ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Saitama (Japan); Matsumoto, Narihisa; Sugase-Miyamoto, Yasuko, E-mail: okada@k.u-tokyo.ac.j [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan)

    2010-06-01

    A number of unsupervised learning methods for high-dimensional data are largely divided into two groups based on their procedures, i.e., (1) feature selection, which discards irrelevant dimensions of the data, and (2) feature transformation, which constructs new variables by transforming and mixing over all dimensions. We propose a method that both selects and transforms features in a common Bayesian inference procedure. Our method imposes a doubly automatic relevance determination (ARD) prior on the factor loading matrix. We propose a variational Bayesian inference for our model and demonstrate the performance of our method on both synthetic and real data.

  2. Supervised and Unsupervised Classification for Pattern Recognition Purposes

    Directory of Open Access Journals (Sweden)

    Catalina COCIANU

    2006-01-01

    Full Text Available A cluster analysis task has to identify the grouping trends of data, to decide on the sound clusters as well as to validate somehow the resulted structure. The identification of the grouping tendency existing in a data collection assumes the selection of a framework stated in terms of a mathematical model allowing to express the similarity degree between couples of particular objects, quasi-metrics expressing the similarity between an object an a cluster and between clusters, respectively. In supervised classification, we are provided with a collection of preclassified patterns, and the problem is to label a newly encountered pattern. Typically, the given training patterns are used to learn the descriptions of classes which in turn are used to label a new pattern. The final section of the paper presents a new methodology for supervised learning based on PCA. The classes are represented in the measurement/feature space by a continuous repartitions

  3. Joint Feature Selection and Classification for Multilabel Learning.

    Science.gov (United States)

    Huang, Jun; Li, Guorong; Huang, Qingming; Wu, Xindong

    2018-03-01

    Multilabel learning deals with examples having multiple class labels simultaneously. It has been applied to a variety of applications, such as text categorization and image annotation. A large number of algorithms have been proposed for multilabel learning, most of which concentrate on multilabel classification problems and only a few of them are feature selection algorithms. Current multilabel classification models are mainly built on a single data representation composed of all the features which are shared by all the class labels. Since each class label might be decided by some specific features of its own, and the problems of classification and feature selection are often addressed independently, in this paper, we propose a novel method which can perform joint feature selection and classification for multilabel learning, named JFSC. Different from many existing methods, JFSC learns both shared features and label-specific features by considering pairwise label correlations, and builds the multilabel classifier on the learned low-dimensional data representations simultaneously. A comparative study with state-of-the-art approaches manifests a competitive performance of our proposed method both in classification and feature selection for multilabel learning.

  4. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mostafa Salem

    2018-01-01

    Conclusions: The performance of the proposed method shows the benefits of using DF operators as features to train a supervised learning model. Compared to other methods, the proposed model decreases the number of false-positives while increasing the number of true-positives, which is relevant for clinical settings.

  5. Features Selection for Skin Micro-Image Symptomatic Recognition

    Institute of Scientific and Technical Information of China (English)

    HUYue-li; CAOJia-lin; ZHAOQian; FENGXu

    2004-01-01

    Automatic recognition of skin micro-image symptom is important in skin diagnosis and treatment. Feature selection is to improve the classification performance of skin micro-image symptom.This paper proposes a hybrid approach based on the support vector machine (SVM) technique and genetic algorithm (GA) to select an optimum feature subset from the feature group extracted from the skin micro-images. An adaptive GA is introduced for maintaining the convergence rate. With the proposed method, the average cross validation accuracy is increased from 88.25% using all features to 96.92% using only selected features provided by a classifier for classification of 5 classes of skin symptoms. The experimental results are satisfactory.

  6. Features Selection for Skin Micro-Image Symptomatic Recognition

    Institute of Scientific and Technical Information of China (English)

    HU Yue-li; CAO Jia-lin; ZHAO Qian; FENG Xu

    2004-01-01

    Automatic recognition of skin micro-image symptom is important in skin diagnosis and treatment. Feature selection is to improve the classification performance of skin micro-image symptom.This paper proposes a hybrid approach based on the support vector machine (SVM) technique and genetic algorithm (GA) to select an optimum feature subset from the feature group extracted from the skin micro-images. An adaptive GA is introduced for maintaining the convergence rate. With the proposed method, the average cross validation accuracy is increased from 88.25% using all features to 96.92 % using only selected features provided by a classifier for classification of 5 classes of skin symptoms. The experimental results are satisfactory.

  7. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  8. Adversarial Feature Selection Against Evasion Attacks.

    Science.gov (United States)

    Zhang, Fei; Chan, Patrick P K; Biggio, Battista; Yeung, Daniel S; Roli, Fabio

    2016-03-01

    Pattern recognition and machine learning techniques have been increasingly adopted in adversarial settings such as spam, intrusion, and malware detection, although their security against well-crafted attacks that aim to evade detection by manipulating data at test time has not yet been thoroughly assessed. While previous work has been mainly focused on devising adversary-aware classification algorithms to counter evasion attempts, only few authors have considered the impact of using reduced feature sets on classifier security against the same attacks. An interesting, preliminary result is that classifier security to evasion may be even worsened by the application of feature selection. In this paper, we provide a more detailed investigation of this aspect, shedding some light on the security properties of feature selection against evasion attacks. Inspired by previous work on adversary-aware classifiers, we propose a novel adversary-aware feature selection model that can improve classifier security against evasion attacks, by incorporating specific assumptions on the adversary's data manipulation strategy. We focus on an efficient, wrapper-based implementation of our approach, and experimentally validate its soundness on different application examples, including spam and malware detection.

  9. Supervised Learning Applied to Air Traffic Trajectory Classification

    Science.gov (United States)

    Bosson, Christabelle; Nikoleris, Tasos

    2018-01-01

    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.

  10. Doctoral Supervision in Virtual Spaces: A Review of Research of Web-Based Tools to Develop Collaborative Supervision

    Science.gov (United States)

    Maor, Dorit; Ensor, Jason D.; Fraser, Barry J.

    2016-01-01

    Supervision of doctoral students needs to be improved to increase completion rates, reduce attrition rates (estimated to be at 25% or more) and improve quality of research. The current literature review aimed to explore the contribution that technology can make to higher degree research supervision. The articles selected included empirical studies…

  11. Aging, selective attention, and feature integration.

    Science.gov (United States)

    Plude, D J; Doussard-Roosevelt, J A

    1989-03-01

    This study used feature-integration theory as a means of determining the point in processing at which selective attention deficits originate. The theory posits an initial stage of processing in which features are registered in parallel and then a serial process in which features are conjoined to form complex stimuli. Performance of young and older adults on feature versus conjunction search is compared. Analyses of reaction times and error rates suggest that elderly adults in addition to young adults, can capitalize on the early parallel processing stage of visual information processing, and that age decrements in visual search arise as a result of the later, serial stage of processing. Analyses of a third, unconfounded, conjunction search condition reveal qualitatively similar modes of conjunction search in young and older adults. The contribution of age-related data limitations is found to be secondary to the contribution of age decrements in selective attention.

  12. On psychoanalytic supervision as signature pedagogy.

    Science.gov (United States)

    Watkins, C Edward

    2014-04-01

    What is signature pedagogy in psychoanalytic education? This paper examines that question, considering why psychoanalytic supervision best deserves that designation. In focusing on supervision as signature pedagogy, I accentuate its role in building psychoanalytic habits of mind, habits of hand, and habits of heart, and transforming theory and self-knowledge into practical product. Other facets of supervision as signature pedagogy addressed in this paper include its features of engagement, uncertainty, formation, and pervasiveness, as well as levels of surface, deep, and implicit structure. Epistemological, ontological, and axiological in nature, psychoanalytic supervision engages trainees in learning to do, think, and value what psychoanalytic practitioners in the field do, think, and value: It is, most fundamentally, professional preparation for competent, "good work." In this paper, effort is made to shine a light on and celebrate the pivotal role of supervision in "making" or developing budding psychoanalysts and psychoanalytic psychotherapists. Now over a century old, psychoanalytic supervision remains unparalleled in (1) connecting and integrating conceptualization and practice, (2) transforming psychoanalytic theory and self-knowledge into an informed analyzing instrument, and (3) teaching, transmitting, and perpetuating the traditions, practice, and culture of psychoanalytic treatment.

  13. Hybrid feature selection for supporting lightweight intrusion detection systems

    Science.gov (United States)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  14. Feature Selection Based on Mutual Correlation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Somol, Petr; Ververidis, D.; Kotropoulos, C.

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 569-577 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA AV ČR IAA2075302 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : feature selection Subject RIV: BD - Theory of Information Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/haindl-feature selection based on mutual correlation.pdf

  15. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Zhi He

    2017-10-01

    Full Text Available Classification of hyperspectral image (HSI is an important research topic in the remote sensing community. Significant efforts (e.g., deep learning have been concentrated on this task. However, it is still an open issue to classify the high-dimensional HSI with a limited number of training samples. In this paper, we propose a semi-supervised HSI classification method inspired by the generative adversarial networks (GANs. Unlike the supervised methods, the proposed HSI classification method is semi-supervised, which can make full use of the limited labeled samples as well as the sufficient unlabeled samples. Core ideas of the proposed method are twofold. First, the three-dimensional bilateral filter (3DBF is adopted to extract the spectral-spatial features by naturally treating the HSI as a volumetric dataset. The spatial information is integrated into the extracted features by 3DBF, which is propitious to the subsequent classification step. Second, GANs are trained on the spectral-spatial features for semi-supervised learning. A GAN contains two neural networks (i.e., generator and discriminator trained in opposition to one another. The semi-supervised learning is achieved by adding samples from the generator to the features and increasing the dimension of the classifier output. Experimental results obtained on three benchmark HSI datasets have confirmed the effectiveness of the proposed method , especially with a limited number of labeled samples.

  16. Feature-selective attention in healthy old age: a selective decline in selective attention?

    Science.gov (United States)

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  17. Effective traffic features selection algorithm for cyber-attacks samples

    Science.gov (United States)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  18. A Meta-Heuristic Regression-Based Feature Selection for Predictive Analytics

    Directory of Open Access Journals (Sweden)

    Bharat Singh

    2014-11-01

    Full Text Available A high-dimensional feature selection having a very large number of features with an optimal feature subset is an NP-complete problem. Because conventional optimization techniques are unable to tackle large-scale feature selection problems, meta-heuristic algorithms are widely used. In this paper, we propose a particle swarm optimization technique while utilizing regression techniques for feature selection. We then use the selected features to classify the data. Classification accuracy is used as a criterion to evaluate classifier performance, and classification is accomplished through the use of k-nearest neighbour (KNN and Bayesian techniques. Various high dimensional data sets are used to evaluate the usefulness of the proposed approach. Results show that our approach gives better results when compared with other conventional feature selection algorithms.

  19. Identification of Village Building via Google Earth Images and Supervised Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Zhiling Guo

    2016-03-01

    Full Text Available In this study, a method based on supervised machine learning is proposed to identify village buildings from open high-resolution remote sensing images. We select Google Earth (GE RGB images to perform the classification in order to examine its suitability for village mapping, and investigate the feasibility of using machine learning methods to provide automatic classification in such fields. By analyzing the characteristics of GE images, we design different features on the basis of two kinds of supervised machine learning methods for classification: adaptive boosting (AdaBoost and convolutional neural networks (CNN. To recognize village buildings via their color and texture information, the RGB color features and a large number of Haar-like features in a local window are utilized in the AdaBoost method; with multilayer trained networks based on gradient descent algorithms and back propagation, CNN perform the identification by mining deeper information from buildings and their neighborhood. Experimental results from the testing area at Savannakhet province in Laos show that our proposed AdaBoost method achieves an overall accuracy of 96.22% and the CNN method is also competitive with an overall accuracy of 96.30%.

  20. Feature Selection Criteria for Real Time EKF-SLAM Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein

    2010-02-01

    Full Text Available This paper presents a seletion procedure for environmet features for the correction stage of a SLAM (Simultaneous Localization and Mapping algorithm based on an Extended Kalman Filter (EKF. This approach decreases the computational time of the correction stage which allows for real and constant-time implementations of the SLAM. The selection procedure consists in chosing the features the SLAM system state covariance is more sensible to. The entire system is implemented on a mobile robot equipped with a range sensor laser. The features extracted from the environment correspond to lines and corners. Experimental results of the real time SLAM algorithm and an analysis of the processing-time consumed by the SLAM with the feature selection procedure proposed are shown. A comparison between the feature selection approach proposed and the classical sequential EKF-SLAM along with an entropy feature selection approach is also performed.

  1. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  2. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  3. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    Directory of Open Access Journals (Sweden)

    Carlos A. Caceres

    2017-06-01

    Full Text Available Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  4. NetProt: Complex-based Feature Selection.

    Science.gov (United States)

    Goh, Wilson Wen Bin; Wong, Limsoon

    2017-08-04

    Protein complex-based feature selection (PCBFS) provides unparalleled reproducibility with high phenotypic relevance on proteomics data. Currently, there are five PCBFS paradigms, but not all representative methods have been implemented or made readily available. To allow general users to take advantage of these methods, we developed the R-package NetProt, which provides implementations of representative feature-selection methods. NetProt also provides methods for generating simulated differential data and generating pseudocomplexes for complex-based performance benchmarking. The NetProt open source R package is available for download from https://github.com/gohwils/NetProt/releases/ , and online documentation is available at http://rpubs.com/gohwils/204259 .

  5. Using Supervised Deep Learning for Human Age Estimation Problem

    Science.gov (United States)

    Drobnyh, K. A.; Polovinkin, A. N.

    2017-05-01

    Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popular publicly available FG-NET database, which contains 1002 images with a broad variety of light, pose, and expression. LOPO (leave-one-person-out) method was used to estimate the accuracy. Experiments demonstrated that adding supervised deep learning features has improved accuracy for some basic models. For example, adding the features to an active appearance model gave the 4% gain (the error decreased from 4.59 to 4.41).

  6. Empirical study of supervised gene screening

    Directory of Open Access Journals (Sweden)

    Ma Shuangge

    2006-12-01

    Full Text Available Abstract Background Microarray studies provide a way of linking variations of phenotypes with their genetic causations. Constructing predictive models using high dimensional microarray measurements usually consists of three steps: (1 unsupervised gene screening; (2 supervised gene screening; and (3 statistical model building. Supervised gene screening based on marginal gene ranking is commonly used to reduce the number of genes in the model building. Various simple statistics, such as t-statistic or signal to noise ratio, have been used to rank genes in the supervised screening. Despite of its extensive usage, statistical study of supervised gene screening remains scarce. Our study is partly motivated by the differences in gene discovery results caused by using different supervised gene screening methods. Results We investigate concordance and reproducibility of supervised gene screening based on eight commonly used marginal statistics. Concordance is assessed by the relative fractions of overlaps between top ranked genes screened using different marginal statistics. We propose a Bootstrap Reproducibility Index, which measures reproducibility of individual genes under the supervised screening. Empirical studies are based on four public microarray data. We consider the cases where the top 20%, 40% and 60% genes are screened. Conclusion From a gene discovery point of view, the effect of supervised gene screening based on different marginal statistics cannot be ignored. Empirical studies show that (1 genes passed different supervised screenings may be considerably different; (2 concordance may vary, depending on the underlying data structure and percentage of selected genes; (3 evaluated with the Bootstrap Reproducibility Index, genes passed supervised screenings are only moderately reproducible; and (4 concordance cannot be improved by supervised screening based on reproducibility.

  7. Feature selection for high-dimensional integrated data

    KAUST Repository

    Zheng, Charles

    2012-04-26

    Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y, and the remainder of the predictors constitute a “noise set” Xu independent of Y. Using Monte Carlo simulations, we investigated the relative performance of two methods: thresholding and singular-value decomposition, in combination with stochastic optimization to determine “empirical bounds” on the small-sample accuracy of an asymptotic approximation. We demonstrate utility of the thresholding and SVD feature selection methods to with respect to a recent infant intestinal gene expression and metagenomics dataset.

  8. Feature selection for high-dimensional integrated data

    KAUST Repository

    Zheng, Charles; Schwartz, Scott; Chapkin, Robert S.; Carroll, Raymond J.; Ivanov, Ivan

    2012-01-01

    Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y, and the remainder of the predictors constitute a “noise set” Xu independent of Y. Using Monte Carlo simulations, we investigated the relative performance of two methods: thresholding and singular-value decomposition, in combination with stochastic optimization to determine “empirical bounds” on the small-sample accuracy of an asymptotic approximation. We demonstrate utility of the thresholding and SVD feature selection methods to with respect to a recent infant intestinal gene expression and metagenomics dataset.

  9. A redundancy-removing feature selection algorithm for nominal data

    Directory of Open Access Journals (Sweden)

    Zhihua Li

    2015-10-01

    Full Text Available No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.

  10. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  11. Optimization of safety production supervision mode of coalmining enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M.; Xiao, Z. [China University of Mining and Technology, Xuzhou (China). School of Management

    2005-12-01

    In view of the fact that safety production supervision of coal mines in China features low efficacy, this paper applies principles of cybernetics to simulate the dynamic process of safety supervision, and proposes that institutional variables be controlled to support intermediate goals, which in turn contribute to the ultimate safety production objective. Rather than focussing all attention on safety issues of working faces, supervising departments of coalmines are advised to pay much more attention to institutional factors that may impact people's attitude and behavior, which are responsible for most coalmine accidents. It is believed that such a shift of attention can effectively reduce coalmining production accidents and greatly enhance supervision efficacy. 8 refs., 5 figs.

  12. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  13. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  14. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  15. Bias and Stability of Single Variable Classifiers for Feature Ranking and Selection.

    Science.gov (United States)

    Fakhraei, Shobeir; Soltanian-Zadeh, Hamid; Fotouhi, Farshad

    2014-11-01

    Feature rankings are often used for supervised dimension reduction especially when discriminating power of each feature is of interest, dimensionality of dataset is extremely high, or computational power is limited to perform more complicated methods. In practice, it is recommended to start dimension reduction via simple methods such as feature rankings before applying more complex approaches. Single Variable Classifier (SVC) ranking is a feature ranking based on the predictive performance of a classifier built using only a single feature. While benefiting from capabilities of classifiers, this ranking method is not as computationally intensive as wrappers. In this paper, we report the results of an extensive study on the bias and stability of such feature ranking method. We study whether the classifiers influence the SVC rankings or the discriminative power of features themselves has a dominant impact on the final rankings. We show the common intuition of using the same classifier for feature ranking and final classification does not always result in the best prediction performance. We then study if heterogeneous classifiers ensemble approaches provide more unbiased rankings and if they improve final classification performance. Furthermore, we calculate an empirical prediction performance loss for using the same classifier in SVC feature ranking and final classification from the optimal choices.

  16. Supervision in Firms

    OpenAIRE

    Vafaï , Kouroche

    2012-01-01

    URL des Documents de travail : http://centredeconomiesorbonne.univ-paris1.fr/bandeau-haut/documents-de-travail/; Documents de travail du Centre d'Economie de la Sorbonne 2012.84 - ISSN : 1955-611X; To control, evaluate, and motivate their agents, firms employ supervisors. As shown by empirical investigations, biased evaluation by supervisors linked to collusion is a persistent feature of firms. This paper studies how deceptive supervision affects agency relationships. We consider a three-leve...

  17. Tracing the breeding farm of domesticated pig using feature selection (

    Directory of Open Access Journals (Sweden)

    Taehyung Kwon

    2017-11-01

    Full Text Available Objective Increasing food safety demands in the animal product market have created a need for a system to trace the food distribution process, from the manufacturer to the retailer, and genetic traceability is an effective method to trace the origin of animal products. In this study, we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide polymorphism (SNP markers strictly selected through least absolute shrinkage and selection operator (LASSO feature selection. Methods We performed farm tracing of domesticated pig (Sus scrofa from SNP markers and selected the most relevant features for accurate prediction. Considering multi-breed composition of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are shared between breeds, which also includes 179 SNPs with small between-breed difference. The 100 highest-scored features were extracted from iterative simulations and then evaluated using machine-leaning based classifiers. Results We selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature selection, to minimize between-breed differences. We subsequently selected 100 highest-scored SNPs from iterative scoring, and observed high statistical measures in classification of breeding farms by cross-validation only using these SNPs. Conclusion The study represents a successful application of LASSO feature selection on multi-breed pig SNP data to trace the farm information, which provides a valuable method and possibility for further researches on genetic traceability.

  18. THE FEATURES OF THE RUSSIAN BANKING SUPERVISION AND REGULATION IN THE LIGHT OF BASEL II AND BASEL III IMPLEMENTATION IN THE RUSSIAN BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. R. Kakhrimanova

    2014-01-01

    Full Text Available The article focuses on the current situation in the Russian banking supervision and regulation and namely the process of its reforming in accordance withBaselprinciples. A special concern of the article is the features of Russian banking sector that are obstacles in full implementation of Basel II and Basel III inRussiatoday.

  19. Feature selection using genetic algorithms for fetal heart rate analysis

    International Nuclear Information System (INIS)

    Xu, Liang; Redman, Christopher W G; Georgieva, Antoniya; Payne, Stephen J

    2014-01-01

    The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies. (paper)

  20. Semi-supervised and unsupervised extreme learning machines.

    Science.gov (United States)

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  1. Oculomotor selection underlies feature retention in visual working memory.

    Science.gov (United States)

    Hanning, Nina M; Jonikaitis, Donatas; Deubel, Heiner; Szinte, Martin

    2016-02-01

    Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations. Copyright © 2016 the American Physiological Society.

  2. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach

    Directory of Open Access Journals (Sweden)

    Daniel Peralta

    2015-01-01

    Full Text Available Nowadays, many disciplines have to deal with big datasets that additionally involve a high number of features. Feature selection methods aim at eliminating noisy, redundant, or irrelevant features that may deteriorate the classification performance. However, traditional methods lack enough scalability to cope with datasets of millions of instances and extract successful results in a delimited time. This paper presents a feature selection algorithm based on evolutionary computation that uses the MapReduce paradigm to obtain subsets of features from big datasets. The algorithm decomposes the original dataset in blocks of instances to learn from them in the map phase; then, the reduce phase merges the obtained partial results into a final vector of feature weights, which allows a flexible application of the feature selection procedure using a threshold to determine the selected subset of features. The feature selection method is evaluated by using three well-known classifiers (SVM, Logistic Regression, and Naive Bayes implemented within the Spark framework to address big data problems. In the experiments, datasets up to 67 millions of instances and up to 2000 attributes have been managed, showing that this is a suitable framework to perform evolutionary feature selection, improving both the classification accuracy and its runtime when dealing with big data problems.

  3. Feature and Region Selection for Visual Learning.

    Science.gov (United States)

    Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando

    2016-03-01

    Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.

  4. Feature selection toolbox software package

    Czech Academy of Sciences Publication Activity Database

    Pudil, Pavel; Novovičová, Jana; Somol, Petr

    2002-01-01

    Roč. 23, č. 4 (2002), s. 487-492 ISSN 0167-8655 R&D Projects: GA ČR GA402/01/0981 Institutional research plan: CEZ:AV0Z1075907 Keywords : pattern recognition * feature selection * loating search algorithms Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.409, year: 2002

  5. Feature Selection with the Boruta Package

    OpenAIRE

    Kursa, Miron B.; Rudnicki, Witold R.

    2010-01-01

    This article describes a R package Boruta, implementing a novel feature selection algorithm for finding emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.

  6. The effects of clinical supervision on supervisees and patients in cognitive behavioral therapy: a systematic review.

    Science.gov (United States)

    Alfonsson, Sven; Parling, Thomas; Spännargård, Åsa; Andersson, Gerhard; Lundgren, Tobias

    2018-05-01

    Clinical supervision is a central part of psychotherapist training but the empirical support for specific supervision theories or features is unclear. The aims of this study were to systematically review the empirical research literature regarding the effects of clinical supervision on therapists' competences and clinical outcomes within Cognitive Behavior Therapy (CBT). A comprehensive database search resulted in 4103 identified publications. Of these, 133 were scrutinized and in the end 5 studies were included in the review for data synthesis. The five studies were heterogeneous in scope and quality and only one provided firm empirical support for the positive effects of clinical supervision on therapists' competence. The remaining four studies suffered from methodological weaknesses, but provided some preliminary support that clinical supervision may be beneficiary for novice therapists. No study could show benefits from supervision for patients. The research literature suggests that clinical supervision may have some potential effects on novice therapists' competence compared to no supervision but the effects on clinical outcomes are still unclear. While bug-in-the-eye live supervision may be more effective than standard delayed supervision, the effects of specific supervision models or features are also unclear. There is a continued need for high-quality empirical studies on the effects of clinical supervision in psychotherapy.

  7. Visual texture perception via graph-based semi-supervised learning

    Science.gov (United States)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  8. Improving Naive Bayes with Online Feature Selection for Quick Adaptation to Evolving Feature Usefulness

    Energy Technology Data Exchange (ETDEWEB)

    Pon, R K; Cardenas, A F; Buttler, D J

    2007-09-19

    The definition of what makes an article interesting varies from user to user and continually evolves even for a single user. As a result, for news recommendation systems, useless document features can not be determined a priori and all features are usually considered for interestingness classification. Consequently, the presence of currently useless features degrades classification performance [1], particularly over the initial set of news articles being classified. The initial set of document is critical for a user when considering which particular news recommendation system to adopt. To address these problems, we introduce an improved version of the naive Bayes classifier with online feature selection. We use correlation to determine the utility of each feature and take advantage of the conditional independence assumption used by naive Bayes for online feature selection and classification. The augmented naive Bayes classifier performs 28% better than the traditional naive Bayes classifier in recommending news articles from the Yahoo! RSS feeds.

  9. Optimizing area under the ROC curve using semi-supervised learning.

    Science.gov (United States)

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M

    2015-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.

  10. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    Science.gov (United States)

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  11. A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data

    KAUST Repository

    Abusamra, Heba

    2013-01-01

    Different experiments have been applied to compare the performance of the classification methods with and without performing feature selection. Results revealed the important role of feature selection in classifying gene expression data. By performing feature selection, the classification accuracy can be significantly boosted by using a small number of genes. The relationship of features selected in different feature selection methods is investigated and the most frequent features selected in each fold among all methods for both datasets are evaluated.

  12. Feature Selection with the Boruta Package

    Directory of Open Access Journals (Sweden)

    Miron B. Kursa

    2010-10-01

    Full Text Available This article describes a R package Boruta, implementing a novel feature selection algorithm for finding emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.

  13. Supervisor's HEXACO personality traits and subordinate perceptions of abusive supervision

    NARCIS (Netherlands)

    Breevaart, Kimberley; de Vries, Reinout Everhard

    2017-01-01

    Abusive supervision is detrimental to both subordinates and organizations. Knowledge about individual differences in personality related to abusive supervision may improve personnel selection and potentially reduce the harmful effects of this type of leadership. Using the HEXACO personality

  14. Embedded Incremental Feature Selection for Reinforcement Learning

    Science.gov (United States)

    2012-05-01

    Prior to this work, feature selection for reinforce- ment learning has focused on linear value function ap- proximation ( Kolter and Ng, 2009; Parr et al...InProceed- ings of the the 23rd International Conference on Ma- chine Learning, pages 449–456. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature

  15. Providing effective supervision in clinical neuropsychology.

    Science.gov (United States)

    Stucky, Kirk J; Bush, Shane; Donders, Jacobus

    2010-01-01

    A specialty like clinical neuropsychology is shaped by its selection of trainees, educational standards, expected competencies, and the structure of its training programs. The development of individual competency in this specialty is dependent to a considerable degree on the provision of competent supervision to its trainees. In clinical neuropsychology, as in other areas of professional health-service psychology, supervision is the most frequently used method for teaching a variety of skills, including assessment, report writing, differential diagnosis, and treatment. Although much has been written about the provision of quality supervision in clinical and counseling psychology, very little published guidance is available regarding the teaching and provision of supervision in clinical neuropsychology. The primary focus of this article is to provide a framework and guidance for the development of suggested competency standards for training of neuropsychological supervisors, particularly at the residency level. In this paper we outline important components of supervision for neuropsychology trainees and suggest ways in which clinicians can prepare for supervisory roles. Similar to Falender and Shafranske (2004), we propose a competency-based approach to supervision that advocates for a science-informed, formalized, and objective process that clearly delineates the competencies required for good supervisory practice. As much as possible, supervisory competencies are related to foundational and functional competencies in professional psychology, as well as recent legislative initiatives mandating training in supervision. It is our hope that this article will foster further discussion regarding this complex topic, and eventually enhance training in clinical neuropsychology.

  16. Effective Feature Selection for Classification of Promoter Sequences.

    Directory of Open Access Journals (Sweden)

    Kouser K

    Full Text Available Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine, KNN (K Nearest Neighbor and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  17. A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.

    Science.gov (United States)

    He, Xiaofei; Ji, Ming; Zhang, Chiyuan; Bao, Hujun

    2011-10-01

    In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares, which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithms.

  18. DYNAMIC FEATURE SELECTION FOR WEB USER IDENTIFICATION ON LINGUISTIC AND STYLISTIC FEATURES OF ONLINE TEXTS

    Directory of Open Access Journals (Sweden)

    A. A. Vorobeva

    2017-01-01

    Full Text Available The paper deals with identification and authentication of web users participating in the Internet information processes (based on features of online texts.In digital forensics web user identification based on various linguistic features can be used to discover identity of individuals, criminals or terrorists using the Internet to commit cybercrimes. Internet could be used as a tool in different types of cybercrimes (fraud and identity theft, harassment and anonymous threats, terrorist or extremist statements, distribution of illegal content and information warfare. Linguistic identification of web users is a kind of biometric identification, it can be used to narrow down the suspects, identify a criminal and prosecute him. Feature set includes various linguistic and stylistic features extracted from online texts. We propose dynamic feature selection for each web user identification task. Selection is based on calculating Manhattan distance to k-nearest neighbors (Relief-f algorithm. This approach improves the identification accuracy and minimizes the number of features. Experiments were carried out on several datasets with different level of class imbalance. Experiment results showed that features relevance varies in different set of web users (probable authors of some text; features selection for each set of web users improves identification accuracy by 4% at the average that is approximately 1% higher than with the use of static set of features. The proposed approach is most effective for a small number of training samples (messages per user.

  19. Efficient Generation and Selection of Combined Features for Improved Classification

    KAUST Repository

    Shono, Ahmad N.

    2014-05-01

    This study contributes a methodology and associated toolkit developed to allow users to experiment with the use of combined features in classification problems. Methods are provided for efficiently generating combined features from an original feature set, for efficiently selecting the most discriminating of these generated combined features, and for efficiently performing a preliminary comparison of the classification results when using the original features exclusively against the results when using the selected combined features. The potential benefit of considering combined features in classification problems is demonstrated by applying the developed methodology and toolkit to three sample data sets where the discovery of combined features containing new discriminating information led to improved classification results.

  20. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity.

    Science.gov (United States)

    Sun, Lei; Wang, Jun; Wei, Jinmao

    2017-03-14

    The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based feature selection approaches are simple and effective in evaluating individual features. However, these approaches may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between features, which is essential in machine learning. In this paper, we propose to assess feature complementarity by a trick of measuring the distances between the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features with highest complementarities. The experimental results on a broad range of microarray data sets validate that the classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small amount of significant features. Compared with other ROC-based feature selection approaches, our new approach can select fewer features and effectively improve the classification performance.

  1. Training, supervision and quality of care in selected integrated community case management (iCCM) programmes: A scoping review of programmatic evidence.

    Science.gov (United States)

    Bosch-Capblanch, Xavier; Marceau, Claudine

    2014-12-01

    To describe the training, supervision and quality of care components of integrated Community Case Management (iCCM) programmes and to draw lessons learned from existing evaluations of those programmes. Scoping review of reports from 29 selected iCCM programmes purposively provided by stakeholders containing any information relevant to understand quality of care issues. The number of people reached by iCCM programmes varied from the tens of thousands to more than a million. All programmes aimed at improving access of vulnerable populations to health care, focusing on the main childhood illnesses, managed by Community Health Workers (CHW), often selected bycommunities. Training and supervision were widely implemented, in different ways and intensities, and often complemented with tools (eg, guides, job aids), supplies, equipment and incentives. Quality of care was measured using many outcomes (eg, access or appropriate treatment). Overall, there seemed to be positive effects for those strategies that involved policy change, organisational change, standardisation of clinical practices and alignment with other programmes. Positive effects were mostly achieved in large multi-component programmes. Mild or no effects have been described on mortality reduction amongst the few programmes for which data on this outcome was available to us. Promising strategies included teaming-up of CHW, micro-franchising or social franchising. On-site training and supervision of CHW have been shown to improve clinical practices. Effects on caregivers seemed positive, with increases in knowledge, care seeking behaviour, or caregivers' basic disease management. Evidence on iCCM is often of low quality, cannot relate specific interventions or the ways they are implemented with outcomes and lacks standardisation; this limits the capacity to identify promising strategies to improve quality of care. Large, multi-faceted, iCCM programmes, with strong components of training, supervision, which

  2. Training, supervision and quality of care in selected integrated community case management (iCCM) programmes: A scoping review of programmatic evidence

    Science.gov (United States)

    Bosch–Capblanch, Xavier; Marceau, Claudine

    2014-01-01

    Aim To describe the training, supervision and quality of care components of integrated Community Case Management (iCCM) programmes and to draw lessons learned from existing evaluations of those programmes. Methods Scoping review of reports from 29 selected iCCM programmes purposively provided by stakeholders containing any information relevant to understand quality of care issues. Results The number of people reached by iCCM programmes varied from the tens of thousands to more than a million. All programmes aimed at improving access of vulnerable populations to health care, focusing on the main childhood illnesses, managed by Community Health Workers (CHW), often selected bycommunities. Training and supervision were widely implemented, in different ways and intensities, and often complemented with tools (eg, guides, job aids), supplies, equipment and incentives. Quality of care was measured using many outcomes (eg, access or appropriate treatment). Overall, there seemed to be positive effects for those strategies that involved policy change, organisational change, standardisation of clinical practices and alignment with other programmes. Positive effects were mostly achieved in large multi–component programmes. Mild or no effects have been described on mortality reduction amongst the few programmes for which data on this outcome was available to us. Promising strategies included teaming–up of CHW, micro–franchising or social franchising. On–site training and supervision of CHW have been shown to improve clinical practices. Effects on caregivers seemed positive, with increases in knowledge, care seeking behaviour, or caregivers’ basic disease management. Evidence on iCCM is often of low quality, cannot relate specific interventions or the ways they are implemented with outcomes and lacks standardisation; this limits the capacity to identify promising strategies to improve quality of care. Conclusion Large, multi–faceted, iCCM programmes, with strong

  3. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    Science.gov (United States)

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  4. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    Science.gov (United States)

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  5. Cost-Sensitive Feature Selection of Numeric Data with Measurement Errors

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2013-01-01

    Full Text Available Feature selection is an essential process in data mining applications since it reduces a model’s complexity. However, feature selection with various types of costs is still a new research topic. In this paper, we study the cost-sensitive feature selection problem of numeric data with measurement errors. The major contributions of this paper are fourfold. First, a new data model is built to address test costs and misclassification costs as well as error boundaries. It is distinguished from the existing models mainly on the error boundaries. Second, a covering-based rough set model with normal distribution measurement errors is constructed. With this model, coverings are constructed from data rather than assigned by users. Third, a new cost-sensitive feature selection problem is defined on this model. It is more realistic than the existing feature selection problems. Fourth, both backtracking and heuristic algorithms are proposed to deal with the new problem. Experimental results show the efficiency of the pruning techniques for the backtracking algorithm and the effectiveness of the heuristic algorithm. This study is a step toward realistic applications of the cost-sensitive learning.

  6. A Feature Subset Selection Method Based On High-Dimensional Mutual Information

    Directory of Open Access Journals (Sweden)

    Chee Keong Kwoh

    2011-04-01

    Full Text Available Feature selection is an important step in building accurate classifiers and provides better understanding of the data sets. In this paper, we propose a feature subset selection method based on high-dimensional mutual information. We also propose to use the entropy of the class attribute as a criterion to determine the appropriate subset of features when building classifiers. We prove that if the mutual information between a feature set X and the class attribute Y equals to the entropy of Y , then X is a Markov Blanket of Y . We show that in some cases, it is infeasible to approximate the high-dimensional mutual information with algebraic combinations of pairwise mutual information in any forms. In addition, the exhaustive searches of all combinations of features are prerequisite for finding the optimal feature subsets for classifying these kinds of data sets. We show that our approach outperforms existing filter feature subset selection methods for most of the 24 selected benchmark data sets.

  7. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  8. Adaptive feature selection using v-shaped binary particle swarm optimization.

    Science.gov (United States)

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  9. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

    Science.gov (United States)

    Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin

    2015-12-01

    The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    International Nuclear Information System (INIS)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    2008-01-01

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction

  11. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-05-23

    Protein-protein interactions are critically dependent on just a few residues (“hot spots”) at the interfaces. Hot spots make a dominant contribution to the binding free energy and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there exists a need for accurate and reliable computational hot spot prediction methods. Compared to the supervised hot spot prediction algorithms, the semi-supervised prediction methods can take into consideration both the labeled and unlabeled residues in the dataset during the prediction procedure. The transductive support vector machine has been utilized for this task and demonstrated a better prediction performance. To the best of our knowledge, however, none of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue prediction, by considering all the three semisupervised assumptions using nonlinear models. Our algorithm, IterPropMCS, works in an iterative manner. In each iteration, the algorithm first propagates the labels of the labeled residues to the unlabeled ones, along the shortest path between them on a graph, assuming that they lie on a nonlinear manifold. Then it selects the most confident residues as the labeled ones for the next iteration, according to the cluster and smoothness criteria, which is implemented by a nonlinear density estimator. Experiments on a benchmark dataset, using protein structure-based features, demonstrate that our approach is effective in predicting hot spots and compares favorably to other available methods. The results also show that our method outperforms the state-of-the-art transductive learning methods.

  12. Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach

    OpenAIRE

    Ahuja, Jyoti; GJUST - Guru Jambheshwar University of Sciecne and Technology; Ratnoo, Saroj Dahiya; GJUST - Guru Jambheshwar University of Sciecne and Technology

    2015-01-01

    Feature selection is an important pre-processing task for building accurate and comprehensible classification models. Several researchers have applied filter, wrapper or hybrid approaches using genetic algorithms which are good candidates for optimization problems that involve large search spaces like in the case of feature selection. Moreover, feature selection is an inherently multi-objective problem with many competing objectives involving size, predictive power and redundancy of the featu...

  13. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  14. Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

    Directory of Open Access Journals (Sweden)

    ZALL, R.

    2016-05-01

    Full Text Available Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE. SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.

  15. Challenges for Better thesis supervision.

    Science.gov (United States)

    Ghadirian, Laleh; Sayarifard, Azadeh; Majdzadeh, Reza; Rajabi, Fatemeh; Yunesian, Masoud

    2014-01-01

    Conduction of thesis by the students is one of their major academic activities. Thesis quality and acquired experiences are highly dependent on the supervision. Our study is aimed at identifing the challenges in thesis supervision from both students and faculty members point of view. This study was conducted using individual in-depth interviews and Focus Group Discussions (FGD). The participants were 43 students and faculty members selected by purposive sampling. It was carried out in Tehran University of Medical Sciences in 2012. Data analysis was done concurrently with data gathering using content analysis method. Our data analysis resulted in 162 codes, 17 subcategories and 4 major categories, "supervisory knowledge and skills", "atmosphere", "bylaws and regulations relating to supervision" and "monitoring and evaluation". This study showed that more attention and planning in needed for modifying related rules and regulations, qualitative and quantitative improvement in mentorship training, research atmosphere improvement and effective monitoring and evaluation in supervisory area.

  16. Multi-Stage Recognition of Speech Emotion Using Sequential Forward Feature Selection

    Directory of Open Access Journals (Sweden)

    Liogienė Tatjana

    2016-07-01

    Full Text Available The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS and Sequential Floating Forward Selection (SFFS techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.

  17. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification.

    Science.gov (United States)

    Zhang, Yong; Gong, Dun-Wei; Cheng, Jian

    2017-01-01

    Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing. Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features. This kind of problem is called cost-based feature selection. However, most existing feature selection approaches treat this task as a single-objective optimization problem. This paper presents the first study of multi-objective particle swarm optimization (PSO) for cost-based feature selection problems. The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications. In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO. The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets. Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.

  18. Effect of feature-selective attention on neuronal responses in macaque area MT

    Science.gov (United States)

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  19. Predictive Feature Selection for Genetic Policy Search

    Science.gov (United States)

    2014-05-22

    limited manual intervention are becoming increasingly desirable as more complex tasks in dynamic and high- tempo environments are explored. Reinforcement...states in many domains causes features relevant to the reward variations to be overlooked, which hinders the policy search. 3.4 Parameter Selection PFS...the current feature subset. This local minimum may be “deceptive,” meaning that it does not clearly lead to the global optimal policy ( Goldberg and

  20. Comparison of feature selection and classification for MALDI-MS data

    Directory of Open Access Journals (Sweden)

    Yang Mary

    2009-07-01

    Full Text Available Abstract Introduction In the classification of Mass Spectrometry (MS proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE, and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC, Naïve Bayes Classifier (NBC, Nearest Mean Scaled Classifier (NMSC, uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing

  1. Using a Feature Subset Selection method and Support Vector Machine to address curse of dimensionality and redundancy in Hyperion hyperspectral data classification

    Directory of Open Access Journals (Sweden)

    Amir Salimi

    2018-04-01

    Full Text Available The curse of dimensionality resulted from insufficient training samples and redundancy is considered as an important problem in the supervised classification of hyperspectral data. This problem can be handled by Feature Subset Selection (FSS methods and Support Vector Machine (SVM. The FSS methods can manage the redundancy by removing redundant spectral bands. Moreover, kernel based methods, especially SVM have a high ability to classify limited-sample data sets. This paper mainly aims to assess the capability of a FSS method and the SVM in curse of dimensional circumstances and to compare results with the Artificial Neural Network (ANN, when they are used to classify alteration zones of the Hyperion hyperspectral image acquired from the greatest Iranian porphyry copper complex. The results demonstrated that by decreasing training samples, the accuracy of SVM was just decreased 1.8% while the accuracy of ANN was highly reduced i.e. 14.01%. In addition, a hybrid FSS was applied to reduce the dimension of Hyperion. Accordingly, among the 165 useable spectral bands of Hyperion, 18 bands were only selected as the most important and informative bands. Although this dimensionality reduction could not intensively improve the performance of SVM, ANN revealed a significant improvement in the computational time and a slightly enhancement in the average accuracy. Therefore, SVM as a low-sensitive method respect to the size of training data set and feature space can be applied to classify the curse of dimensional problems. Also, the FSS methods can improve the performance of non-kernel based classifiers by eliminating redundant features. Keywords: Curse of dimensionality, Feature Subset Selection, Hydrothermal alteration, Hyperspectral, SVM

  2. A selective overview of feature screening for ultrahigh-dimensional data.

    Science.gov (United States)

    JingYuan, Liu; Wei, Zhong; RunZe, L I

    2015-10-01

    High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of high-dimensional data poses many challenges for statisticians. Feature selection and variable selection are fundamental for high-dimensional data analysis. The sparsity principle, which assumes that only a small number of predictors contribute to the response, is frequently adopted and deemed useful in the analysis of high-dimensional data. Following this general principle, a large number of variable selection approaches via penalized least squares or likelihood have been developed in the recent literature to estimate a sparse model and select significant variables simultaneously. While the penalized variable selection methods have been successfully applied in many high-dimensional analyses, modern applications in areas such as genomics and proteomics push the dimensionality of data to an even larger scale, where the dimension of data may grow exponentially with the sample size. This has been called ultrahigh-dimensional data in the literature. This work aims to present a selective overview of feature screening procedures for ultrahigh-dimensional data. We focus on insights into how to construct marginal utilities for feature screening on specific models and motivation for the need of model-free feature screening procedures.

  3. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data.

    Directory of Open Access Journals (Sweden)

    David Stephens

    Full Text Available Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst, until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective, faster and repeatable methods of seabed classification are required. This study compares the performances of a range of supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times using different input features, including i the two primary features of bathymetry and backscatter, ii a subset of the features chosen by a feature selection process and iii all of the input features. The predictive performances of the models were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter were tested to assess the benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input features didn't generally perform well

  4. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    Science.gov (United States)

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning

  5. Semi-supervised clustering methods.

    Science.gov (United States)

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.

  6. A review of supervised object-based land-cover image classification

    Science.gov (United States)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial

  7. Meaning Of The Term "Corruption Offense" As A Feature Of The Public Prosecutor's Supervision Over The Legislation On The Corruption Counteraction In The Municipal Governments Execution

    Directory of Open Access Journals (Sweden)

    Kseniya D. Okuneva

    2014-12-01

    Full Text Available In the present article theoretical and practical aspects of the corruption offense definition, which are being characteristic features of the methodology of prosecutorial supervision over the legislation on counteraction to corruption in local government are analyzed. Federal Law of Jan. 17, 1992 No. 2202-1 "On the Procuracy of the Russian Federation" (Article 21 establishes the public prosecutor's supervision over the legislation on combating corruption in local government execution, which is a special sub-cluster. On general terms of theoretical techniques of the prosecutor's supervision, taking into account its specific and complex nature of corruption prosecutors based activities in this area. Author emphasizes attention on characteristics of the corruption offense, as well as aspects of legal responsibility, which lie in the fact that it is applied in accordance with law to offender as measures of state coercion of personal, financial or organizational nature for the offense committed; responsibilities of the person, who committed the offense, to be subject to measures of state coercion. In the conclusion author notes that specifics of corruption offenses that are subject of prosecutorial supervision over the execution of legislation on combating corruption in local government is determined by the special status of the offense subjects, as well as the content of legal prohibitions and legal responsibilities in the field of ​​anti-corruption at the municipal level.

  8. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Smirnov, Sergey V.

    2011-01-01

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm -1 ) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic

  9. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    Science.gov (United States)

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  10. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    Science.gov (United States)

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  11. Feature selection in classification of eye movements using electrooculography for activity recognition.

    Science.gov (United States)

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  12. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Feature Inference Learning and Eyetracking

    Science.gov (United States)

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  14. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  15. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    Science.gov (United States)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  16. Supervision of the ATLAS High Level Trigger System

    CERN Document Server

    Wheeler, S.; Meessen, C.; Qian, Z.; Touchard, F.; Negri, France A.; Zobernig, H.; CHEP 2003 Computing in High Energy Physics; Negri, France A.

    2003-01-01

    The ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter. The HLT is implemented as software tasks running on large processor farms. An essential part of the HLT is the supervision system, which is responsible for configuring, coordinating, controlling and monitoring the many hundreds of processes running in the HLT. A prototype implementation of the supervision system, using tools from the ATLAS Online Software system is presented. Results from scalability tests are also presented where the supervision system was shown to be capable of controlling over 1000 HLT processes running on 230 nodes.

  17. An ant colony optimization based feature selection for web page classification.

    Science.gov (United States)

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  18. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  19. Hierarchical feature selection for erythema severity estimation

    Science.gov (United States)

    Wang, Li; Shi, Chenbo; Shu, Chang

    2014-10-01

    At present PASI system of scoring is used for evaluating erythema severity, which can help doctors to diagnose psoriasis [1-3]. The system relies on the subjective judge of doctors, where the accuracy and stability cannot be guaranteed [4]. This paper proposes a stable and precise algorithm for erythema severity estimation. Our contributions are twofold. On one hand, in order to extract the multi-scale redness of erythema, we design the hierarchical feature. Different from traditional methods, we not only utilize the color statistical features, but also divide the detect window into small window and extract hierarchical features. Further, a feature re-ranking step is introduced, which can guarantee that extracted features are irrelevant to each other. On the other hand, an adaptive boosting classifier is applied for further feature selection. During the step of training, the classifier will seek out the most valuable feature for evaluating erythema severity, due to its strong learning ability. Experimental results demonstrate the high precision and robustness of our algorithm. The accuracy is 80.1% on the dataset which comprise 116 patients' images with various kinds of erythema. Now our system has been applied for erythema medical efficacy evaluation in Union Hosp, China.

  20. Degree of contribution (DoC) feature selection algorithm for structural brain MRI volumetric features in depression detection.

    Science.gov (United States)

    Kipli, Kuryati; Kouzani, Abbas Z

    2015-07-01

    Accurate detection of depression at an individual level using structural magnetic resonance imaging (sMRI) remains a challenge. Brain volumetric changes at a structural level appear to have importance in depression biomarkers studies. An automated algorithm is developed to select brain sMRI volumetric features for the detection of depression. A feature selection (FS) algorithm called degree of contribution (DoC) is developed for selection of sMRI volumetric features. This algorithm uses an ensemble approach to determine the degree of contribution in detection of major depressive disorder. The DoC is the score of feature importance used for feature ranking. The algorithm involves four stages: feature ranking, subset generation, subset evaluation, and DoC analysis. The performance of DoC is evaluated on the Duke University Multi-site Imaging Research in the Analysis of Depression sMRI dataset. The dataset consists of 115 brain sMRI scans of 88 healthy controls and 27 depressed subjects. Forty-four sMRI volumetric features are used in the evaluation. The DoC score of forty-four features was determined as the accuracy threshold (Acc_Thresh) was varied. The DoC performance was compared with that of four existing FS algorithms. At all defined Acc_Threshs, DoC outperformed the four examined FS algorithms for the average classification score and the maximum classification score. DoC has a good ability to generate reduced-size subsets of important features that could yield high classification accuracy. Based on the DoC score, the most discriminant volumetric features are those from the left-brain region.

  1. Generalization of Supervised Learning for Binary Mask Estimation

    DEFF Research Database (Denmark)

    May, Tobias; Gerkmann, Timo

    2014-01-01

    This paper addresses the problem of speech segregation by es- timating the ideal binary mask (IBM) from noisy speech. Two methods will be compared, one supervised learning approach that incorporates a priori knowledge about the feature distri- bution observed during training. The second method...

  2. A Hybrid Feature Selection Approach for Arabic Documents Classification

    NARCIS (Netherlands)

    Habib, Mena Badieh; Sarhan, Ahmed A. E.; Salem, Abdel-Badeeh M.; Fayed, Zaki T.; Gharib, Tarek F.

    Text Categorization (classification) is the process of classifying documents into a predefined set of categories based on their content. Text categorization algorithms usually represent documents as bags of words and consequently have to deal with huge number of features. Feature selection tries to

  3. Simultaneous feature selection and classification via Minimax Probability Machine

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2010-12-01

    Full Text Available This paper presents a novel method for simultaneous feature selection and classification by incorporating a robust L1-norm into the objective function of Minimax Probability Machine (MPM. A fractional programming framework is derived by using a bound on the misclassification error involving the mean and covariance of the data. Furthermore, the problems are solved by the Quadratic Interpolation method. Experiments show that our methods can select fewer features to improve the generalization compared to MPM, which illustrates the effectiveness of the proposed algorithms.

  4. Selection of individual features of a speech signal using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Kamil Kamiński

    2016-03-01

    Full Text Available The paper presents an automatic speaker’s recognition system, implemented in the Matlab environment, and demonstrates how to achieve and optimize various elements of the system. The main emphasis was put on features selection of a speech signal using a genetic algorithm which takes into account synergy of features. The results of optimization of selected elements of a classifier have been also shown, including the number of Gaussian distributions used to model each of the voices. In addition, for creating voice models, a universal voice model has been used.[b]Keywords[/b]: biometrics, automatic speaker recognition, genetic algorithms, feature selection

  5. Feature Selection for Audio Surveillance in Urban Environment

    Directory of Open Access Journals (Sweden)

    KIKTOVA Eva

    2014-05-01

    Full Text Available This paper presents the work leading to the acoustic event detection system, which is designed to recognize two types of acoustic events (shot and breaking glass in urban environment. For this purpose, a huge front-end processing was performed for the effective parametric representation of an input sound. MFCC features and features computed during their extraction (MELSPEC and FBANK, then MPEG-7 audio descriptors and other temporal and spectral characteristics were extracted. High dimensional feature sets were created and in the next phase reduced by the mutual information based selection algorithms. Hidden Markov Model based classifier was applied and evaluated by the Viterbi decoding algorithm. Thus very effective feature sets were identified and also the less important features were found.

  6. Selecting Optimal Feature Set in High-Dimensional Data by Swarm Search

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2013-01-01

    Full Text Available Selecting the right set of features from data of high dimensionality for inducing an accurate classification model is a tough computational challenge. It is almost a NP-hard problem as the combinations of features escalate exponentially as the number of features increases. Unfortunately in data mining, as well as other engineering applications and bioinformatics, some data are described by a long array of features. Many feature subset selection algorithms have been proposed in the past, but not all of them are effective. Since it takes seemingly forever to use brute force in exhaustively trying every possible combination of features, stochastic optimization may be a solution. In this paper, we propose a new feature selection scheme called Swarm Search to find an optimal feature set by using metaheuristics. The advantage of Swarm Search is its flexibility in integrating any classifier into its fitness function and plugging in any metaheuristic algorithm to facilitate heuristic search. Simulation experiments are carried out by testing the Swarm Search over some high-dimensional datasets, with different classification algorithms and various metaheuristic algorithms. The comparative experiment results show that Swarm Search is able to attain relatively low error rates in classification without shrinking the size of the feature subset to its minimum.

  7. Effectiveness of Group Supervision versus Combined Group and Individual Supervision.

    Science.gov (United States)

    Ray, Dee; Altekruse, Michael

    2000-01-01

    Investigates the effectiveness of different types of supervision (large group, small group, combined group, individual supervision) with counseling students (N=64). Analyses revealed that all supervision formats resulted in similar progress in counselor effectiveness and counselor development. Participants voiced a preference for individual…

  8. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  9. Kollegial supervision

    DEFF Research Database (Denmark)

    Andersen, Ole Dibbern; Petersson, Erling

    Publikationen belyser, hvordan kollegial supervision i en kan organiseres i en uddannelsesinstitution......Publikationen belyser, hvordan kollegial supervision i en kan organiseres i en uddannelsesinstitution...

  10. Feature Selection Using Adaboost for Face Expression Recognition

    National Research Council Canada - National Science Library

    Silapachote, Piyanuch; Karuppiah, Deepak R; Hanson, Allen R

    2005-01-01

    We propose a classification technique for face expression recognition using AdaBoost that learns by selecting the relevant global and local appearance features with the most discriminating information...

  11. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    Directory of Open Access Journals (Sweden)

    Deborah Galpert

    2015-01-01

    Full Text Available Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.

  12. A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-02-01

    Full Text Available Currently, with the rapid increasing of data scales in network traffic classifications, how to select traffic features efficiently is becoming a big challenge. Although a number of traditional feature selection methods using the Hadoop-MapReduce framework have been proposed, the execution time was still unsatisfactory with numeral iterative computations during the processing. To address this issue, an efficient feature selection method for network traffic based on a new parallel computing framework called Spark is proposed in this paper. In our approach, the complete feature set is firstly preprocessed based on Fisher score, and a sequential forward search strategy is employed for subsets. The optimal feature subset is then selected using the continuous iterations of the Spark computing framework. The implementation demonstrates that, on the precondition of keeping the classification accuracy, our method reduces the time cost of modeling and classification, and improves the execution efficiency of feature selection significantly.

  13. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    Science.gov (United States)

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  14. Semi-supervised clustering methods

    Science.gov (United States)

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as “semi-supervised clustering” methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided. PMID:24729830

  15. Group supervision in a private setting: Practice and method for theory and practice in psychotherapy

    Directory of Open Access Journals (Sweden)

    Graziana Mangiacavallo

    2015-05-01

    Full Text Available The report aims to tell the experience of a supervision group in a private setting. The group consists of professional psychotherapists driven by the more experienced practitioner, who shares a clinical reasoning on psychotherapy with younger colleagues. The report aims to present the supervision group as a methode and to showcase its features. The supervision group becomes a container of professional experiences that speak of the new way of doing psychotherapy. 

  16. Feature selection model based on clustering and ranking in pipeline for microarray data

    Directory of Open Access Journals (Sweden)

    Barnali Sahu

    2017-01-01

    Full Text Available Most of the available feature selection techniques in the literature are classifier bound. It means a group of features tied to the performance of a specific classifier as applied in wrapper and hybrid approach. Our objective in this study is to select a set of generic features not tied to any classifier based on the proposed framework. This framework uses attribute clustering and feature ranking techniques in pipeline in order to remove redundant features. On each uncovered cluster, signal-to-noise ratio, t-statistics and significance analysis of microarray are independently applied to select the top ranked features. Both filter and evolutionary wrapper approaches have been considered for feature selection and the data set with selected features are given to ensemble of predefined statistically different classifiers. The class labels of the test data are determined using majority voting technique. Moreover, with the aforesaid objectives, this paper focuses on obtaining a stable result out of various classification models. Further, a comparative analysis has been performed to study the classification accuracy and computational time of the current approach and evolutionary wrapper techniques. It gives a better insight into the features and further enhancing the classification accuracy with less computational time.

  17. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

    Science.gov (United States)

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S

    2014-03-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

  18. Supervised Kernel Optimized Locality Preserving Projection with Its Application to Face Recognition and Palm Biometrics

    Directory of Open Access Journals (Sweden)

    Chuang Lin

    2015-01-01

    Full Text Available Kernel Locality Preserving Projection (KLPP algorithm can effectively preserve the neighborhood structure of the database using the kernel trick. We have known that supervised KLPP (SKLPP can preserve within-class geometric structures by using label information. However, the conventional SKLPP algorithm endures the kernel selection which has significant impact on the performances of SKLPP. In order to overcome this limitation, a method named supervised kernel optimized LPP (SKOLPP is proposed in this paper, which can maximize the class separability in kernel learning. The proposed method maps the data from the original space to a higher dimensional kernel space using a data-dependent kernel. The adaptive parameters of the data-dependent kernel are automatically calculated through optimizing an objective function. Consequently, the nonlinear features extracted by SKOLPP have larger discriminative ability compared with SKLPP and are more adaptive to the input data. Experimental results on ORL, Yale, AR, and Palmprint databases showed the effectiveness of the proposed method.

  19. Machine learning techniques to select variable stars

    Directory of Open Access Journals (Sweden)

    García-Varela Alejandro

    2017-01-01

    Full Text Available In order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical computing environment. We find that random forests is the most successful method to select variables.

  20. Race in Supervision: Let's Talk About It.

    Science.gov (United States)

    Schen, Cathy R; Greenlee, Alecia

    2018-01-01

    Addressing race and racial trauma within psychotherapy supervision is increasingly important in psychiatry training. A therapist's ability to discuss race and racial trauma in psychotherapy supervision increases the likelihood that these topics will be explored as they arise in the therapeutic setting. The authors discuss the contextual and sociocultural dynamics that contributed to their own avoidance of race and racial trauma within the supervisory relationship. The authors examine the features that eventually led to a robust discussion of race and culture within the supervisory setting and identify salient themes that occurred during three phases of the conversation about race: pre-dialogue, the conversation, and after the conversation. These themes include building an alliance, supercompetence, avoidance, shared vulnerability, "if I speak on this, I own it," closeness versus distance, and speaking up. This article reviews the key literature in the field of psychiatry and psychology that has shaped how we understand race and racial trauma and concludes with guidelines for supervisors on how to facilitate talking about race in supervision.

  1. Enhancing the Performance of LibSVM Classifier by Kernel F-Score Feature Selection

    Science.gov (United States)

    Sarojini, Balakrishnan; Ramaraj, Narayanasamy; Nickolas, Savarimuthu

    Medical Data mining is the search for relationships and patterns within the medical datasets that could provide useful knowledge for effective clinical decisions. The inclusion of irrelevant, redundant and noisy features in the process model results in poor predictive accuracy. Much research work in data mining has gone into improving the predictive accuracy of the classifiers by applying the techniques of feature selection. Feature selection in medical data mining is appreciable as the diagnosis of the disease could be done in this patient-care activity with minimum number of significant features. The objective of this work is to show that selecting the more significant features would improve the performance of the classifier. We empirically evaluate the classification effectiveness of LibSVM classifier on the reduced feature subset of diabetes dataset. The evaluations suggest that the feature subset selected improves the predictive accuracy of the classifier and reduce false negatives and false positives.

  2. Weakly supervised semantic segmentation using fore-background priors

    Science.gov (United States)

    Han, Zheng; Xiao, Zhitao; Yu, Mingjun

    2017-07-01

    Weakly-supervised semantic segmentation is a challenge in the field of computer vision. Most previous works utilize the labels of the whole training set and thereby need the construction of a relationship graph about image labels, thus result in expensive computation. In this study, we tackle this problem from a different perspective. We proposed a novel semantic segmentation algorithm based on background priors, which avoids the construction of a huge graph in whole training dataset. Specifically, a random forest classifier is obtained using weakly supervised training data .Then semantic texton forest (STF) feature is extracted from image superpixels. Finally, a CRF based optimization algorithm is proposed. The unary potential of CRF derived from the outputting probability of random forest classifier and the robust saliency map as background prior. Experiments on the MSRC21 dataset show that the new algorithm outperforms some previous influential weakly-supervised segmentation algorithms. Furthermore, the use of efficient decision forests classifier and parallel computing of saliency map significantly accelerates the implementation.

  3. Legislation and supervision

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Legislative and supervision-related framework (reviews of structure of supervisory bodies; legislation; state supervision in the nuclear safety area, and state supervision in the area of health protection against radiation are given); (2) Operator's responsibility

  4. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  5. Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables.

    Science.gov (United States)

    Yaghouby, Farid; Sunderam, Sridhar

    2015-04-01

    The limitations of manual sleep scoring make computerized methods highly desirable. Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms either come as supervised classifiers that need scored samples of each state to be trained, or as unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We propose a quasi-supervised classifier that models observations in an unsupervised manner but mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human subjects (18-79 years) and archived in an anonymized, publicly accessible database. Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are simulated. A framework for quasi-supervised classification was devised in which unsupervised statistical models-specifically Gaussian mixtures and hidden Markov models--are estimated from unlabeled training data, but the training samples are augmented with variables whose values depend on available scores. Classifiers were fitted to signal features incorporating partial scores, and used to predict scores for complete recordings. Performance was assessed using Cohen's Κ statistic. The quasi-supervised classifier performed significantly better than an unsupervised model and sometimes as well as a completely supervised model despite receiving only partial scores. The quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human raters while compensating for their limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. New Hybrid Features Selection Method: A Case Study on Websites Phishing

    Directory of Open Access Journals (Sweden)

    Khairan D. Rajab

    2017-01-01

    Full Text Available Phishing is one of the serious web threats that involves mimicking authenticated websites to deceive users in order to obtain their financial information. Phishing has caused financial damage to the different online stakeholders. It is massive in the magnitude of hundreds of millions; hence it is essential to minimize this risk. Classifying websites into “phishy” and legitimate types is a primary task in data mining that security experts and decision makers are hoping to improve particularly with respect to the detection rate and reliability of the results. One way to ensure the reliability of the results and to enhance performance is to identify a set of related features early on so the data dimensionality reduces and irrelevant features are discarded. To increase reliability of preprocessing, this article proposes a new feature selection method that combines the scores of multiple known methods to minimize discrepancies in feature selection results. The proposed method has been applied to the problem of website phishing classification to show its pros and cons in identifying relevant features. Results against a security dataset reveal that the proposed preprocessing method was able to derive new features datasets which when mined generate high competitive classifiers with reference to detection rate when compared to results obtained from other features selection methods.

  7. A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data

    KAUST Repository

    Abusamra, Heba

    2013-05-01

    Microarray technology has enriched the study of gene expression in such a way that scientists are now able to measure the expression levels of thousands of genes in a single experiment. Microarray gene expression data gained great importance in recent years due to its role in disease diagnoses and prognoses which help to choose the appropriate treatment plan for patients. This technology has shifted a new era in molecular classification, interpreting gene expression data remains a difficult problem and an active research area due to their native nature of “high dimensional low sample size”. Such problems pose great challenges to existing classification methods. Thus, effective feature selection techniques are often needed in this case to aid to correctly classify different tumor types and consequently lead to a better understanding of genetic signatures as well as improve treatment strategies. This thesis aims on a comparative study of state-of-the-art feature selection methods, classification methods, and the combination of them, based on gene expression data. We compared the efficiency of three different classification methods including: support vector machines, k- nearest neighbor and random forest, and eight different feature selection methods, including: information gain, twoing rule, sum minority, max minority, gini index, sum of variances, t- statistics, and one-dimension support vector machine. Five-fold cross validation was used to evaluate the classification performance. Two publicly available gene expression data sets of glioma were used for this study. Different experiments have been applied to compare the performance of the classification methods with and without performing feature selection. Results revealed the important role of feature selection in classifying gene expression data. By performing feature selection, the classification accuracy can be significantly boosted by using a small number of genes. The relationship of features selected in

  8. Supervision of School and Youth Groups on Lift-Served Ski Slopes: A Research Perspective

    Science.gov (United States)

    Brookes, Andrew; Holmes, Peter

    2014-01-01

    Supervised practice is a common feature of many snow sports excursions to downhill ski resorts by school or youth groups, often in combination with lessons from a ski school. What is the role of supervision in preventing mishaps, injury, or fatalities? This article presents results of a search of published snow sports safety research for evidence…

  9. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    Science.gov (United States)

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  10. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.

    Science.gov (United States)

    Foroughi Pour, Ali; Dalton, Lori A

    2018-03-21

    Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.

  11. Collective academic supervision

    DEFF Research Database (Denmark)

    Nordentoft, Helle Merete; Thomsen, Rie; Wichmann-Hansen, Gitte

    2013-01-01

    Supervision of students is a core activity in higher education. Previous research on student supervision in higher education focus on individual and relational aspects in the supervisory relationship rather than collective, pedagogical and methodical aspects of the planning of the supervision...... process. This article fills these gaps by discussing potentials and challenges in “Collective Academic Supervision”, a model for supervision at the Master of Education in Guidance at Aarhus University in Denmark. The pedagogical rationale behind the model is that students’ participation and learning...

  12. A DYNAMIC FEATURE SELECTION METHOD FOR DOCUMENT RANKING WITH RELEVANCE FEEDBACK APPROACH

    Directory of Open Access Journals (Sweden)

    K. Latha

    2010-07-01

    Full Text Available Ranking search results is essential for information retrieval and Web search. Search engines need to not only return highly relevant results, but also be fast to satisfy users. As a result, not all available features can be used for ranking, and in fact only a small percentage of these features can be used. Thus, it is crucial to have a feature selection mechanism that can find a subset of features that both meets latency requirements and achieves high relevance. In this paper we describe a 0/1 knapsack procedure for automatically selecting features to use within Generalization model for Document Ranking. We propose an approach for Relevance Feedback using Expectation Maximization method and evaluate the algorithm on the TREC Collection for describing classes of feedback textual information retrieval features. Experimental results, evaluated on standard TREC-9 part of the OHSUMED collections, show that our feature selection algorithm produces models that are either significantly more effective than, or equally effective as, models such as Markov Random Field model, Correlation Co-efficient and Count Difference method

  13. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  14. Social constructionism and supervision: experiences of AAMFT supervisors and supervised therapists.

    Science.gov (United States)

    Hair, Heather J; Fine, Marshall

    2012-10-01

    A phenomenological research process was used to investigate the supervision experience for supervisors and therapists when supervisors use a social constructionist perspective. Participants of the one-to-one interviews were six AAMFT Approved Supervisors and six therapists providing counseling to individuals, couples and families. The findings suggest supervisors were committed to their self-identified supervision philosophy and intentionally sought out congruence between epistemology and practice. The shared experience of therapists indicates they associated desirable supervision experiences with their supervisors' social constructionist perspective. Our findings also indicated that supervisors' and therapists' understanding of social constructionism included the more controversial concepts of agency and extra-discursiveness. This research has taken an empirical step in the direction of understanding what the social constructionist supervision experience is like for supervisors and therapists. Our findings suggest a linkage between epistemology and supervision practice and a satisfaction with the supervision process. © 2012 American Association for Marriage and Family Therapy.

  15. Security system signal supervision

    International Nuclear Information System (INIS)

    Chritton, M.R.; Matter, J.C.

    1991-09-01

    This purpose of this NUREG is to present technical information that should be useful to NRC licensees for understanding and applying line supervision techniques to security communication links. A review of security communication links is followed by detailed discussions of link physical protection and DC/AC static supervision and dynamic supervision techniques. Material is also presented on security for atmospheric transmission and video line supervision. A glossary of security communication line supervision terms is appended. 16 figs

  16. An Efficient Cost-Sensitive Feature Selection Using Chaos Genetic Algorithm for Class Imbalance Problem

    Directory of Open Access Journals (Sweden)

    Jing Bian

    2016-01-01

    Full Text Available In the era of big data, feature selection is an essential process in machine learning. Although the class imbalance problem has recently attracted a great deal of attention, little effort has been undertaken to develop feature selection techniques. In addition, most applications involving feature selection focus on classification accuracy but not cost, although costs are important. To cope with imbalance problems, we developed a cost-sensitive feature selection algorithm that adds the cost-based evaluation function of a filter feature selection using a chaos genetic algorithm, referred to as CSFSG. The evaluation function considers both feature-acquiring costs (test costs and misclassification costs in the field of network security, thereby weakening the influence of many instances from the majority of classes in large-scale datasets. The CSFSG algorithm reduces the total cost of feature selection and trades off both factors. The behavior of the CSFSG algorithm is tested on a large-scale dataset of network security, using two kinds of classifiers: C4.5 and k-nearest neighbor (KNN. The results of the experimental research show that the approach is efficient and able to effectively improve classification accuracy and to decrease classification time. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  17. Tensor-based Multi-view Feature Selection with Applications to Brain Diseases

    Science.gov (United States)

    Cao, Bokai; He, Lifang; Kong, Xiangnan; Yu, Philip S.; Hao, Zhifeng; Ragin, Ann B.

    2015-01-01

    In the era of big data, we can easily access information from multiple views which may be obtained from different sources or feature subsets. Generally, different views provide complementary information for learning tasks. Thus, multi-view learning can facilitate the learning process and is prevalent in a wide range of application domains. For example, in medical science, measurements from a series of medical examinations are documented for each subject, including clinical, imaging, immunologic, serologic and cognitive measures which are obtained from multiple sources. Specifically, for brain diagnosis, we can have different quantitative analysis which can be seen as different feature subsets of a subject. It is desirable to combine all these features in an effective way for disease diagnosis. However, some measurements from less relevant medical examinations can introduce irrelevant information which can even be exaggerated after view combinations. Feature selection should therefore be incorporated in the process of multi-view learning. In this paper, we explore tensor product to bring different views together in a joint space, and present a dual method of tensor-based multi-view feature selection (dual-Tmfs) based on the idea of support vector machine recursive feature elimination. Experiments conducted on datasets derived from neurological disorder demonstrate the features selected by our proposed method yield better classification performance and are relevant to disease diagnosis. PMID:25937823

  18. Good supervision and PBL

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    This field study was conducted at the Faculty of Social Sciences at Aalborg University with the intention to investigate how students reflect on their experiences with supervision in a PBL environment. The overall aim of this study was to inform about the continued work in strengthening supervision...... at this faculty. This particular study invited Master level students to discuss: • How a typical supervision process proceeds • How they experienced and what they expected of PBL in the supervision process • What makes a good supervision process...

  19. A New Feature Selection Algorithm Based on the Mean Impact Variance

    Directory of Open Access Journals (Sweden)

    Weidong Cheng

    2014-01-01

    Full Text Available The selection of fewer or more representative features from multidimensional features is important when the artificial neural network (ANN algorithm is used as a classifier. In this paper, a new feature selection method called the mean impact variance (MIVAR method is proposed to determine the feature that is more suitable for classification. Moreover, this method is constructed on the basis of the training process of the ANN algorithm. To verify the effectiveness of the proposed method, the MIVAR value is used to rank the multidimensional features of the bearing fault diagnosis. In detail, (1 70-dimensional all waveform features are extracted from a rolling bearing vibration signal with four different operating states, (2 the corresponding MIVAR values of all 70-dimensional features are calculated to rank all features, (3 14 groups of 10-dimensional features are separately generated according to the ranking results and the principal component analysis (PCA algorithm and a back propagation (BP network is constructed, and (4 the validity of the ranking result is proven by training this BP network with these seven groups of 10-dimensional features and by comparing the corresponding recognition rates. The results prove that the features with larger MIVAR value can lead to higher recognition rates.

  20. Feature selection from a facial image for distinction of sasang constitution.

    Science.gov (United States)

    Koo, Imhoi; Kim, Jong Yeol; Kim, Myoung Geun; Kim, Keun Ho

    2009-09-01

    Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here.

  1. Feature extraction and sensor selection for NPP initiating event identification

    International Nuclear Information System (INIS)

    Lin, Ting-Han; Wu, Shun-Chi; Chen, Kuang-You; Chou, Hwai-Pwu

    2017-01-01

    Highlights: • A two-stage feature extraction scheme for NPP initiating event identification. • With stBP, interrelations among the sensors can be retained for identification. • With dSFS, sensors that are crucial for identification can be efficiently selected. • Efficacy of the scheme is illustrated with data from the Maanshan NPP simulator. - Abstract: Initiating event identification is essential in managing nuclear power plant (NPP) severe accidents. In this paper, a novel two-stage feature extraction scheme that incorporates the proposed sensor type-wise block projection (stBP) and deflatable sequential forward selection (dSFS) is used to elicit the discriminant information in the data obtained from various NPP sensors to facilitate event identification. With the stBP, the primal features can be extracted without eliminating the interrelations among the sensors of the same type. The extracted features are then subjected to a further dimensionality reduction by selecting the sensors that are most relevant to the events under consideration. This selection is not easy, and a combinatorial optimization technique is normally required. With the dSFS, an optimal sensor set can be found with less computational load. Moreover, its sensor deflation stage allows sensors in the preselected set to be iteratively refined to avoid being trapped into a local optimum. Results from detailed experiments containing data of 12 event categories and a total of 112 events generated with a Taiwan’s Maanshan NPP simulator are presented to illustrate the efficacy of the proposed scheme.

  2. The Costs of Supervised Classification: The Effect of Learning Task on Conceptual Flexibility

    Science.gov (United States)

    Hoffman, Aaron B.; Rehder, Bob

    2010-01-01

    Research has shown that learning a concept via standard supervised classification leads to a focus on diagnostic features, whereas learning by inferring missing features promotes the acquisition of within-category information. Accordingly, we predicted that classification learning would produce a deficit in people's ability to draw "novel…

  3. UNLABELED SELECTED SAMPLES IN FEATURE EXTRACTION FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH LIMITED TRAINING SAMPLES

    Directory of Open Access Journals (Sweden)

    A. Kianisarkaleh

    2015-12-01

    Full Text Available Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.

  4. On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis

    Directory of Open Access Journals (Sweden)

    Asriyanti Indah Pratiwi

    2018-01-01

    Full Text Available Sentiment analysis in a movie review is the needs of today lifestyle. Unfortunately, enormous features make the sentiment of analysis slow and less sensitive. Finding the optimum feature selection and classification is still a challenge. In order to handle an enormous number of features and provide better sentiment classification, an information-based feature selection and classification are proposed. The proposed method reduces more than 90% unnecessary features while the proposed classification scheme achieves 96% accuracy of sentiment classification. From the experimental results, it can be concluded that the combination of proposed feature selection and classification achieves the best performance so far.

  5. Whither Supervision?

    Directory of Open Access Journals (Sweden)

    Duncan Waite

    2006-11-01

    Full Text Available This paper inquires if the school supervision is in decadence. Dr. Waite responds that the answer will depend on which perspective you look at it. Dr. Waite suggests taking in consideration three elements that are related: the field itself, the expert in the field (the professor, the theorist, the student and the administrator, and the context. When these three elements are revised, it emphasizes that there is not a consensus about the field of supervision, but there are coincidences related to its importance and that it is related to the improvement of the practice of the students in the school for their benefit. Dr. Waite suggests that the practice on this field is not always in harmony with what the theorists affirm. When referring to the supervisor or the skilled person, the author indicates that his or her perspective depends on his or her epistemological believes or in the way he or she conceives the learning; that is why supervision can be understood in different ways. About the context, Waite suggests that there have to be taken in consideration the social or external forces that influent the people and the society, because through them the education is affected. Dr. Waite concludes that the way to understand the supervision depends on the performer’s perspective. He responds to the initial question saying that the supervision authorities, the knowledge on this field, the performers, and its practice, are maybe spread but not extinct because the supervision will always be part of the great enterprise that we called education.

  6. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  7. Analytical Features: A Knowledge-Based Approach to Audio Feature Generation

    Directory of Open Access Journals (Sweden)

    Pachet François

    2009-01-01

    Full Text Available We present a feature generation system designed to create audio features for supervised classification tasks. The main contribution to feature generation studies is the notion of analytical features (AFs, a construct designed to support the representation of knowledge about audio signal processing. We describe the most important aspects of AFs, in particular their dimensional type system, on which are based pattern-based random generators, heuristics, and rewriting rules. We show how AFs generalize or improve previous approaches used in feature generation. We report on several projects using AFs for difficult audio classification tasks, demonstrating their advantage over standard audio features. More generally, we propose analytical features as a paradigm to bring raw signals into the world of symbolic computation.

  8. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.

    Science.gov (United States)

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

  9. Resistance to group clinical supervision

    DEFF Research Database (Denmark)

    Buus, Niels; Delgado, Cynthia; Traynor, Michael

    2018-01-01

    This present study is a report of an interview study exploring personal views on participating in group clinical supervision among mental health nursing staff members who do not participate in supervision. There is a paucity of empirical research on resistance to supervision, which has traditiona......This present study is a report of an interview study exploring personal views on participating in group clinical supervision among mental health nursing staff members who do not participate in supervision. There is a paucity of empirical research on resistance to supervision, which has...... traditionally been theorized as a supervisee's maladaptive coping with anxiety in the supervision process. The aim of the present study was to examine resistance to group clinical supervision by interviewing nurses who did not participate in supervision. In 2015, we conducted semistructured interviews with 24...... Danish mental health nursing staff members who had been observed not to participate in supervision in two periods of 3 months. Interviews were audio-recorded and subjected to discourse analysis. We constructed two discursive positions taken by the informants: (i) 'forced non-participation', where...

  10. An input feature selection method applied to fuzzy neural networks for signal esitmation

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok

    2001-01-01

    It is well known that the performance of a fuzzy neural networks strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output. As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural networks and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PAC), genetic algorithms (GA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods

  11. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    Science.gov (United States)

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  12. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  13. Optimal preventive bank supervision

    OpenAIRE

    Belhaj, Mohamed; Klimenko, Nataliya

    2012-01-01

    Early regulator interventions into problem banks is one of the key suggestions of Basel Committee on Banking Supervision. However, no guidance is given on their design. To fill this gap, we outline an incentive-based preventive supervision strategy that eliminates bad asset management in banks. Two supervision techniques are combined: temporary regulatory administration and random audits. Our design ensures good management without excessive supervision costs, through a gradual adjustment of...

  14. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    Science.gov (United States)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  15. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    Science.gov (United States)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  16. Finger vein recognition with personalized feature selection.

    Science.gov (United States)

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-08-22

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  17. Finger Vein Recognition with Personalized Feature Selection

    Directory of Open Access Journals (Sweden)

    Xianjing Meng

    2013-08-01

    Full Text Available Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG. For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  18. Feature Selection from a Facial Image for Distinction of Sasang Constitution

    Directory of Open Access Journals (Sweden)

    Imhoi Koo

    2009-01-01

    Full Text Available Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here.

  19. Feature Selection from a Facial Image for Distinction of Sasang Constitution

    Science.gov (United States)

    Koo, Imhoi; Kim, Jong Yeol; Kim, Myoung Geun

    2009-01-01

    Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here. PMID:19745013

  20. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    Science.gov (United States)

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Infrared face recognition based on LBP histogram and KW feature selection

    Science.gov (United States)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  2. Relevant test set using feature selection algorithm for early detection ...

    African Journals Online (AJOL)

    The objective of feature selection is to find the most relevant features for classification. Thus, the dimensionality of the information will be reduced and may improve classification's accuracy. This paper proposed a minimum set of relevant questions that can be used for early detection of dyslexia. In this research, we ...

  3. Receptive fields selection for binary feature description.

    Science.gov (United States)

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  4. Supervised Learning

    Science.gov (United States)

    Rokach, Lior; Maimon, Oded

    This chapter summarizes the fundamental aspects of supervised methods. The chapter provides an overview of concepts from various interrelated fields used in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.

  5. A ROC-based feature selection method for computer-aided detection and diagnosis

    Science.gov (United States)

    Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing

    2014-03-01

    Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.

  6. Psykoterapi og supervision

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    2014-01-01

    Kapitlet beskriver supervisionen funktioner i forhold til psykoterapi. Supervision af psykoterapi henviser i almindelighed til, at en psykoterapeut konsulterer en ofte mere erfaren kollega (supervisor) med henblik på drøftelse af et konkret igangværende psykoterapeutisk behandlingsforløb. Formålet...... er at fremme denne fagpersons (psykoterapeutens) faglige udvikling samt sikre kvaliteten af behandlingen.kan defineres som i. Der redegøres for, hvorfor supervision er vigtig del af psykoterapeutens profession samt vises, hvorledes supervision foruden den faglige udvikling også er vigtigt redskab i...... psykoterapiens kvalitetssikring. Efter at have drøftet nogle etiske forhold ved supervision, fremlægges endelig nogle få forskningsresultater vedr. psykoterapisupervision af danske psykologer....

  7. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis.

    Science.gov (United States)

    Fallahzadeh, Omid; Dehghani-Bidgoli, Zohreh; Assarian, Mohammad

    2018-06-04

    Pathology as a common diagnostic test of cancer is an invasive, time-consuming, and partially subjective method. Therefore, optical techniques, especially Raman spectroscopy, have attracted the attention of cancer diagnosis researchers. However, as Raman spectra contain numerous peaks involved in molecular bounds of the sample, finding the best features related to cancerous changes can improve the accuracy of diagnosis in this method. The present research attempted to improve the power of Raman-based cancer diagnosis by finding the best Raman features using the ACO algorithm. In the present research, 49 spectra were measured from normal, benign, and cancerous breast tissue samples using a 785-nm micro-Raman system. After preprocessing for removal of noise and background fluorescence, the intensity of 12 important Raman bands of the biological samples was extracted as features of each spectrum. Then, the ACO algorithm was applied to find the optimum features for diagnosis. As the results demonstrated, by selecting five features, the classification accuracy of the normal, benign, and cancerous groups increased by 14% and reached 87.7%. ACO feature selection can improve the diagnostic accuracy of Raman-based diagnostic models. In the present study, features corresponding to ν(C-C) αhelix proline, valine (910-940), νs(C-C) skeletal lipids (1110-1130), and δ(CH2)/δ(CH3) proteins (1445-1460) were selected as the best features in cancer diagnosis.

  8. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  9. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    Directory of Open Access Journals (Sweden)

    Erica J Newton

    Full Text Available Woodland caribou (Rangifer tarandus caribou in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic

  10. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System.

    Science.gov (United States)

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  11. Multi-level gene/MiRNA feature selection using deep belief nets and active learning.

    Science.gov (United States)

    Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M

    2014-01-01

    Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].

  12. Rethinking Educational Supervision

    OpenAIRE

    Burhanettin DÖNMEZ; Kadir BEYCİOĞLU

    2009-01-01

    The history of educational (school) supervision has been influenced by the history of the interaction of intellectual movements in politics, society, philosophy and industrial movements. The purpose of this conceptual and theoretical study is to have a brief look at the concept of educational supervision with related historical developments in the field. The paper also intends to see the terms and issues critically, and to conceptualize some issues associated with educational supervision in...

  13. Robust Feature Selection from Microarray Data Based on Cooperative Game Theory and Qualitative Mutual Information

    Directory of Open Access Journals (Sweden)

    Atiyeh Mortazavi

    2016-01-01

    Full Text Available High dimensionality of microarray data sets may lead to low efficiency and overfitting. In this paper, a multiphase cooperative game theoretic feature selection approach is proposed for microarray data classification. In the first phase, due to high dimension of microarray data sets, the features are reduced using one of the two filter-based feature selection methods, namely, mutual information and Fisher ratio. In the second phase, Shapley index is used to evaluate the power of each feature. The main innovation of the proposed approach is to employ Qualitative Mutual Information (QMI for this purpose. The idea of Qualitative Mutual Information causes the selected features to have more stability and this stability helps to deal with the problem of data imbalance and scarcity. In the third phase, a forward selection scheme is applied which uses a scoring function to weight each feature. The performance of the proposed method is compared with other popular feature selection algorithms such as Fisher ratio, minimum redundancy maximum relevance, and previous works on cooperative game based feature selection. The average classification accuracy on eleven microarray data sets shows that the proposed method improves both average accuracy and average stability compared to other approaches.

  14. Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning.

    Science.gov (United States)

    Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge

    2013-04-01

    Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark

  15. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme.

    Science.gov (United States)

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-08-01

    Selecting optimal features from a large image feature pool remains a major challenge in developing computer-aided detection (CAD) schemes of medical images. The objective of this study is to investigate a new approach to significantly improve efficacy of image feature selection and classifier optimization in developing a CAD scheme of mammographic masses. An image dataset including 1600 regions of interest (ROIs) in which 800 are positive (depicting malignant masses) and 800 are negative (depicting CAD-generated false positive regions) was used in this study. After segmentation of each suspicious lesion by a multilayer topographic region growth algorithm, 271 features were computed in different feature categories including shape, texture, contrast, isodensity, spiculation, local topological features, as well as the features related to the presence and location of fat and calcifications. Besides computing features from the original images, the authors also computed new texture features from the dilated lesion segments. In order to select optimal features from this initial feature pool and build a highly performing classifier, the authors examined and compared four feature selection methods to optimize an artificial neural network (ANN) based classifier, namely: (1) Phased Searching with NEAT in a Time-Scaled Framework, (2) A sequential floating forward selection (SFFS) method, (3) A genetic algorithm (GA), and (4) A sequential forward selection (SFS) method. Performances of the four approaches were assessed using a tenfold cross validation method. Among these four methods, SFFS has highest efficacy, which takes 3%-5% of computational time as compared to GA approach, and yields the highest performance level with the area under a receiver operating characteristic curve (AUC) = 0.864 ± 0.034. The results also demonstrated that except using GA, including the new texture features computed from the dilated mass segments improved the AUC results of the ANNs optimized

  16. The Impact of Supervision and Mentorship Practices on Perceived ...

    African Journals Online (AJOL)

    trainees and beginning teachers acquired as the impact that practicum supervision and mentorship have had on them. Stratified and simple random sampling procedures were used to select 446-second year and third year teacher trainees and ...

  17. MULTIPERIOD BANKING SUPERVISION

    OpenAIRE

    KARL-THEODOR EISELE; PHILIPPE ARTZNER

    2013-01-01

    This paper is based on a general method for multiperiod prudential supervision of companies submitted to hedgeable and non-hedgeable risks. Having treated the case of insurance in an earlier paper, we now consider a quantitative approach to supervision of commercial banks. The various elements under supervision are the bank’s current amount of tradeable assets, the deposit amount, and four flow processes: future trading risk exposures, deposit flows, flows of loan repayments and of deposit re...

  18. Sparse Bayesian classification and feature selection for biological expression data with high correlations.

    Directory of Open Access Journals (Sweden)

    Xian Yang

    Full Text Available Classification models built on biological expression data are increasingly used to predict distinct disease subtypes. Selected features that separate sample groups can be the candidates of biomarkers, helping us to discover biological functions/pathways. However, three challenges are associated with building a robust classification and feature selection model: 1 the number of significant biomarkers is much smaller than that of measured features for which the search will be exhaustive; 2 current biological expression data are big in both sample size and feature size which will worsen the scalability of any search algorithms; and 3 expression profiles of certain features are typically highly correlated which may prevent to distinguish the predominant features. Unfortunately, most of the existing algorithms are partially addressing part of these challenges but not as a whole. In this paper, we propose a unified framework to address the above challenges. The classification and feature selection problem is first formulated as a nonconvex optimisation problem. Then the problem is relaxed and solved iteratively by a sequence of convex optimisation procedures which can be distributed computed and therefore allows the efficient implementation on advanced infrastructures. To illustrate the competence of our method over others, we first analyse a randomly generated simulation dataset under various conditions. We then analyse a real gene expression dataset on embryonal tumour. Further downstream analysis, such as functional annotation and pathway analysis, are performed on the selected features which elucidate several biological findings.

  19. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    Science.gov (United States)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  20. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Pavol Partila

    2015-01-01

    Full Text Available The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  1. A Supervision of Solidarity

    Science.gov (United States)

    Reynolds, Vikki

    2010-01-01

    This article illustrates an approach to therapeutic supervision informed by a philosophy of solidarity and social justice activism. Called a "Supervision of Solidarity", this approach addresses the particular challenges in the supervision of therapists who work alongside clients who are subjected to social injustice and extreme marginalization. It…

  2. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  3. Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism.

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    Full Text Available To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world data is with significant noise and irrelevant patterns. Consequently, the learned features may be not all relevant and noisy. To address this problem, we propose a novel visual tracking method via a point-wise gated convolutional deep network (CPGDN that jointly performs the feature learning and feature selection in a unified framework. The proposed method performs dynamic feature selection on raw features through a gating mechanism. Therefore, the proposed method can adaptively focus on the task-relevant patterns (i.e., a target object, while ignoring the task-irrelevant patterns (i.e., the surrounding background of a target object. Specifically, inspired by transfer learning, we firstly pre-train an object appearance model offline to learn generic image features and then transfer rich feature hierarchies from an offline pre-trained CPGDN into online tracking. In online tracking, the pre-trained CPGDN model is fine-tuned to adapt to the tracking specific objects. Finally, to alleviate the tracker drifting problem, inspired by an observation that a visual target should be an object rather than not, we combine an edge box-based object proposal method to further improve the tracking accuracy. Extensive evaluation on the widely used CVPR2013 tracking benchmark validates the robustness and effectiveness of the proposed method.

  4. PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

    2007-06-23

    In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

  5. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    Science.gov (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  6. A National Survey of School Counselor Supervision Practices: Administrative, Clinical, Peer, and Technology Mediated Supervision

    Science.gov (United States)

    Perera-Diltz, Dilani M.; Mason, Kimberly L.

    2012-01-01

    Supervision is vital for personal and professional development of counselors. Practicing school counselors (n = 1557) across the nation were surveyed to explore current supervision practices. Results indicated that 41.1% of school counselors provide supervision. Although 89% receive some type of supervision, only 10.3% of school counselors receive…

  7. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    Science.gov (United States)

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  8. Feature selection and multi-kernel learning for sparse representation on a manifold

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-03-01

    Sparse representation has been widely studied as a part-based data representation method and applied in many scientific and engineering fields, such as bioinformatics and medical imaging. It seeks to represent a data sample as a sparse linear combination of some basic items in a dictionary. Gao etal. (2013) recently proposed Laplacian sparse coding by regularizing the sparse codes with an affinity graph. However, due to the noisy features and nonlinear distribution of the data samples, the affinity graph constructed directly from the original feature space is not necessarily a reliable reflection of the intrinsic manifold of the data samples. To overcome this problem, we integrate feature selection and multiple kernel learning into the sparse coding on the manifold. To this end, unified objectives are defined for feature selection, multiple kernel learning, sparse coding, and graph regularization. By optimizing the objective functions iteratively, we develop novel data representation algorithms with feature selection and multiple kernel learning respectively. Experimental results on two challenging tasks, N-linked glycosylation prediction and mammogram retrieval, demonstrate that the proposed algorithms outperform the traditional sparse coding methods. © 2013 Elsevier Ltd.

  9. Feature selection and multi-kernel learning for sparse representation on a manifold.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2014-03-01

    Sparse representation has been widely studied as a part-based data representation method and applied in many scientific and engineering fields, such as bioinformatics and medical imaging. It seeks to represent a data sample as a sparse linear combination of some basic items in a dictionary. Gao et al. (2013) recently proposed Laplacian sparse coding by regularizing the sparse codes with an affinity graph. However, due to the noisy features and nonlinear distribution of the data samples, the affinity graph constructed directly from the original feature space is not necessarily a reliable reflection of the intrinsic manifold of the data samples. To overcome this problem, we integrate feature selection and multiple kernel learning into the sparse coding on the manifold. To this end, unified objectives are defined for feature selection, multiple kernel learning, sparse coding, and graph regularization. By optimizing the objective functions iteratively, we develop novel data representation algorithms with feature selection and multiple kernel learning respectively. Experimental results on two challenging tasks, N-linked glycosylation prediction and mammogram retrieval, demonstrate that the proposed algorithms outperform the traditional sparse coding methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory

    Directory of Open Access Journals (Sweden)

    Anna Heuer

    2016-08-01

    Full Text Available The limited capacity of visual working memory necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial versus feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information or their shape (featural information. We found that TMS over the supramarginal gyrus (SMG selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.

  11. Selection of morphological features of pollen grains for chosen tree taxa

    Directory of Open Access Journals (Sweden)

    Agnieszka Kubik-Komar

    2018-05-01

    Full Text Available The basis of aerobiological studies is to monitor airborne pollen concentrations and pollen season timing. This task is performed by appropriately trained staff and is difficult and time consuming. The goal of this research is to select morphological characteristics of grains that are the most discriminative for distinguishing between birch, hazel and alder taxa and are easy to determine automatically from microscope images. This selection is based on the split attributes of the J4.8 classification trees built for different subsets of features. Determining the discriminative features by this method, we provide specific rules for distinguishing between individual taxa, at the same time obtaining a high percentage of correct classification. The most discriminative among the 13 morphological characteristics studied are the following: number of pores, maximum axis, minimum axis, axes difference, maximum oncus width, and number of lateral pores. The classification result of the tree based on this subset is better than the one built on the whole feature set and it is almost 94%. Therefore, selection of attributes before tree building is recommended. The classification results for the features easiest to obtain from the image, i.e. maximum axis, minimum axis, axes difference, and number of lateral pores, are only 2.09 pp lower than those obtained for the complete set, but 3.23 pp lower than the results obtained for the selected most discriminating attributes only.

  12. Objectness Supervised Merging Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Haifeng Sima

    2016-01-01

    Full Text Available Ideal color image segmentation needs both low-level cues and high-level semantic features. This paper proposes a two-hierarchy segmentation model based on merging homogeneous superpixels. First, a region growing strategy is designed for producing homogenous and compact superpixels in different partitions. Total variation smoothing features are adopted in the growing procedure for locating real boundaries. Before merging, we define a combined color-texture histogram feature for superpixels description and, meanwhile, a novel objectness feature is proposed to supervise the region merging procedure for reliable segmentation. Both color-texture histograms and objectness are computed to measure regional similarities between region pairs, and the mixed standard deviation of the union features is exploited to make stop criteria for merging process. Experimental results on the popular benchmark dataset demonstrate the better segmentation performance of the proposed model compared to other well-known segmentation algorithms.

  13. A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data of Glioma

    KAUST Repository

    Abusamra, Heba

    2013-11-01

    Microarray gene expression data gained great importance in recent years due to its role in disease diagnoses and prognoses which help to choose the appropriate treatment plan for patients. This technology has shifted a new era in molecular classification. Interpreting gene expression data remains a difficult problem and an active research area due to their native nature of “high dimensional low sample size”. Such problems pose great challenges to existing classification methods. Thus, effective feature selection techniques are often needed in this case to aid to correctly classify different tumor types and consequently lead to a better understanding of genetic signatures as well as improve treatment strategies. This paper aims on a comparative study of state-of-the- art feature selection methods, classification methods, and the combination of them, based on gene expression data. We compared the efficiency of three different classification methods including: support vector machines, k-nearest neighbor and random forest, and eight different feature selection methods, including: information gain, twoing rule, sum minority, max minority, gini index, sum of variances, t-statistics, and one-dimension support vector machine. Five-fold cross validation was used to evaluate the classification performance. Two publicly available gene expression data sets of glioma were used in the experiments. Results revealed the important role of feature selection in classifying gene expression data. By performing feature selection, the classification accuracy can be significantly boosted by using a small number of genes. The relationship of features selected in different feature selection methods is investigated and the most frequent features selected in each fold among all methods for both datasets are evaluated.

  14. A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data of Glioma

    KAUST Repository

    Abusamra, Heba

    2013-01-01

    Microarray gene expression data gained great importance in recent years due to its role in disease diagnoses and prognoses which help to choose the appropriate treatment plan for patients. This technology has shifted a new era in molecular classification. Interpreting gene expression data remains a difficult problem and an active research area due to their native nature of “high dimensional low sample size”. Such problems pose great challenges to existing classification methods. Thus, effective feature selection techniques are often needed in this case to aid to correctly classify different tumor types and consequently lead to a better understanding of genetic signatures as well as improve treatment strategies. This paper aims on a comparative study of state-of-the- art feature selection methods, classification methods, and the combination of them, based on gene expression data. We compared the efficiency of three different classification methods including: support vector machines, k-nearest neighbor and random forest, and eight different feature selection methods, including: information gain, twoing rule, sum minority, max minority, gini index, sum of variances, t-statistics, and one-dimension support vector machine. Five-fold cross validation was used to evaluate the classification performance. Two publicly available gene expression data sets of glioma were used in the experiments. Results revealed the important role of feature selection in classifying gene expression data. By performing feature selection, the classification accuracy can be significantly boosted by using a small number of genes. The relationship of features selected in different feature selection methods is investigated and the most frequent features selected in each fold among all methods for both datasets are evaluated.

  15. Adequate supervision for children and adolescents.

    Science.gov (United States)

    Anderst, James; Moffatt, Mary

    2014-11-01

    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. Copyright 2014, SLACK Incorporated.

  16. Group supervision for general practitioners

    DEFF Research Database (Denmark)

    Galina Nielsen, Helena; Sofie Davidsen, Annette; Dalsted, Rikke

    2013-01-01

    AIM: Group supervision is a sparsely researched method for professional development in general practice. The aim of this study was to explore general practitioners' (GPs') experiences of the benefits of group supervision for improving the treatment of mental disorders. METHODS: One long-establish......AIM: Group supervision is a sparsely researched method for professional development in general practice. The aim of this study was to explore general practitioners' (GPs') experiences of the benefits of group supervision for improving the treatment of mental disorders. METHODS: One long...... considered important prerequisites for disclosing and discussing professional problems. CONCLUSION: The results of this study indicate that participation in a supervision group can be beneficial for maintaining and developing GPs' skills in dealing with patients with mental health problems. Group supervision...... influenced other areas of GPs' professional lives as well. However, more studies are needed to assess the impact of supervision groups....

  17. The validation of the Supervision of Thesis Questionnaire (STQ).

    Science.gov (United States)

    Henricson, Maria; Fridlund, Bengt; Mårtensson, Jan; Hedberg, Berith

    2018-06-01

    The supervision process is characterized by differences between the supervisors' and the students' expectations before the start of writing a bachelor thesis as well as after its completion. A review of the literature did not reveal any scientifically tested questionnaire for evaluating nursing students' expectations of the supervision process when writing a bachelor thesis. The aim of the study was to determine the construct validity and internal consistency reliability of a questionnaire for measuring nursing students' expectations of the bachelor thesis supervision process. The study had a developmental and methodological design carried out in four steps including construct validity and internal consistency reliability statistical procedures: construction of the items, assessment of face validity, data collection and data analysis. This study was conducted at a university in southern Sweden, where students on the "Nursing student thesis, 15 ECTS" course were consecutively selected for participation. Of the 512 questionnaires distributed, 327 were returned, a response rate of 64%. Five factors with a total variance of 74% and good communalities, ≥0.64, were extracted from the 10-item STQ. The internal consistency of the 10 items was 0.68. The five factors were labelled: The nature of the supervision process, The supervisor's role as a coach, The students' progression to self-support, The interaction between students and supervisor and supervisor competence. A didactic, useful and secure questionnaire measuring nursing students' expectations of the bachelor thesis supervision process based on three main forms of supervision was created. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Evaluering af kollegial supervision

    DEFF Research Database (Denmark)

    Petersen, Anne Line Bjerre Folsgaard; Bager, Lene Tortzen; Jørgensen, Mette Eg

    2015-01-01

    Videoen er en evaluering af arbejdet med en metodisk tilgang til kollegial supervision på VIA Ergoterapeutuddannelsen gennem et par år. Evalueringen sætter fokus på selve metoden, der er anvendt til kollegial supervision. Derudover er der fokus på erfaringer og udbytte af at arbejde systematisk med...... kollegial supervision blandt undervisere på VIA Ergoterapeutuddannelsen....

  19. Impact of regulation and supervision on European banks’ stability

    Directory of Open Access Journals (Sweden)

    Faten Ben Bouheni

    2014-03-01

    Full Text Available This article applies the Generalized Method of Moments technique for dynamic panels, using bank-level data for the selected European countries over the period 2005 to 2011, to investigate the impact of regulation and supervision on risk taking. Three conclusions are reached. First, in France, Germany and UK, restriction on bank activities boosts banking stability. However, supervisors’ power and capital adequacy encourage risk taking. Second, in Italy, Greece and Spain, we find that with more supervisors’ power, largest banks tend to take greater risks and strengthening regulation and supervision weakens the bank’s stability. However, the capital requirements decrease the risk taking. Third, strengthening regulatory and supervisory framework, and compliance with Basel principles enhance financial stability in Europe. These different results between European countries show that the application of regulation and supervision depends on the monitoring mode and the rhythm of application of regulatory policies

  20. Rethinking Educational Supervision

    Directory of Open Access Journals (Sweden)

    Burhanettin DÖNMEZ

    2009-08-01

    Full Text Available The history of educational (school supervision has been influenced by the history of the interaction of intellectual movements in politics, society, philosophy and industrial movements. The purpose of this conceptual and theoretical study is to have a brief look at the concept of educational supervision with related historical developments in the field. The paper also intends to see the terms and issues critically, and to conceptualize some issues associated with educational supervision in practice. In the paper, the issues are discussed and a number of suggestions are addressed for debate.

  1. Feature selection for Bayesian network classifiers using the MDL-FS score

    NARCIS (Netherlands)

    Drugan, Madalina M.; Wiering, Marco A.

    When constructing a Bayesian network classifier from data, the more or less redundant features included in a dataset may bias the classifier and as a consequence may result in a relatively poor classification accuracy. In this paper, we study the problem of selecting appropriate subsets of features

  2. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm

    KAUST Repository

    Soufan, Othman

    2015-02-26

    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem\\'s dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filteringmethods thatmay be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.

  3. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm

    KAUST Repository

    Soufan, Othman; Kleftogiannis, Dimitrios A.; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem's dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filteringmethods thatmay be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.

  4. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  5. Social construction : discursive perspective towards supervision

    OpenAIRE

    Naujanienė, Rasa

    2010-01-01

    The aim of publication is to discuss the development of supervision theory in relation with social and social work theory and practice. Main focus in the analysis is done to social constructionist ideas and its’ relevance to supervision practice. The development of supervision is related with supervision practice. Starting in 19th century supervision from giving practical advices supervision came to 21st century as dialog based on critical and philosophical reflection. Different theory and pr...

  6. Survival Prediction and Feature Selection in Patients with Breast Cancer Using Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Goli

    2016-01-01

    Full Text Available The Support Vector Regression (SVR model has been broadly used for response prediction. However, few researchers have used SVR for survival analysis. In this study, a new SVR model is proposed and SVR with different kernels and the traditional Cox model are trained. The models are compared based on different performance measures. We also select the best subset of features using three feature selection methods: combination of SVR and statistical tests, univariate feature selection based on concordance index, and recursive feature elimination. The evaluations are performed using available medical datasets and also a Breast Cancer (BC dataset consisting of 573 patients who visited the Oncology Clinic of Hamadan province in Iran. Results show that, for the BC dataset, survival time can be predicted more accurately by linear SVR than nonlinear SVR. Based on the three feature selection methods, metastasis status, progesterone receptor status, and human epidermal growth factor receptor 2 status are the best features associated to survival. Also, according to the obtained results, performance of linear and nonlinear kernels is comparable. The proposed SVR model performs similar to or slightly better than other models. Also, SVR performs similar to or better than Cox when all features are included in model.

  7. Feature selection gait-based gender classification under different circumstances

    Science.gov (United States)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  8. Public Supervision over Private Relationships : Towards European Supervision Private Law?

    NARCIS (Netherlands)

    Cherednychenko, O.O.

    2014-01-01

    The rise of public supervision over private relationships in many areas of private law has led to the development of what, in the author’s view, could be called ‘European supervision private law’. This emerging body of law forms part of European regulatory private law and is made up of

  9. Semi-supervised detection of intracranial pressure alarms using waveform dynamics

    International Nuclear Information System (INIS)

    Scalzo, Fabien; Hu, Xiao

    2013-01-01

    Patient monitoring systems in intensive care units (ICU) are usually set to trigger alarms when abnormal values are detected. Alarms are generated by threshold-crossing rules that lead to high false alarm rates. This is a recognized issue that causes alarm fatigue, waste of human resources, and increased patient risks. Recently developed smart alarm models require alarms to be validated by experts during the training phase. The manual annotation process involved is time-consuming and virtually impossible to achieve for the thousands of alarms recorded in the ICU every week. To tackle this problem, we investigate in this study if the use of semi-supervised learning methods, that can naturally integrate unlabeled data samples in the model, can be used to improve the accuracy of the alarm detection. As a proof of concept, the detection system is evaluated on intracranial pressure (ICP) signal alarms. Specific morphological and trending features are extracted from the ICP signal waveform to capture the dynamic of the signal prior to alarms. This study is based on a comprehensive dataset of 4791 manually labeled alarms recorded from 108 neurosurgical patients. A comparative analysis is provided between kernel spectral regression (SR-KDA) and support vector machine (SVM) both modified for the semi-supervised setting. Results obtained during the experimental evaluations indicate that the two models can significantly reduce false alarms using unlabeled samples; especially in the presence of a restrained number of labeled examples. At a true alarm recognition rate of 99%, the false alarm reduction rates improved from 9% (supervised) to 27% (semi-supervised) for SR-KDA, and from 3% (supervised) to 16% (semi-supervised) for SVM. (paper)

  10. Comparisons and Selections of Features and Classifiers for Short Text Classification

    Science.gov (United States)

    Wang, Ye; Zhou, Zhi; Jin, Shan; Liu, Debin; Lu, Mi

    2017-10-01

    Short text is considerably different from traditional long text documents due to its shortness and conciseness, which somehow hinders the applications of conventional machine learning and data mining algorithms in short text classification. According to traditional artificial intelligence methods, we divide short text classification into three steps, namely preprocessing, feature selection and classifier comparison. In this paper, we have illustrated step-by-step how we approach our goals. Specifically, in feature selection, we compared the performance and robustness of the four methods of one-hot encoding, tf-idf weighting, word2vec and paragraph2vec, and in the classification part, we deliberately chose and compared Naive Bayes, Logistic Regression, Support Vector Machine, K-nearest Neighbor and Decision Tree as our classifiers. Then, we compared and analysed the classifiers horizontally with each other and vertically with feature selections. Regarding the datasets, we crawled more than 400,000 short text files from Shanghai and Shenzhen Stock Exchanges and manually labeled them into two classes, the big and the small. There are eight labels in the big class, and 59 labels in the small class.

  11. Forskellighed i supervision

    DEFF Research Database (Denmark)

    Petersen, Birgitte; Beck, Emma

    2009-01-01

    Indtryk og tendenser fra den anden danske konference om supervision, som blev holdt på Københavns Universitet i oktober 2008......Indtryk og tendenser fra den anden danske konference om supervision, som blev holdt på Københavns Universitet i oktober 2008...

  12. Supervision af psykoterapi

    DEFF Research Database (Denmark)

    SUPERVISION AF PSYKOTERAPI indtager en central position i uddannelsen og udviklingen af psykoterapeuter. Trods flere lighedspunkter med psykoterapi, undervisning og konsultation er psykoterapisupervision et selvstændigt virksomhedsområde. Supervisor må foruden at være en trænet psykoterapeut kende...... supervisionens rammer og indplacering i forhold til organisation og samfund. En række kapitler drejer sig om supervisors opgaver, roller og kontrolfunktion, supervision set fra supervisandens perspektiv samt betragtninger over relationer og processer i supervision. Der drøftes fordele og ulemper ved de...... forskellige måder, hvorpå en sag kan fremlægges. Bogens første del afsluttes med refleksioner over de etiske aspekter ved psykoterapisupervision. Bogens anden del handler om de særlige forhold, der gør sig gældende ved supervision af en række specialiserede behandlingsformer eller af psykoterapi med bestemte...

  13. Self-care assessment as an indicator for clinical supervision in nursing

    Directory of Open Access Journals (Sweden)

    Sílvia Marlene Monteiro Teixeira

    2016-06-01

    Full Text Available Objective: to evaluate the needs of clinical supervision for nurses to assess the degree of dependence on self-care and planning of nursing interventions. Methods: analytical study, cross-cutting nature, collecting data from a sample of 110 patients. Results: it was shown the differences in the identification of the degree of dependence between registers and experts, as well as the selection of operations for each self-care and failures to the original assessment of the filling level (no evaluation self-care/no identification of the degree of dependence. Conclusion: there were gaps in the nursing process; they have proposed strategies such as clinical supervision sessions, training, case studies, protocols and guidance documents, to be included in a clinical supervision in nursing model.

  14. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    Science.gov (United States)

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding

  15. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  16. Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression.

    Science.gov (United States)

    Zhen, Xiantong; Yu, Mengyang; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-09-01

    Multioutput regression has recently shown great ability to solve challenging problems in both computer vision and medical image analysis. However, due to the huge image variability and ambiguity, it is fundamentally challenging to handle the highly complex input-target relationship of multioutput regression, especially with indiscriminate high-dimensional representations. In this paper, we propose a novel supervised descriptor learning (SDL) algorithm for multioutput regression, which can establish discriminative and compact feature representations to improve the multivariate estimation performance. The SDL is formulated as generalized low-rank approximations of matrices with a supervised manifold regularization. The SDL is able to simultaneously extract discriminative features closely related to multivariate targets and remove irrelevant and redundant information by transforming raw features into a new low-dimensional space aligned to targets. The achieved discriminative while compact descriptor largely reduces the variability and ambiguity for multioutput regression, which enables more accurate and efficient multivariate estimation. We conduct extensive evaluation of the proposed SDL on both synthetic data and real-world multioutput regression tasks for both computer vision and medical image analysis. Experimental results have shown that the proposed SDL can achieve high multivariate estimation accuracy on all tasks and largely outperforms the algorithms in the state of the arts. Our method establishes a novel SDL framework for multioutput regression, which can be widely used to boost the performance in different applications.

  17. How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.

    Science.gov (United States)

    Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E

    2017-09-01

    Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.

  18. Classification and Diagnostic Output Prediction of Cancer Using Gene Expression Profiling and Supervised Machine Learning Algorithms

    DEFF Research Database (Denmark)

    Yoo, C.; Gernaey, Krist

    2008-01-01

    importance in the projection (VIP) information of the DPLS method. The power of the gene selection method and the proposed supervised hierarchical clustering method is illustrated on a three microarray data sets of leukemia, breast, and colon cancer. Supervised machine learning algorithms thus enable...

  19. Robust classification of motor imagery EEG signals using statistical time–domain features

    International Nuclear Information System (INIS)

    Khorshidtalab, A; Salami, M J E; Hamedi, M

    2013-01-01

    The tradeoff between computational complexity and speed, in addition to growing demands for real-time BMI (brain–machine interface) systems, expose the necessity of applying methods with least possible complexity. Willison amplitude (WAMP) and slope sign change (SSC) are two promising time–domain features only if the right threshold value is defined for them. To overcome the drawback of going through trial and error for the determination of a suitable threshold value, modified WAMP and modified SSC are proposed in this paper. Besides, a comprehensive assessment of statistical time–domain features in which their effectiveness is evaluated with a support vector machine (SVM) is presented. To ensure the accuracy of the results obtained by the SVM, the performance of each feature is reassessed with supervised fuzzy C-means. The general assessment shows that every subject had at least one of his performances near or greater than 80%. The obtained results prove that for BMI applications, in which a few errors can be tolerated, these combinations of feature–classifier are suitable. Moreover, features that could perform satisfactorily were selected for feature combination. Combinations of the selected features are evaluated with the SVM, and they could significantly improve the results, in some cases, up to full accuracy. (paper)

  20. Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation

    Science.gov (United States)

    Tangaro, Sabina; Amoroso, Nicola; Brescia, Massimo; Cavuoti, Stefano; Chincarini, Andrea; Errico, Rosangela; Paolo, Inglese; Longo, Giuseppe; Maglietta, Rosalia; Tateo, Andrea; Riccio, Giuseppe; Bellotti, Roberto

    2015-01-01

    Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.

  1. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    Science.gov (United States)

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  2. Fast Branch & Bound algorithms for optimal feature selection

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr; Pudil, Pavel; Kittler, J.

    2004-01-01

    Roč. 26, č. 7 (2004), s. 900-912 ISSN 0162-8828 R&D Projects: GA ČR GA402/02/1271; GA ČR GA402/03/1310; GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : subset search * feature selection * search tree Subject RIV: BD - Theory of Information Impact factor: 4.352, year: 2004

  3. Genetic Fuzzy System (GFS based wavelet co-occurrence feature selection in mammogram classification for breast cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Meenakshi M. Pawar

    2016-09-01

    Full Text Available Breast cancer is significant health problem diagnosed mostly in women worldwide. Therefore, early detection of breast cancer is performed with the help of digital mammography, which can reduce mortality rate. This paper presents wrapper based feature selection approach for wavelet co-occurrence feature (WCF using Genetic Fuzzy System (GFS in mammogram classification problem. The performance of GFS algorithm is explained using mini-MIAS database. WCF features are obtained from detail wavelet coefficients at each level of decomposition of mammogram image. At first level of decomposition, 18 features are applied to GFS algorithm, which selects 5 features with an average classification success rate of 39.64%. Subsequently, at second level it selects 9 features from 36 features and the classification success rate is improved to 56.75%. For third level, 16 features are selected from 54 features and average success rate is improved to 64.98%. Lastly, at fourth level 72 features are applied to GFS, which selects 16 features and thereby increasing average success rate to 89.47%. Hence, GFS algorithm is the effective way of obtaining optimal set of feature in breast cancer diagnosis.

  4. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  5. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  6. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    Science.gov (United States)

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  7. Researching online supervision

    DEFF Research Database (Denmark)

    Bengtsen, Søren S. E.; Mathiasen, Helle

    2014-01-01

    Online supervision and the use of digital media in supervisory dialogues is a fast increasing practice in higher education today. However, the concepts in our pedagogical repertoire often reflect the digital tools used for supervision purposes as either a prolongation of the face-to-face contact...

  8. Implementation of Instructional Supervision in Secondary School ...

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal ... Supervision is critical in the development of any educational program in both developed and ... Clinical Supervision, Collegial Supervision, Self-directive supervision, Informal Supervision etc.

  9. Distant Supervision for Relation Extraction with Ranking-Based Methods

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    2016-05-01

    Full Text Available Relation extraction has benefited from distant supervision in recent years with the development of natural language processing techniques and data explosion. However, distant supervision is still greatly limited by the quality of training data, due to its natural motivation for greatly reducing the heavy cost of data annotation. In this paper, we construct an architecture called MIML-sort (Multi-instance Multi-label Learning with Sorting Strategies, which is built on the famous MIML framework. Based on MIML-sort, we propose three ranking-based methods for sample selection with which we identify relation extractors from a subset of the training data. Experiments are set up on the KBP (Knowledge Base Propagation corpus, one of the benchmark datasets for distant supervision, which is large and noisy. Compared with previous work, the proposed methods produce considerably better results. Furthermore, the three methods together achieve the best F1 on the official testing set, with an optimal enhancement of F1 from 27.3% to 29.98%.

  10. Effects of Non-Guidance Activities, Supervision, and Student-to-Counselor Ratios on School Counselor Burnout

    Science.gov (United States)

    Moyer, Michael

    2011-01-01

    School counselors, like all mental health professionals are at high risk for burnout. High caseloads, job role ambiguity, and lack of supervision increase their propensity for burnout. Three areas were selected for study in this article due to their potential impact on burnout: supervision, student-to-counselor-ratios, and non-guidance related…

  11. Results of Evolution Supervised by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2010-09-01

    Full Text Available The efficiency of a genetic algorithm is frequently assessed using a series of operators of evolution like crossover operators, mutation operators or other dynamic parameters. The present paper aimed to review the main results of evolution supervised by genetic algorithms used to identify solutions to agricultural and horticultural hard problems and to discuss the results of using a genetic algorithms on structure-activity relationships in terms of behavior of evolution supervised by genetic algorithms. A genetic algorithm had been developed and implemented in order to identify the optimal solution in term of estimation power of a multiple linear regression approach for structure-activity relationships. Three survival and three selection strategies (proportional, deterministic and tournament were investigated in order to identify the best survival-selection strategy able to lead to the model with higher estimation power. The Molecular Descriptors Family for structure characterization of a sample of 206 polychlorinated biphenyls with measured octanol-water partition coefficients was used as case study. Evolution using different selection and survival strategies proved to create populations of genotypes living in the evolution space with different diversity and variability. Under a series of criteria of comparisons these populations proved to be grouped and the groups were showed to be statistically different one to each other. The conclusions about genetic algorithm evolution according to a number of criteria were also highlighted.

  12. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2014-05-01

    Full Text Available Single nucleotide polymorphisms (SNPs are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs have been found near or inside the protein-protein interaction (PPI interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor. Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1 a 2-class problem (strengthening/weakening PPI mutations, (2 another 2-class problem (mutations that disrupt/preserve a PPI, and (3 a 3-class classification (detrimental/neutral/beneficial mutation effects. In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the

  13. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    Science.gov (United States)

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of

  14. Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

    NARCIS (Netherlands)

    Aalaei, Shokoufeh; Shahraki, Hadi; Rowhanimanesh, Alireza; Eslami, Saeid

    2016-01-01

    This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. To

  15. A Local Asynchronous Distributed Privacy Preserving Feature Selection Algorithm for Large Peer-to-Peer Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper we develop a local distributed privacy preserving algorithm for feature selection in a large peer-to-peer environment. Feature selection is often used...

  16. Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data

    Science.gov (United States)

    Gaspar-Cunha, A.; Recio, G.; Costa, L.; Estébanez, C.

    2014-01-01

    Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier. PMID:24707201

  17. 20 CFR 656.21 - Supervised recruitment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Supervised recruitment. 656.21 Section 656.21... Supervised recruitment. (a) Supervised recruitment. Where the Certifying Officer determines it appropriate, post-filing supervised recruitment may be required of the employer for the pending application or...

  18. Multiple-Features-Based Semisupervised Clustering DDoS Detection Method

    Directory of Open Access Journals (Sweden)

    Yonghao Gu

    2017-01-01

    Full Text Available DDoS attack stream from different agent host converged at victim host will become very large, which will lead to system halt or network congestion. Therefore, it is necessary to propose an effective method to detect the DDoS attack behavior from the massive data stream. In order to solve the problem that large numbers of labeled data are not provided in supervised learning method, and the relatively low detection accuracy and convergence speed of unsupervised k-means algorithm, this paper presents a semisupervised clustering detection method using multiple features. In this detection method, we firstly select three features according to the characteristics of DDoS attacks to form detection feature vector. Then, Multiple-Features-Based Constrained-K-Means (MF-CKM algorithm is proposed based on semisupervised clustering. Finally, using MIT Laboratory Scenario (DDoS 1.0 data set, we verify that the proposed method can improve the convergence speed and accuracy of the algorithm under the condition of using a small amount of labeled data sets.

  19. Supervision Duty of School Principals

    Directory of Open Access Journals (Sweden)

    Kürşat YILMAZ

    2009-04-01

    Full Text Available Supervision by school administrators is becoming more and more important. The change in the roles ofschool administrators has a great effect on that increase. At present, school administrators are consideredmore than as technical directors, but as instructional leaders. This increased the importance of schooladministrators’ expected supervision acts. In this respect, the aim of this study is to make a conceptualanalysis about school administrators’ supervision duties. For this reason, a literature review related withsupervision and contemporary supervision approaches was done, and the official documents concerningsupervision were examined. As a result, it can be said that school administrators’ supervision duties havebecome very important. And these duties must certainly be carried out by school administrators.

  20. A SURVEY OF SEMI-SUPERVISED LEARNING

    OpenAIRE

    Amrita Sadarangani *, Dr. Anjali Jivani

    2016-01-01

    Semi Supervised Learning involves using both labeled and unlabeled data to train a classifier or for clustering. Semi supervised learning finds usage in many applications, since labeled data can be hard to find in many cases. Currently, a lot of research is being conducted in this area. This paper discusses the different algorithms of semi supervised learning and then their advantages and limitations are compared. The differences between supervised classification and semi-supervised classific...

  1. Computerized breast cancer analysis system using three stage semi-supervised learning method.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2016-10-01

    A large number of labeled medical image data is usually a requirement to train a well-performed computer-aided detection (CAD) system. But the process of data labeling is time consuming, and potential ethical and logistical problems may also present complications. As a result, incorporating unlabeled data into CAD system can be a feasible way to combat these obstacles. In this study we developed a three stage semi-supervised learning (SSL) scheme that combines a small amount of labeled data and larger amount of unlabeled data. The scheme was modified on our existing CAD system using the following three stages: data weighing, feature selection, and newly proposed dividing co-training data labeling algorithm. Global density asymmetry features were incorporated to the feature pool to reduce the false positive rate. Area under the curve (AUC) and accuracy were computed using 10 fold cross validation method to evaluate the performance of our CAD system. The image dataset includes mammograms from 400 women who underwent routine screening examinations, and each pair contains either two cranio-caudal (CC) or two mediolateral-oblique (MLO) view mammograms from the right and the left breasts. From these mammograms 512 regions were extracted and used in this study, and among them 90 regions were treated as labeled while the rest were treated as unlabeled. Using our proposed scheme, the highest AUC observed in our research was 0.841, which included the 90 labeled data and all the unlabeled data. It was 7.4% higher than using labeled data only. With the increasing amount of labeled data, AUC difference between using mixed data and using labeled data only reached its peak when the amount of labeled data was around 60. This study demonstrated that our proposed three stage semi-supervised learning can improve the CAD performance by incorporating unlabeled data. Using unlabeled data is promising in computerized cancer research and may have a significant impact for future CAD system

  2. Moment constrained semi-supervised LDA

    DEFF Research Database (Denmark)

    Loog, Marco

    2012-01-01

    This BNAIC compressed contribution provides a summary of the work originally presented at the First IAPR Workshop on Partially Supervised Learning and published in [5]. It outlines the idea behind supervised and semi-supervised learning and highlights the major shortcoming of many current methods...

  3. Semi-supervised adaptation in ssvep-based brain-computer interface using tri-training

    DEFF Research Database (Denmark)

    Bender, Thomas; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    This paper presents a novel and computationally simple tri-training based semi-supervised steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). It is implemented with autocorrelation-based features and a Naïve-Bayes classifier (NBC). The system uses nine characters...

  4. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.

    Science.gov (United States)

    Macedo, Maysa M G; Guimarães, Welingson V N; Galon, Micheli Z; Takimura, Celso K; Lemos, Pedro A; Gutierrez, Marco Antonio

    2015-12-01

    Intravascular optical coherence tomography (IV-OCT) is an in-vivo imaging modality based on the intravascular introduction of a catheter which provides a view of the inner wall of blood vessels with a spatial resolution of 10-20 μm. Recent studies in IV-OCT have demonstrated the importance of the bifurcation regions. Therefore, the development of an automated tool to classify hundreds of coronary OCT frames as bifurcation or nonbifurcation can be an important step to improve automated methods for atherosclerotic plaques quantification, stent analysis and co-registration between different modalities. This paper describes a fully automated method to identify IV-OCT frames in bifurcation regions. The method is divided into lumen detection; feature extraction; and classification, providing a lumen area quantification, geometrical features of the cross-sectional lumen and labeled slices. This classification method is a combination of supervised machine learning algorithms and feature selection using orthogonal least squares methods. Training and tests were performed in sets with a maximum of 1460 human coronary OCT frames. The lumen segmentation achieved a mean difference of lumen area of 0.11 mm(2) compared with manual segmentation, and the AdaBoost classifier presented the best result reaching a F-measure score of 97.5% using 104 features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The impact of feature selection on one and two-class classification performance for plant microRNAs.

    Science.gov (United States)

    Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  6. The impact of feature selection on one and two-class classification performance for plant microRNAs

    Directory of Open Access Journals (Sweden)

    Waleed Khalifa

    2016-06-01

    Full Text Available MicroRNAs (miRNAs are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18–24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC is used in the field; because negative examples are hard to come by, one-class classification (OCC has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  7. Enhancing Web Service Selection by User Preferences of Non-Functional Features

    OpenAIRE

    Badr , Youakim; Abraham , Ajith; Biennier , Frédérique; Grosan , Crina

    2008-01-01

    International audience; Selection of an appropriate Web service for a particular task has become a difficult challenge due to the increasing number of Web services offering similar functionalities. The functional properties describe what the service can do and the nonfunctional properties depict how the service can do it. Non-functional properties involving qualitative or quantitative features have become essential criteria to enhance the selection process of services making the selection pro...

  8. Asco 2044 nuclear power plant: supervision; Central nuclear Asco 2044: supervision

    Energy Technology Data Exchange (ETDEWEB)

    Sabartes, J.

    2010-07-01

    Good supervision constitutes an efficient barrier to avoid the errors caused by inadequate work practices. In this sense, it is necessary to strengthen supervision to make sure that the work is carried out with adequate human performance, tending to avoid error ande provinding safety quality and efficiency at work. (Author).

  9. Whither Supervision?

    OpenAIRE

    Duncan Waite

    2006-01-01

    This paper inquires if the school supervision is in decadence. Dr. Waite responds that the answer will depend on which perspective you look at it. Dr. Waite suggests taking in consideration three elements that are related: the field itself, the expert in the field (the professor, the theorist, the student and the administrator), and the context. When these three elements are revised, it emphasizes that there is not a consensus about the field of supervision, but there are coincidences related...

  10. Effects of coaching supervision, mentoring supervision and abusive supervision on talent development among trainee doctors in public hospitals: moderating role of clinical learning environment.

    Science.gov (United States)

    Subramaniam, Anusuiya; Silong, Abu Daud; Uli, Jegak; Ismail, Ismi Arif

    2015-08-13

    Effective talent development requires robust supervision. However, the effects of supervisory styles (coaching, mentoring and abusive supervision) on talent development and the moderating effects of clinical learning environment in the relationship between supervisory styles and talent development among public hospital trainee doctors have not been thoroughly researched. In this study, we aim to achieve the following, (1) identify the extent to which supervisory styles (coaching, mentoring and abusive supervision) can facilitate talent development among trainee doctors in public hospital and (2) examine whether coaching, mentoring and abusive supervision are moderated by clinical learning environment in predicting talent development among trainee doctors in public hospital. A questionnaire-based critical survey was conducted among trainee doctors undergoing housemanship at six public hospitals in the Klang Valley, Malaysia. Prior permission was obtained from the Ministry of Health Malaysia to conduct the research in the identified public hospitals. The survey yielded 355 responses. The results were analysed using SPSS 20.0 and SEM with AMOS 20.0. The findings of this research indicate that coaching and mentoring supervision are positively associated with talent development, and that there is no significant relationship between abusive supervision and talent development. The findings also support the moderating role of clinical learning environment on the relationships between coaching supervision-talent development, mentoring supervision-talent development and abusive supervision-talent development among public hospital trainee doctors. Overall, the proposed model indicates a 26 % variance in talent development. This study provides an improved understanding on the role of the supervisory styles (coaching and mentoring supervision) on facilitating talent development among public hospital trainee doctors. Furthermore, this study extends the literature to better

  11. Advanced Music Therapy Supervision Training

    DEFF Research Database (Denmark)

    Pedersen, Inge Nygaard

    2009-01-01

    supervision training excerpts live in the workshop will be offered. The workshop will include demonstrating a variety of supervision methods and techniques used in A) post graduate music therapy training programs b) a variety of work contexts such as psychiatry and somatic music psychotherapy. The workshop......The presentation will illustrate training models in supervision for experienced music therapists where transference/counter transference issues are in focus. Musical, verbal and body related tools will be illustrated from supervision practice by the presenters. A possibility to experience small...

  12. The triadic intersubjective matrix in supervision: the use of disclosure to work through painful affects.

    Science.gov (United States)

    Brown, Lawrence J; Miller, Martin

    2002-08-01

    The use of the psychoanalyst's subjective reactions as a tool to better understand his/her patient has been a central feature of clinical thinking in recent decades. While there has been much discussion and debate about the analyst's use of countertransference in individual psychoanalysis, including possible disclosure of his/her feelings to the patient, the literature on supervision has been slower to consider such matters. The attention to parallel processes in supervision has been helpful in appreciating the impact of affects arising in either the analyst/patient or the supervisor/analyst dyads upon the analytic treatment and its supervision. This contribution addresses the ways in which overlapping aspects of the personalities of the supervisor, analyst and patient may intersect and create resistances in the treatment. That three-way intersection, described here as the triadic intersubjective matrix, is considered inevitable in all supervised treatments. A clinical example from the termination phase of a supervised analysis of an adolescent is offered to illustrate these points. Finally, the question of self-disclosure as an aspect of the supervisory alliance is also discussed.

  13. Particle swarm optimization based feature enhancement and feature selection for improved emotion recognition in speech and glottal signals.

    Science.gov (United States)

    Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali

    2015-01-01

    In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature.

  14. Human semi-supervised learning.

    Science.gov (United States)

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  15. Structural features of subtype-selective EP receptor modulators.

    Science.gov (United States)

    Markovič, Tijana; Jakopin, Žiga; Dolenc, Marija Sollner; Mlinarič-Raščan, Irena

    2017-01-01

    Prostaglandin E2 is a potent endogenous molecule that binds to four different G-protein-coupled receptors: EP1-4. Each of these receptors is a valuable drug target, with distinct tissue localisation and signalling pathways. We review the structural features of EP modulators required for subtype-selective activity, as well as the structural requirements for improved pharmacokinetic parameters. Novel EP receptor subtype selective agonists and antagonists appear to be valuable drug candidates in the therapy of many pathophysiological states, including ulcerative colitis, glaucoma, bone healing, B cell lymphoma, neurological diseases, among others, which have been studied in vitro, in vivo and in early phase clinical trials. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Improving mass candidate detection in mammograms via feature maxima propagation and local feature selection.

    Science.gov (United States)

    Melendez, Jaime; Sánchez, Clara I; van Ginneken, Bram; Karssemeijer, Nico

    2014-08-01

    Mass candidate detection is a crucial component of multistep computer-aided detection (CAD) systems. It is usually performed by combining several local features by means of a classifier. When these features are processed on a per-image-location basis (e.g., for each pixel), mismatching problems may arise while constructing feature vectors for classification, which is especially true when the behavior expected from the evaluated features is a peaked response due to the presence of a mass. In this study, two of these problems, consisting of maxima misalignment and differences of maxima spread, are identified and two solutions are proposed. The first proposed method, feature maxima propagation, reproduces feature maxima through their neighboring locations. The second method, local feature selection, combines different subsets of features for different feature vectors associated with image locations. Both methods are applied independently and together. The proposed methods are included in a mammogram-based CAD system intended for mass detection in screening. Experiments are carried out with a database of 382 digital cases. Sensitivity is assessed at two sets of operating points. The first one is the interval of 3.5-15 false positives per image (FPs/image), which is typical for mass candidate detection. The second one is 1 FP/image, which allows to estimate the quality of the mass candidate detector's output for use in subsequent steps of the CAD system. The best results are obtained when the proposed methods are applied together. In that case, the mean sensitivity in the interval of 3.5-15 FPs/image significantly increases from 0.926 to 0.958 (p < 0.0002). At the lower rate of 1 FP/image, the mean sensitivity improves from 0.628 to 0.734 (p < 0.0002). Given the improved detection performance, the authors believe that the strategies proposed in this paper can render mass candidate detection approaches based on image location classification more robust to feature

  17. Prospects of power ramping and cycling supervision in Finnish power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Antila, M; Kaikkonen, H T [Imatran Voima Oy, Helsinki (Finland); Mannola, E [Teollisuuden Voima Oy Industries Kraft Ab, Helsinki (Finland)

    1983-06-01

    Since 1977 2x440 MWe PWR and 2x660 MWe BWR nuclear power has been taken in operation in Finland, which until the middle of 1982 has given favourable fuel operating experiences from 10 reactor years. This paper describes the core supervision systems of the plants especially from the viewpoint of ramp surveillance and the potentials and needs to improve the supervision capability to meet the future needs in case more load follow operation is required. As a special feature for Imatran Voima is the demand of general basic understanding of the behaviour of Loviisa reactors' fuel in different operating conditions. A possibility to investigate the fuel seem to be power cycling tests in Loviisa reactors. (author)

  18. Prospects of power ramping and cycling supervision in Finnish power reactors

    International Nuclear Information System (INIS)

    Antila, M.; Kaikkonen, H.T.; Mannola, E.

    1983-01-01

    Since 1977 2x440 MWe PWR and 2x660 MWe BWR nuclear power has been taken in operation in Finland, which until the middle of 1982 has given favourable fuel operating experiences from 10 reactor years. This paper describes the core supervision systems of the plants especially from the viewpoint of ramp surveillance and the potentials and needs to improve the supervision capability to meet the future needs in case more load follow operation is required. As a special feature for Imatran Voima is the demand of general basic understanding of the behaviour of Loviisa reactors' fuel in different operating conditions. A possibility to investigate the fuel seem to be power cycling tests in Loviisa reactors. (author)

  19. Using a Mixed Model to Explore Evaluation Criteria for Bank Supervision: A Banking Supervision Law Perspective.

    Directory of Open Access Journals (Sweden)

    Sang-Bing Tsai

    Full Text Available Financial supervision means that monetary authorities have the power to supervise and manage financial institutions according to laws. Monetary authorities have this power because of the requirements of improving financial services, protecting the rights of depositors, adapting to industrial development, ensuring financial fair trade, and maintaining stable financial order. To establish evaluation criteria for bank supervision in China, this study integrated fuzzy theory and the decision making trial and evaluation laboratory (DEMATEL and proposes a fuzzy-DEMATEL model. First, fuzzy theory was applied to examine bank supervision criteria and analyze fuzzy semantics. Second, the fuzzy-DEMATEL model was used to calculate the degree to which financial supervision criteria mutually influenced one another and their causal relationship. Finally, an evaluation criteria model for evaluating bank and financial supervision was established.

  20. Using a Mixed Model to Explore Evaluation Criteria for Bank Supervision: A Banking Supervision Law Perspective

    Science.gov (United States)

    Tsai, Sang-Bing; Chen, Kuan-Yu; Zhao, Hongrui; Wei, Yu-Min; Wang, Cheng-Kuang; Zheng, Yuxiang; Chang, Li-Chung; Wang, Jiangtao

    2016-01-01

    Financial supervision means that monetary authorities have the power to supervise and manage financial institutions according to laws. Monetary authorities have this power because of the requirements of improving financial services, protecting the rights of depositors, adapting to industrial development, ensuring financial fair trade, and maintaining stable financial order. To establish evaluation criteria for bank supervision in China, this study integrated fuzzy theory and the decision making trial and evaluation laboratory (DEMATEL) and proposes a fuzzy-DEMATEL model. First, fuzzy theory was applied to examine bank supervision criteria and analyze fuzzy semantics. Second, the fuzzy-DEMATEL model was used to calculate the degree to which financial supervision criteria mutually influenced one another and their causal relationship. Finally, an evaluation criteria model for evaluating bank and financial supervision was established. PMID:27992449

  1. Improving permafrost distribution modelling using feature selection algorithms

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its

  2. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.

    Science.gov (United States)

    Li, Chaoshun; Zhou, Jianzhong

    2014-09-01

    Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this paper, a semi-supervised kernel clustering model is designed to diagnose known and unknown faults. At first, a novel semi-supervised weighted kernel clustering algorithm based on gravitational search (SWKC-GS) is proposed for clustering of dataset composed of labeled and unlabeled fault samples. The clustering model of SWKC-GS is defined based on wrong classification rate of labeled samples and fuzzy clustering index on the whole dataset. Gravitational search algorithm (GSA) is used to solve the clustering model, while centers of clusters, feature weights and parameter of kernel function are selected as optimization variables. And then, new fault samples are identified and diagnosed by calculating the weighted kernel distance between them and the fault cluster centers. If the fault samples are unknown, they will be added in historical dataset and the SWKC-GS is used to partition the mixed dataset and update the clustering results for diagnosing new fault. In experiments, the proposed method has been applied in fault diagnosis for rotatory bearing, while SWKC-GS has been compared not only with traditional clustering methods, but also with SVM and neural network, for known fault diagnosis. In addition, the proposed method has also been applied in unknown fault diagnosis. The results have shown effectiveness of the proposed method in achieving expected diagnosis accuracy for both known and unknown faults of rotatory bearing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Feature-selective attention: evidence for a decline in old age.

    Science.gov (United States)

    Quigley, Cliodhna; Andersen, Søren K; Schulze, Lars; Grunwald, Martin; Müller, Matthias M

    2010-04-19

    Although attention in older adults is an active research area, feature-selective aspects have not yet been explicitly studied. Here we report the results of an exploratory study involving directed changes in feature-selective attention. The stimuli used were two random dot kinematograms (RDKs) of different colours, superimposed and centrally presented. A colour cue with random onset after the beginning of each trial instructed young and older subjects to attend to one of the RDKs and detect short intervals of coherent motion while ignoring analogous motion events in the non-cued RDK. Behavioural data show that older adults could detect motion, but discriminated target from distracter motion less reliably than young adults. The method of frequency tagging allowed us to separate the EEG responses to the attended and ignored stimuli and directly compare steady-state visual evoked potential (SSVEP) amplitudes elicited by each stimulus before and after cue onset. We found that younger adults show a clear attentional enhancement of SSVEP amplitude in the post-cue interval, while older adults' SSVEP responses to attended and ignored stimuli do not differ. Thus, in situations where attentional selection cannot be spatially resolved, older adults show a deficit in selection that is not shared by young adults. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. A kernel-based multivariate feature selection method for microarray data classification.

    Directory of Open Access Journals (Sweden)

    Shiquan Sun

    Full Text Available High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to data classification to enhance prediction performance. In general, filter methods can be considered as principal or auxiliary selection mechanism because of their simplicity, scalability, and low computational complexity. However, a series of trivial examples show that filter methods result in less accurate performance because they ignore the dependencies of features. Although few publications have devoted their attention to reveal the relationship of features by multivariate-based methods, these methods describe relationships among features only by linear methods. While simple linear combination relationship restrict the improvement in performance. In this paper, we used kernel method to discover inherent nonlinear correlations among features as well as between feature and target. Moreover, the number of orthogonal components was determined by kernel Fishers linear discriminant analysis (FLDA in a self-adaptive manner rather than by manual parameter settings. In order to reveal the effectiveness of our method we performed several experiments and compared the results between our method and other competitive multivariate-based features selectors. In our comparison, we used two classifiers (support vector machine, [Formula: see text]-nearest neighbor on two group datasets, namely two-class and multi-class datasets. Experimental results demonstrate that the performance of our method is better than others, especially on three hard-classify datasets, namely Wang's Breast Cancer, Gordon's Lung Adenocarcinoma and Pomeroy's Medulloblastoma.

  5. Supervision in banking industry

    OpenAIRE

    Šmída, David

    2012-01-01

    The aim of submitted thesis Supervision in banking is to define the nature and the importance of banking supervision, to justify its existence and to analyze the applicable mechanisms while the system of banking regulation and supervision in this thesis is primarily examined in the European context, with a focus on the Czech Republic. The thesis is divided into five main chapters. The first chapter is devoted to the financial system and the importance of banks in this system, it defines the c...

  6. 17 CFR 166.3 - Supervision.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Supervision. 166.3 Section 166.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION CUSTOMER PROTECTION RULES § 166.3 Supervision. Each Commission registrant, except an associated person who has no supervisory duties, must diligently supervise the handling b...

  7. 28 CFR 810.1 - Supervision contact requirements.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Supervision contact requirements. 810.1 Section 810.1 Judicial Administration COURT SERVICES AND OFFENDER SUPERVISION AGENCY FOR THE DISTRICT OF COLUMBIA COMMUNITY SUPERVISION: ADMINISTRATIVE SANCTIONS § 810.1 Supervision contact requirements. If you are an offender under supervision by th...

  8. Supervision as a management variable that enhances availability of ...

    African Journals Online (AJOL)

    The purpose of this research was to investigate the management variable of supervision as it enhances availability of information sources in Nigerian university libraries. Four federal university libraries in the south-south zone of Nigeria were selected for the study. The population of the study consisted of all academic ...

  9. Mentoring, coaching and supervision

    OpenAIRE

    McMahon, Samantha; Dyer, Mary; Barker, Catherine

    2016-01-01

    This chapter considers the purpose of coaching, mentoring and supervision in early childhood eduaction and care. It examines a number of different approaches and considers the key skills required for effective coaching, mentoring and supervision.

  10. Improving head and body pose estimation through semi-supervised manifold alignment

    KAUST Repository

    Heili, Alexandre

    2014-10-27

    In this paper, we explore the use of a semi-supervised manifold alignment method for domain adaptation in the context of human body and head pose estimation in videos. We build upon an existing state-of-the-art system that leverages on external labelled datasets for the body and head features, and on the unlabelled test data with weak velocity labels to do a coupled estimation of the body and head pose. While this previous approach showed promising results, the learning of the underlying manifold structure of the features in the train and target data and the need to align them were not explored despite the fact that the pose features between two datasets may vary according to the scene, e.g. due to different camera point of view or perspective. In this paper, we propose to use a semi-supervised manifold alignment method to bring the train and target samples closer within the resulting embedded space. To this end, we consider an adaptation set from the target data and rely on (weak) labels, given for example by the velocity direction whenever they are reliable. These labels, along with the training labels are used to bias the manifold distance within each manifold and to establish correspondences for alignment.

  11. Linear feature selection in texture analysis - A PLS based method

    DEFF Research Database (Denmark)

    Marques, Joselene; Igel, Christian; Lillholm, Martin

    2013-01-01

    We present a texture analysis methodology that combined uncommitted machine-learning techniques and partial least square (PLS) in a fully automatic framework. Our approach introduces a robust PLS-based dimensionality reduction (DR) step to specifically address outliers and high-dimensional feature...... and considering all CV groups, the methods selected 36 % of the original features available. The diagnosis evaluation reached a generalization area-under-the-ROC curve of 0.92, which was higher than established cartilage-based markers known to relate to OA diagnosis....

  12. Feature Selection of Network Intrusion Data using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Iwan Syarif

    2016-12-01

    Full Text Available This paper describes the advantages of using Evolutionary Algorithms (EA for feature selection on network intrusion dataset. Most current Network Intrusion Detection Systems (NIDS are unable to detect intrusions in real time because of high dimensional data produced during daily operation. Extracting knowledge from huge data such as intrusion data requires new approach. The more complex the datasets, the higher computation time and the harder they are to be interpreted and analyzed. This paper investigates the performance of feature selection algoritms in network intrusiona data. We used Genetic Algorithms (GA and Particle Swarm Optimizations (PSO as feature selection algorithms. When applied to network intrusion datasets, both GA and PSO have significantly reduces the number of features. Our experiments show that GA successfully reduces the number of attributes from 41 to 15 while PSO reduces the number of attributes from 41 to 9. Using k Nearest Neighbour (k-NN as a classifier,the GA-reduced dataset which consists of 37% of original attributes, has accuracy improvement from 99.28% to 99.70% and its execution time is also 4.8 faster than the execution time of original dataset. Using the same classifier, PSO-reduced dataset which consists of 22% of original attributes, has the fastest execution time (7.2 times faster than the execution time of original datasets. However, its accuracy is slightly reduced 0.02% from 99.28% to 99.26%. Overall, both GA and PSO are good solution as feature selection techniques because theyhave shown very good performance in reducing the number of features significantly while still maintaining and sometimes improving the classification accuracy as well as reducing the computation time.

  13. 32 CFR 727.11 - Supervision.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Supervision. 727.11 Section 727.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL LEGAL ASSISTANCE § 727.11 Supervision. The Judge Advocate General will exercise supervision over all legal assistance activities in the Department of the Navy. Subject to the...

  14. Effect of Feature Dimensionality on Object-based Land Cover ...

    African Journals Online (AJOL)

    Geographic object-based image analysis (GEOBIA) allows the easy integration of such additional features into the classification process. This paper compares the performance of three supervised classifiers in a GEOBIA environment as an increasing number of object features are included as classification input.

  15. Feature Selection for Nonstationary Data: Application to Human Recognition Using Medical Biometrics.

    Science.gov (United States)

    Komeili, Majid; Louis, Wael; Armanfard, Narges; Hatzinakos, Dimitrios

    2018-05-01

    Electrocardiogram (ECG) and transient evoked otoacoustic emission (TEOAE) are among the physiological signals that have attracted significant interest in biometric community due to their inherent robustness to replay and falsification attacks. However, they are time-dependent signals and this makes them hard to deal with in across-session human recognition scenario where only one session is available for enrollment. This paper presents a novel feature selection method to address this issue. It is based on an auxiliary dataset with multiple sessions where it selects a subset of features that are more persistent across different sessions. It uses local information in terms of sample margins while enforcing an across-session measure. This makes it a perfect fit for aforementioned biometric recognition problem. Comprehensive experiments on ECG and TEOAE variability due to time lapse and body posture are done. Performance of the proposed method is compared against seven state-of-the-art feature selection algorithms as well as another six approaches in the area of ECG and TEOAE biometric recognition. Experimental results demonstrate that the proposed method performs noticeably better than other algorithms.

  16. An Empirical Study of Wrappers for Feature Subset Selection based on a Parallel Genetic Algorithm: The Multi-Wrapper Model

    KAUST Repository

    Soufan, Othman

    2012-09-01

    Feature selection is the first task of any learning approach that is applied in major fields of biomedical, bioinformatics, robotics, natural language processing and social networking. In feature subset selection problem, a search methodology with a proper criterion seeks to find the best subset of features describing data (relevance) and achieving better performance (optimality). Wrapper approaches are feature selection methods which are wrapped around a classification algorithm and use a performance measure to select the best subset of features. We analyze the proper design of the objective function for the wrapper approach and highlight an objective based on several classification algorithms. We compare the wrapper approaches to different feature selection methods based on distance and information based criteria. Significant improvement in performance, computational time, and selection of minimally sized feature subsets is achieved by combining different objectives for the wrapper model. In addition, considering various classification methods in the feature selection process could lead to a global solution of desirable characteristics.

  17. The vision in supervision: transference-countertransference dynamics and disclosure in the supervision relationship.

    Science.gov (United States)

    Coburn, W J

    1997-01-01

    The centrality of the supervision experience in the development of the supervisee's personal and professional capacities is addressed. The supervision relationship and process are explored in light of the potential effects of transference-countertransference configurations of supervisor and supervisee. Parallels between supervision and treatment are highlighted. The importance of developing and utilizing the capacity for reflectivity is reviewed, as is the impact of supervisee nondisclosure to supervisor. The direct use of countertransference experiences in the context of supervision is explored, and the centrality of self-disclosure is highlighted. It is recommended that supervisor and supervisee remain receptive to exploring these experiences in the service of developing a shared subjective sense of the patient, of increasing the supervisee's capacity to treat his or her patient, and of providing the supervisee with a novel, growth-enhancing relationship.

  18. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest

    Directory of Open Access Journals (Sweden)

    Nantian Huang

    2016-09-01

    Full Text Available The prediction accuracy of short-term load forecast (STLF depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original feature set was used to train an RF as the original model. After the training process, the prediction error of the original model on the test set was recorded and the permutation importance (PI value of each feature was obtained. Then, an improved sequential backward search method was used to select the optimal forecasting feature subset based on the PI value of each feature. Finally, the optimal forecasting feature subset was used to train a new RF model as the final prediction model. Experiments showed that the prediction accuracy of RF trained by the optimal forecasting feature subset was higher than that of the original model and comparative models based on support vector regression and artificial neural network.

  19. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    Science.gov (United States)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  20. Information Theory for Gabor Feature Selection for Face Recognition

    Directory of Open Access Journals (Sweden)

    Shen Linlin

    2006-01-01

    Full Text Available A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004, our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  1. Information Theory for Gabor Feature Selection for Face Recognition

    Science.gov (United States)

    Shen, Linlin; Bai, Li

    2006-12-01

    A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004), our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  2. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.

    Science.gov (United States)

    Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai

    2017-12-26

    Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  3. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Xiaohui Lin

    2017-12-01

    Full Text Available Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  4. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Maolong Xi

    2016-01-01

    Full Text Available This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO for cancer feature gene selection, coupling support vector machine (SVM for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV. Finally, the BQPSO coupling SVM (BQPSO/SVM, binary PSO coupling SVM (BPSO/SVM, and genetic algorithm coupling SVM (GA/SVM are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms.

  5. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    Science.gov (United States)

    Sun, Jun; Liu, Li; Fan, Fangyun; Wu, Xiaojun

    2016-01-01

    This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection, coupling support vector machine (SVM) for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV). Finally, the BQPSO coupling SVM (BQPSO/SVM), binary PSO coupling SVM (BPSO/SVM), and genetic algorithm coupling SVM (GA/SVM) are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms. PMID:27642363

  6. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    Science.gov (United States)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  7. An enhanced PSO-DEFS based feature selection with biometric authentication for identification of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Umarani Balakrishnan

    2016-11-01

    Full Text Available Recently, automatic diagnosis of diabetic retinopathy (DR from the retinal image is the most significant research topic in the medical applications. Diabetic macular edema (DME is the major reason for the loss of vision in patients suffering from DR. Early identification of the DR enables to prevent the vision loss and encourage diabetic control activities. Many techniques are developed to diagnose the DR. The major drawbacks of the existing techniques are low accuracy and high time complexity. To overcome these issues, this paper proposes an enhanced particle swarm optimization-differential evolution feature selection (PSO-DEFS based feature selection approach with biometric authentication for the identification of DR. Initially, a hybrid median filter (HMF is used for pre-processing the input images. Then, the pre-processed images are embedded with each other by using least significant bit (LSB for authentication purpose. Simultaneously, the image features are extracted using convoluted local tetra pattern (CLTrP and Tamura features. Feature selection is performed using PSO-DEFS and PSO-gravitational search algorithm (PSO-GSA to reduce time complexity. Based on some performance metrics, the PSO-DEFS is chosen as a better choice for feature selection. The feature selection is performed based on the fitness value. A multi-relevance vector machine (M-RVM is introduced to classify the 13 normal and 62 abnormal images among 75 images from 60 patients. Finally, the DR patients are further classified by M-RVM. The experimental results exhibit that the proposed approach achieves better accuracy, sensitivity, and specificity than the existing techniques.

  8. Comparative Study on Feature Selection and Fusion Schemes for Emotion Recognition from Speech

    Directory of Open Access Journals (Sweden)

    Santiago Planet

    2012-09-01

    Full Text Available The automatic analysis of speech to detect affective states may improve the way users interact with electronic devices. However, the analysis only at the acoustic level could be not enough to determine the emotion of a user in a realistic scenario. In this paper we analyzed the spontaneous speech recordings of the FAU Aibo Corpus at the acoustic and linguistic levels to extract two sets of features. The acoustic set was reduced by a greedy procedure selecting the most relevant features to optimize the learning stage. We compared two versions of this greedy selection algorithm by performing the search of the relevant features forwards and backwards. We experimented with three classification approaches: Naïve-Bayes, a support vector machine and a logistic model tree, and two fusion schemes: decision-level fusion, merging the hard-decisions of the acoustic and linguistic classifiers by means of a decision tree; and feature-level fusion, concatenating both sets of features before the learning stage. Despite the low performance achieved by the linguistic data, a dramatic improvement was achieved after its combination with the acoustic information, improving the results achieved by this second modality on its own. The results achieved by the classifiers using the parameters merged at feature level outperformed the classification results of the decision-level fusion scheme, despite the simplicity of the scheme. Moreover, the extremely reduced set of acoustic features obtained by the greedy forward search selection algorithm improved the results provided by the full set.

  9. Supervision som undervisningsform i voksenspecialundervisningen

    DEFF Research Database (Denmark)

    Kristensen, René

    2000-01-01

    Supervision som undervisningsform i voksenspecialundervisningen. Procesarbejde i undervisning af voksne.......Supervision som undervisningsform i voksenspecialundervisningen. Procesarbejde i undervisning af voksne....

  10. TEHRAN AIR POLLUTANTS PREDICTION BASED ON RANDOM FOREST FEATURE SELECTION METHOD

    Directory of Open Access Journals (Sweden)

    A. Shamsoddini

    2017-09-01

    Full Text Available Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  11. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    Science.gov (United States)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  12. A proposed framework on hybrid feature selection techniques for handling high dimensional educational data

    Science.gov (United States)

    Shahiri, Amirah Mohamed; Husain, Wahidah; Rashid, Nur'Aini Abd

    2017-10-01

    Huge amounts of data in educational datasets may cause the problem in producing quality data. Recently, data mining approach are increasingly used by educational data mining researchers for analyzing the data patterns. However, many research studies have concentrated on selecting suitable learning algorithms instead of performing feature selection process. As a result, these data has problem with computational complexity and spend longer computational time for classification. The main objective of this research is to provide an overview of feature selection techniques that have been used to analyze the most significant features. Then, this research will propose a framework to improve the quality of students' dataset. The proposed framework uses filter and wrapper based technique to support prediction process in future study.

  13. An opinion formation based binary optimization approach for feature selection

    Science.gov (United States)

    Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo

    2018-02-01

    This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.

  14. Multi combined Adlerian supervision in Counseling

    OpenAIRE

    Gungor, Abdi

    2017-01-01

    For counselor professional and counselor education, supervision is an important process, in which more experienced professional helps and guides less experienced professional. To provide an effective and beneficial supervision, various therapy, development, or process based approaches and models have been developed. In addition, different eclectic models integrating more than one model have been developed. In this paper, as a supervision model, multi combined Adlerian supervision model is pro...

  15. Nursing supervision for care comprehensiveness

    Directory of Open Access Journals (Sweden)

    Lucieli Dias Pedreschi Chaves

    Full Text Available ABSTRACT Objective: To reflect on nursing supervision as a management tool for care comprehensiveness by nurses, considering its potential and limits in the current scenario. Method: A reflective study based on discourse about nursing supervision, presenting theoretical and practical concepts and approaches. Results: Limits on the exercise of supervision are related to the organization of healthcare services based on the functional and clinical model of care, in addition to possible gaps in the nurse training process and work overload. Regarding the potential, researchers emphasize that supervision is a tool for coordinating care and management actions, which may favor care comprehensiveness, and stimulate positive attitudes toward cooperation and contribution within teams, co-responsibility, and educational development at work. Final considerations: Nursing supervision may help enhance care comprehensiveness by implying continuous reflection on including the dynamics of the healthcare work process and user needs in care networks.

  16. Learning Dynamics in Doctoral Supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie

    investigates learning opportunities in supervision with multiple supervisors. This was investigated through observations and recording of supervision, and subsequent analysis of transcripts. The analyses used different perspectives on learning; learning as participation, positioning theory and variation theory....... The research illuminates how learning opportunities are created in the interaction through the scientific discussions. It also shows how multiple supervisors can contribute to supervision by providing new perspectives and opinions that have a potential for creating new understandings. The combination...... of different theoretical frameworks from the perspectives of learning as individual acquisition and a sociocultural perspective on learning contributed to a nuanced illustration of the otherwise implicit practices of supervision....

  17. Supervision and group dynamics

    DEFF Research Database (Denmark)

    Hansen, Søren; Jensen, Lars Peter

    2004-01-01

     An important aspect of the problem based and project organized study at Aalborg University is the supervision of the project groups. At the basic education (first year) it is stated in the curriculum that part of the supervisors' job is to deal with group dynamics. This is due to the experience...... that many students are having difficulties with practical issues such as collaboration, communication, and project management. Most supervisors either ignore this demand, because they do not find it important or they find it frustrating, because they do not know, how to supervise group dynamics...... as well as at Aalborg University. The first visible result has been participating supervisors telling us that the course has inspired them to try supervising group dynamics in the future. This paper will explore some aspects of supervising group dynamics as well as, how to develop the Aalborg model...

  18. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  19. The role of Effective Supervision on academic performance of Senior High Schools in Ghana

    Directory of Open Access Journals (Sweden)

    Vera Rosemary Ankoma-Sey

    2016-04-01

    Full Text Available In all facets of life, supervision has become a cross-cutting edge tool and a pivot around which performance revolves. There are widespread and on-going debates centred on the influence of effective supervision on academic performance in our academic institutions. This study examined the role of supervision on academic performance in Senior High Schools (SHS in Ghana. The study was based on the collegial model of educational management and the supervision model, Theory Y as proposed by Douglas McGregor. This study employed the descriptive research survey design. Through a questionnaire, data analysed was collected from 963 respondents who were purposively selected from randomised schools in each region comprising of headmasters, their assistants and heads of department of 155 SHSs across Ghana. The WAEC results (2006-2009 and 2011 of the sampled schools were analysed. Reliability coefficient of the questionnaire was Cronbach’s alpha (α = 0.826. The Statistical Product and Service Solutions (SPSS version 18 software was employed in the analyses of data using, mean, standard deviation, correlation and independent t-test. The study revealed that there was a positive weak significant relationship between supervision roles of heads and academic performance of students. Moreso, there was a positive weak significant relationship between gender of heads and their supervision roles. The study recommended that supervision should be intensified in SHS. Heads of SHS should be re-orientated in the new trends of supervision in schools.

  20. Clinical Supervision in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    2011-01-01

    Core Questionnaire (DPCCQ) has only few questions on supervision. To rectify this limitation, a recent Danish version of the DPCCQ included two new sections on supervision, one focusing on supervisees and another on supervisors and their supervisory training. This paper presents our initial findings...

  1. Networks of Professional Supervision

    Science.gov (United States)

    Annan, Jean; Ryba, Ken

    2013-01-01

    An ecological analysis of the supervisory activity of 31 New Zealand school psychologists examined simultaneously the theories of school psychology, supervision practices, and the contextual qualities that mediated participants' supervisory actions. The findings indicated that the school psychologists worked to achieve the supervision goals of…

  2. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  3. Feature selection and multi-kernel learning for adaptive graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-20

    Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods.

  4. A HYBRID FILTER AND WRAPPER FEATURE SELECTION APPROACH FOR DETECTING CONTAMINATION IN DRINKING WATER MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    S. VISALAKSHI

    2017-07-01

    Full Text Available Feature selection is an important task in predictive models which helps to identify the irrelevant features in the high - dimensional dataset. In this case of water contamination detection dataset, the standard wrapper algorithm alone cannot be applied because of the complexity. To overcome this computational complexity problem and making it lighter, filter-wrapper based algorithm has been proposed. In this work, reducing the feature space is a significant component of water contamination. The main findings are as follows: (1 The main goal is speeding up the feature selection process, so the proposed filter - based feature pre-selection is applied and guarantees that useful data are improbable to be detached in the initial stage which discussed briefly in this paper. (2 The resulting features are again filtered by using the Genetic Algorithm coded with Support Vector Machine method, where it facilitates to nutshell the subset of features with high accuracy and decreases the expense. Experimental results show that the proposed methods trim down redundant features effectively and achieved better classification accuracy.

  5. Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm

    Science.gov (United States)

    Auat Cheein, Fernando A.; Carelli, Ricardo

    2011-01-01

    This paper introduces several non-arbitrary feature selection techniques for a Simultaneous Localization and Mapping (SLAM) algorithm. The feature selection criteria are based on the determination of the most significant features from a SLAM convergence perspective. The SLAM algorithm implemented in this work is a sequential EKF (Extended Kalman filter) SLAM. The feature selection criteria are applied on the correction stage of the SLAM algorithm, restricting it to correct the SLAM algorithm with the most significant features. This restriction also causes a decrement in the processing time of the SLAM. Several experiments with a mobile robot are shown in this work. The experiments concern the map reconstruction and a comparison between the different proposed techniques performance. The experiments were carried out at an outdoor environment composed by trees, although the results shown herein are not restricted to a special type of features. PMID:22346568

  6. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  7. Technical Evaluation Report 27: Educational Wikis: Features and selection criteria

    Directory of Open Access Journals (Sweden)

    Jim Rudolph

    2004-04-01

    Full Text Available This report discusses the educational uses of the ‘wiki,’ an increasingly popular approach to online community development. Wikis are defined and compared with ‘blogging’ methods; characteristics of major wiki engines are described; and wiki features and selection criteria are examined.

  8. Multi-level deep supervised networks for retinal vessel segmentation.

    Science.gov (United States)

    Mo, Juan; Zhang, Lei

    2017-12-01

    Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

  9. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    Science.gov (United States)

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  10. Supervised Quality Assessment Of Medical Image Registration: Application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.; Ginneken, B. van; Murphy, K.; Pluim, J.P.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  11. Supervised quality assessment of medical image registration : application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Murphy, K.; Pluim, J.P.W.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  12. Notes on the evolution of feature selection methodology

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr; Novovičová, Jana; Pudil, Pavel

    2007-01-01

    Roč. 43, č. 5 (2007), s. 713-730 ISSN 0023-5954 R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572; GA AV ČR IAA2075302 EU Projects: European Commission(XE) 507752 - MUSCLE Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : feature selection * branch and bound * sequential search * mixture model Subject RIV: IN - Informatics, Computer Science Impact factor: 0.552, year: 2007

  13. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Science.gov (United States)

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  14. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. RESULTS: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. CONCLUSIONS: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  15. Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm

    Science.gov (United States)

    Annavarapu, Chandra Sekhara Rao; Dara, Suresh; Banka, Haider

    2016-01-01

    Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude domain features from the initial feature set. Since these pre-processed and reduced features are still high dimensional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive capability of those selected subsets. As these two objective functions are conflicting in nature, they are more suitable for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative study is also made to show the betterment or competitiveness of the proposed algorithm. PMID:27822174

  16. Educational Supervision Appropriate for Psychiatry Trainee's Needs

    Science.gov (United States)

    Rele, Kiran; Tarrant, C. Jane

    2010-01-01

    Objective: The authors studied the regularity and content of supervision sessions in one of the U.K. postgraduate psychiatric training schemes (Mid-Trent). Methods: A questionnaire sent to psychiatry trainees assessed the timing and duration of supervision, content and protection of supervision time, and overall quality of supervision. The authors…

  17. Tværfaglig supervision

    DEFF Research Database (Denmark)

    Tværfaglig supervision dækker over supervision af forskellige faggrupper. Det er en kompleks disciplin der stiller store krav tl supervisor. Bogens første del præsenterer fire faglige supervisionsmodeller: En almen, en psykodynamisk, en kognitiv adfærdsterapeutisk og en narrativ. Anden del...

  18. Instructional Supervision and Its Relationship with Professional Development: Perception of Private and Government Secondary School Teachers in Addis Ababa

    Science.gov (United States)

    Tesfaw, T. A.; Hofman, R. H.

    2012-01-01

    (Purpose) The purpose of this study is to examine the existing perceptions and preferences of teachers toward instructional supervision, more specifically on the actual and ideal use of selected instructional supervisory approaches (such as clinical supervision, peer coaching, cognitive coaching, mentoring, reflective coaching, teaching…

  19. Methods of Feminist Family Therapy Supervision.

    Science.gov (United States)

    Prouty, Anne M.; Thomas, Volker; Johnson, Scott; Long, Janie K.

    2001-01-01

    Presents three supervision methods which emerged from a qualitative study of the experiences of feminist family therapy supervisors and the therapists they supervised: the supervision contract, collaborative methods, and hierarchical methods. Provides a description of the participants' experiences of these methods and discusses their fit with…

  20. Emotion of Physiological Signals Classification Based on TS Feature Selection

    Institute of Scientific and Technical Information of China (English)

    Wang Yujing; Mo Jianlin

    2015-01-01

    This paper propose a method of TS-MLP about emotion recognition of physiological signal.It can recognize emotion successfully by Tabu search which selects features of emotion’s physiological signals and multilayer perceptron that is used to classify emotion.Simulation shows that it has achieved good emotion classification performance.

  1. Speech reconstruction using a deep partially supervised neural network.

    Science.gov (United States)

    McLoughlin, Ian; Li, Jingjie; Song, Yan; Sharifzadeh, Hamid R

    2017-08-01

    Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art.

  2. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 28 CFR 2.91 - Supervision responsibility.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Supervision responsibility. 2.91 Section 2.91 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT OF PRISONERS, YOUTH OFFENDERS, AND JUVENILE DELINQUENTS District of Columbia Code: Prisoners and Parolees § 2.91 Supervision responsibility. (a) Pursuan...

  4. Optimistic semi-supervised least squares classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant ...

  5. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  6. Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection

    Science.gov (United States)

    Kumar Myakalwar, Ashwin; Spegazzini, Nicolas; Zhang, Chi; Kumar Anubham, Siva; Dasari, Ramachandra R.; Barman, Ishan; Kumar Gundawar, Manoj

    2015-01-01

    Despite its intrinsic advantages, translation of laser induced breakdown spectroscopy for material identification has been often impeded by the lack of robustness of developed classification models, often due to the presence of spurious correlations. While a number of classifiers exhibiting high discriminatory power have been reported, efforts in establishing the subset of relevant spectral features that enable a fundamental interpretation of the segmentation capability and avoid the ‘curse of dimensionality’ have been lacking. Using LIBS data acquired from a set of secondary explosives, we investigate judicious feature selection approaches and architect two different chemometrics classifiers –based on feature selection through prerequisite knowledge of the sample composition and genetic algorithm, respectively. While the full spectral input results in classification rate of ca.92%, selection of only carbon to hydrogen spectral window results in near identical performance. Importantly, the genetic algorithm-derived classifier shows a statistically significant improvement to ca. 94% accuracy for prospective classification, even though the number of features used is an order of magnitude smaller. Our findings demonstrate the impact of rigorous feature selection in LIBS and also hint at the feasibility of using a discrete filter based detector thereby enabling a cheaper and compact system more amenable to field operations. PMID:26286630

  7. 20 CFR 655.30 - Supervised recruitment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Supervised recruitment. 655.30 Section 655.30... Workers) § 655.30 Supervised recruitment. (a) Supervised recruitment. Where an employer is found to have... failed to adequately conduct recruitment activities or failed in any obligation of this part, the CO may...

  8. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    Directory of Open Access Journals (Sweden)

    Nicole A Capela

    Full Text Available Human activity recognition (HAR, using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter. The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree. Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  9. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    Science.gov (United States)

    Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  10. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. An Incremental Classification Algorithm for Mining Data with Feature Space Heterogeneity

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Feature space heterogeneity often exists in many real world data sets so that some features are of different importance for classification over different subsets. Moreover, the pattern of feature space heterogeneity might dynamically change over time as more and more data are accumulated. In this paper, we develop an incremental classification algorithm, Supervised Clustering for Classification with Feature Space Heterogeneity (SCCFSH, to address this problem. In our approach, supervised clustering is implemented to obtain a number of clusters such that samples in each cluster are from the same class. After the removal of outliers, relevance of features in each cluster is calculated based on their variations in this cluster. The feature relevance is incorporated into distance calculation for classification. The main advantage of SCCFSH lies in the fact that it is capable of solving a classification problem with feature space heterogeneity in an incremental way, which is favorable for online classification tasks with continuously changing data. Experimental results on a series of data sets and application to a database marketing problem show the efficiency and effectiveness of the proposed approach.

  12. Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Chen Xing

    2016-01-01

    Full Text Available Deep learning methods have been successfully applied to learn feature representations for high-dimensional data, where the learned features are able to reveal the nonlinear properties exhibited in the data. In this paper, deep learning method is exploited for feature extraction of hyperspectral data, and the extracted features can provide good discriminability for classification task. Training a deep network for feature extraction and classification includes unsupervised pretraining and supervised fine-tuning. We utilized stacked denoise autoencoder (SDAE method to pretrain the network, which is robust to noise. In the top layer of the network, logistic regression (LR approach is utilized to perform supervised fine-tuning and classification. Since sparsity of features might improve the separation capability, we utilized rectified linear unit (ReLU as activation function in SDAE to extract high level and sparse features. Experimental results using Hyperion, AVIRIS, and ROSIS hyperspectral data demonstrated that the SDAE pretraining in conjunction with the LR fine-tuning and classification (SDAE_LR can achieve higher accuracies than the popular support vector machine (SVM classifier.

  13. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  14. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  15. Evolution in banking supervision

    OpenAIRE

    Edward J. Stevens

    2000-01-01

    Banking supervision must keep pace with technical innovations in the banking industry. The international Basel Committee on Banking Supervision currently is reviewing public comments on its proposed new method for judging whether a bank maintains enough capital to absorb unexpected losses. This Economic Commentary explains how existing standards became obsolete and describes the new plan.

  16. Projected estimators for robust semi-supervised classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the procedure...... specifically, we prove that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over...... the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy typically considered in practice....

  17. Turkish Music Genre Classification using Audio and Lyrics Features

    Directory of Open Access Journals (Sweden)

    Önder ÇOBAN

    2017-05-01

    Full Text Available Music Information Retrieval (MIR has become a popular research area in recent years. In this context, researchers have developed music information systems to find solutions for such major problems as automatic playlist creation, hit song detection, and music genre or mood classification. Meta-data information, lyrics, or melodic content of music are used as feature resource in previous works. However, lyrics do not often used in MIR systems and the number of works in this field is not enough especially for Turkish. In this paper, firstly, we have extended our previously created Turkish MIR (TMIR dataset, which comprises of Turkish lyrics, by including the audio file of each song. Secondly, we have investigated the effect of using audio and textual features together or separately on automatic Music Genre Classification (MGC. We have extracted textual features from lyrics using different feature extraction models such as word2vec and traditional Bag of Words. We have conducted our experiments on Support Vector Machine (SVM algorithm and analysed the impact of feature selection and different feature groups on MGC. We have considered lyrics based MGC as a text classification task and also investigated the effect of term weighting method. Experimental results show that textual features can also be effective as well as audio features for Turkish MGC, especially when a supervised term weighting method is employed. We have achieved the highest success rate as 99,12\\% by using both audio and textual features together.

  18. The co-feature ratio, a novel method for the measurement of chromatographic and signal selectivity in LC-MS-based metabolomics

    International Nuclear Information System (INIS)

    Elmsjö, Albert; Haglöf, Jakob; Engskog, Mikael K.R.; Nestor, Marika; Arvidsson, Torbjörn; Pettersson, Curt

    2017-01-01

    Evaluation of analytical procedures, especially in regards to measuring chromatographic and signal selectivity, is highly challenging in untargeted metabolomics. The aim of this study was to suggest a new straightforward approach for a systematic examination of chromatographic and signal selectivity in LC-MS-based metabolomics. By calculating the ratio between each feature and its co-eluting features (the co-features), a measurement of the chromatographic selectivity (i.e. extent of co-elution) as well as the signal selectivity (e.g. amount of adduct formation) of each feature could be acquired, the co-feature ratio. This approach was used to examine possible differences in chromatographic and signal selectivity present in samples exposed to three different sample preparation procedures. The capability of the co-feature ratio was evaluated both in a classical targeted setting using isotope labelled standards as well as without standards in an untargeted setting. For the targeted analysis, several metabolites showed a skewed quantitative signal due to poor chromatographic selectivity and/or poor signal selectivity. Moreover, evaluation of the untargeted approach through multivariate analysis of the co-feature ratios demonstrated the possibility to screen for metabolites displaying poor chromatographic and/or signal selectivity characteristics. We conclude that the co-feature ratio can be a useful tool in the development and evaluation of analytical procedures in LC-MS-based metabolomics investigations. Increased selectivity through proper choice of analytical procedures may decrease the false positive and false negative discovery rate and thereby increase the validity of any metabolomic investigation. - Highlights: • The co-feature ratio (CFR) is introduced. • CFR measures chromatographic and signal selectivity of a feature. • CFR can be used for evaluating experimental procedures in metabolomics. • CFR can aid in locating features with poor selectivity.

  19. The co-feature ratio, a novel method for the measurement of chromatographic and signal selectivity in LC-MS-based metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Elmsjö, Albert, E-mail: Albert.Elmsjo@farmkemi.uu.se [Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University (Sweden); Haglöf, Jakob; Engskog, Mikael K.R. [Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University (Sweden); Nestor, Marika [Department of Immunology, Genetics and Pathology, Uppsala University (Sweden); Arvidsson, Torbjörn [Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University (Sweden); Medical Product Agency, Uppsala (Sweden); Pettersson, Curt [Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University (Sweden)

    2017-03-01

    Evaluation of analytical procedures, especially in regards to measuring chromatographic and signal selectivity, is highly challenging in untargeted metabolomics. The aim of this study was to suggest a new straightforward approach for a systematic examination of chromatographic and signal selectivity in LC-MS-based metabolomics. By calculating the ratio between each feature and its co-eluting features (the co-features), a measurement of the chromatographic selectivity (i.e. extent of co-elution) as well as the signal selectivity (e.g. amount of adduct formation) of each feature could be acquired, the co-feature ratio. This approach was used to examine possible differences in chromatographic and signal selectivity present in samples exposed to three different sample preparation procedures. The capability of the co-feature ratio was evaluated both in a classical targeted setting using isotope labelled standards as well as without standards in an untargeted setting. For the targeted analysis, several metabolites showed a skewed quantitative signal due to poor chromatographic selectivity and/or poor signal selectivity. Moreover, evaluation of the untargeted approach through multivariate analysis of the co-feature ratios demonstrated the possibility to screen for metabolites displaying poor chromatographic and/or signal selectivity characteristics. We conclude that the co-feature ratio can be a useful tool in the development and evaluation of analytical procedures in LC-MS-based metabolomics investigations. Increased selectivity through proper choice of analytical procedures may decrease the false positive and false negative discovery rate and thereby increase the validity of any metabolomic investigation. - Highlights: • The co-feature ratio (CFR) is introduced. • CFR measures chromatographic and signal selectivity of a feature. • CFR can be used for evaluating experimental procedures in metabolomics. • CFR can aid in locating features with poor selectivity.

  20. A consistency-based feature selection method allied with linear SVMs for HIV-1 protease cleavage site prediction.

    Directory of Open Access Journals (Sweden)

    Orkun Oztürk

    Full Text Available BACKGROUND: Predicting type-1 Human Immunodeficiency Virus (HIV-1 protease cleavage site in protein molecules and determining its specificity is an important task which has attracted considerable attention in the research community. Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors against this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high dimensionality of the feature space turn this task into a difficult classification problem. Thus, various machine learning techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the classification model. In addition, for several classification problems, which are characterized by having few samples and many features, selecting the most relevant features is a major factor for increasing classification accuracy. RESULTS: We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature elimination of support vector machines (SVMs. We used various classifiers for evaluating the results obtained from the feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which have been selected from different combinations. CONCLUSION: Applying feature selection on training data before realizing the classification task seems to be a reasonable data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These facts motivate for the work presented in this paper. SOFTWARE AVAILABILITY: The software is available at http

  1. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading.

    Science.gov (United States)

    Sahran, Shahnorbanun; Albashish, Dheeb; Abdullah, Azizi; Shukor, Nordashima Abd; Hayati Md Pauzi, Suria

    2018-04-18

    Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components. We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC. We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods. We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to

  2. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

    Science.gov (United States)

    Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-10-31

    Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target

  3. Current Risk Management Practices in Psychotherapy Supervision.

    Science.gov (United States)

    Mehrtens, Ilayna K; Crapanzano, Kathleen; Tynes, L Lee

    2017-12-01

    Psychotherapy competence is a core skill for psychiatry residents, and psychotherapy supervision is a time-honored approach to teaching this skill. To explore the current supervision practices of psychiatry training programs, a 24-item questionnaire was sent to all program directors of Accreditation Council for Graduate Medical Education (ACGME)-approved adult psychiatry programs. The questionnaire included items regarding adherence to recently proposed therapy supervision practices aimed at reducing potential liability risk. The results suggested that current therapy supervision practices do not include sufficient management of the potential liability involved in therapy supervision. Better protections for patients, residents, supervisors and the institutions would be possible with improved credentialing practices and better documentation of informed consent and supervision policies and procedures. © 2017 American Academy of Psychiatry and the Law.

  4. A Study of Supervision of China's Commercial Banks from the Perspective of the Trinity-Characteristics of Bank Supervision System

    Institute of Scientific and Technical Information of China (English)

    LV Jianglin; HUANG Guang

    2015-01-01

    Based on the theoretical analysis,this paper applies the entropy method to establish a comprehensive index system for the evaluation of the overall level of risk control and comprehensive efficiency of the supervision of China's commercial banks.Considering the trinity-characteristics of bank supervision system consisting of the People's Bank of China(PBC),the CBRC and the financial offices of local governments,the following conclusions have been drawn:the amount of penalties on banking illegal transactions is not correlated with the supervision efficiency of China's commercial banks;the capital adequacy ratio,the loan to deposit ratio,the percentage point of the non-performing loan rate of urban commercial banks higher than that of the national joint-stock banks are negatively correlated with the supervision efficiency of China 's commercial banks;the total asset variation of the PBC and the different loan balance in local and foreign currency of the banks are positively correlated with the supervision efficiency of China's commercial banks,but the effect is minor.Therefore,China should give the capital adequacy ratio a full play in the bank supervision,accelerate the construction of supervision information system and improve the supervision function of the local governments.

  5. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    Science.gov (United States)

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  6. Supervision Experiences of Professional Counselors Providing Crisis Counseling

    Science.gov (United States)

    Dupre, Madeleine; Echterling, Lennis G.; Meixner, Cara; Anderson, Robin; Kielty, Michele

    2014-01-01

    In this phenomenological study, the authors explored supervision experiences of 13 licensed professional counselors in situations requiring crisis counseling. Five themes concerning crisis and supervision were identified from individual interviews. Findings support intensive, immediate crisis supervision and postlicensure clinical supervision.

  7. Feature Selection and Kernel Learning for Local Learning-Based Clustering.

    Science.gov (United States)

    Zeng, Hong; Cheung, Yiu-ming

    2011-08-01

    The performance of the most clustering algorithms highly relies on the representation of data in the input space or the Hilbert space of kernel methods. This paper is to obtain an appropriate data representation through feature selection or kernel learning within the framework of the Local Learning-Based Clustering (LLC) (Wu and Schölkopf 2006) method, which can outperform the global learning-based ones when dealing with the high-dimensional data lying on manifold. Specifically, we associate a weight to each feature or kernel and incorporate it into the built-in regularization of the LLC algorithm to take into account the relevance of each feature or kernel for the clustering. Accordingly, the weights are estimated iteratively in the clustering process. We show that the resulting weighted regularization with an additional constraint on the weights is equivalent to a known sparse-promoting penalty. Hence, the weights of those irrelevant features or kernels can be shrunk toward zero. Extensive experiments show the efficacy of the proposed methods on the benchmark data sets.

  8. Issues Supervising Family Violence Cases: Advocacy, Ethical Documentation, and Supervisees' Reactions

    Science.gov (United States)

    McBride, Dawn L.

    2010-01-01

    Selected clinical and ethical issues associated with providing supervision involving family violence cases are outlined. It is argued that supervisees helping clients with trauma histories require skills beyond learning how to process the trauma with their clients. Advocacy, social action, and coordinating case conferences are some of the…

  9. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests.

    Science.gov (United States)

    Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A

    2017-09-15

    Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code

  10. Benefit salience and consumers' selective attention to product features

    OpenAIRE

    Ratneshwar, S; Warlop, Luk; Mick, DG; Seeger, G

    1997-01-01

    Although attention is a key construct in models of marketing communication and consumer choice, its selective nature has rarely been examined in common time-pressured conditions. We focus on the role of benefit salience, that is, the readiness with which particular benefits are brought to mind by consumers in relation to a given product category. Study I demonstrated that when product feature information was presented rapidly, individuals for whom the benefit of personalised customer service ...

  11. Conditional Mutual Information Based Feature Selection for Classification Task

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Somol, Petr; Haindl, Michal; Pudil, Pavel

    2007-01-01

    Roč. 45, č. 4756 (2007), s. 417-426 ISSN 0302-9743 R&D Projects: GA MŠk 1M0572; GA AV ČR IAA2075302 EU Projects: European Commission(XE) 507752 - MUSCLE Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Pattern classification * feature selection * conditional mutual information * text categorization Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.402, year: 2005

  12. Intelligent multivariate process supervision

    International Nuclear Information System (INIS)

    Visuri, Pertti.

    1986-01-01

    This thesis addresses the difficulties encountered in managing large amounts of data in supervisory control of complex systems. Some previous alarm and disturbance analysis concepts are reviewed and a method for improving the supervision of complex systems is presented. The method, called multivariate supervision, is based on adding low level intelligence to the process control system. By using several measured variables linked together by means of deductive logic, the system can take into account the overall state of the supervised system. Thus, it can present to the operators fewer messages with higher information content than the conventional control systems which are based on independent processing of each variable. In addition, the multivariate method contains a special information presentation concept for improving the man-machine interface. (author)

  13. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    Science.gov (United States)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  14. Abusive Supervision and Subordinate Performance : Instrumentality Considerations in the Emergence and Consequences of Abusive Supervision

    NARCIS (Netherlands)

    Walter, Frank; Lam, Catherine K.; van der Vegt, Geert; Huang, X.; Miao, Q.

    Drawing from moral exclusion theory, this article examines outcome dependence and interpersonal liking as key boundary conditions for the linkage between perceived subordinate performance and abusive supervision. Moreover, it investigates the role of abusive supervision for subordinates' subsequent,

  15. Supervision of radiation environment management of nuclear facilities

    International Nuclear Information System (INIS)

    Luo Mingyan

    2013-01-01

    Through literature and documents, the basis, content and implementation of the supervision of radiation environment management of nuclear facilities were defined. Such supervision was extensive and complicated with various tasks and overlapping duties, and had large social impact. Therefore, it was recommend to make further research on this supervision should be done, clarify and specify responsibilities of the executor of the supervision so as to achieve institutionalization, standardization and routinization of the supervision. (author)

  16. Skærpet bevidsthed om supervision

    DEFF Research Database (Denmark)

    Pedersen, Inge Nygaard

    2002-01-01

    This article presents a historical survey of the initiatives which have taken place in european music therapy towards developing a deeper consciousness about supervision. Supervision as a disciplin in music therapy training, as a maintenance of music therapy profession and as a postgraduate...... training for examined music therapists. Definitions are presented and methods developed by working groups in european music therapy supervision are presented....

  17. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  18. Integrative approaches to the prediction of protein functions based on the feature selection

    Directory of Open Access Journals (Sweden)

    Lee Hyunju

    2009-12-01

    Full Text Available Abstract Background Protein function prediction has been one of the most important issues in functional genomics. With the current availability of various genomic data sets, many researchers have attempted to develop integration models that combine all available genomic data for protein function prediction. These efforts have resulted in the improvement of prediction quality and the extension of prediction coverage. However, it has also been observed that integrating more data sources does not always increase the prediction quality. Therefore, selecting data sources that highly contribute to the protein function prediction has become an important issue. Results We present systematic feature selection methods that assess the contribution of genome-wide data sets to predict protein functions and then investigate the relationship between genomic data sources and protein functions. In this study, we use ten different genomic data sources in Mus musculus, including: protein-domains, protein-protein interactions, gene expressions, phenotype ontology, phylogenetic profiles and disease data sources to predict protein functions that are labelled with Gene Ontology (GO terms. We then apply two approaches to feature selection: exhaustive search feature selection using a kernel based logistic regression (KLR, and a kernel based L1-norm regularized logistic regression (KL1LR. In the first approach, we exhaustively measure the contribution of each data set for each function based on its prediction quality. In the second approach, we use the estimated coefficients of features as measures of contribution of data sources. Our results show that the proposed methods improve the prediction quality compared to the full integration of all data sources and other filter-based feature selection methods. We also show that contributing data sources can differ depending on the protein function. Furthermore, we observe that highly contributing data sets can be similar among

  19. Feature selection based on SVM significance maps for classification of dementia

    NARCIS (Netherlands)

    E.E. Bron (Esther); M. Smits (Marion); J.C. van Swieten (John); W.J. Niessen (Wiro); S. Klein (Stefan)

    2014-01-01

    textabstractSupport vector machine significance maps (SVM p-maps) previously showed clusters of significantly different voxels in dementiarelated brain regions. We propose a novel feature selection method for classification of dementia based on these p-maps. In our approach, the SVM p-maps are

  20. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    Science.gov (United States)

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  1. BRONCHIAL ASTHMA SUPERVISION AMONG TEENAGERS

    Directory of Open Access Journals (Sweden)

    N.M. Nenasheva

    2008-01-01

    Full Text Available The article highlights the results of the act test based bronchial asthma supervision evaluation among teenagers and defines the interrelation of the objective and subjective asthma supervision parameters. The researchers examined 214 male teenagers aged from 16 to 18, suffering from the bronchial asthma, who were sent to the allergy department to verify the diagnosis. Bronchial asthma supervision evaluation was assisted by the act test. The research has showed that over a half (56% of teenagers, suffering from mild bronchial asthma, mention its un control course, do not receive any adequate pharmacotherapy and are consequently a risk group in terms of the bronchial asthma exacerbation. Act test results correlate with the functional indices (fev1, as well as with the degree of the bronchial hyperresponsiveness, which is one of the markers of an allergic inflammation in the lower respiratory passages.Key words: bronchial asthma supervision, act test, teenagers.

  2. Multicultural Supervision: What Difference Does Difference Make?

    Science.gov (United States)

    Eklund, Katie; Aros-O'Malley, Megan; Murrieta, Imelda

    2014-01-01

    Multicultural sensitivity and competency represent critical components to contemporary practice and supervision in school psychology. Internship and supervision experiences are a capstone experience for many new school psychologists; however, few receive formal training and supervision in multicultural competencies. As an increased number of…

  3. Projected estimators for robust semi-supervised classification

    NARCIS (Netherlands)

    Krijthe, J.H.; Loog, M.

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the

  4. Fuzzy Mutual Information Based min-Redundancy and Max-Relevance Heterogeneous Feature Selection

    Directory of Open Access Journals (Sweden)

    Daren Yu

    2011-08-01

    Full Text Available Feature selection is an important preprocessing step in pattern classification and machine learning, and mutual information is widely used to measure relevance between features and decision. However, it is difficult to directly calculate relevance between continuous or fuzzy features using mutual information. In this paper we introduce the fuzzy information entropy and fuzzy mutual information for computing relevance between numerical or fuzzy features and decision. The relationship between fuzzy information entropy and differential entropy is also discussed. Moreover, we combine fuzzy mutual information with qmin-Redundancy-Max-Relevanceq, qMax-Dependencyq and min-Redundancy-Max-Dependencyq algorithms. The performance and stability of the proposed algorithms are tested on benchmark data sets. Experimental results show the proposed algorithms are effective and stable.

  5. Automated lesion detection on MRI scans using combined unsupervised and supervised methods

    International Nuclear Information System (INIS)

    Guo, Dazhou; Fridriksson, Julius; Fillmore, Paul; Rorden, Christopher; Yu, Hongkai; Zheng, Kang; Wang, Song

    2015-01-01

    Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain lesions from a T1-weighted 3D MRI. The proposed method combines the advantages of both unsupervised and supervised methods. First, unsupervised methods perform a unified segmentation normalization to warp images from the native space into a standard space and to generate probability maps for different tissue types, e.g., gray matter, white matter and fluid. This allows us to construct an initial lesion probability map by comparing the normalized MRI to healthy control subjects. Then, we perform non-rigid and reversible atlas-based registration to refine the probability maps of gray matter, white matter, external CSF, ventricle, and lesions. These probability maps are combined with the normalized MRI to construct three types of features, with which we use supervised methods to train three support vector machine (SVM) classifiers for a combined classifier. Finally, the combined classifier is used to accomplish lesion detection. We tested this method using T1-weighted MRIs from 60 in-house stroke patients. Using leave-one-out cross validation, the proposed method can achieve an average Dice coefficient of 73.1 % when compared to lesion maps hand-delineated by trained neurologists. Furthermore, we tested the proposed method on the T1-weighted MRIs in the MICCAI BRATS 2012 dataset. The proposed method can achieve an average Dice coefficient of 66.5 % in comparison to the expert annotated tumor maps provided in MICCAI BRATS 2012 dataset. In addition, on these two test datasets, the proposed method shows competitive performance to three state-of-the-art methods, including Stamatakis et al., Seghier et al., and Sanjuan et al. In this paper, we introduced a novel automated procedure for lesion detection from T1-weighted MRIs by combining both an unsupervised and a

  6. Supervised and non-supervised Nordic walking in the treatment of chronic low back pain: a single blind randomized clinical trial

    Science.gov (United States)

    2010-01-01

    at baseline. For pain, disability, and patient specific function the supervised Nordic walking group generally faired best however no statistically significant differences were found. Regarding the secondary outcome measures, patients in the supervised group tended to use less pain medication, to seek less concurrent care for their back pain, at the eight-week follow-up. There was no difference between physical activity levels for the supervised and unsupervised Nordic walking groups. No negative side effects were reported. Conclusion We did not find statistically significant differences between eight weeks of supervised or unsupervised Nordic walking and advice to remain active in a group of chronic low back pain patients. Nevertheless, the greatest average improvement tended to favor the supervised Nordic walking group and - taking into account other health related benefits of Nordic walking - this form of exercise may potentially be of benefit to selected groups of chronic back pain patients. Trial registration http://www.ClinicalTrials.gov # NCT00209820 PMID:20146793

  7. Features of selection of children for occupations by artistic gymnastics in modern Kurdistan

    OpenAIRE

    Abdulvahid Dlshad Nihad

    2015-01-01

    Purpose: to study the organizational and pedagogical conditions of selection of children for occupations existing in the republic Kurdistan artistic gymnastics Material and Methods: questioning of 24 trainers on artistic gymnastics and experts in physical culture of the republic Kurdistan was carried out. The general questions of selection and methodical features of selection of children for occupations by artistic gymnastics in Kurdistan were studied. Results: questioning revealed absence of...

  8. 28 CFR 2.207 - Supervision reports to Commission.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Supervision reports to Commission. 2.207 Section 2.207 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT OF PRISONERS, YOUTH OFFENDERS, AND JUVENILE DELINQUENTS District of Columbia Supervised Releasees § 2.207 Supervision reports to Commission. A...

  9. Orthogonal feature selection method. [For preprocessing of man spectral data

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B R [Univ. of Washington, Seattle; Bender, C F

    1976-01-01

    A new method of preprocessing spectral data for extraction of molecular structural information is desired. This SELECT method generates orthogonal features that are important for classification purposes and that also retain their identity to the original measurements. A brief introduction to chemical pattern recognition is presented. A brief description of the method and an application to mass spectral data analysis follow. (BLM)

  10. Postgraduate research supervision in a socially distributed ...

    African Journals Online (AJOL)

    Postgraduate supervision is a higher education practice with a long history. Through the conventional "apprenticeship" model postgraduate supervision has served as an important vehicle of intellectual inheritance between generations. However, this model of supervision has come under scrutiny as a consequence of the ...

  11. Supervision Experiences of New Professional School Counselors

    Science.gov (United States)

    Bultsma, Shawn A.

    2012-01-01

    This qualitative study examined the supervision experiences of 11 new professional school counselors. They reported that their supervision experiences were most often administrative in nature; reports of clinical and developmental supervision were limited to participants whose supervisors were licensed as professional counselors. In addition,…

  12. Optimal Feature Space Selection in Detecting Epileptic Seizure based on Recurrent Quantification Analysis and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saleh LAshkari

    2016-06-01

    Full Text Available Selecting optimal features based on nature of the phenomenon and high discriminant ability is very important in the data classification problems. Since it doesn't require any assumption about stationary condition and size of the signal and the noise in Recurrent Quantification Analysis (RQA, it may be useful for epileptic seizure Detection. In this study, RQA was used to discriminate ictal EEG from the normal EEG where optimal features selected by combination of algorithm genetic and Bayesian Classifier. Recurrence plots of hundred samples in each two categories were obtained with five distance norms in this study: Euclidean, Maximum, Minimum, Normalized and Fixed Norm. In order to choose optimal threshold for each norm, ten threshold of ε was generated and then the best feature space was selected by genetic algorithm in combination with a bayesian classifier. The results shown that proposed method is capable of discriminating the ictal EEG from the normal EEG where for Minimum norm and 0.1˂ε˂1, accuracy was 100%. In addition, the sensitivity of proposed framework to the ε and the distance norm parameters was low. The optimal feature presented in this study is Trans which it was selected in most feature spaces with high accuracy.

  13. Online supervision at the university

    DEFF Research Database (Denmark)

    Bengtsen, Søren Smedegaard; Jensen, Gry Sandholm

    2015-01-01

    supervision proves unhelpful when trying to understand how online supervision and feedback is a pedagogical phenomenon in its own right, and irreducible to the face-to-face context. Secondly we show that not enough attention has been given to the way different digital tools and platforms influence...... pedagogy we forge a new concept of “format supervision” that enables supervisors to understand and reflect their supervision practice, not as caught in the physical-virtual divide, but as a choice between face-to-face and online formats that each conditions the supervisory dialogue in their own particular...

  14. YamiPred: A novel evolutionary method for predicting pre-miRNAs and selecting relevant features

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Theofilatos, Konstantinos; Likothanassis, Spiros; Mavroudi, Seferina

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of Support Vector Machines (SVM) with Genetic Algorithms (GA) for feature selection and parameters optimization. YamiPred was tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this minimal feature subset has achieved very high classification performance and revealed the minimum number of samples required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other organisms including the category of viruses.

  15. YamiPred: A novel evolutionary method for predicting pre-miRNAs and selecting relevant features

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2015-01-23

    MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of Support Vector Machines (SVM) with Genetic Algorithms (GA) for feature selection and parameters optimization. YamiPred was tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this minimal feature subset has achieved very high classification performance and revealed the minimum number of samples required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other organisms including the category of viruses.

  16. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Adal, Kedir M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sidebe, Desire [Univ. of Burgundy, Dijon (France); Ali, Sharib [Univ. of Burgundy, Dijon (France); Chaum, Edward [Univ. of Tennessee, Knoxville, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meriaudeau, Fabrice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  17. Multicultural supervision: lessons learned about an ongoing struggle.

    Science.gov (United States)

    Christiansen, Abigail Tolhurst; Thomas, Volker; Kafescioglu, Nilufer; Karakurt, Gunnur; Lowe, Walter; Smith, William; Wittenborn, Andrea

    2011-01-01

    This article examines the experiences of seven diverse therapists in a supervision course as they wrestled with the real-world application of multicultural supervision. Existing literature on multicultural supervision does not address the difficulties that arise in addressing multicultural issues in the context of the supervision relationship. The experiences of six supervisory candidates and one mentoring supervisor in addressing multicultural issues in supervision are explored. Guidelines for conversations regarding multicultural issues are provided. © 2011 American Association for Marriage and Family Therapy.

  18. Optimum supervision intervals and order of supervision in nuclear reactor protective systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.

    1978-01-01

    The optimum inspection strategy of an m-out-of-n:G nuclear reactor protective system with nonidentical units is analyzed. A 2-out-of-4:G system is used to formulate a multi-variable optimization problem to determine (a) the optimum order of supervision of the units and (b) the optimum supervision intervals between units. The case of systems with identical units is a special case of the above. Numerical results are derived using a computer algorithm

  19. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  1. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  2. Exploring paraprofessional and classroom factors affecting teacher supervision.

    Science.gov (United States)

    Irvin, Dwight W; Ingram, Paul; Huffman, Jonathan; Mason, Rose; Wills, Howard

    2018-02-01

    Paraprofessionals serve a primary role in supporting students with disabilities in the classroom, which necessitates teachers' supervision as a means to improve their practice. Yet, little is known regarding what factors affect teacher supervision. We sought to identify how paraprofessional competence and classroom type affected the levels of teacher direction. We administered an adapted version of the Paraprofessional Needs, Knowledge & Tasks Survey and the Survey for Teachers Supervising Paraprofessionals to teachers supervising paraprofessionals in elementary schools. Structural Equation Modeling was used to examine the link between paraprofessional competence and classroom factors affecting the level of teacher supervision. Our results indicated that when teachers perceived paraprofessionals as being more skilled, they provided more supervision, and when more supervision was provided the less they thought paraprofessionals should be doing their assigned tasks. Additionally, paraprofessionals working in classrooms with more students with mild disabilities received less supervision than paraprofessionals working in classrooms with more students with moderate-to-severe disabilities. Those paraprofessionals in classrooms serving mostly children with mild disabilities were also perceived as having lower levels of skill competence than those serving in classrooms with students with more moderate-to-severe disabilities. By understanding the factors that affect teacher supervision, policy and professional development opportunities can be refined/developed to better support both supervising teachers and paraprofessionals and, in turn, improve the outcomes of children with disabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  4. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    Science.gov (United States)

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Supervised pre-processing approaches in multiple class variables classification for fish recruitment forecasting

    KAUST Repository

    Fernandes, José Antonio

    2013-02-01

    A multi-species approach to fisheries management requires taking into account the interactions between species in order to improve recruitment forecasting of the fish species. Recent advances in Bayesian networks direct the learning of models with several interrelated variables to be forecasted simultaneously. These models are known as multi-dimensional Bayesian network classifiers (MDBNs). Pre-processing steps are critical for the posterior learning of the model in these kinds of domains. Therefore, in the present study, a set of \\'state-of-the-art\\' uni-dimensional pre-processing methods, within the categories of missing data imputation, feature discretization and feature subset selection, are adapted to be used with MDBNs. A framework that includes the proposed multi-dimensional supervised pre-processing methods, coupled with a MDBN classifier, is tested with synthetic datasets and the real domain of fish recruitment forecasting. The correctly forecasting of three fish species (anchovy, sardine and hake) simultaneously is doubled (from 17.3% to 29.5%) using the multi-dimensional approach in comparison to mono-species models. The probability assessments also show high improvement reducing the average error (estimated by means of Brier score) from 0.35 to 0.27. Finally, these differences are superior to the forecasting of species by pairs. © 2012 Elsevier Ltd.

  7. Electricity market price spike analysis by a hybrid data model and feature selection technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2010-01-01

    In a competitive electricity market, energy price forecasting is an important activity for both suppliers and consumers. For this reason, many techniques have been proposed to predict electricity market prices in the recent years. However, electricity price is a complex volatile signal owning many spikes. Most of electricity price forecast techniques focus on the normal price prediction, while price spike forecast is a different and more complex prediction process. Price spike forecasting has two main aspects: prediction of price spike occurrence and value. In this paper, a novel technique for price spike occurrence prediction is presented composed of a new hybrid data model, a novel feature selection technique and an efficient forecast engine. The hybrid data model includes both wavelet and time domain variables as well as calendar indicators, comprising a large candidate input set. The set is refined by the proposed feature selection technique evaluating both relevancy and redundancy of the candidate inputs. The forecast engine is a probabilistic neural network, which are fed by the selected candidate inputs of the feature selection technique and predict price spike occurrence. The efficiency of the whole proposed method for price spike occurrence forecasting is evaluated by means of real data from the Queensland and PJM electricity markets. (author)

  8. A semi-supervised approach using label propagation to support citation screening.

    Science.gov (United States)

    Kontonatsios, Georgios; Brockmeier, Austin J; Przybyła, Piotr; McNaught, John; Mu, Tingting; Goulermas, John Y; Ananiadou, Sophia

    2017-08-01

    Citation screening, an integral process within systematic reviews that identifies citations relevant to the underlying research question, is a time-consuming and resource-intensive task. During the screening task, analysts manually assign a label to each citation, to designate whether a citation is eligible for inclusion in the review. Recently, several studies have explored the use of active learning in text classification to reduce the human workload involved in the screening task. However, existing approaches require a significant amount of manually labelled citations for the text classification to achieve a robust performance. In this paper, we propose a semi-supervised method that identifies relevant citations as early as possible in the screening process by exploiting the pairwise similarities between labelled and unlabelled citations to improve the classification performance without additional manual labelling effort. Our approach is based on the hypothesis that similar citations share the same label (e.g., if one citation should be included, then other similar citations should be included also). To calculate the similarity between labelled and unlabelled citations we investigate two different feature spaces, namely a bag-of-words and a spectral embedding based on the bag-of-words. The semi-supervised method propagates the classification codes of manually labelled citations to neighbouring unlabelled citations in the feature space. The automatically labelled citations are combined with the manually labelled citations to form an augmented training set. For evaluation purposes, we apply our method to reviews from clinical and public health. The results show that our semi-supervised method with label propagation achieves statistically significant improvements over two state-of-the-art active learning approaches across both clinical and public health reviews. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Abusive Supervision Scale Development in Indonesia

    OpenAIRE

    Wulani, Fenika; Purwanto, Bernadinus M; Handoko, Hani

    2014-01-01

    The purpose of this study was to develop a scale of abusive supervision in Indonesia. The study was conducted with a different context and scale development method from Tepper’s (2000) abusive supervision scale. The abusive supervision scale from Tepper (2000) was developed in the U.S., which has a cultural orientation of low power distance. The current study was conducted in Indonesia, which has a high power distance. This study used interview procedures to obtain information about superviso...

  10. HEART RATE VARIABILITY CLASSIFICATION USING SADE-ELM CLASSIFIER WITH BAT FEATURE SELECTION

    Directory of Open Access Journals (Sweden)

    R Kavitha

    2017-07-01

    Full Text Available The electrical activity of the human heart is measured by the vital bio medical signal called ECG. This electrocardiogram is employed as a crucial source to gather the diagnostic information of a patient’s cardiopathy. The monitoring function of cardiac disease is diagnosed by documenting and handling the electrocardiogram (ECG impulses. In the recent years many research has been done and developing an enhanced method to identify the risk in the patient’s body condition by processing and analysing the ECG signal. This analysis of the signal helps to find the cardiac abnormalities, arrhythmias, and many other heart problems. ECG signal is processed to detect the variability in heart rhythm; heart rate variability is calculated based on the time interval between heart beats. Heart Rate Variability HRV is measured by the variation in the beat to beat interval. The Heart rate Variability (HRV is an essential aspect to diagnose the properties of the heart. Recent development enhances the potential with the aid of non-linear metrics in reference point with feature selection. In this paper, the fundamental elements are taken from the ECG signal for feature selection process where Bat algorithm is employed for feature selection to predict the best feature and presented to the classifier for accurate classification. The popular machine learning algorithm ELM is taken for classification, integrated with evolutionary algorithm named Self- Adaptive Differential Evolution Extreme Learning Machine SADEELM to improve the reliability of classification. It combines Effective Fuzzy Kohonen clustering network (EFKCN to be able to increase the accuracy of the effect for HRV transmission classification. Hence, it is observed that the experiment carried out unveils that the precision is improved by the SADE-ELM method and concurrently optimizes the computation time.

  11. Intuitive expertise in ICT graduate supervision

    Directory of Open Access Journals (Sweden)

    Jill Jameson

    2002-12-01

    Full Text Available Intuitive expertise in the application of advanced interdisciplinary facilitation is the subject of this personal reflection on the graduate supervisory style of Professor David Squires in computers in education. This single-case reflective study examines the characteristics of effective supervision observed during masters and doctoral supervision at King's College in the years 1990-9. Interdisciplinarity in ICT graduate studies particularly requires a fluency of supervisory expertise in enabling supervisees to combine multiple complex perspectives from a number of fields of knowledge. Intuitive combinatory aspects of supervision are highlighted in this reflection on the role carried out by an academic expert in facilitating student success. This is examined from a perspective incorporating affective as well as intellectual elements, informed by characteristics identified in professional sports and performing arts coaching/mentoring. Key characteristics comprising a model of intuitive expertise in ICT graduate supervision were outlined. The resultant portrait aims to complement existing literature on graduate supervision, with reference to the field of ICTI computers in education relating to student hypermedia composition.

  12. Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations

    Science.gov (United States)

    2012-01-01

    Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent

  13. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    Science.gov (United States)

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  14. 46 CFR 131.420 - Manning and supervision.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Manning and supervision. 131.420 Section 131.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Sufficiency and Supervision of Crew of Survival Craft § 131.420 Manning and supervision. (a) There must be enough trained persons aboard each survival craf...

  15. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  16. 32 CFR 631.3 - Supervision.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Supervision. 631.3 Section 631.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS ARMED FORCES DISCIPLINARY CONTROL BOARDS AND OFF-INSTALLATION LIAISON AND OPERATIONS General § 631.3 Supervision. The following will...

  17. Selecting Informative Features of the Helicopter and Aircraft Acoustic Signals in the Adaptive Autonomous Information Systems for Recognition

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2017-01-01

    Full Text Available The article forms the rationale for selecting the informative features of the helicopter and aircraft acoustic signals to solve a problem of their recognition and shows that the most informative ones are the counts of extrema in the energy spectra of the input signals, which represent non-centered random variables. An apparatus of the multiple initial regression coefficients was selected as a mathematical tool of research. The application of digital re-circulators with positive and negative feedbacks, which have the comb-like frequency characteristics, solves the problem of selecting informative features. A distinguishing feature of such an approach is easy agility of the comb frequency characteristics just through the agility of a delay value of digital signal in the feedback circuit. Adding an adaptation block to the selection block of the informative features enables us to ensure the invariance of used informative feature and counts of local extrema of the spectral power density to the airspeed of a helicopter. The paper gives reasons for the principle of adaptation and the structure of the adaptation block. To form the discriminator characteristics are used the cross-correlation statistical characteristics of the quadrature components of acoustic signal realizations, obtained by Hilbert transform. The paper proposes to provide signal recognition using a regression algorithm that allows handling the non-centered informative features and using a priori information about coefficients of initial regression of signal and noise.The simulation in Matlab Simulink has shown that selected informative features of signals in regressive processing of signal realizations of 0.5 s duration have good separability, and based on a set of 100 acoustic signal realizations in each class in full-scale conditions, has proved ensuring a correct recognition probability of 0.975, at least. The considered principles of informative features selection and adaptation can

  18. Online supervision at the university - A comparative study of supervision on student assignments face-to-face and online

    Directory of Open Access Journals (Sweden)

    Søren Smedegaard Bengtsen

    2015-09-01

    Full Text Available Through an empirical study of supervision on student assignments at the university across face-to-face and online settings, we show firstly the limiting implications of traditional dichotomies between face-to-face and online supervision. Secondly we show that more attention must be given to the way different digital tools influence the supervisory dialogue. These findings illustrate a form of ‘torn pedagogy’; that online tools and platforms destabilize and tear traditional understandings of supervision pedagogy apart. Also we forge a new concept of “format supervision” that enables supervisors to understand and reflect their supervision practice as a deliberate choice between face-to-face and online formats.

  19. Online supervision at the university - A comparative study of supervision on student assignments face-to-face and online

    Directory of Open Access Journals (Sweden)

    Søren Smedegaard Bengtsen

    2015-02-01

    Full Text Available Through an empirical study of supervision on student assignments at the university across face-to-face and online settings, we show firstly the limiting implications of traditional dichotomies between face-to-face and online supervision. Secondly we show that more attention must be given to the way different digital tools influence the supervisory dialogue. These findings illustrate a form of ‘torn pedagogy’; that online tools and platforms destabilize and tear traditional understandings of supervision pedagogy apart. Also we forge a new concept of “format supervision” that enables supervisors to understand and reflect their supervision practice as a deliberate choice between face-to-face and online formats.

  20. Inference for feature selection using the Lasso with high-dimensional data

    DEFF Research Database (Denmark)

    Brink-Jensen, Kasper; Ekstrøm, Claus Thorn

    2014-01-01

    Penalized regression models such as the Lasso have proved useful for variable selection in many fields - especially for situations with high-dimensional data where the numbers of predictors far exceeds the number of observations. These methods identify and rank variables of importance but do...... not generally provide any inference of the selected variables. Thus, the variables selected might be the "most important" but need not be significant. We propose a significance test for the selection found by the Lasso. We introduce a procedure that computes inference and p-values for features chosen...... by the Lasso. This method rephrases the null hypothesis and uses a randomization approach which ensures that the error rate is controlled even for small samples. We demonstrate the ability of the algorithm to compute $p$-values of the expected magnitude with simulated data using a multitude of scenarios...

  1. Combination of supervised and semi-supervised regression models for improved unbiased estimation

    DEFF Research Database (Denmark)

    Arenas-Garía, Jeronimo; Moriana-Varo, Carlos; Larsen, Jan

    2010-01-01

    In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised and semisupervi......In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised...

  2. Supervision in social work NGOs in Bihor County

    Directory of Open Access Journals (Sweden)

    Cristiana Marcela MARC

    2012-01-01

    Full Text Available This paper presents a qualitative research which aims at analyzing supervision in the social services provided by NGOs in Bihor County. We used the method of sociological investigation by means of interview and data collection was accomplished through the technique of individual semi-structured interview. The obtained responses demonstrate that individual supervision was mostly used and in most cases the professional supervisor was from outside the organization. The respondents considered that supervision reduces professional stress. The main problems encountered in the implementation of supervision are the lack of financial resources and the association of supervision with bureaucratic control.

  3. Scale selection for supervised image segmentation

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M J; Loog, Marco

    2012-01-01

    schemes are usually unsupervised, as they do not take into account the actual segmentation problem at hand. In this paper, we consider the problem of selecting scales, which aims at an optimal discrimination between user-defined classes in the segmentation. We show the deficiency of the classical...

  4. Feature extraction for SAR target recognition based on supervised manifold learning

    International Nuclear Information System (INIS)

    Du, C; Zhou, S; Sun, J; Zhao, J

    2014-01-01

    On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition

  5. Examining the Effects of Intensive Supervision and Aftercare Programs for At-Risk Youth: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Bouchard, Jessica; Wong, Jennifer S

    2018-05-01

    Community correctional sentences are administered to more juvenile offenders in North America than any other judicial sentence. Particularly prominent in juvenile corrections is intensive supervision probation and aftercare/reentry, yet the effects of these supervision-oriented interventions on recidivism are mixed. The purpose of this meta-analysis is to determine the effects of intensive supervision probation and aftercare/reentry on juvenile recidivism. An extensive search of the literature and application of strict inclusion criteria resulted in the selection of 27 studies that contributed 55 individual effect sizes. Studies were pooled based on intervention type (intensive supervision probation or aftercare/reentry) and outcome measure (alleged or convicted offenses). The pooled analyses yielded contradictory results with respect to outcome measure; in both cases, supervision had a beneficial effect on alleged offenses and negatively affected convicted offenses. These patterns across intervention type and outcome measure, as well as recommendations for future research, are discussed.

  6. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review.

    Science.gov (United States)

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An

    2015-01-01

    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  7. Supervised and non-supervised Nordic walking in the treatment of chronic low back pain: a single blind randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Bendix Tom

    2010-02-01

    relation to any of the outcomes at baseline. For pain, disability, and patient specific function the supervised Nordic walking group generally faired best however no statistically significant differences were found. Regarding the secondary outcome measures, patients in the supervised group tended to use less pain medication, to seek less concurrent care for their back pain, at the eight-week follow-up. There was no difference between physical activity levels for the supervised and unsupervised Nordic walking groups. No negative side effects were reported. Conclusion We did not find statistically significant differences between eight weeks of supervised or unsupervised Nordic walking and advice to remain active in a group of chronic low back pain patients. Nevertheless, the greatest average improvement tended to favor the supervised Nordic walking group and - taking into account other health related benefits of Nordic walking - this form of exercise may potentially be of benefit to selected groups of chronic back pain patients. Trial registration http://www.ClinicalTrials.gov # NCT00209820

  8. Cultural Humility in Psychotherapy Supervision.

    Science.gov (United States)

    Hook, Joshua N; Watkins, C Edward; Davis, Don E; Owen, Jesse; Van Tongeren, Daryl R; Ramos, Marciana J

    2016-01-01

    As a core component of multicultural orientation, cultural humility can be considered an important attitude for clinical supervisees to adopt and practically implement. How can cultural humility be most meaningfully incorporated in supervision? In what ways can supervisors stimulate the development of a culturally humble attitude in our supervisees? We consider those questions in this paper and present a model for addressing cultural humility in clinical supervision. The primary focus is given to two areas: (a) modeling and teaching of cultural humility through interpersonal interactions in supervision, and (b) teaching cultural humility through outside activities and experiences. Two case studies illustrating the model are presented, and a research agenda for work in this area is outlined.

  9. Assessment of Counselors' Supervision Processes

    Science.gov (United States)

    Ünal, Ali; Sürücü, Abdullah; Yavuz, Mustafa

    2013-01-01

    The aim of this study is to investigate elementary and high school counselors' supervision processes and efficiency of their supervision. The interview method was used as it was thought to be better for realizing the aim of the study. The study group was composed of ten counselors who were chosen through purposeful sampling method. Data were…

  10. Image fusion using sparse overcomplete feature dictionaries

    Science.gov (United States)

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  11. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    Science.gov (United States)

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Automatic Target Recognition: Statistical Feature Selection of Non-Gaussian Distributed Target Classes

    Science.gov (United States)

    2011-06-01

    implementing, and evaluating many feature selection algorithms. Mucciardi and Gose compared seven different techniques for choosing subsets of pattern...122 THIS PAGE INTENTIONALLY LEFT BLANK 123 LIST OF REFERENCES [1] A. Mucciardi and E. Gose , “A comparison of seven techniques for

  13. Prediction of protein modification sites of pyrrolidone carboxylic acid using mRMR feature selection and analysis.

    Directory of Open Access Journals (Sweden)

    Lu-Lu Zheng

    Full Text Available Pyrrolidone carboxylic acid (PCA is formed during a common post-translational modification (PTM of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR and incremental feature selection (IFS. We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations.

  14. Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics

    Science.gov (United States)

    Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas

    2014-01-01

    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727

  15. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    Science.gov (United States)

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  16. Gene selection and classification for cancer microarray data based on machine learning and similarity measures

    Directory of Open Access Journals (Sweden)

    Liu Qingzhong

    2011-12-01

    Full Text Available Abstract Background Microarray data have a high dimension of variables and a small sample size. In microarray data analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease status, and how to determine the final gene set that is best for classification. Associations among genetic markers mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money. Results To deal with redundant information and improve classification, we propose a gene selection method, Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination, Leave-One-Out Calculation Sequential Forward Selection and several others. Conclusions On average, with the use of popular learning machines including Nearest Mean Scaled Classifier, Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy; Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than the gene selection method varSelRF.

  17. Feature Selection for Wheat Yield Prediction

    Science.gov (United States)

    Ruß, Georg; Kruse, Rudolf

    Carrying out effective and sustainable agriculture has become an important issue in recent years. Agricultural production has to keep up with an everincreasing population by taking advantage of a field’s heterogeneity. Nowadays, modern technology such as the global positioning system (GPS) and a multitude of developed sensors enable farmers to better measure their fields’ heterogeneities. For this small-scale, precise treatment the term precision agriculture has been coined. However, the large amounts of data that are (literally) harvested during the growing season have to be analysed. In particular, the farmer is interested in knowing whether a newly developed heterogeneity sensor is potentially advantageous or not. Since the sensor data are readily available, this issue should be seen from an artificial intelligence perspective. There it can be treated as a feature selection problem. The additional task of yield prediction can be treated as a multi-dimensional regression problem. This article aims to present an approach towards solving these two practically important problems using artificial intelligence and data mining ideas and methodologies.

  18. Abusive Supervision Scale Development in Indonesia

    Directory of Open Access Journals (Sweden)

    Fenika Wulani

    2014-02-01

    Full Text Available The purpose of this study was to develop a scale of abusive supervision in Indonesia. The study was conducted with a different context and scale development method from Tepper’s (2000 abusive supervision scale. The abusive supervision scale from Tepper (2000 was developed in the U.S., which has a cultural orientation of low power distance. The current study was conducted in Indonesia, which has a high power distance. This study used interview procedures to obtain information about supervisor’s abusive behavior, and it was also assessed by experts. The results of this study indicated that abusive supervision was a 3-dimensional construct. There were anger-active abuse (6 items, humiliation-active abuse (4 items, and passive abuse (15 items. These scales have internal reliabilities of 0.947, 0.922, and 0.845, in sequence.

  19. Prediction of Protein Structural Class Based on Gapped-Dipeptides and a Recursive Feature Selection Approach

    Directory of Open Access Journals (Sweden)

    Taigang Liu

    2015-12-01

    Full Text Available The prior knowledge of protein structural class may offer useful clues on understanding its functionality as well as its tertiary structure. Though various significant efforts have been made to find a fast and effective computational approach to address this problem, it is still a challenging topic in the field of bioinformatics. The position-specific score matrix (PSSM profile has been shown to provide a useful source of information for improving the prediction performance of protein structural class. However, this information has not been adequately explored. To this end, in this study, we present a feature extraction technique which is based on gapped-dipeptides composition computed directly from PSSM. Then, a careful feature selection technique is performed based on support vector machine-recursive feature elimination (SVM-RFE. These optimal features are selected to construct a final predictor. The results of jackknife tests on four working datasets show that our method obtains satisfactory prediction accuracies by extracting features solely based on PSSM and could serve as a very promising tool to predict protein structural class.

  20. Semi-supervised sparse coding

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.