WorldWideScience

Sample records for supersymmetry susy breaking

  1. Supersymmetry breaking

    Indian Academy of Sciences (India)

    Emilian Dudas

    2009-01-01

    We review the various mechanisms of supersymmetry breaking and its trans-mission to the observable sector. We argue that hybrid models where gauge dominates over gravity mediation, but gravity provides the main contributions to the Higgs sector masses and the neutralino mass, are able to combine the advantages and reduce the disadvantages of the two transmission mechanisms.

  2. Corpuscular Breaking of Supersymmetry

    CERN Document Server

    Dvali, Gia

    2014-01-01

    Are topological solitons elementary or composites? We answer this question by drawing up a corpuscular formalism in which solitons are coherent states of quantum constituents. This naturally leads to a functional integral representation, in which the classical saddle point is reached as the most probable distribution of corpuscles in the $\\hbar = 0$ limit and where quantum corpuscular corrections correspond to excursions away from such a distribution that occur only for finite $\\hbar$. Several striking features come up. Topological charge emerges as a collective flow of quantum numbers carried by individual corpuscles. Moreover, the corpuscular corrections are not reducible to any known form of quantum corrections, such as loop expansions in the coupling constant $\\hbar g^2$ or semiclassical $e^{-1/\\hbar g^2}$ effects. Corpuscular corrections are stronger and appear already at order $\\sqrt{\\hbar g^2}$. In SUSY theories quantum corpuscular corrections generically break supersymmetry. We show that a domain wall...

  3. On Anomaly Mediated SUSY Breaking

    CERN Document Server

    de Alwis, S P

    2008-01-01

    A discrepancy between the Anomaly Mediated Supersymmetry Breaking (AMSB) gaugino mass calculated from the work of Kaplunovsky and Louis (hep-th/9402005) (KL) and other calculations in the literature is explained, and it is argued that the KL expression is the correct one relevant to the Wilsonian action. Furthermore it is argued that the AMSB contribution to the squark and slepton masses should be replaced by the contribution pointed out by Dine and Seiberg (DS) which has nothing to do with Weyl anomalies. This is not in general equivalent to the AMSB expression, and it is shown that there are models in which the usual AMSB expression would vanish but the DS one is non-zero. In fact the latter has aspects of both AMSB and gauge mediated SUSY breaking. In particular like the latter, it gives positive squared masses for sleptons.

  4. Dynamical Supersymmetry Breaking

    CERN Document Server

    Shadmi, Y; Shadmi, Yael; Shirman, Yuri

    2000-01-01

    Supersymmetry is one of the most plausible and theoretically motivated frameworks for extending the Standard Model. However, any supersymmetry in Nature must be a broken symmetry. Dynamical supersymmetry breaking (DSB) is an attractive idea for incorporating supersymmetry into a successful description of Nature. The study of DSB has recently enjoyed dramatic progress, fueled by advances in our understanding of the dynamics of supersymmetric field theories. These advances have allowed for direct analysis of DSB in strongly coupled theories, and for the discovery of new DSB theories, some of which contradict early criteria for DSB. We review these criteria, emphasizing recently discovered exceptions. We also describe, through many examples, various techniques for directly establishing DSB by studying the infrared theory, including both older techniques in regions of weak coupling, and new techniques in regions of strong coupling. Finally, we present a list of representative DSB models, their main properties, an...

  5. Classical Analog of Extended Phase Space SUSY and Its Breaking

    OpenAIRE

    Gagik Ter-Kazarian

    2013-01-01

    We derive the classical analog of the extended phase space quantum mechanics of the particle with odd degrees of freedom which gives rise to (N=2)-realization of supersymmetry (SUSY) algebra. By means of an iterative procedure, we find the approximate groundstate solutions to the extended Schr\\"{o}dinger-like equation and use these solutions further to calculate the parameters which measure the breaking of extended SUSY such as the groundstate energy. Consequently, we calculate a more practic...

  6. Neutrino masses from SUSY breaking in radiative seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Antonio J.R. [University of Lisbon, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal)

    2015-03-01

    Radiatively generated neutrino masses (m{sub ν}) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY{sub EWSB} contributions), and which are manifest from left angle F{sub H}{sup †} right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum {sub H} left angle H{sup †} x {sub H} H right angle ≠ 0, radiatively generated m{sub ν} can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY{sub EWS} contributions). We point out that recent literature overlooks pure-SUSY{sub EWSB} contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY{sub EWS}. We show that there exist realistic radiative seesaw models in which the leading order contribution to m{sub ν} is proportional to SUSY{sub EWS}. To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m{sub soft}/M{sup 3} or m{sub soft}{sup 2}/M{sup 3}. We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m{sub ν} can be quite small without conflicting with lower limits on the mass of new particles. (orig.)

  7. Single sector supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Markus A.; Terning, John

    1999-03-18

    We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses.

  8. String Mediated Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, John H

    2001-07-25

    We consider the 3+1 visible sector to live on a Hanany-Witten D-brane construction in type IIA string theory. The messenger sector consists of stretched strings from the visible brane to a hidden D6-brane in the extra spatial dimensions. In the open string channel supersymmetry is broken by gauge mediation while in the closed string channel supersymmetry is broken by gravity mediation. Hence, we call this kind of mediation ''string mediation''. We propose an extension of the Dimopoulos-Georgi theorem to brane models: only detached probe branes can break supersymmetry without generating a tachyon. Fermion masses are generated at one loop if the branes break a sufficient amount of the ten dimensional Lorentz group while scalar potentials are generated if there is a force between the visible brane and the hidden brane. Scalars can be lifted at two loops through a combination of brane bending and brane forces. We find a large class of stable non-supersymmetric brane configurations of ten dimensional string theory.

  9. Classical analog of extended phase space SUSY and its breaking

    CERN Document Server

    Ter-Kazarian, Gagik

    2013-01-01

    We derive the classical analog of the extended phase space quantum mechanics of the particle with odd degrees of freedom which gives rise to (N=2)-realization of supersymmetry (SUSY) algebra. By means of an iterative procedure, we find the approximate groundstate solutions to the extended Schr\\"{o}dinger-like equation and use these solutions further to calculate the parameters which measure the breaking of extended SUSY such as the groundstate energy. Consequently, we calculate a more practical measure for the SUSY breaking which is the expectation value of an auxiliary field. We analyze non-perturbative mechanism for extended phase space SUSY breaking in the instanton picture and show that this has resulted from tunneling between the classical vacua of the theory. Particular attention is given to the algebraic properties of shape invariance and spectrum generating algebra.

  10. Strongly Coupled Semi-Direct Mediation of Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ibe, M.; /SLAC; Izawa, K.-I.; /Kyoto U., Yukawa Inst., Kyoto /Tokyo U., IPMU; Nakai, Y.; /Kyoto U., Yukawa Inst., Kyoto

    2011-09-13

    Supersymmetry (SUSY) is expected to be a crucial ingredient of basic laws in Nature. It is an attractive possibility that SUSY is broken at low energy within the experimental reach in the near future. Among others, low-energy dynamics with gauge mediation between a hidden sector of SUSY breaking and the visible sector of SUSY standard model may be phenomenologically viable. In particular, the gauge interactions are flavor blind, so that the unwanted flavor-changing processes are naturally suppressed. Strongly coupled semi-direct gauge mediation models of supersymmetry breaking through massive mediators with standard model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard model gaugino masses for a small mediator mass without breaking the standard model symmetries.

  11. On SUSY breaking from NL/L SUSY relation

    Energy Technology Data Exchange (ETDEWEB)

    Shima, Kazunari, E-mail: shima@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Tsuda, Motomu, E-mail: tsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)

    2010-10-11

    We show in two-dimensional space-time (d=2) the relation between an N=2 nonlinear supersymmetric (NLSUSY) model and an N=2 linear (L) SUSY Yang-Mills (SYM) theory with matter (N=2 LSUSY QCD theory). We give a new interpretation of four Nambu-Goldstone fermion (superon) contact terms, which emerge from an N=2 general SUSY QCD (composite) action, as mass terms for LSUSY supermultiplets and discuss the possible SUSY breaking mechanism in NL/L SUSY relation for SUSY gauge theories in d=2.

  12. Supersymmetry breaking with extra dimensions

    Indian Academy of Sciences (India)

    Fabio Zwirner

    2004-02-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems.

  13. ATLAS diboson excess from low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Christoffer [Department of Fundamental Physics, Chalmers University of Technology,412 96 Göteborg (Sweden); Physique Théorique et Mathématique, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); International Solvay Institutes,1050 Brussels (Belgium); Torre, Riccardo [Dipartimento di Fisica e Astronomia, Università di Padova and INFN Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)

    2016-01-18

    We provide an interpretation of the recent ATLAS diboson excess in terms of a class of supersymmetric models in which the scale of supersymmetry (SUSY) breaking is in the few TeV range. The particle responsible for the excess is the scalar superpartner of the Goldstone fermion associated with SUSY breaking, the sgoldstino. This scalar couples strongly to the Standard Model vector bosons and weakly to the fermions, with all coupling strengths determined by ratios of soft SUSY breaking parameters over the SUSY breaking scale. Explaining the ATLAS excess selects particular relations and ranges for the gaugino masses, while imposing no constraints on the other superpartner masses. Moreover, this signal hypothesis predicts a rate in the Zγ final state that is expected to be observable at the LHC Run II already with a few fb{sup −1} of integrated luminosity.

  14. SUSY breaking by a metastable ground state: Why the early Universe preferred the non-supersymmetric vacuum

    CERN Document Server

    Abel, S A; Jaeckel, J; Khoze, V V; Abel, Steven A.; Chu, Chong-Sun; Jaeckel, Joerg; Khoze, Valentin V.

    2007-01-01

    Supersymmetry breaking in a metastable vacuum is re-examined in a cosmological context. It is shown that thermal effects generically drive the Universe to the metastable minimum even if it begins in the supersymmetry-preserving one. This is a generic feature of the ISS models of metastable supersymmetry breaking due to the fact that SUSY preserving vacua contain fewer light degrees of freedom than the metastable ground state at the origin. These models of metastable SUSY breaking are thus placed on an equal footing with the more usual dynamical SUSY breaking scenarios.

  15. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  16. Inflationary implications of supersymmetry breaking

    NARCIS (Netherlands)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne

    2013-01-01

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll paramet

  17. N=4 supersymmetric multidimensional quantum mechanics, partial SUSY breaking, and superconformal quantum mechanics

    Science.gov (United States)

    Donets, E. E.; Pashnev, A.; Juan Rosales, J.; Tsulaia, M. M.

    2000-02-01

    The multidimensional N=4 supersymmetric (SUSY) quantum mechanics (QM) is constructed using the superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian is obtained. In the SUSY QM considered, both classical and quantum N=4 algebras include central charges, and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical models with one-quarter, one-half, and three-quarters of unbroken (broken) supersymmetries can exist in the framework of the multidimensional N=4 SUSY QM, while the one-dimensional N=4 SUSY QM, constructed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimensional generalization of the one-dimensional N=4 superconformal quantum-mechanical model. Some open questions and possible applications of the constructed multidimensional N=4 SUSY QM to the known exactly integrable systems and problems of quantum cosmology are briefly discussed.

  18. Improved single sector supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Markus A.; Terning, John

    1998-12-09

    Building on recent work by N. Arkani-Hamed and the present authors, we construct realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single strongly-coupled sector. The most important improvement compared to earlier models is that the second-generation composite states correspond to dimension-2 ''meson'' operators in the ultraviolet. This leads to a higher scale for flavor physics, and gives a completely natural suppression of flavor-changing neutral currents. We also construct models in which the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. These models provide an interesting and viable alternative to gravity- and gauge-mediated models. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation squark and slepton masses. We also analyze large classes of models that give rise to both compositeness and supersymmetry breaking, based on gauge theories with confining, fixed-point, or free-magnetic dynamics.

  19. Low Scale Supersymmetry Breaking and its LHC Signatures

    CERN Document Server

    Dudas, Emilian; Tziveloglou, Pantelis

    2013-01-01

    We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...

  20. Unconventional supersymmetry and its breaking

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)

    2014-07-30

    We present a gauge theory for a superalgebra that includes an internal gauge (G) and local Lorentz (so(1,D−1)) algebras. These two symmetries are connected by fermionic supercharges. The field content of the system includes a (non-)abelian gauge potential A, a spin-1/2 Dirac spinor ψ, the Lorentz connection ω{sup ab}, and the vielbein e{sub μ}{sup a}. The connection one-form A is in the adjoint representation of G, while ψ is in the fundamental. In contrast to standard supersymmetry and supergravity, the metric is not a fundamental field and is in the center of the superalgebra: it is not only invariant under the internal gauge group, G, and under Lorentz transformations, SO(1,D−1), but is also invariant under supersymmetry. The distinctive features of this theory that mark the difference with standard supersymmetries are: i) the number of fermionic and bosonic states is not necessarily the same; ii) there are no superpartners with equal mass; iii) although this supersymmetry originates in a local gauge theory and gravity is included, there is no gravitino; iv) fermions acquire mass from their coupling to the background or from higher order self-couplings, while bosons remain massless. In odd dimensions, the Chern–Simons (CS) form provides an action that is (quasi-)invariant under the entire superalgebra. In even dimensions, the Yang–Mills (YM) form is the only natural option and the symmetry breaks down to G⊗SO(1,D−1). In four dimensions, the construction follows the Townsend–Mac Dowell–Mansouri approach, starting with an osp(4|2)∼usp(2,2|1) connection. Due to the absence of osp(4|2)-invariant traces in four dimensions, the resulting Lagrangian is only invariant under u(1)⊕so(3,1), which includes a Nambu–Jona-Lasinio (NJL) term. In this case, the Lagrangian depends on a single dimensionful parameter that fixes Newton's constant, the cosmological constant and the NJL coupling.

  1. Supersymmetry breaking made easy, viable, and generic

    CERN Document Server

    Murayama, Hitoshi

    2007-01-01

    The kind of supersymmetry that can be discovered at the LHC must be very much flavor-blind, which used to require very special intelligently designed models of supersymmetry breaking. This led to the pessimism for some in the community that it is not likely for the LHC to discover supersymmetry. I point out that this is not so, because a garden-variety supersymmetric theories actually can do this job.

  2. Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC

    CERN Document Server

    Baer, Howard; Givens, Kevin; Rajagopalan, Shibi; Summy, Heaya

    2010-01-01

    We examine the supersymmetry phenomenology of a novel scenario of supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or inoAMSB. This is suggested by recent work on the phenomenology of flux compactified type IIB string theory. The essential features of this scenario are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB) form, while scalar and trilinear soft SUSY breaking terms are highly suppressed. Renormalization group effects yield an allowable sparticle mass spectrum, while at the same time avoiding charged LSPs; the latter are common in models with negligible soft scalar masses, such as no-scale or gaugino mediation models. Since scalar and trilinear soft terms are highly suppressed, the SUSY induced flavor and CP-violating processes are also suppressed. The lightest SUSY particle is the neutral wino, while the heaviest is the gluino. In this model, there should be a strong multi-jet +etmiss signal from squark pair production at the LHC. We find a 100 fb^{-1} re...

  3. Low-ℓ CMB from string-scale SUSY breaking?

    Science.gov (United States)

    Sagnotti, A.

    2017-01-01

    Models of inflation are instructive playgrounds for supersymmetry (SUSY) breaking in Supergravity and String Theory. In particular, combinations of branes and orientifolds that are not mutually BPS can lead to brane SUSY breaking, a phenomenon where nonlinear realizations are accompanied, in tachyon-free vacua, by the emergence of steep exponential potentials. When combined with milder terms, these exponentials can lead to slow-roll after a fast ascent and a turning point. This leaves behind distinctive patterns of scalar perturbations, where pre-inflationary peaks can lie well apart from an almost scale invariant profile. I review recent attempts to connect these power spectra to the low-ℓ cosmic microwave background (CMB), and a corresponding one-parameter extension of Lambda cold dark matter (ΛCDM) with a low-frequency cut Δ. A detailed likelihood analysis led to Δ = (0.351 ± 0.114) × 10-3Mpc-1, at 99.4% confidence level, in an extended Galactic mask with fsky = 39%, to be compared with a nearby value at 88.5% in the standard Planck 2015 mask with fsky = 94%. In these scenarios, one would be confronted, in the CMB, with relics of an epoch of deceleration that preceded the onset of slow-roll.

  4. Effective lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Krivoshchekov, V.L.; Slavnov, A.A.; Chekhov, L.O.

    1988-01-01

    An effective meson action is constructed for supersymmetric quantum chromodynamics (SUSY-QCD) in the framework of the 1/N expansion. It is shown that there is no dynamical spontaneous breaking of the supersymmetry. The explicit expression obtained for the low-energy action with allowance for the anomaly is the supersymmetric generalization of the Weinberg-Wess-Zumino-Witten action.

  5. Dynamical Supersymmetry Breaking Why and How

    CERN Document Server

    Poppitz, E R

    1998-01-01

    This theoretical review is intended to give non-theorists a flavor of the ideas driving the current efforts to experimentally find supersymmetry. We discuss the main reasons behind the expectation that supersymmetry may be "just around the corner" and may be discovered in the near future. We use simple quantum-mechanical examples to illustrate the concept---and the power---of supersymmetry, the possible ways to break supersymmetry, and the dynamical generation of small scales. We then describe how this theoretical machinery helps shape our perception of what physics beyond the electroweak scale might be.

  6. Dirac neutrino masses from generalized supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Demir, D.A. [Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Everett, L.L. [University of Wisconsin, Madison, WI (United States), Dept. of Physics; Langacker, P. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences

    2007-12-15

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1){sup '}), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)

  7. Dynamical supersymmetry breaking and unification of couplings

    CERN Document Server

    Dubovsky, S L; Troitsky, S V

    1997-01-01

    We consider the possibility of unification of the Supersymmetric Standard Model gauge groups with those of the dynamical supersymmetry breaking (DSB) sector in theories with gauge mediated supersymmetry breaking. We find constraints on the DSB gauge group beta function that come from unification of the gauge coupling constants of the two sectors. These constraints are satisfied by a fairly wide class of models. We discuss possible unification scenarios in the context of a simple model.

  8. On inflation, cosmological constant, and SUSY breaking

    CERN Document Server

    Linde, Andrei

    2016-01-01

    We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer $S$ and the inflaton $\\Phi$, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields $S$ and $\\Phi$ a small term depending on a nilpotent chiral superfield $P$ one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.

  9. Cosmological SUSY Breaking and the Pyramid Schemes

    CERN Document Server

    Banks, T

    2014-01-01

    I review the ideas of holographic space-time (HST), Cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the standard model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right handed slepton, which should be discovered soon.

  10. Cosmological SUSY breaking and the pyramid scheme

    Science.gov (United States)

    Banks, Tom

    2015-04-01

    I review the ideas of holographic spacetime (HST), cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the Standard Model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right-handed slepton, which should be discovered soon.

  11. Gauge mediated supersymmetry breaking and neutrino anomalies

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Vempati, Sudhir K.

    1999-01-01

    Supersymmetric standard model with softly broken lepton symmetry provides a suitable framework to accommodate the solar and atmospheric neutrino anomalies. This model contains a natural explanation for large mixing and hierarchal masses without fine tuning of the parameters. Neutrino spectrum is particularly constrained in the minimal messenger model (MMM) of gauge mediated SUSY breaking, since all SUSY breaking effects are controlled in MMM by a single parameter. We study the structure of neutrino masses and mixing both in MMM and in simple extensions of it in the context of solar and atmospheric neutrino anomalies.

  12. Supersymmetry Breaking and the Cosmological Constant

    CERN Document Server

    Banks, T

    2014-01-01

    I review three attempts to explain the small value of the cosmological constant, and their connection to SUSY breaking. They are The String Landscape, Supersymmetric Large Extra Dimensions (SLED), and the Holographic Space-time Formalism invented by Fischler and myself.

  13. De Sitter Uplift with Dynamical Susy Breaking

    CERN Document Server

    Retolaza, Ander

    2015-01-01

    We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family $SU(5)$ DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.

  14. De Sitter uplift with Dynamical Susy Breaking

    Science.gov (United States)

    Retolaza, Ander; Uranga, Angel

    2016-04-01

    We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family SU(5) DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.

  15. An extension for direct gauge mediation of metastable supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Fuqiang, Xu; Jin Min, Yang [Institute of Theoretical Physics, Academia Sinica - Beijing (China)

    2009-03-15

    We study the direct mediation of metastable supersymmetry breaking by a {phi}{sup 2}-deformation to the ISS (Intriligator, Seiberg and Shih) model and extend it by splitting both Tr{phi} and Tr{phi}{sup 2} terms in the superpotential and gauging the flavor symmetry. We find that with such an extension enough-long-lived metastable vacua can be obtained and the proper gaugino masses can be generated. Also, this allows for constructing a kind of models which can avoid the Landau pole problem. Especially, in our metastable vacua there exist a large region for the parameter m{sub 3} which can satisfy the phenomenology requirements and allow for a low SUSY-breaking scale (h{mu}{sub 2} {approx} 100 TeV). (authors)

  16. Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale

    Science.gov (United States)

    Björkeroth, Fredrik; King, Stephen F.; Schmitz, Kai; Yanagida, Tsutomu T.

    2017-03-01

    We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O (10-8). The origin of such a small mass splitting is explained by considering supersymmetry (SUSY) breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (s)neutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2 ≥ O (100) TeV.

  17. Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale

    Directory of Open Access Journals (Sweden)

    Fredrik Björkeroth

    2017-03-01

    Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.

  18. Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale

    CERN Document Server

    Björkeroth, Fredrik; Schmitz, Kai; Yanagida, Tsutomu T

    2016-01-01

    We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry $ \\eta_B $ in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as $ \\mathcal{O}(10^{-8}) $. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY) breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass $ m_{3/2} $ to cancel the cosmological constant. This yields additional terms in the (s)neutrino mass matrices, lifting the degeneracy and linking $ \\eta_B $ to the SUSY breaking scale. We find that achieving the correct bary...

  19. Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua

    CERN Document Server

    Froggatt, C D; Nielsen, H B; Thomas, A W

    2014-01-01

    We argue that the measured value of the cosmological constant, as well as the small values of quartic Higgs self--coupling and the corresponding beta function at the Planck scale, which can be obtained by extrapolating the Standard Model (SM) couplings to high energies, can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)_W\\times U(1)_Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than \\Lambda_{QCD} in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.

  20. The Higgs mass and the scale of SUSY breaking in the NMSSM

    Science.gov (United States)

    Zarate, Lucila

    2016-07-01

    In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales M SS. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling λ at M SS. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near M SS ≃ 1010 GeV. In the NMSSM, λ( M SS) receives an additional contribution induced by the singlet which allows for negative values of λ( M SS). In turn, for the measured value of the Higgs mass we find that M SS can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.

  1. The Higgs mass and the scale of SUSY breaking in the NMSSM

    CERN Document Server

    Zarate, Lucila

    2016-01-01

    In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales $M_{SS}$. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling $\\lambda$ at $M_{SS}$. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near $M_{SS}\\simeq 10^{10}\\text{GeV}$. In the NMSSM, $\\lambda(M_{SS})$ receives an additional contribution induced by the singlet which allows for negative values of $\\lambda(M_{SS})$. In turn, for the measured value of the Higgs mass we find that $M_{SS}$ can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.

  2. Variations on supersymmetry breaking and neutrino spectra

    Energy Technology Data Exchange (ETDEWEB)

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-12-11

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

  3. Kinematic dynamo, supersymmetry breaking, and chaos

    Science.gov (United States)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  4. Wino cold dark matter from anomaly mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Moroi, Takeo E-mail: moroi@ias.edu; Randall, Lisa E-mail: randall@feynman.princeton.edu

    2000-03-20

    The cosmological moduli problem is discussed in the framework of sequestered sector/anomaly mediated supersymmetry (SUSY) breaking. In this scheme, the gravitino mass (corresponding to the moduli masses) is naturally 10-100 TeV, and hence the lifetime of the moduli fields can be shorter than {approx}1 sec. As a result, the cosmological moduli fields should decay before big-bang nucleosynthesis starts. Furthermore, in the anomaly mediated scenario, the lightest superparticle (LSP) is the Wino-like neutralino. Although the large annihilation cross section means the thermal relic density of the Wino LSP is too small to be the dominant component of cold dark matter (CDM), moduli decays can produce Winos in sufficient abundance to constitute CDM. If Winos are indeed the dark matter, it will be highly advantageous from the point of view of detection. If the halo density is dominated by the Wino-like LSP, the detection rate of Wino CDM in Ge detectors can be as large as 0.1-0.01 event/kg/day, which is within the reach of the future CDM detection with Ge detector. Furthermore, there is a significant positron signal from pair annihilation of Winos in our galaxy which may give a spectacular signal at AMS.

  5. Natural X-ray lines from the low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhaofeng, E-mail: zhaofengkang@gmail.com [Center for High-Energy Physics, Peking University, Beijing 100871 (China); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Ko, P., E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Li, Tianjun, E-mail: tli@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yandong, E-mail: ydliu@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-03-06

    In the supersymmetric models with low scale supersymmetry (SUSY) breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I) a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM) candidate; (II) the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s). A highly supersymmetric dark sector may readily provide such kind of system; (III) the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.

  6. Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at D0

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Beaudette, F; Begel, M; Beri, S B; Bernardi, G; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Binder, M; Bischoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Bloch, D; Blumenschein, U; Böhnlein, A; Bolton, T; Bonamy, P; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Chopra, S; Christiansen, T; Christofek, L; Claes, D; Clark, A R; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Del Signore, K; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisk, H E; Fleuret, F; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Geurkov, G; Ginther, G; Goldmann, K S; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Graham, G; Grannis, P D; Greder, S; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Grivaz, J F; Groer, L S; Grünendahl, S; Grünewald, M W; Gu, W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggerty, H; Hagopian, S L; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Hanlet, P; Harder, K; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Hu, Y; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kouchner, A; Kuznetsov, O; Kozelov, A V; Kozminski, J; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Kuznetsov, V E; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lobo, L; Lobodenko, A A; Lokajícek, M; Lounis, A; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L H; Luo, C; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Magnan, A M; Maity, M; Mal, P K; Malik, S; Malyshev, V L; Manankov, V; Mao, H S; Maravin, Y; Marshall, T; Martens, M; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Meng, X; Merkin, M; Merritt, K W B; Meyer, A; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M A; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Olivier, B; Oshima, N; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L K; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pope, B G; Popkov, E; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Shabalina, E; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Stanton, N R; Stark, J; Steele, J; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tuchming, B; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wallace, N; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wu, Z; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhou, Z; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A

    2004-01-01

    We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002--2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-lightest SUSY particle.

  7. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jonathan L. [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Moroi, Takeo [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States)

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.

  8. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    Science.gov (United States)

    Feng, Jonathan L.; Moroi, Takeo

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.

  9. Metastable spontaneous breaking of N = 2 supersymmetry

    Science.gov (United States)

    Légeret, Benoît; Scrucca, Claudio A.; Smyth, Paul

    2013-05-01

    We show that contrary to the common lore it is possible to spontaneously break N = 2 supersymmetry even in simple theories without constant Fayet-Iliopoulos terms. We consider the most general N = 2 supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet-Iliopoulos terms, and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results also directly imply that metastable de Sitter vacua can exist in N = 2 supergravity theories with Abelian gaugings and no Fayet-Iliopoulos terms, again contrary to common lore, at least if the cosmological constant is sufficiently large.

  10. Metastable spontaneous breaking of N=2 supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Légeret, Benoît; Scrucca, Claudio A., E-mail: claudio.scrucca@epfl.ch; Smyth, Paul

    2013-05-24

    We show that contrary to the common lore it is possible to spontaneously break N=2 supersymmetry even in simple theories without constant Fayet–Iliopoulos terms. We consider the most general N=2 supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet–Iliopoulos terms, and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results also directly imply that metastable de Sitter vacua can exist in N=2 supergravity theories with Abelian gaugings and no Fayet–Iliopoulos terms, again contrary to common lore, at least if the cosmological constant is sufficiently large.

  11. Mediation of supersymmetry breaking in extra dimensions

    CERN Document Server

    Scrucca, C A

    2004-01-01

    I review the mechanisms of supersymmetry breaking mediation that occur in sequestered models, where the visible and the hidden sectors are separated by an extra dimension and communicate only via gravitational interactions. By locality, soft breaking terms are forbidden at the classical level and reliably computable within an effective field theory approach at the quantum level. I present a self-contained discussion of these radiative gravitational effects and the resulting pattern of soft masses, and give an overview of realistic model building based on this set-up. I consider both flat and warped extra dimensions, as well as the possibility that there be localized kinetic terms for the gravitational fields.

  12. Chiral Gauge Dynamics and Dynamical Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U.

    2009-05-07

    We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S{sup 1} x R{sup 3}, and show that the infrared behavior of this theory is an interacting CFT at small S{sup 1}. We argue that this continues to hold at large S{sup 1}, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S{sup 1} x R{sup 3}--which were previously obtained by using symmetry and holomorphy--and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a 'magnetic bion', whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional antiferromagnets.

  13. Dirac Gauginos in Low Scale Supersymmetry Breaking

    CERN Document Server

    Goodsell, Mark D

    2014-01-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy -- with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  14. Dirac gauginos in low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark D., E-mail: mark.goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Tziveloglou, Pantelis, E-mail: pantelis.tziveloglou@vub.ac.be [Theoretische Natuurkunde and IIHE, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium)

    2014-12-15

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  15. Solving the SUSY CP problem with flavor breaking F-terms

    CERN Document Server

    Díaz-Cruz, J L; Ferrandis, Javier

    2005-01-01

    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY CP problem. We assume that the supersymmetric theory is flavor and CP-conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon' and to the CP asymmetries in several B decays and study their respective constraints on ...

  16. Solving the SUSY CP problem with flavor breaking F-terms

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Cruz, Lorenzo J.; Ferrandis, Javier

    2005-05-11

    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to {epsilon}, {epsilon}' and to the CP asymmetries in the B decays to {psi}K{sub s}, {phi}K{sub s}, {eta}'K{sub s} and X{sub s}{gamma}. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of {Delta}m{sub K}, {Delta}m{sub B} and {epsilon} constrain the model requiring extremely heavy squark spectra.

  17. Tree Level Mediation of Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Nardecchia, Marco, E-mail: marco.nardecchia@sissa.it [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2010-11-01

    We propose a new scheme in which supersymmetry breaking is communicated to the MSSM sfermions by GUT gauge interactions at the tree level. The (positive) contribution of MSSM fields to Str(M{sup 2}) is automatically compensated by a (negative) contribution from heavy fields. Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem. In the simplest SO(10) embedding, the ratio of different sfermion masses is predicted and differs from mSugra and other schemes, thus making this framework testable at the LHC. Gaugino masses are generated at the loop level but enhanced by model dependent factors.

  18. Metastable Supersymmetry Breaking and Minimal Gauge Mediation on Branes

    CERN Document Server

    Halyo, Edi

    2010-01-01

    We construct a model with D5 branes wrapped on a deformed and resolved $A_6$ singularity which realizes metastable supersymmetry breaking and minimal gauge mediation. Supersymmetry is broken at tree level by the F--term of singlet which also obtains a VEV as required in gauge mediation. Three nodes of the singularity are used to break supersymmetry whereas the other three realize gauge mediation. The supersymmetry breaking scale is suppressed due to brane instanton effects which are computed using a geometric transition.

  19. Large-field inflation and supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Wieck, Clemens [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian; Heurtier, Lucien [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique, Palaiseau (France). CPht

    2014-07-15

    Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O'Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kaehler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.

  20. D-branes, Supersymmetry Breaking, and Neutrinos

    CERN Document Server

    Seo, Jihye

    2010-01-01

    This thesis studies meta- and exactly stable supersymmetry breaking mechanisms in heterotic and type IIB string theories and constructs an F-theory Grand Unified Theory model for neutrino physics in which neutrino mass is determined by the supersymmetry breaking mechanism. Focussing attention on heterotic string theory compactified on a 4-torus, stability of non-supersymmetric states is studied. A non-supersymmetric state with robust stability is constructed, and its exact stability is proven in a large region of moduli space of T^4 against all the possible decay mechanisms allowed by charge conservation. Using string-string duality, the results are interpreted in terms of Dirichlet-branes in type IIA string theory compactified on an orbifold limit of a K3 surface. In type IIB string theory, metastable and exactly stable non-supersymmetric systems are constructed using D-branes and Calabi-Yau geometry. Branes and anti-branes wrap rigid and separate 2-spheres inside a non-compact Calabi-Yau three-fold: supersy...

  1. Supersymmetry Breaking, Gauge Mediation, and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., New Brunswick, NJ (United States)

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  2. Mechanisms of supersymmetry breaking in the minimal supersymmetric standard model

    Indian Academy of Sciences (India)

    Probir Roy

    2003-02-01

    We provide a bird’s eyeview of current ideas on supersymmetry breaking mechanisms in the MSSM. The essentials of gauge, gravity, anomaly and gaugino/higgsino mediation mechanisms are covered briefly and the phenomenology of the associated models is touched upon. A few statement are also made on braneworld supersymmetry breaking.

  3. Mediation of Supersymmetry Breaking via Anti-Generation Fields

    CERN Document Server

    Ito, M

    2000-01-01

    In the context of the weakly coupled heterotic string, we propose a new model of mediating supersymmetry breaking. The breakdown of supersymmetry in the hidden sector is transmitted to anti-generation fields via gravitational interactions. Subsequent transmission of the breaking to the MSSM sector occurs via gauge interactions. It is shown that the mass spectra of superparticles are phenomenologically viable.

  4. Kinematic Dynamo, Supersymmetry Breaking, and Chaos

    CERN Document Server

    Ovchinnikov, Igor V

    2015-01-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as t...

  5. SUSY breaking with D term and gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Ogasahara, Atsushi [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-07-27

    We classify supersymmetry breaking models with the F- and U(1) D-term potentials. In addition to the classification in our previous paper [1], we consider the other class where the F-term potential shows runaway behaviors. It is shown that the runaway in the F-term potential can be uplifted by the D-term effect, and supersymmetry breaking is realized. The vacuum in this class has no pseudomoduli and is useful for gauge mediation because gaugino masses are generated at the one-loop order. We provide such an example without the Fayet-Iliopoulous term.

  6. Gravitino condensation, supersymmetry breaking and inflation

    CERN Document Server

    Houston, N

    2015-01-01

    Motivated by dualistic considerations of the reality of quark condensation in quantum chromodynamics, and the connections of supergravity to the exotic physics of string and M-theory, in this thesis we investigate the dynamical breaking of local supersymmetry via gravitino condensation. We firstly demonstrate non-perturbative gravitino mass generation via this mechanism in flat spacetime, and from this derive the condensate mode wavefunction renormalisation. By then calculating the full canonically normalised one-loop effective potential for the condensate mode about a de Sitter background, we demonstrate that, contrary to claims in the literature, this process may both occur and function in a phenomenologically viable manner. In particular, we find that outside of certain unfortunate gauge choices, the stability of the condensate is intimately tied via gravitational degrees of freedom to the sign of the tree-level cosmological constant. Furthermore, we find that the energy density liberated may provide the n...

  7. Soft SUSY Breaking, Stop-Scharm Mixing and Higgs Signatures

    CERN Document Server

    Díaz-Cruz, J L; Yuan, C P; He, Hong-Jian

    2002-01-01

    The three-family squark mass-matrix from MSSM soft breaking contains a rich flavor-mixing structure. We formulate the {\\it minimal} FCNC schemes for the squark mass-terms and scalar trilinear interactions consistent with existing precision data and charge-color breaking plus stability bounds, and find O(1) mixings among top- and charm-squarks are allowed. We demonstrate that this feature can be naturally realized in a class of new models with horizontal U(1)_H symmetry which also solves the SUSY \\mu-problem. Then, we analyze SUSY radiative corrections to H^+-b-c and h^0-t-c vertices without using mass-insertion approximation and show that the loop-induced flavor-mixing couplings can be significant to provide new discovery Higgs signatures at Tevatron and LHC.

  8. Unified models of the QCD axion and supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2017-08-01

    Full Text Available Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei–Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  9. A Supersymmetric Composite Model with Dynamical Supersymmetry Breaking

    CERN Document Server

    Kitazawa, N; Kitazawa, Noriaki; Okada, Nobuchika

    1997-01-01

    We present a supersymmetric composite model with dynamical supersymmetry breaking. The model is based on the gauge group $SU(2)_S \\times SU(2)_H \\times SU(3)_c \\times SU(2)_L \\times U(1)_Y$. Supersymmetry is dynamically broken by the non-perturbative effect of the $SU(2)_S$ `supercolor' interaction. The large top Yukawa coupling is naturally generated by the $SU(2)_H$ `hypercolor' interaction as recently proposed by Nelson and Strassler. The supersymmetry breaking is mediated to the standard model sector by a new mechanism. The electroweak symmetry breaking is caused by the radiative correction due to the large top Yukawa coupling with the supersymmetry breaking. This is the `radiative breaking scenario', which originates from the dynamics of the supercolor and hypercolor gauge interactions.

  10. Tiny neutrino mass from SUSY and lepton number breaking sector

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shindou, Tetsuo, E-mail: shindou@cc.kogakuin.ac.jp [Faculty of Engineering, Kogakuin University, Tokyo 163-8677 (Japan)

    2011-07-04

    We suggest a new setup where SUSY breaking spurion F-term possesses lepton number. This setup not only modifies sparticle mass spectra but also realizes several new models, where neutrino mass is naturally induced through radiative corrections. We here suggest two new models; the first one is (i): pseudo-Dirac/Schizophrenic neutrino model, and the second one is (ii): pure Majorana neutrino model. We will also show this setup can naturally apply to the supersymmetric Zee-Babu model.

  11. Anomalous U(1) as a mediator of Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia; Dvali, Gia; Pomarol, Alex

    1996-01-01

    We point out that an anomalous gauge U(1) symmetry is a natural candida= te for being the mediator and messenger of supersymmetry breaking. It facilitate= s dynamical supersymmetry breaking even in the flat limit. Soft masses are induced by both gravity and the U(1) gauge interactions giving an unusual= mass hierarchy in the sparticle spectrum which suppresses flavor violations. T= his scenario does not suffer from the Polonyi problem.

  12. Majorana Fermions, Supersymmetry Breaking, and Born-Infeld Theory

    CERN Document Server

    Ferrara, Sergio; Yeranyan, Armen

    2015-01-01

    This review is devoted to highlight some aspects of the relevance of Majorana fermions in rigid supersymmetry breaking in four spacetime dimensions. After introducing some basic facts on spinors, and on their symmetries and reality properties, we consider Goldstino actions describing partial breaking of rigid supersymmetry, then focussing on Born-Infeld non-linear theory, its duality symmetry, and its supersymmetric extensions, also including multi-field generalizations exhibiting doubly self-duality.

  13. Generalized geometry and partial supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Triendl, Hagen Mathias

    2010-08-15

    This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)

  14. Anatomy of new SUSY breaking holographic RG flows

    CERN Document Server

    Argurio, Riccardo; Redigolo, Diego

    2014-01-01

    We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1)_R symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1)_F symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are sponta...

  15. Natural X-ray lines from the low scale supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Zhaofeng Kang

    2015-03-01

    Full Text Available In the supersymmetric models with low scale supersymmetry (SUSY breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM candidate; (II the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s. A highly supersymmetric dark sector may readily provide such kind of system; (III the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.

  16. Supersymmetry Breaking due to Moduli Stabilization in String Theory

    CERN Document Server

    Linde, Andrei; Olive, Keith A

    2011-01-01

    We consider the phenomenological consequences of fixing compactification moduli. In the simplest KKLT constructions, stabilization of internal dimensions is rather soft: weak scale masses for moduli are generated, and are of order m_\\sigma ~ m_{3/2}. As a consequence one obtains a pattern of soft supersymmetry breaking masses found in gravity and/or anomaly mediated supersymmetry breaking (AMSB) models. These models may lead to destabilization of internal dimensions in the early universe, unless the Hubble constant during inflation is very small. Fortunately, strong stabilization of compactified dimensions can be achieved by a proper choice of the superpotential (e.g in the KL model with a racetrack superpotential). This allows for a solution of the cosmological moduli problem and for a successful implementation of inflation in supergravity. We show that strong moduli stabilization leads a very distinct pattern of soft supersymmetry breaking masses. In general, we find that soft scalar masses remain of order ...

  17. Inverse Supersymmetry Breaking in S1 × R3

    Directory of Open Access Journals (Sweden)

    Vasilis Oikonomou

    2010-03-01

    Full Text Available In this paper, we study the influence of hard supersymmetry breaking terms in a N = 1, d = 4 supersymmetric model, in S1 × R3 spacetime topology. It is shown that when the radius of the compact dimension is large supersymmetry is unbroken, and dynamically breaks as the radius decreases. We point out that this resembles the inverse symmetry breaking of continuous symmetries at finite temperature (however, in the case of supersymmetry, the role of the temperature is played by the compact dimension’s radius. Furthermore, we also find a universality in the dependence of the critical length Lc as a function of a coupling g3, after comparing all cases.

  18. Supersymmetry breaking effects by analytic continuation into superspace

    CERN Document Server

    Rattazzi, Riccardo

    1999-01-01

    I consider theories where supersymmetry breaking is communicated by renormalizable interactions and generated by the vacuum expectation value of a chiral superfield X=M+ theta /sup 2/F. I show that soft terms for the observable fields can be obtained by continuing the renormalization group and the matching procedure into superspace. The superspectrum is just determined by anomalous dimensions and beta functions, with no need to further compute any Feynman diagrams. This method greatly simplifies calculations that are rather involved if performed in components. For illustration I reproduce known results for theories with gauge mediated supersymmetry breaking. I then use the method to obtain new results of phenomenological importance. (15 refs).

  19. Supersymmetry Breaking by the Right-Handed Tau Neutrino

    CERN Document Server

    Halyo, Edi

    2011-01-01

    We describe supersymmetry breaking by the F-term of a heavy right-handed tau neutrino with a VEV. Due to the the tau neutrino Yukawa coupling, the neutralino, chargino and scalar mass matrices and the weak currents are modified. In addition, there are new cubic and quartic scalar and trilinear R parity violating interactions. For large $\\tan \\beta$ these effects may be quite large. The scenario requires low energy supersymmetry breaking with generic values of $F \\sim 10^{10}$~GeV.

  20. Supersymmetry breaking in the Nambu - Jona-Lasinio approach

    CERN Document Server

    Peschanski, R; Peschanski, R; Savoy, C A

    1995-01-01

    Gaugino condensation in the hidden sector of supergravity models is described within a Nambu-Jona-Lasinio type of approach by minimization of a one-loop scalar potential. The essential ingredients of the mechanism are auxiliary superfields whose v.e.v. generate gaugino condensation and supersymmetry breaking, introduced through Lagrange multipliers. For phenomenologically acceptable values of the gauge couplings, gaugino condensation is disfavoured in this approach. For completeness, it is shown that supersymmetry breaking would occur for a stronger coupling, but at a scale inconsistent with the expectations.

  1. Holomorphic Bisectional Curvatures, Supersymmetry Breaking, and Affleck-Dine Baryogenesis

    CERN Document Server

    Dutta, Bhaskar

    2012-01-01

    Working in $D=4, N=1$ supergravity, we utilize relations between holomorphic sectional and bisectional curvatures of Kahler manifolds to constrain Affleck-Dine baryogenesis. We show the following No-Go result: Affleck-Dine baryogenesis cannot be performed if the holomorphic sectional curvature at the origin is isotropic in tangent space; as a special case, this rules out spaces of constant holomorphic sectional curvature (defined in the above sense) and in particular maximally symmetric coset spaces. We also investigate scenarios where inflationary supersymmetry breaking is identified with the supersymmetry breaking responsible for mass splitting in the visible sector, using conditions of sequestering to constrain manifolds where inflation can be performed.

  2. A Note on Modulus-dominated SUSY-breaking

    CERN Document Server

    Maxin, James A; Nanopoulos, D V

    2009-01-01

    In models where supersymmetry-breaking is dominated by the Kahler moduli and/or the universal dilaton, the B-parameter at the unification scale should be consistent with the value of tan(beta) at the electroweak scale determined by minimization of the Higgs potential triggering REWSB. We study such models employing a self-consistent determination of the B-parameter. In particular, we study the viability of a generic model, as well as M-theory and Type IIB flux compactifications with modulus-dominated supersymmetric soft-terms from the GUT scale, M_{GUT}=2x10^{16}GeV.

  3. 'Dynamical Supersymmetry Breaking, with Flavor'

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; Essig, Rouven; /Stanford U., Phys. Dept. /SLAC; Franco, Sebastian; Kachru, Shamit; /Santa Barbara, KITP /UC, Santa Barbara; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of Standard Model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These 'single-sector' supersymmetry breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first and second generation sparticles have masses of order 20 TeV, while the stop mass is a few TeV. In other cases, all sparticles obtain masses of order a few TeV predominantly from gauge mediation, even though the first two generations are composite.

  4. SUSY Breaking in Local String/F-Theory Models

    CERN Document Server

    Blumenhagen, R; Krippendorf, S; Moster, S; Quevedo, F

    2009-01-01

    We investigate bulk moduli stabilisation and supersymmetry breaking in local string/F-theory models where the Standard Model is supported on a del Pezzo surface or singularity. Computing the gravity mediated soft terms on the Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to M_{3/2}. This gives rise to several phenomenological scenarios, depending on the strength of perturbative corrections to the effective action and the source of de Sitter lifting, in which the soft terms are suppressed by at least M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these scenarios predict a minimal value of the volume to be V ~ 10^{6-7} in string uni...

  5. Volume modulus inflation and a low scale of SUSY breaking

    CERN Document Server

    Badziak, M

    2008-01-01

    The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.

  6. Low-energy supersymmetry breaking and fermion mass hierarchies

    CERN Document Server

    Gherghetta, Tony; Poppitz, E R; Gherghetta, Tony; Jungman, Gerard; Poppitz, Erich

    1995-01-01

    In models with low-energy supersymmetry breaking, an anomalous Abelian horizontal gauge symmetry can simultaneously explain the fermion mass hierarchy and the values of the \\mu and B terms. We construct an explicit model where the anomaly is cancelled by the Green-Schwarz mechanism at the string scale. We show that with our charge assignments, the breaking of the horizontal symmetry generates the correct order of magnitude and correct hierarchy for all Yukawa couplings.

  7. Spontaneous supersymmetry breaking on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Urs [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2013-07-01

    We discuss various strategies for regularising supersymmetric quantum field theories on a space-time lattice. In general, simulations of lattice models with spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We discuss a novel approach which evades this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. Then we present exact results on the spectrum and the Witten index for N=2 supersymmetric quantum mechanics and results from simulations of the spontaneously broken N=1 Wess-Zumino model.

  8. Bulk gauge fields in warped space and localized supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Z.; Ponton, Eduardo

    2003-11-01

    We consider five dimensional supersymmetric warped scenarios in which the Standard Model quark and lepton fields are localized on the ultraviolet brane, while the Standard Model gauge fields propagate in the bulk. Supersymmetry is assumed to be broken on the infrared brane. The relative sizes of supersymmetry breaking effects are found to depend on the hierarchy between the infrared scale and the weak scale. If the infrared scale is much larger than the weak scale the leading supersymmetry breaking effect on the visible brane is given by gaugino mediation. The gaugino masses at the weak scale are proportional to the square of the corresponding gauge coupling, while the dominant contribution to the scalar masses arises from logarithmically enhanced radiative effects involving the gaugino mass that are cutoff at the infrared scale. While the LSP is the gravitino, the NLSP which is the stau is stable on collider time scales. If however the infrared scale is close to the weak scale then the effects of hard supersymmetry breaking operators on the scalar masses can become comparable to those from gaugino mediation. These operators alter the relative strengths of the couplings of gauge bosons and gauginos to matter, and give loop contributions to the scalar masses that are also cutoff at the infrared scale. The gaugino masses, while exhibiting a more complicated dependence on the corresponding gauge coupling, remain hierarchical and become proportional to the corresponding gauge coupling in the limit of strong supersymmetry breaking. The scalar masses are finite and a loop factor smaller than the gaugino masses. The LSP remains the gravitino.

  9. The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    CERN Document Server

    Baer, Howard W; Krupovnickas, T; Tata, Xerxes; Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass $m_{1/2}$ is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale $M_c$ beyond the GUT scale, and that additional renormalization group running takes place between $M_c$ and $M_{GUT}$ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. ...

  10. Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models

    CERN Document Server

    Baer, Howard W; Krupovnickas, T; Tata, Xerxes; 10.1103/PhysRevD.65.075024

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m/sub 1/2/ is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M/sub c/ beyond the GUT scale, and that additional renormalization group running takes place between M/sub c/ and M/sub GUT/ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m/sub 1/2/=1000...

  11. Sequestered String Models: Supersymmetry Breaking and Cosmological Applications

    CERN Document Server

    Muia, Francesco

    2016-01-01

    In the present thesis I studied the phenomenology arising from a class of string models called sequestered compactifications, which were born with the aim of getting low-energy SUSY from strings. This is not an easy task if combined with cosmological constraints, since the mechanism of moduli stabilization fixes both the scale of supersymmetric particles and the scale of moduli, which tend to be of the same order. However, if on the one hand supersymmetric particles with TeV mass are desired in order to address the hierarchy problem, on the other hand the cosmological moduli problem requires the moduli to be heavier than 100 TeV. The specific setup of sequestered compactifications makes this hierarchy achievable, at least in principle: as in these models the visible sector is located on a stack of D3-branes at singularities, a physical separation between the visible degrees of freedom and the SUSY-breaking sources takes place. Such decoupling translates into a hierarchy between the scale of SUSY-breaking and ...

  12. SUSY CP problem in gauge mediation model

    Energy Technology Data Exchange (ETDEWEB)

    Moroi, Takeo [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Yokozaki, Norimi, E-mail: yokozaki@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-07-27

    SUSY CP problem in the gauge mediation supersymmetry breaking model is reconsidered. We pay particular attention to two sources of CP violating phases whose effects were not seriously studied before; one is the effect of the breaking of the GUT relation among the gaugino masses due to the field responsible for the GUT symmetry breaking, and the other is the supergravity effect on the supersymmetry breaking parameters, in particular, on the bi-linear supersymmetry breaking Higgs mass term. We show that both of them can induce too large electric dipole moments of electron, neutron, and so on, to be consistent with the experimental bounds.

  13. SUSY breaking after inflation in supergravity with inflaton in a massive vector multiplet

    CERN Document Server

    Aldabergenov, Yermek

    2016-01-01

    We propose a limited class of models, describing interacting chiral multiplets with a non-minimal coupling to a vector multiplet, in curved superspace of $N=1$ supergravity. Those models are suitable for the inflationary model building in supergravity with inflaton assigned to a massive vector multiplet and spontaneous SUSY breaking in Minkowski vacuum after inflation, for any values of the inflationary parameters $n_s$ and $r$, and any scale of SUSY breaking.

  14. Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields

    Science.gov (United States)

    Hernández-Ortíz, S.; Murguía, G.; Raya, A.

    2012-01-01

    Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one.

  15. Extracting Supersymmetry-Breaking Effects from Wave-Function Renormalization

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    We show that in theories in which supersymmetry breaking is communicated by renormalizable perturbative interactions, it is possible to extract the soft terms for the observable fields from wave-function renormalization. Therefore all the information about soft terms can be obtained from anomalous dimensions and beta functions, with no need to further compute any Feynman diagram. This method greatly simplifies calculations which are rather involved if performed in terms of component fields. For illustrative purposes we reproduce known results of theories with gauge-mediated supersymmetry breaking. We then use our method to obtain new results of phenomenological importance. We calculate the next-to-leading correction to the Higgs mass parameters, the two-loop soft terms induced by messenger-matter superpotential couplings, and the soft terms generated by messengers belonging to vector supermultiplets.

  16. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking

    CERN Document Server

    DeWolfe, Oliver; Mulligan, Michael

    2008-01-01

    Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to anti-D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M) x SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.

  17. Note on moduli stabilization, supersymmetry breaking and axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics

    2011-06-15

    We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)

  18. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}

  19. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    DeWolfe, Oliver; /Colorado U.; Kachru, Shamit; Mulligan, Michael; /Stanford U., Phys. Dept. /SLAC

    2008-02-04

    Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M) x SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.

  20. Dynamical supersymmetry breaking on magnetized tori and orbifolds

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2016-10-01

    Full Text Available We construct several dynamical supersymmetry breaking (DSB models within a single ten-dimensional supersymmetric Yang–Mills (SYM theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU(NC SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.

  1. Dynamical supersymmetry breaking on magnetized tori and orbifolds

    Science.gov (United States)

    Abe, Hiroyuki; Kobayashi, Tatsuo; Sumita, Keigo

    2016-10-01

    We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU (NC) SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.

  2. Dynamical supersymmetry breaking on magnetized tori and orbifolds

    CERN Document Server

    Abe, Hiroyuki; Sumita, Keigo

    2016-01-01

    We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of $SU(N_C)$ SYM theory with $N_F$ flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.

  3. Using rates to measure mixed modulus-anomaly mediated supersymmetry breaking at the LHC

    CERN Document Server

    Conley, J A; Glaser, L; Kraemer, M; Tattersall, J

    2011-01-01

    If SUSY is discovered at the LHC, the task will immediately turn to determining the model of SUSY breaking. Here, we employ a Mixed Modulus-Anomaly Mediated SUSY Breaking (MMAMSB) model with very similar LHC phenomenology to the more conventionally studied Constrained Minimal SUSY Model (CMSSM) and minimal Anomaly Mediated SUSY Breaking (mAMSB) models. We then study whether the models can be distinguished and measured. If we only fit to the various mass edges and mass end-points from cascade decay chains that are normally studied, a unique determination and measurement of the model is problematic without substantial amounts of LHC data. However, if event rate information is included, we can quickly distinguish and measure the correct SUSY model and exclude alternatives.

  4. Observations on the partial breaking of N=2 rigid supersymmetry

    Directory of Open Access Journals (Sweden)

    Laura Andrianopoli

    2015-05-01

    Full Text Available We study the partial breaking of N=2 rigid supersymmetry for a generic rigid special geometry of n abelian vector multiplets in the presence of Fayet–Iliopoulos terms induced by the hyper-Kähler momentum map. By exhibiting the symplectic structure of the problem we give invariant conditions for the breaking to occur, which rely on a quartic invariant of the Fayet–Iliopoulos charges as well as on a modification of the N=2 rigid symmetry algebra by a vector central charge.

  5. Low-scale Inflation and Supersymmetry Breaking in Racetrack Models

    CERN Document Server

    Allahverdi, Rouzbeh; Sinha, Kuver

    2009-01-01

    In many moduli stabilization schemes in string theory, the scale of inflation appears to be of the same order as the scale of supersymmetry breaking. For low-scale supersymmetry breaking, therefore, the scale of inflation should also be low, unless this correlation is avoided in specific models. We explore such a low-scale inflationary scenario in a racetrack model with a single modulus in type IIB string theory. Inflation occurs near a point of inflection in the K\\"ahler modulus potential. Obtaining acceptable cosmological density perturbations leads to the introduction of magnetized D7-branes sourcing non-perturbative superpotentials. The gravitino mass, m_{3/2}, is chosen to be around 30 TeV, so that gravitinos that are produced in the inflaton decay do not affect big-bang nucleosynthesis. Supersymmetry is communicated to the visible sector by a mixture of anomaly and modulus mediation. We find that the two sources contribute equally to the gaugino masses, while scalar masses are decided mainly by anomaly ...

  6. Moduli stabilisation with nilpotent goldstino: vacuum structure and SUSY breaking

    Science.gov (United States)

    Aparicio, Luis; Quevedo, Fernando; Valandro, Roberto

    2016-03-01

    We study the effective field theory of KKLT and LVS moduli stabilisation scenarios coupled to an anti-D3-brane at the tip of a warped throat. We describe the presence of the anti-brane in terms of a nilpotent goldstino superfield in a supersymmetric effective field theory. The introduction of this superfield produces a term that can lead to a de Sitter minimum. We fix the Kähler moduli dependence of the nilpotent field couplings by matching this term with the anti-D3-brane uplifting contribution. The main result of this paper is the computation, within this EFT, of the soft supersymmetry breaking terms in both KKLT and LVS for matter living on D3-brane (leaving the D7-brane analysis to an appendix). A handful of distinct phenomenological scenarios emerge that could have low energy implications, most of them having a split spectrum of soft masses. Some cosmological and phenomenological properties of these models are discussed. We also check that the attraction between the D3-brane and the anti-D3-brane does not affect the leading contribution to the soft masses and does not destabilise the system.

  7. Moduli stabilisation with nilpotent goldstino: vacuum structure and SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, 34151 Trieste (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, 34151 Trieste (Italy); DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Valandro, Roberto [Dipartimento di Fisica dell’Università di Trieste,Strada Costiera 11, 34151 Trieste (Italy); INFN, Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); ICTP,Strada Costiera 11, 34151 Trieste (Italy)

    2016-03-07

    We study the effective field theory of KKLT and LVS moduli stabilisation scenarios coupled to an anti-D3-brane at the tip of a warped throat. We describe the presence of the anti-brane in terms of a nilpotent goldstino superfield in a supersymmetric effective field theory. The introduction of this superfield produces a term that can lead to a de Sitter minimum. We fix the Kähler moduli dependence of the nilpotent field couplings by matching this term with the anti-D3-brane uplifting contribution. The main result of this paper is the computation, within this EFT, of the soft supersymmetry breaking terms in both KKLT and LVS for matter living on D3-brane (leaving the D7-brane analysis to an appendix). A handful of distinct phenomenological scenarios emerge that could have low energy implications, most of them having a split spectrum of soft masses. Some cosmological and phenomenological properties of these models are discussed. We also check that the attraction between the D3-brane and the anti-D3-brane does not affect the leading contribution to the soft masses and does not destabilise the system.

  8. Moduli Stabilisation with Nilpotent Goldstino: Vacuum Structure and SUSY Breaking

    CERN Document Server

    Aparicio, Luis; Valandro, Roberto

    2015-01-01

    We study the effective field theory of KKLT and LVS moduli stabilisation scenarios coupled to an anti-D3-brane at the tip of a warped throat. We describe the presence of the anti-brane in terms of a nilpotent goldstino superfield in a supersymmetric effective field theory. The introduction of this superfield produces a term that can lead to a de Sitter minimum. We fix the Kaehler moduli dependence of the nilpotent field couplings by matching this term with the anti-D3-brane uplifting contribution. The main result of this paper is the computation, within this EFT, of the soft supersymmetry breaking terms in both KKLT and LVS for matter living on D3-brane (leaving the D7-brane analysis to an appendix). A handful of distinct phenomenological scenarios emerge that could have low energy implications, most of them having a split spectrum of soft masses. Some cosmological and phenomenological properties of these models are discussed. We also check that the attraction between the D3-brane and the anti-D3-brane does n...

  9. A New Venue of Spontaneous Supersymmetry Breaking in Supergravity

    CERN Document Server

    Guendelman, Eduardo; Pacheva, Svetlana; Vasihoun, Mahary

    2015-01-01

    We present a qualitatively new mechanism for dynamical spontaneous breakdown of supersymmetry in supergravity. Specifically, we construct a modified formulation of standard minimal N=1 supergravity as well as of anti-de Sitter supergravity in terms of a non-Riemannian spacetime volume-form (generally covariant integration measure density). The new supergravity formalism naturally triggers the appearance of a dynamically generated cosmological constant as an arbitrary integration constant which signifies spontaneous (dynamical) breaking of supersymmetry. Applying the new formalism to anti-de Sitter supergravity allows us to appropriately choose the above mentioned arbitrary integration constant so as to obtain simultaneously a very small effective observable cosmological constant as well as a large physical gravitino mass as required by modern cosmological scenarios for slowly expanding universe of the present epoch.

  10. Approximation solution of Schrodinger equation for Q-deformed Rosen-Morse using supersymmetry quantum mechanics (SUSY QM)

    Energy Technology Data Exchange (ETDEWEB)

    Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari [Department of Physics, the State University of Surabaya (Unesa), Jl. Ketintang, Surabaya 60231 (Indonesia); Deta, U. A., E-mail: utamaalan@yahoo.co.id [Departmet of Physics, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126 (Indonesia)

    2015-09-30

    The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.

  11. Interpretation of Higgs and SUSY searches in MSUGRA and GMSB models

    CERN Document Server

    De Vivie de Régie, J B

    2000-01-01

    Higgs and SUSY searches performed by the ALEPH experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: minimal supergravity and minimal gauge mediated supersymmetry breaking. (4 refs).

  12. SUSY QCD effective action in the large N/sub c/ limit

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, A.A.; Chekhov, L.O.; Krivoshchekov, V.K.

    1987-08-06

    A low energy effective action for supersymmetric quantum chromodynamics (SUSY QCD) including anomalous terms is constructed in the leading order of the 1/N expansion. The absence of dynamical supersymmetry breaking is explicitly demonstrated.

  13. Soft Supersymmetry Breaking in Anisotropic LARGE Volume Compactifications

    CERN Document Server

    Angus, Stephen

    2014-01-01

    We study soft supersymmetry breaking terms for anisotropic LARGE volume compactifications, where the bulk volume is set by a fibration with one small four-cycle and one large two-cycle. We consider scenarios where D7s wrap either a blow-up cycle or the small fibre cycle. Chiral matter can arise either from modes parallel or perpendicular to the brane. We compute soft terms for this matter and find that for the case where the D7 brane wraps the fibre cycle the scalar masses can be parametrically different, allowing a possible splitting of third-generation soft terms.

  14. Gauge/gravity Duality and MetastableDynamical Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit

    2006-10-24

    We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua.

  15. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C.

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  16. Swiss-cheese D3- D7 soft SUSY breaking

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2010-03-01

    We address issues related to (i) a proposal for resolving a long-standing tension between large volume cosmology and phenomenology as regards reconciliation of requirements of different gravitino masses within the same string-theoretic framework, as well as (ii) evaluation of soft supersymmetry breaking terms and open-string moduli masses in the context of type IIB large volume compactifications involving orientifolds of the Swiss-cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the "big" divisor Σ as well as supporting D7-brane fluxes. In addition, we also include perturbative α-corrections and non-perturbative world-sheet instanton corrections to the Kähler potential as well as Euclidean D3-instanton superpotential. First, using the toric data for the aforementioned Swiss-cheese Calabi-Yau and GLSM techniques, we obtain in the large volume limit, the geometric Kähler potential for the big (and small) divisor(s) in terms of derivatives of genus-two Siegel theta functions. Next, we show that as the mobile space-time filling D3-brane moves from a particular non-singular elliptic curve embedded in the Swiss-cheese Calabi-Yau to another non-singular elliptic curve, it is possible to obtain 10 12 GeV gravitino during the primordial inflationary era as well as, e.g., a TeV gravitino in the present era, within the same set up for the same volume of the Calabi-Yau stabilized at around 10ls6. Then by constructing local (i.e. localized around the location of the mobile D3-brane in the Calabi-Yau) appropriate involutively-odd harmonic one-form on the big divisor that lies in coker(H∂¯,-(0,1)(CY)→iH∂¯,-(0,1)(Σ)) and extremizing the potential, we show that it is possible to obtain an O(1)g from the wrapping of D7-branes on the big divisor due to competing contributions from the Wilson line moduli relative to the divisor volume modulus. To permit gaugino condensation, we take the rigid limit of the

  17. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  18. Brane to brane gravity mediation of supersymmetry breaking

    CERN Document Server

    Rattazzi, Riccardo; Strumia, A; Rattazzi, Riccardo; Scrucca, Claudio A.; Strumia, Alessandro

    2003-01-01

    We extend the results of Mirabelli and Peskin to supergravity. We study the compactification on S_1/Z_2 of Zucker's off-shell formulation of 5D supergravity and its coupling to matter at the fixed points. We clarify some issues related to the off-shell description of supersymmetry breaking a la Scherk-Schwarz (here employed only as a technical tool) discussing how to deal with singular gravitino wave functions. We then consider `visible' and `hidden' chiral superfields localized at the two different fixed points and communicating only through 5D supergravity. We compute the one-loop corrections that mix the two sectors and the radion superfield. Locality in 5D ensures the calculability of these effects, which transmit supersymmetry breaking from the hidden to the visible sector. In the minimal set-up visible-sector scalars get a universal squared mass m_0^2 < 0. In general (e.g. in presence of a sizable gravitational kinetic term localized on the hidden brane) the radion-mediated contribution to m_0^2 can ...

  19. A Definitive Signal of Multiple Supersymmetry Breaking at the LHC

    CERN Document Server

    Cheung, Clifford; Nomura, Yasunori; Thaler, Jesse

    2010-01-01

    If the lightest observable-sector supersymmetric particle (LOSP) is charged and long-lived, then it may be possible to indirectly measure the Planck mass at the LHC and provide a spectacular confirmation of supergravity as a symmetry of nature. Unfortunately, this proposal is only feasible if the gravitino is heavy enough to be measured at colliders, and this condition is in direct conflict with constraints from big bang nucleosynthesis (BBN). In this work, we show that the BBN bound can be naturally evaded in the presence of multiple sectors which independently break supersymmetry, since there is a new decay channel of the LOSP to a goldstino. Certain regions of parameter space allow for a direct measurement of LOSP decays into both the goldstino and the gravitino at the LHC. If the goldstino/gravitino mass ratio is measured to be 2, as suggested by theory, then this would provide dramatic verification of the existence of multiple supersymmetry breaking and sequestering. A variety of consistent cosmological ...

  20. Supersymmetry Breaking on Gauged Non-Abelian Vortices

    CERN Document Server

    Konishi, Kenichi; Vinci, Walter

    2012-01-01

    There are a large number of systems characterized by a completely broken gauge symmetry, but with an unbroken global color-flavor diagonal symmetry, i.e., systems in the so-called color-flavor locked phase. If the gauge symmetry breaking supports vortices, the latter develop non-Abelian orientational zero-modes and become non-Abelian vortices, a subject of intense study in the last several years. In this paper we consider the effects of weakly gauging the full exact global flavor symmetry in such systems, deriving an effective description of the light excitations in the presence of a vortex. Surprising consequences are shown to follow. The fluctuations of the vortex orientational modes get diffused to bulk modes through tunneling processes. When our model is embedded in a supersymmetric theory, the vortex is still 1/2 BPS saturated, but the vortex effective action breaks supersymmetry.

  1. Small extra dimensions from the interplay of gauge and supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Catena, R. [International School for Advanced Studies, Trieste (Italy); Schmidt-Hoberg, K. [Technische Univ., Muenchen (Germany). Physik-Department

    2008-03-15

    Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/{mu}. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)

  2. Closed superstrings in magnetic field instabilities and supersymmetry breaking

    CERN Document Server

    Tseytlin, Arkady A

    1995-01-01

    We consider a 2-parameter class of solvable closed superstring models which `interpolate' between Kaluza-Klein and dilatonic Melvin magnetic flux tube backgrounds. The spectrum of string states has similarities with Landau spectrum for a charged particle in a uniform magnetic field. The presence of spin-dependent `gyromagnetic' interaction implies breaking of supersymmetry and possible existence (for certain values of magnetic parameters) of tachyonic instabilities. We study in detail the simplest example of the Kaluza-Klein Melvin model describing a superstring moving in flat but non-trivial 10-d space containing a 3-d factor which is a `twisted' product of a 2-plane and an internal circle. We also discuss the compact version of this model constructed by `twisting' the product of the two groups in SU(2) x U(1) WZNW theory without changing the local geometry (and thus the central charge). We explain how the supersymmetry is broken by continuous `magnetic' twist parameters and comment on possible implications ...

  3. Supergravity and Supersymmetry Breaking in Four and Five Dimensions

    CERN Document Server

    Ellis, Jonathan Richard; Pokorski, Stefan; Thomas, S; Ellis, John; Lalak, Zygmunt; Pokorski, Stefan; Thomas, Steven

    1999-01-01

    We discuss supersymmetry breaking in the field-theoretical limit of the strongly-coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four-dimensional supergravity. In the lowest order of the $\\kappa^{2/3}$ expansion, we show how a four-dimensional supergravity with gauge kinetic function $f_{1,2}=S$ is reproduced, and we show how higher-order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional approach,...

  4. Supergravity and supersymmetry breaking in four and five dimensions

    CERN Document Server

    Ellis, Jonathan Richard; Pokorski, Stefan; Thomas, S

    1999-01-01

    We discuss supersymmetry breaking in the field-theoretical limit of the strongly coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four- dimensional supergravity. In the lowest order of the kappa /sup 2/3/ expansion, we show how a four-dimensional supergravity with gauge kinetic function f/sub 1,2/=S is reproduced, and we show how higher- order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional appro...

  5. Banados and SUSY: On Supersymmetry and Minimal Surfaces of Locally AdS3 Geometries

    CERN Document Server

    Colgáin, E Ó

    2016-01-01

    We extend the classification of supersymmetric locally AdS$_3$ geometries, beyond BTZ black holes, to the Ba\\~nados geometries, noting that supersymmetries are in one-to-one correspondence with solutions to the Hill differential condition. We show that the number of global supersymmetries is an orbit invariant quantity and identify geometries with zero, one, two, three and four global supersymmetries. As an application of our classification, we exploit supersymmetry, which is preserved locally in the bulk, to determine space-like co-dimension two surfaces in AdS$_3$. In the process, we by-pass geodesics or mappings of AdS$_3$, neither of which have an analogue in higher dimensions, to recover known Hubeny-Rangamani-Takayanagi surfaces. Our findings suggest supersymmetry can be exploited to find extremal surfaces in holographic entanglement entropy.

  6. Constraints on finite soft supersymmetry-breaking terms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T. [High Energy Accel. Res. Organ., Tokyo (Japan). Inst. of Particle and Nucl. Studies; Kubo, J. [Department of Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Mondragon, M. [Instituto de Fisica, UNAM, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-10115 Berlin (Germany)

    1998-02-02

    Requiring the soft supersymmetry-breaking (SSB) parameters in finite gauge-Yukawa unified models to be finite up to and including two-loop order, we derive a two-loop sum rule for the soft scalar masses. It is shown that this sum rule coincides with that of a certain class of string models in which the massive string states are organized into N=4 supermultiplets. We investigate the SSB sector of two finite SU(5) models. Using the sum rule which allows non-universality of the SSB terms and requiring that the lightest superparticle particle is neutral, we constrain the parameter space of the SSB sector in each model. (orig.). 50 refs.

  7. Multilepton signals of gauge mediated supersymmetry breaking at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    D' Hondt, Jorgen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); De Causmaecker, Karen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg (France); Mariotti, Alberto [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Petersson, Christoffer [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium); Department of Fundamental Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Redigolo, Diego [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium)

    2014-04-04

    We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS Collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.

  8. Multilepton signals of gauge mediated supersymmetry breaking at the LHC

    CERN Document Server

    D'Hondt, Jorgen; Fuks, Benjamin; Mariotti, Alberto; Mawatari, Kentarou; Petersson, Christoffer; Redigolo, Diego

    2014-01-01

    We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.

  9. Supersymmetry breaking metastable vacua in runaway quiver gauge theories

    CERN Document Server

    Garcia-Etxebarria, Inaki; Uranga, Angel M

    2007-01-01

    In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to local meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the $dP_1$ theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.

  10. $\\mu$ term and supersymmetry breaking from six dimensional theory

    CERN Document Server

    Adachi, Yuki; Yamashita, Toshifumi

    2014-01-01

    We propose a new next-to-minimal supersymmetric standard model (NMSSM) which is on a six-dimensional spacetime compactified on a $T^2/Z_3$ orbifold. In this model, three gauge singlet fields $N, S_1$ and $S_2$ in addition to the minimal supersymmetric standard model (MSSM) fields are introduced. These fields are localized at some fixed points except for the singlet $N$ and the gauge fields. The $\\mu$ parameter is provided from the vacuum expectation value (vev) of $N$. The $F$ terms get vevs simultaneously, and the gauginos mediate the supersymmetry breaking to the MSSM sector. Both of these parameters are strongly suppressed due to the profile of $N$. Thus these parameters induced from those of the order of the so-called GUT scale can become close to the electroweak scale without unnatural fine tuning.

  11. Supersymmetry Breaking in Disordered Systems and Relation to Functional Renormalization and Replica-Symmetry Breaking

    OpenAIRE

    Wiese, Kay Joerg

    2004-01-01

    In this article, we study an elastic manifold in quenched disorder in the limit of zero temperature. Naively it is equivalent to a free theory with elasticity in Fourier-space proportional to k^4 instead of k^2, i.e. a model without disorder in two space-dimensions less. This phenomenon, called dimensional reduction, is most elegantly obtained using supersymmetry. However, scaling arguments suggest, and functional renormalization shows that dimensional reduction breaks down beyond the Larkin ...

  12. The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)

    2017-04-15

    A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)

  13. The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning

    Science.gov (United States)

    Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob

    2017-04-01

    A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.

  14. Finite Theories and the SUSY Flavor Problem

    CERN Document Server

    Babu, K S; Kubo, J; Kobayashi, Tatsuo; Kubo, Jisuke

    2003-01-01

    We study a finite SU(5) grand unified model based on the non-Abelian discrete symmetry A_4. This model leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving the SUSY flavor problem.

  15. Spontaneous supersymmetry breaking in the two-dimensional N=1 Wess-Zumino model

    CERN Document Server

    Steinhauer, Kyle

    2014-01-01

    We study the phase diagram of the two-dimensional N=1 Wess-Zumino model on the lattice using Wilson fermions and the fermion loop formulation. We give a complete nonperturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.

  16. Spontaneous supersymmetry breaking in the 2d N=1 Wess-Zumino model

    CERN Document Server

    Baumgartner, David; Wenger, Urs

    2013-01-01

    We study the phase diagram of the two-dimensional N=1 Wess-Zumino model using Wilson fermions and the fermion loop formulation. We give a complete non-perturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.

  17. On Supersymmetry Breaking in String Theory and its Realization in Brane Worlds

    CERN Document Server

    Mayr, Peter

    2001-01-01

    We use string duality to describe instanton induced spontaneous supersymmetry breaking in string compactifications with additional background fields. Dynamical supersymmetry breaking by space-time instantons in the heterotic string theory is mapped to a tree level breaking in the type II string which can be explicitly calculated by geometric methods. It is argued that the instanton corrections resurrect the no-go theorem on partial supersymmetry breaking. The point particle limit describes the non-perturbative scalar potential of a SYM theory localized on a hypersurface of space-time. The N=0 vacuum displays condensation of magnetic monopoles and confinement. The supersymmetry breaking scale is determined by $M_{str}$, which can be in the TeV range, and the geometry transverse to the gauge theory.

  18. Pushing SUSY's boundaries Searches and prospects for strongly-produced supersymmetry at the LHC with the ATLAS detector

    CERN Document Server

    Besjes, Geert Jan; Caron, Sascha

    In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...

  19. The wave function of the universe and spontaneous breaking of supersymmetry

    CERN Document Server

    Obregón, O; Socorro, J; Tkach, V I

    1998-01-01

    In this work we define a scalar product ``weighted'' with the scalar factor $R$ and show how to find a normalized wave function for the supersymmetric quantum FRW cosmological model using the idea of supersymmetry breaking selection rules under local n=2 conformal supersymmetry. We also calculate the expectation value of the scalar factor R in this model and its corresponding behaviour.

  20. Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, Fotis [Dipartimento di Fisica “Galileo Galilei”, Universita di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Racco, Davide; Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-06-21

    We consider the minimal three-form N=1 supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.

  1. Scanning of the Supersymmetry Breaking Scale and the Gravitino Mass in Supergravity

    CERN Document Server

    Farakos, Fotis; Racco, Davide; Riotto, Antonio

    2016-01-01

    We consider the minimal three-form ${\\cal N}=1$ supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.

  2. Particle physics and cosmology with high-scale SUSY breaking in five-dimensional supergravity models

    CERN Document Server

    Otsuka, Hajime

    2015-01-01

    We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on $S^1/Z_2$. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.

  3. Supersymmetry Breaking through Boundary Conditions Associated with the $U(1)_{R}$

    CERN Document Server

    Takenaga, K

    1998-01-01

    The effects of boundary conditions imposed on the fields for the compactified space directions to the supersymmetric theories are discussed. The boundary conditions can be taken to be periodic up to the degrees of freedom of localized $U(1)_{R}$ transformations. The boundary condition breaks the supersymmetry to yield universal soft supersymmetry breaking terms. The 4-dimensional supersymmetric QED with one flavour and the pure supersymmetric QCD are studied as toy models when one of the space coordinates is compactified on $S^1$.

  4. The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning

    CERN Document Server

    Caron, Sascha; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob

    2016-01-01

    A key research question at the Large Hadron Collider (LHC) is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: It requires the time consuming generation of scattering events, the simulation of the detector response, the event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiment. In the BSM-AI project we attack this challenge with a new approach. Machine learning tools are thought to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets - each tested with 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93 percent. It ...

  5. Intersecting branes, SUSY breaking and the 2 TeV excess at the LHC

    Science.gov (United States)

    Blumenhagen, Ralph

    2016-01-01

    Intersecting D-brane models in string theory can naturally support the gauge and matter content of left-right symmetric extensions of the Standard Model with gauge symmetry SU(3) c × SU(2) L × SU(2) R × U(1) B- L . Considering such models as candidates for explaining the 2 TeV excesses seen in Run-1 by both ATLAS and CMS, the minimal possible scale of supersymmetry breaking is determined by the requirement of precise one-loop gauge coupling unification. For the vector-like, bifundamental and (anti-)symmetric Higgs content of such brane configurations, this comes out fairly universally at around 19 TeV. For the SU(2) R gauge coupling one finds values 0.48 < g R ( M R ) < 0.6. Threshold corrections can potentially lower the scale of supersymmetry breaking.

  6. Intersecting Branes, SUSY Breaking and the 2TeV Excess at the LHC

    CERN Document Server

    Blumenhagen, Ralph

    2015-01-01

    Intersecting D-brane models in string theory can naturally support the gauge and matter content of left-right symmetric extensions of the Standard Model with gauge symmetry SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L}. Considering such models as candidates for explaining the 2TeV excesses seen in Run-1 by both ATLAS and CMS, the minimal possible scale of supersymmetry breaking is determined by the requirement of precise one-loop gauge coupling unification. For the vector-like, bifundamental and (anti-)symmetric Higgs content of such brane configurations, this comes out fairly universally at around 19TeV. For the SU(2)_R gauge coupling one finds values 0.48supersymmetry breaking.

  7. Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Matthias

    2003-03-18

    As part of a programme for the general study of the low-energy implications of supersymmetry breaking in brane-world scenarios, we study the nonlinear realization of supersymmetry which occurs when breaking N = 2 to N = 1 supergravity. We consider three explicit realizations of this supersymmetry breaking pattern, which correspond to breaking by one brane, by one antibrane or by two (or more) parallel branes. We derive the minimal field content, the effective action and supersymmetry transformation rules for the resulting N = 1 theory perturbatively in powers of {kappa} = 1/M{sub Planck}. We show that the way the massive gravitino and spin-1 fields assemble into N = 1 multiplets implies the existence of direct brane-brane contact interactions at order {Omicron}({kappa}). This result is contrary to the {Omicron}({kappa}{sup 2}) predicted by the sequestering scenario but in agreement with recent work of Anisimov et al. Our low-energy approach is model independent and is a first step towards determining the low-energy implications of more realistic brane models which completely break all supersymmetries.

  8. BOOK REVIEW: Modern Supersymmetry

    Science.gov (United States)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  9. Models with quartic potential of dynamical SUSY breaking in meta-stable vacua

    Science.gov (United States)

    Hirano, Shinji

    2007-05-01

    We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nuñez geometry by Casero, Nuñez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.

  10. Models with Quartic Potential of Dynamical SUSY Breaking in Meta-Stable Vacua

    CERN Document Server

    Hirano, Shinji

    2007-01-01

    We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nunez geometry by Casero, Nunez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.

  11. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    CERN Document Server

    Fuks, Benjamin; Klasen, Michael

    2011-01-01

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  12. Phenomenology of anomaly-mediated supersymmetry-breaking scenarios with nonminimal flavor violation

    Science.gov (United States)

    Fuks, Benjamin; Herrmann, Björn; Klasen, Michael

    2012-07-01

    In minimal anomaly-mediated supersymmetry-breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to nonminimal flavor-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry-breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavor-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of nonminimal flavor violation in anomaly-mediated supersymmetry-breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  13. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  14. Analysis on a Nambu--Jona-Lasinio Model of Dynamical Supersymmetry Breaking

    CERN Document Server

    Cheng, Yifan; Faisel, Gaber; Kong, Otto C W

    2016-01-01

    This is a report on our newly proposed model of dynamical supersymmetry breaking with some details of the analysis involved. The model in the simplest version has only a chiral superfield (multiplet), with a strong four-superfield interaction in the K\\"ahler potential that induces a real two-superfield composite with vacuum condensate. The latter has supersymmetry breaking parts, which we show to bear nontrivial solution following basically a standard nonperturbative analysis for a Nambu--Jona-Lasinio type model on a superfield setting. The real composite superfield has a spin one component but is otherwise quite unconventional. We discuss also the parallel analysis for the effective theory with the composite. Plausible vacuum solutions are illustrated and analyzed. The supersymmetry breaking solutions have generated soft mass(es) for the scalar avoiding the vanishing supertrace condition for the squared-masses of the superfield components. We also present some analysis of the resulted low energy effective th...

  15. Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hitoshi

    1994-06-01

    The author reviews phenomenologically interesting aspects of supersymmetry. First he points out that the discovery of the positron can be regarded as a historic analogue to the would-be discovery of supersymmetry. Second he reviews the recent topics on the unification of the gauge coupling constants, m{sub b}-M{sub {tau}} relation, proton decay, and baryogenesis. The author also briefly discusses the recent proposals to solve the problem of flavor changing neutral currents. Finally he argues that the measurements of supersymmetry parameters may probe the physics at the Planck scale.

  16. Supersymmetry breaking on the lattice: the N=1 Wess-Zumino model

    CERN Document Server

    Baumgartner, David; Wenger, Urs

    2011-01-01

    We discuss spontaneous supersymmetry breaking in the N=1 Wess-Zumino model in two dimensions on the lattice using Wilson fermions and the fermion loop formulation. In that formulation the fermion sign problem related to the vanishing of the Witten index can be circumvented and the model can be simulated very efficiently using the recently introduced open fermion string algorithm. We present first results for the supersymmetry breaking phase transition and sketch the preliminary determination of a renormalised critical coupling in the continuum limit.

  17. Supersymmetry breaking and gauge mediation in models with a generic superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Ryuichiro [Los Alamos National Laboratory; Ookouchi, Yutaka [CANADA

    2008-01-01

    In this note, we present a transparent scheme for finding or creating a (meta)stable vacuum in general supersymmetric models. We derive general conditions for having a supersymmetry breaking vacuum by connecting different models by a coordinate transformation, which is an application of the method used in [16]. In particular, we find that there can be a metastable supersymmetry breaking vacuum in models with the canonical Kahler potential and a generic superpotential. For example, the Wess-Zumino model coupled to the messenger fields possesses a metastable vacuum if coefficients of the superpotential terms satisfy certain inequalities.

  18. The Super-Natural Supersymmetry and Its Classic Example: M-Theory Inspired NMSSM

    CERN Document Server

    Li, Tianjun; Wang, Xiao-Chuan

    2015-01-01

    We briefly review the super-natural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the Minimal Supersymmetric Standard model (MSSM), the Next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for super-natural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on $S^1/Z_2$. In these scenarios, SUSY is broken by one and only one $F$-term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the K\\"ahler potential and superpotential from Calabi-Yau compactification of M-theory on $S^1/Z_2$. Thus, as predicted by super-natural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are r...

  19. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2010-03-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  20. Deflected anomaly mediated SUSY breaking scenario with general messenger–matter interactions

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-12-01

    Full Text Available We propose to introduce general messenger–matter interactions in the deflected anomaly mediated SUSY breaking scenario. The most general form for the resulting soft parameters is derived. New interference terms between the GMSB type and AMSB type contributions are the unique feature of this scenario. Messenger–matter interactions involving sleptons can be used to solve the tachyonic slepton problem and naturally lead to positive slepton masses regardless of the sign of deflection parameter. Besides, due to the new contributions, large |At| that will not trigger color-breaking stop VEV are also possible in this scenario, thus can easily give the 125 GeV higgs which was discovered by LHC. This type of deflected AMSB scenario need very few messenger species, thus can avoid possible non-perturbative gauge couplings below the GUT scale (or Landau pole below the Planck scale.

  1. Diagnosis of Supersymmetry Breaking Mediation Schemes by Mass Reconstruction at the LHC

    CERN Document Server

    Dutta, Bhaskar; Krislock, Abram; Sinha, Kuver; Wang, Kechen

    2011-01-01

    If supersymmetry is discovered at the LHC, the next question will be the determination of the underlying model. While this may be challenging or even intractable, a more optimistic question is whether we can understand the main contours of any particular paradigm of the mediation of supersymmetry breaking. The determination of superpartner masses through endpoint measurements of kinematic observables arising from cascade decays is a powerful diagnostic tool. In particular, the determination of the gaugino sector has the potential to discriminate between certain mediation schemes (not all schemes, and not between different UV realizations of a given scheme). We reconstruct gaugino masses, choosing a model where anomaly contributions to supersymmetry breaking are important (KKLT compactification), and find the gaugino unification scale. Moreover, reconstruction of other superpartner masses allows us to solve for the parameters defining the UV model. The analysis is performed in the stop and stau coannihilation ...

  2. The Status of Supersymmetry after the LHC Run 1

    CERN Document Server

    Bechtle, Philip; Sander, Christian

    2015-01-01

    Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status of SUSY in global analyses after the LHC Run 1 is summarized.

  3. Supersymmetry breaking as a new source for the generalized uncertainty principle

    Science.gov (United States)

    Faizal, Mir

    2016-06-01

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee-Wick field theories.

  4. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  5. On the quantum stability of IIB orbifolds and orientifolds with Scherk-Schwarz SUSY breaking

    CERN Document Server

    Borunda, M; Trapletti, M

    2003-01-01

    We study the quantum stability of Type IIB orbifold and orientifold string models in various dimensions, including Melvin backgrounds, where supersymmetry (SUSY) is broken {\\it \\`a la} Scherk-Schwarz (SS) by twisting periodicity conditions along a circle of radius R. In particular, we compute the R-dependence of the one-loop induced vacuum energy density $\\rho(R)$, or cosmological constant. For SS twists different from Z2 we always find, for both orbifolds and orientifolds, a monotonic $\\rho(R)<0$, eventually driving the system to a tachyonic instability. For Z2 twists, orientifold models can have a different behavior, leading either to a runaway decompactification limit or to a negative minimum at a finite value R_0. The last possibility is obtained for a 4D chiral orientifold model where a more accurate but yet preliminary analysis seems to indicate that $R_0\\to \\infty$ or towards the tachyonic instability, as the dependence on the other geometric moduli is included.

  6. Note on Mediation of Supersymmetry Breaking from Closed to Open Strings

    CERN Document Server

    Antoniadis, Ignatios; Antoniadis, Ignatios; Taylor, Tomasz R.

    2005-01-01

    We discuss the mediation of supersymmetry breaking from closed to open strings, extending and improving previous analysis of the authors in Nucl. Phys. B 695 (2004) 103 [hep-th/0403293]. In the general case, we find the absence of anomaly mediation around any perturbative string vacuum. When supersymmetry is broken by Scherk-Schwarz boundary conditions along a compactification interval perpendicular to a stack of D-branes, the gaugino acquires a mass at two loops that behaves as $m_{1/2}\\sim g^4 m_{3/2}^3$ in string units, where $m_{3/2}$ is the gravitino mass and $g$ is the gauge coupling.

  7. Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation

    CERN Document Server

    Krippendorf, Sven

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...

  8. Six-dimensional origin of gravity mediated brane to brane supersymmetry breaking

    CERN Document Server

    Diamandis, G A; Kouroumalou, P; Lahanas, A B

    2013-01-01

    Four dimensional supergravities may be the right framework to describe particle physics at low energies. Its connection to the underlying string theory can be implemented through higher dimensional supergravities which bear special characteristics. Their reduction to four dimensions breaks supersymmetry whose magnitude depends both on the compactifying manifold and the mechanism that generates the breaking. In particular compactifications, notably on a $S_1/Z_2$ orbifold, the breaking of supersymmetry occuring on a hidden brane, residing at one end of $S_1/Z_2$, is communicated to the visible brane which lies at the other end, via gravitational interactions propagating in the bulk. This scenario has been exemplified in the framework of the $N=2$, $D=5$ supergravity. In this note, motivated by the recent developments in the field, related to the six-dimensional description of the supergravity theory, we study the $N=2$, $D=5$ supergravity theory as originating from a $D=6$ supergravity which, in addition to th...

  9. New Supersoft Supersymmetry Breaking Operators and a Solution to the $\\mu$ Problem

    CERN Document Server

    Nelson, Ann E

    2015-01-01

    We propose the framework, "generalized supersoft supersymmetry breaking." "Supersoft" models, with D-type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and CP problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, $\\mu$) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T-parameter. In this work we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new $\\mu$-term can give unequal masses to ...

  10. Brane induced supersymmetry breaking and de Sitter supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-02-12

    We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.

  11. Dark Energy density in models with Split Supersymmetry and degenerate vacua

    CERN Document Server

    Froggatt, C; Nielsen, H B

    2011-01-01

    The breakdown of global symmetries, which protect a zero value for the cosmological constant in supergravity (SUGRA) models, may lead to a set of degenerate vacua with broken and unbroken supersymmetry (SUSY) whose vacuum energy densities vanish in the leading approximation. Assuming the degeneracy of vacua with broken and unbroken SUSY originating in the hidden sector, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the Split-SUSY scenario if the SUSY breaking scale is of order of 10^{10} GeV.

  12. On SUSY Restoration in Single-Superfield Inflationary Models of Supergravity

    CERN Document Server

    Ketov, Sergei V

    2016-01-01

    We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the K\\"ahler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.

  13. On SUSY restoration in single-superfield inflationary models of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Hachioji-shi, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation); Terada, Takahiro [Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of)

    2016-08-15

    We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kaehler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant. (orig.)

  14. On SUSY restoration in single-superfield inflationary models of supergravity

    Science.gov (United States)

    Ketov, Sergei V.; Terada, Takahiro

    2016-08-01

    We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kähler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.

  15. Perturbative and Non-Perturbative Partial Supersymmetry Breaking $N=4 \\to N=2 \\to N=1$

    CERN Document Server

    Kiritsis, Elias B

    1997-01-01

    We show the existence of a supersymmetry breaking mechanism in string theory, where N=4 supersymmetry is broken spontaneously to N=2 and N=1 with moduli dependent gravitino masses. The spectrum of the spontaneously broken theory with lower supersymmetry is in one-to-one correspondence with the spectrum of the heterotic N=4 string. The mass splitting of the N=4 spectrum depends on the compactification moduli as well as the three R-symmetry charges. In the large moduli limit a restoration of the N=4 supersymmetry is obtained. As expected the graviphotons and some of the gauge bosons become massive in N=1 vacua. At some special points of the moduli space some of the N=4 states with non-zero winding numbers and with spin 0 and {1/2} become massless chiral superfields of the unbroken N=1 supersymmetry. Such vaccua have a dual type II description, in which there are magnetically charged states with spin 0 and {1/2} that become massless. The heterotic-type II duality suggests some novel non-perturbative transitions ...

  16. Supersymmetry breaking and Nambu-Goldstone fermions in an extended Nicolai model

    CERN Document Server

    Sannomiya, Noriaki; Nakayama, Yu

    2016-01-01

    We study a model of interacting spinless fermions in a one dimensional lattice with supersymmetry (SUSY). The Hamiltonian is given by the anti-commutator of two supercharges $Q$ and $Q^\\dagger$, each of which is comprised solely of fermion operators and possesses one adjustable parameter $g$. When the parameter $g$ vanishes, the model is identical to the one studied by Nicolai [H. Nicolai, J. Phys. A: Math. Gen. \\textbf{9}, 1497 (1976)], where the zero-energy ground state is exponentially degenerate. On the other hand, in the large-$g$ limit the model reduces to the free-fermion chain with a four-fold degenerate ground state. We show that for finite chains SUSY is spontaneously broken when $g > 0$. We also rigorously prove that for sufficiently large $g$ the ground-state energy density is nonvanishing in the infinite-volume limit. We further analyze the nature of the low-energy excitations by employing various techniques such as rigorous inequalities, exact numerical diagonalization, and renormalization group...

  17. Signs of Susy

    CERN Document Server

    Wymant, Chris

    2013-01-01

    This doctoral thesis addresses aspects of Supersymmetry (Susy) phenomenology. In addition to previously published work, it contains introductions to the following topics: from classical mechanics to quantum field theory for the more casual reader, electroweak naturalness, the Higgs as a pseudo-Nambu-Goldstone boson, the MSSM and NMSSM, simple and less simple models of gauge-mediated Susy breaking (GMSB), collider searches for Susy and other new theories, transverse mass observables with missing energy, and Brazil-band plots. The previously published work is as follows. The optimally natural Higgs-stop sector in the MSSM in light of the 2012 discovery of a Higgs boson is derived, namely that of almost maximal mixing, with the scalar top partners almost as light as can be. The discovery is also interpreted numerically in the NMSSM, with greater emphasis placed on the visibility of the Higgs boson at the observed mass, i.e. on signal strengths. I investigate the role played by the mediation scale of GMSB: this i...

  18. Supernatural supersymmetry and its classic example: M-theory inspired NMSSM

    Science.gov (United States)

    Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan

    2016-06-01

    We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

  19. Supersymmetry breaking, conserved charges and stability in N=1 Super KdV

    CERN Document Server

    Restuccia, A

    2012-01-01

    We analyse the non-abelian algebra and the supersymmetric cohomology associated to the local and non-local conserved charges of N=1 SKdV under Poisson brackets. We then consider the breaking of the supersymmetry and obtain an integrable model in terms of Clifford algebra valued fields. We discuss the remaining conserved charges of the new system and the stability of the solitonic solutions.

  20. Gauge/gravity duality and meta-stable dynamical supersymmetry breaking

    CERN Document Server

    Argurio, R; Franco, S; Kachru, S; Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit

    2007-01-01

    We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua.

  1. F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories

    CERN Document Server

    Morita, Takeshi

    2011-01-01

    We extend previous work on N=2 Chern-Simons theories coupled to a single adjoint chiral superfield using localization techniques and the F-maximization principle. We provide tests of a series of proposed 3D Seiberg dualities and a new class of tests of the conjectured F-theorem. In addition, a proposal is made for a modification of the F-maximization principle that takes into account the effects of decoupling fields. Finally, we formulate and provide evidence for a new general non-perturbative constraint on spontaneous supersymmetry breaking in three dimensions based on Q-deformed S^3 partition functions computed via localization. An explicit illustration based on the known analytic solution of the Chern-Simons matrix model is presented.

  2. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kiwoon, E-mail: kchoi@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-11-01

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  3. Generalized Supersoft Supersymmetry Breaking and a Solution to the μ Problem

    Science.gov (United States)

    Nelson, Ann E.; Roy, Tuhin S.

    2015-05-01

    We propose the framework generalized supersoft supersymmetry breaking. "Supersoft" models, with D -type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and C P problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, μ ) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T parameter. In this Letter, we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new μ term can give unequal masses to the up and down type Higgs fields, and the Higgsinos can be much heavier than the Higgs boson without fine-tuning. However, unequal Higgs and Higgsino masses also remove some attractive features of supersoft supersymmetry.

  4. General gauge and anomaly mediated supersymmetry breaking in grand unified theories with vector-like particles

    Science.gov (United States)

    Li, Tianjun; Nanopoulos, Dimitri V.

    2011-10-01

    In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) × U(1) X or Pati-Salam SU(4) C × SU(2) L × SU(2) R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) × U(1) X models, and the Pati-Salam SU(4) C × SU(2) L × SU(2) R models. In the deflected AMSB, we also define the new indices for the gaugino mass relations, and calculate them as well. Using these gaugino mass relations and their indices, we may probe the messenger fields at intermediate scale in the GMSB and deflected AMSB, determine the supersymmetry breaking mediation mechanisms, and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.

  5. Natural SUSY endures

    Energy Technology Data Exchange (ETDEWEB)

    Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.

    2011-10-31

    The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)

  6. Supersymmetry and R-symmetry Breaking in Meta-stable Vacua at Finite Temperature and Density

    CERN Document Server

    Arai, Masato; Sasaki, Shin

    2014-01-01

    We study a meta-stable supersymmetry-breaking vacuum in a generalized O'Raifeartaigh model at finite temperature and chemical potentials. Fields in the generalized O'Raifeartaigh model possess different R-charges to realize R-symmetry breaking. Accordingly, at finite density and temperature, the chemical potentials have to be introduced in a non-uniform way. Based on the formulation elaborated in our previous work we study the one-loop thermal effective potential including the chemical potentials in the generalized O'Raifeartaigh model. We perform the numerical analysis and find that the R-symmetry breaking vacua, which exist at zero temperature and zero chemical potential, are destabilized for some parameter regions. In addition, we find that there are parameter regions where new R-symmetry breaking vacua are realized even at high temperature by the finite density effects.

  7. Soft SUSY breaking terms for chiral matter in IIB string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P.; Abdussalam, Shehu S.; Quevedo, Fernando; Suruliz, Kerim [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2007-01-15

    This paper develops the computation of soft supersymmetry breaking terms for chiral D7 matter fields in IIB Calabi-Yau flux compactifications with stabilised moduli. We determine explicit expressions for soft terms for the single-modulus KKLT scenario and the multiple-moduli large volume scenario. In particular we use the chiral matter metrics for Calabi-Yau backgrounds recently computed in hep-th/0609180. These differ from the better understood metrics for non-chiral matter and therefore give a different structure of soft terms. The soft terms take a simple form depending explicitly on the modular weights of the corresponding matter fields. For the large-volume case we find that in the simplest D7 brane configuration, scalar masses, gaugino masses and A-terms are very similar to the dilaton-dominated scenario. Although all soft masses are suppressed by ln (M{sub P}/m{sub 3/2}) compared to the gravitino mass, the anomaly-mediated contributions do not compete, being doubly suppressed and thus subdominant to the gravity-mediated tree-level terms. Soft terms are flavour-universal to leading order in an expansion in inverse Kaehler moduli. They also do not introduce extra CP violating phases to the effective action. We argue that soft term flavour universality should be a property of the large-volume compactifications, and more generally IIB flux models, in which flavour is determined by the complex structure moduli while supersymmetry is broken by the Kaehler moduli. For the simplest large-volume case we run the soft terms to low energies and present some sample spectra and a basic phenomenological analysis.

  8. Towards a resolution of certain dilemmas in preon dynamics through local supersymmetry

    Science.gov (United States)

    Pati, Jogesh C.; Cveti, Mirjam; Sharatchandra, H. S.

    1987-03-01

    A resolution of one of the major dilemmas of preon dynamics, i.e., why (mq,ml)<<(1/r0)≡Λ0, is provided. In a class of models, supersymmetry (SUSY) in its local rather than global form permits a breaking of SUSY and also a generation of composite-fermion masses, but both with a severe damping by powers of (Λ0/MPlanck).

  9. Where is SUSY?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts…   Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...

  10. Indirect Probes of Supersymmetry Breaking in Multi-Km3 Neutrino Telescopes

    CERN Document Server

    Albuquerque, Ivone Freire M

    2012-01-01

    Recently it has been shown that fluorescence telescopes with a large field of view can indirectly probe the scale of supersymmetry breaking. Here we show that depending on their ability to fight a large background, multi-Km3 volume neutrino telescopes might independently probe a similar breaking scale region, which lies between \\sim 10^5 and \\sim 5 x 10^6 GeV. The scenarios we consider have the gravitino as the lightest supersymmetric particle, and the next to lightest (NLSP) is a long lived slepton. Indirect probes complement a proposal that demonstrates that 1 Km3 telescopes can directly probe this breaking scale. A high energy flux of neutrinos might interact in the Earth producing NLSPs which decay into taus. We estimate the rate of taus, taking into account the regeneration process, and the rate of secondary muons, which are produced in tau decays, in multi-km3 detectors.

  11. Large trilinear $A_t$ soft supersymmetry breaking coupling from 5D MSSM

    CERN Document Server

    Abdalgabar, Ammar

    2015-01-01

    The possibility of generating a large trilinear $A_t$ soft supersymmetry breaking coupling at low energies through renormalisation group evolution in the 5D MSSM is investigated. Using the power law running in five dimensions and a compactification scale in the 10-$10^3$ TeV range, to show that gluino mass may drive a large enough $A_t$ to reproduce the measured Higgs mass and have a light stop superpartner below $\\sim 1$ TeV as preferred by the fine tuning argument for the Higgs mass.

  12. A Gauge Mediation Model of Dynamical Supersymmetry Breaking without Color Instability

    CERN Document Server

    Nomura, Y; Yanagida, T; Nomura, Yasunori

    1998-01-01

    We construct a gauge mediation model of dynamical supersymmetry breaking (DSB) based on a vector-like gauge theory, in which there is a unique color-preserving true vacuum. The DSB scale $\\Lambda$ turns out to be as high as $\\Lambda \\simeq 10^{8-9} GeV$, since the transmission of the DSB effects to the standard model sector is completed through much higher loops. This model is perfectly natural and phenomenologically consistent. We also stress that the dangerous D-term problem for the messenger U(1)_m is automatically solved by a charge conjugation symmetry in the vector-like gauge theory.

  13. Sneutrino-antisneutrino mixing and neutrino mass in anomaly-mediated supersymmetry breaking scenario.

    Science.gov (United States)

    Choi, Kiwoon; Hwang, Kyuwan; Song, Wan Young

    2002-04-01

    In supersymmetric models with nonzero Majorana neutrino mass, the sneutrino and antisneutrino mix, which may lead to same-sign dilepton signals in future collider experiments. We point out that the anomaly-mediated supersymmetry breaking scenario has a good potential to provide an observable rate of such signals for the neutrino masses suggested by the atmospheric and solar neutrino oscillations. It is noted also that the sneutrino-antisneutrino mixing can provide much stronger information on some combinations of the neutrino masses and mixing angles than the neutrino experiments.

  14. Reducing the fine-tuning of gauge-mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2016-08-15

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)

  15. Reducing the Fine-Tuning of Gauge-Mediated SUSY Breaking

    CERN Document Server

    Casas, J Alberto; Robles, Sandra; Rolbiecki, Krzysztof

    2016-01-01

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, $A_t=0$. In this paper, we carefully evaluate such a fine-tuning, showing that is of the order a few per ten thousand in the minimal model. Then, we examine some existing proposals to improve the situation, by incorporating mechanisms to generate the desired $A_t$ term. We find that, although the stops can be made lighter, usually the fine-tuning does not improve (it may be even worse), with the exception of the scenario proposed by Basirnia et al., which involves tree-level generated $A_t$. We explore this scenario, proposing a conceptually simplified version which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. In this model, the fine-tuning can be improved compared to other MSSM constructions. We also explore the so-called "little $A_t^2/m^2$ problem", i...

  16. Reducing the fine-tuning of gauge-mediated SUSY breaking

    Science.gov (United States)

    Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof

    2016-08-01

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A_t=0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A_t≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A_t at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called "little A_t^2/m^2 problem", i.e. the fact that a large A_t-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning.

  17. Supersymmetry for Fermion Masses

    Institute of Scientific and Technical Information of China (English)

    LIU Chun

    2007-01-01

    It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry Z3L is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale ~ 1011 GeV. The electroweak energy scale ~ 100 GeV is unnaturally small. No additional global symmetry, like the R-parity, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are (&)(100 ~ 10-2). Under the family symmetry, only the third generation charged fermions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the τ mass is fromthe Higgs vacuum expectation value (VEV)and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both Z3L and SUSY breaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. |Ve3|, which is for ve-vτ mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains mc/ms, ms/me, md > mu, and so on. Other aspects of the model are discussed.

  18. SUSY searches in ATLAS

    CERN Document Server

    ATLAS, C; The ATLAS collaboration

    2014-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  19. D-foam-induced flavor condensates and breaking of supersymmetry in free Wess-Zumino fluids

    CERN Document Server

    Mavromatos, N E; Tarantino, W

    2011-01-01

    Recently {[}N. E. Mavromatos and S. Sarkar, New J. Phys. 10, 073009 (2008); N. E. Mavromatos, S. Sarkar, and W. Tarantino, Phys. Rev. D 80, 084046 (2009)], we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavored particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavor vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavor vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry at a low-energy effective field-theory level; on considering the flavor-vacuum expectation value of the energy...

  20. Varying the Universality of Supersymmetry-Breaking Contributions to MSSM Higgs Boson Masses

    CERN Document Server

    Ellis, Jonathan Richard; Sandick, Pearl

    2008-01-01

    We consider the minimal supersymmetric extension of the Standard Model (MSSM) with varying amounts of non-universality in the soft supersymmetry-breaking contributions to the Higgs scalar masses. In addition to the constrained MSSM (CMSSM) in which these are universal with the soft supersymmetry-breaking contributions to the squark and slepton masses at the input GUT scale, we consider scenarios in which both the Higgs scalar masses are non-universal by the same amount (NUHM1), and scenarios in which they are independently non-universal (NUHM2). We show how the NUHM1 scenarios generalize the (m_{1/2}, m_0) planes of the CMSSM by allowing either mu or m_A to take different (fixed) values and we also show how the NUHM1 scenarios are embedded as special cases of the more general NUHM2 scenarios. Generalizing from the CMSSM, we find regions of the NUHM1 parameter space that are excluded because the LSP is a selectron. We also find new regions where the neutralino relic density falls within the range preferred by ...

  1. General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles

    CERN Document Server

    Li, Tianjun

    2010-01-01

    In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the deflected AMSB, we also defi...

  2. On the Role of Space-Time Foam in Breaking Supersymmetry via the Barbero-Immirzi Parameter

    CERN Document Server

    Ellis, John

    2011-01-01

    We discuss how: (i) a dilaton/axion superfield can play the role of a Barbero-Immirzi field in four-dimensional conformal quantum supergravity theories, (ii) a fermionic component of such a dilaton/axion superfield may play the role of a Goldstino in the low-energy effective action obtained from a superstring theory with F-type global supersymmetry breaking, (iii) this global supersymmetry breaking is communicated to the gravitational sector via the supergravity coupling of the Goldstino, and (iv) such a scenario may be realized explicitly in a D-foam model with D-particle defects fluctuating stochastically.

  3. Unraveling supersymmetry at future colliders

    Indian Academy of Sciences (India)

    Xerxes Tata

    2004-02-01

    After a quick review of the current limits on sparticle masses, we outline the prospects for their discovery at future colliders. We then proceed to discuss how precision measurements of sparticle masses can provide information about how SM suprpartners acquire their masses. Finally, we examine how we can proceed to establish whether or not any new physics discovered in the future is supersymmetry, and describe how we might zero in on the framework of SUSY breaking. In this connection, we review sparticle mass measurements at future colliders, and point out that some capabilities of experiments at $e^{+}e^{-}$ linear colliders may have been over-stated in the literture.

  4. SUSY Searches at ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.

  5. A Supersymmetry Model of Leptons

    CERN Document Server

    Liu, C

    2005-01-01

    If supersymmetry (SUSY) is not for stabilizing the electroweak energy scale, what is it used for in particle physics? We propose that it is for flavor problems. A cyclic family symmetry is introduced. Under the family symmetry, only the $\\tau$-lepton is massive due to the vacuum expectation value (VEV) of the Higgs field. This symmetry is broken by a sneutrino VEV which results in the muon mass. The comparatively large sneutrino VEV does not result in a large neutrino mass due to requiring heavy gauginos. SUSY breaks at a high scale $\\sim 10^{13}$ GeV. The electroweak energy scale is unnaturally small. No additional global symmetry, like the R-parity, is imposed. Other aspects of the model are discussed.

  6. The Supersymmetry Soft-breaking Lagrangian Where Experiment and String Theory Meet

    CERN Document Server

    Kane, G L

    2000-01-01

    After an introduction recalling that we expect low energy supersymmetry to be part of our description of nature because of considerable indirect evidence and successful predictions, and a discussion of the essential role of data for formulating and testing string theory, these lectures focus on the role of the supersymmetry soft-breaking Lagrangian in connecting experiment and string theory. How to measure tan$\\beta$ and the soft parameters is examined via a number of applications, and the difficulty of measuring tan$\\beta$ at hadron colliders is explained. In each case the important role of soft phases is made explicit, and the true number of parameters is counted. Applications include the chargino and neutralino sectors, the Higgs sector and how its results change when phases are included, measuring the (relative) gluino phase, CP violation in K and B systems and whether all CP violation can be due to soft phases, how to learn if the LSP is the cold dark matter of the universe, and baryogenesis. It is empha...

  7. The 750 GeV diphoton excess as a first light on supersymmetry breaking

    Science.gov (United States)

    Casas, J. A.; Espinosa, J. R.; Moreno, J. M.

    2016-08-01

    One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Γ ≃ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.

  8. The 750 GeV diphoton excess as a first light on supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    J.A. Casas

    2016-08-01

    Full Text Available One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Γ≃45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.

  9. The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking

    CERN Document Server

    Casas, J A; Moreno, J M

    2015-01-01

    One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.

  10. LHC Phenomenology and Dark Matter Considerations for Various Anomaly Mediated Supersymmetry Breaking Models

    CERN Document Server

    Rajagopalan, Shibi

    2010-01-01

    In this thesis we examine three different models in the MSSM context, all of which have significant supergravity anomaly contributions to their soft masses. These models are the so-called Minimal, Hypercharged, and Gaugino Anomaly Mediated Supersymmetry Breaking models. We explore some of the string theoretical motivations for these models and proceed by understanding how they would appear at the Large Hadron Collider (LHC). Our major results include calculating the LHC reach for each model's parameter space and prescribing a method for distinguishing the models after the collection of 100 fb^-1 at sqrt{s}=14 TeV. AMSB models are notorious for predicting too low a dark matter relic density. To counter this argument we explore several proposed mechanisms for $non$-$thermal$ dark matter production that act to augment abundances from the usual thermal calculations. Interestingly, we find that future direct detection dark matter experiments potentially have a much better reach than the LHC for these models.

  11. Flavour violation in gauge-mediated supersymmetry breaking models: Experimental constraints and phenomenology at the LHC

    Science.gov (United States)

    Fuks, Benjamin; Herrmann, Björn; Klasen, Michael

    2009-03-01

    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.

  12. Flavour Violation in Gauge-Mediated Supersymmetry Breaking Models: Experimental Constraints and Phenomenology at the LHC

    CERN Document Server

    Fuks, B; Klasen, M

    2008-01-01

    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.

  13. Flavour violation in gauge-mediated supersymmetry breaking models: Experimental constraints and phenomenology at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79106 Freiburg im Breisgau (Germany); Herrmann, Bjoern [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr

    2009-03-21

    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.

  14. Dynamical Supersymmetry Breaking versus Run-away behavior in Supersymmetric Gauge Theories

    CERN Document Server

    Shirman, Yu

    1996-01-01

    We consider Dynamical Supersymmetry Breaking (DSB) in models with classical flat directions. We analyze a number of examples, and develop a systematic approach to determine if classical flat directions are stabilized in the full quantum theory, or lead to run-away behavior. In some cases pseudo-flat directions remain even at the quantum level before taking into account corrections to the Kähler potential. We show that in certain limits these corrections are calculable. In particular, we find that in the Intriligator-Thomas $SU(2)$ and its generalizations, a potential for moduli is generated. Moreover, there is a region of the parameter space where Kähler potential corrections lead to calculable (local) minima at large but finite distance from the origin.

  15. Hilltop supernatural inflation and SUSY unified models

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.

  16. Hilltop supernatural inflation and SUSY unified models

    Science.gov (United States)

    Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.

  17. Partial ${\\cal N}=2 \\to {\\cal N}=1$ supersymmetry breaking and gravity deformed chiral rings

    CERN Document Server

    David, J R; Narain, K S; David, Justin R.; Gava, Edi

    2004-01-01

    We present a derivation of the chiral ring relations, arising in ${\\cal N}=1$ gauge theories in the presence of (anti-)self-dual background gravitational field $G_{\\alpha\\beta\\gamma}$ and graviphoton field strength $F_{\\alpha\\beta}$. These were previously considered in the literature in order to prove the relation between gravitational F-terms in the gauge theory and coefficients of the topological expansion of the related matrix integral. We consider the spontaneous breaking of ${\\cal N} =2$ to ${\\cal N} =1$ supergravity coupled to vector- and hyper-multiplets, and take a rigid limit which keeps a non-trivial $G_{\\alpha\\beta\\gamma}$ and $F_{\\alpha\\beta}$ with a finite supersymmetry breaking scale. We derive the resulting effective, global, ${\\cal N}=1$ theory and show that the chiral ring relations are just a consequence of the standard ${\\cal N}=2$ supergravity Bianchi identities . We can also obtain models with matter in different representations and in particular quiver theories. We also show that, in the...

  18. Indirect Probes of Supersymmetry Breaking in the JEM-EUSO Observatory

    CERN Document Server

    Albuquerque, Ivone F M

    2012-01-01

    In this paper we propose indirect probes of the scale of supersymmetry breaking, through observations in the Extreme Universe Space Observatory onboard Japanese Experiment Module (JEM-EUSO). We consider scenarios where the lightest supersymmetric particle is the gravitino, and the next to lightest (NLSP) is a long lived slepton. We demonstrate that JEM-EUSO will be able to probe models where the NLSP decays, therefore probing supersymmetric breaking scales below $5 \\times 10^6$ GeV. The observatory field of view will be large enough to detect a few tens of events per year, depending on its energy threshold. This is complementary to a previous proposal (Albuquerque et al., 2004) where it was shown that 1 Km$^3$ neutrino telescopes can directly probe this scale. NLSPs will be produced by the interaction of high energy neutrinos in the Earth. Here we investigate scenarios where they subsequently decay, either in the atmosphere after escaping the Earth or right before leaving the Earth, producing taus. These can ...

  19. Self-Dual Tensors and Partial Supersymmetry Breaking in Five Dimensions

    CERN Document Server

    Grimm, Thomas W

    2014-01-01

    We study spontaneous supersymmetry breaking of five-dimensional supergravity theories from sixteen to eight supercharges in Minkowski vacua. This N=4 to N=2 breaking is induced by Abelian gaugings that require the introduction of self-dual tensor fields accompanying the vectors in the gravity multiplet and vector multiplets. These tensor fields have first-order kinetic terms and can become massive by a Stueckelberg-like mechanism. We identify the general class of N=2 vacua and show how the N=4 spectrum splits into massless and massive N=2 multiplets. In particular, we find a massive gravitino multiplet, containing two complex massive tensors, and a number of massive tensor multiplets and hypermultiplets. We determine the resulting N=2 effective action for the massless multiplets obtained by integrating out massive fields. We show that the metric and Chern-Simons terms of the vectors are corrected at one-loop by massive tensors as well as spin-1/2 and spin-3/2 fermions. These contributions are independent of t...

  20. Search for Gauge-Mediated SUSY Breaking Topologies at $\\sqrt{s}\\sim{189}$ GeV

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G

    2001-01-01

    Searches for topologies characteristic of Gauge Mediated SUSY Breaking models (GMSB) are performed by analysing 173.6 pb^-1 of data collected at Ecm = 188.6~GeV with the ALEPH detector.These topologies include acoplanar photons, non-pointing single photon, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and four leptons plus missing energy final states.No evidence for these new phenomena is observed and limits on production cross sections and sparticle masses are derived. A scan of a minimal GMSB parameter space is performed and model dependent lower limits of about 45 GeV/c^2 on the next-to-lightest supersymmetric particle (NLSP) mass and of about 9 TeV on the mass scale parameter Lambda are derived, independently of the NLSP lifetime.

  1. SUSY in the Light of B Physics and Electroweak Precision Observables

    CERN Document Server

    Weiglein, Georg

    2007-01-01

    Indirect information about the possible scale of supersymmetry (SUSY) breaking can be obtained from the comparison of precisely measured observables (and also of exclusion limits) with accurate theory predictions incorporating SUSY loop corrections. Recent results are reviewed obtained from a combined analysis of the most sensitive electroweak precision observables (EWPO), M_W, sin^2_theta^eff, Gamma_Z, (g-2)_\\mu and M_h, and B-physics observables (BPO), BR(b -> s \\gamma), BR(B_s -> \\mu^+\\mu^-), BR(B_u -> \\tau \

  2. Supersymmetry in the Fractional Quantum Hall Regime

    CERN Document Server

    Sagi, Eran

    2016-01-01

    Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\

  3. Search for SUperSYmmetry (SUSY) in Opposite Sign (OS) di-lepton final states with Parked Data collected at $\\sqrt{s}$ = 8 TeV using the CMS detector

    CERN Document Server

    Bhattacharya, Saptaparna

    2015-01-01

    The Large Hadron Collider (LHC) has had a very successful data-taking phase with Run 1. After the discovery of the Higgs, confirming the predictions of the Standard Model (SM), the focus is on finding new physics, especially in the context of supersymmetry (SUSY). One of the potential hiding places of natural SUSY is in models with compressed spectra, that is, models where the mass difference between the parent SUSY particle and the Lightest Supersymmetric Particle (LSP) is small. Such signals are characterized by low transverse momentum (p${_T}$) objects, low hadronic activity and missing transverse energy (MET). In this analysis, we focus on di-lepton final states, specifically in the low p${_T}$ regime. We use 7.4 fb$^{-1}$ of parked data collected at $\\sqrt{s}$ = 8 TeV. The analysis is enabled by the use of triggers that place no restrictions on the di-lepton p${_T}$, instead relying on methods like Initial State Radiation (ISR) tagging by triggering on a high p${_T}$ photon, to reduce the trigger rate....

  4. Muon g -2 in gauge mediated supersymmetry breaking models with adjoint messengers

    Science.gov (United States)

    Gogoladze, Ilia; Ün, Cem Salih

    2017-02-01

    We explored the sparticle mass spectrum in light of the muon g -2 anomaly and the little hierarchy problem in a class of the gauge mediated supersymmetry breaking model. Here, the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed slepton masses, the Standard Model is supplemented by the additional U (1 )B-L gauge symmetry. A nonzero U (1 )B-L D term makes the right-handed slepton masses compatible with the current experimental bounds. We show that in the framework of Λ3muon g -2 anomaly and the observed 125 GeV Higgs boson mass can be simultaneously accommodated. The slepton masses in this case are predicted to lie in the few hundred GeV range, which can be tested at the LHC. Despite the heavy colored sparticle spectrum, the little hierarchy problem in this model can be ameliorated, and the electroweak fine-tuning parameter can be as low as 10 or so.

  5. Supersymmetry searches in ATLAS

    CERN Document Server

    Torro Pastor, Emma; The ATLAS collaboration

    2016-01-01

    Weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  6. Supersymmetry Searches in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237280; The ATLAS collaboration

    2015-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  7. Partial SUSY Breaking for Asymmetric Gepner Models and Non-geometric Flux Vacua

    CERN Document Server

    Blumenhagen, Ralph; Plauschinn, Erik

    2016-01-01

    Using the method of simple current extensions, asymmetric Gepner models of Type IIB with N=1 space-time supersymmetry are constructed. The combinatorics of the massless vector fields suggests that these classical Minkowski string vacua provide fully backreacted solutions corresponding to N=1 minima of N=2 gauged supergravity. The latter contain abelian gaugings along the axionic isometries in the hypermultiplet moduli space, and can be considered as Type IIB flux compactifications on Calabi-Yau manifolds equipped with (non-)geometric fluxes. For a particular class of asymmetric Gepner models, we are able to explicitly specify the underlying CICYs and to check necessary conditions for a GSUGRA interpretation. If this conjecture is correct, there exists a large class of exactly solvable non-geometric flux compactifications on CY threefolds.

  8. Supersymmetry searches in ATLAS

    CERN Document Server

    Kuwertz, Emma Sian; The ATLAS collaboration

    2015-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, including those those tagged as originating from b-quark decays, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. An overview of the constraints on supersymmetry from the run1 results is presented, as well as sensitivity projections for the data that will be collected in 2015.

  9. Stability of solitonic solutions of Super KdV equations under Susy breaking conditions

    CERN Document Server

    Restuccia, A

    2012-01-01

    A supersymmetric breaking procedure for N=1 Super KdV, preserving the positivity of the hamiltonian as well as the existence of solitonic solutions, is implemented. The resulting integrable system is shown to have nice stability properties.

  10. INFN-Laboratori Nazionali di Frascati School 2013: Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity

    CERN Document Server

    BUDS 2013

    2014-01-01

    This is the seventh volume in a series on the general topics of supersymmetry, supergravity, black objects (including black holes), and the attractor mechanism. The present volume is based on lectures held in March 2013 at the INFN-Laboratori Nazionali di Frascati during the Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity Workshop (BUDS 2013), organized by Stefano Bellucci, with the participation of prestigious speakers including P. Aschieri, E. Bergshoeff, M. Cederwall, T. Dennen, P. Di Vecchia, S. Ferrara, R. Kallosh, A. Karlsson, M. Koehn, B. Ovrut, A. Van Proeyen, G. Ruppeiner. Special attention is devoted to discussing topics related to the cancellation of ultraviolet divergences in extended supergravity and Born-Infeld-like actions. All talks were followed by extensive discussions and subsequent reworking of the various contributions, a feature which is reflected in the unique "flavor" of this volume.

  11. Soft-Collinear Supersymmetry

    CERN Document Server

    Cohen, Timothy; Larkoski, Andrew J

    2016-01-01

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective theory for $\\mathcal{N} = 1$ SUSY Yang-Mills is constructed and shown to be consistent. For contrast, arguments are given that chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model, are incompatible with the collinear expansion. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance -- given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions a...

  12. SUSY using boosted techniques

    CERN Document Server

    Stark, Giordon; The ATLAS collaboration

    2016-01-01

    In this talk, I present a discussion of techniques used in supersymmetry searches in papers published by the ATLAS Collaboration from late Run 1 to early Run 2. The goal is to highlight concepts the analyses have in common, why/how they work, and possible SUSY searches that could benefit from boosted studies. Theoretical background will be provided for reference to encourage participants to explore in depth on their own time.

  13. SUSY Searches in ATLAS

    CERN Document Server

    Zhuang, Xuai; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV using 2015+2016 data. The searches with final states including jets, missing transverse momentum, light leptons will be presented.

  14. Explicitly Broken Supersymmetry with Exactly Massless Moduli

    CERN Document Server

    Dong, Xi; Zhao, Yue

    2014-01-01

    There is an avatar of the little hierarchy problem of the MSSM in 3-dimensional supersymmetry. We propose a solution to this problem in AdS$_3$ based on the AdS/CFT correspondence. The bulk theory is a supergravity theory in which U(1) $\\times$ U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. Since the R-charges of scalar and spinor differ, this generates a SUSY breaking shift of their masses. The Ward identity facilitates the calculation of these mass shifts to any desired order in the strength of the deformation. Moduli fields are massless $R$-neutral bulk scalars with vanishing potential in the undeformed theory. These properties are maintained to all orders in the deformation despite the fact that moduli couple in the bulk to loops of R-char...

  15. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2016-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  16. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  17. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  18. Summary of the SUSY Working Group of the 1999 Les Houches Workshop

    CERN Document Server

    Abdullin, S; Martyn, H U; Ambrosanio, S; Dreiner, H; Godbole, Rohini M; Chiappetta, J; Choudhury, D; Datta, A K; Deandrea, Aldo; Éboli, Oscar J P; Ghodbane, N; Heinemeyer, S; Ilyin, V A; Kon, T; Kraml, Sabine; Kurihara, Y; Kuroda, M; Megner, L; Melé, Barbara; Moreau, G; Mukhopadhyaya, B; Nagy, E; Negroni, S; Odagiri, K; Paige, Frank E; Pérez, E; Petrarca, S; Richardson, Peter; Rimoldi, A; Roy, S; Seymour, Michael H; Spira, Michael; Virey, J M; Vissani, F; Weiglein, Georg; Polesello, G; Wells, J

    2000-01-01

    The results obtained by the Working Group on Supersymmetry at the 1999 Les Houches Workshop on Collider Physics are summarized. Separate chapters treat "general" supersymmetry, R-parity violation, gauge mediated supersymmetry breaking, and anomaly mediated supersymmetry breaking.

  19. ATLAS Supersymmetry Searches

    CERN Document Server

    Ughetto, Michael; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV.

  20. Spontaneous parity violation and SUSY strong gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki; Ohki, Hiroshi [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2012-07-27

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking.

  1. 750 GeV diphoton resonance, 125 GeV Higgs and muon g−2 anomaly in deflected anomaly mediation SUSY breaking scenarios

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2016-08-01

    Full Text Available We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ∼O(10 TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S→γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g−2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.

  2. Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wells, James D. [CERN, Geneva (Switzerland)

    2012-08-01

    We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \\tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.

  3. Search for supersymmetry with gauge-mediated breaking in diphoton events with missing transverse energy at CDF II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-01-08

    We present the results of a search for supersymmetry with gauge-mediated breaking and chi(1)(0) --> gammaG in the gammagamma + missing transverse energy final state. In 2.6+/-0.2 fb(-1) of pp collisions at square root(s) = 1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4+/-0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149 GeV/c2 on the chi(1)(0) mass at tau(chi(1)(0)) < 1 ns. We also exclude regions in the chi(1)(0) mass-lifetime plane for tau(chi(1)(0)) approximately < 2 ns.

  4. Dynamical determination of the unification scale by gauge-mediated supersymmetry breaking

    OpenAIRE

    1998-01-01

    We propose a mechanism for generating the GUT scale dynamically from the Planck scale. The idea is that the GUT scale is fixed by the vacuum expectation value of a "GUT modulus" field whose potential is exactly flat in the supersymmetric limit. If supersymmetry is broken by gauge mediation, a potential for the GUT modulus is generated at 2 loops, and slopes away from the origin for a wide range of parameters. This potential is stabilized by Planck-suppressed operators in the Kahler potential,...

  5. Flavors of Supersymmetry Beyond Vanilla

    CERN Document Server

    Evans, Jared A

    2015-01-01

    This review surveys the territory of supersymmetry beyond the vanilla MSSM. With a viewpoint guided by electroweak naturalness, the review focuses on constructions that weaken or bypass current LHC constraints. Models of SUSY containing Dirac gluinos, compressed spectra, flavor-violating squarks, R-parity violation, stealth sectors, exotic detector objects, and more are discussed. In addition to presenting ways of hiding SUSY, these models highlight a few opportunities to improve LHC coverage.

  6. Supersymmetry searches in ATLAS

    CERN Document Server

    Meloni, Federico; The ATLAS collaboration

    2015-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.

  7. Soft-collinear supersymmetry

    Science.gov (United States)

    Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.

    2017-03-01

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with super-symmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is cconstructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence be-tween SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in "collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  8. Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets

    Science.gov (United States)

    Lawler, Michael J.

    2016-10-01

    I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands the Maxwell-Calladine index of mechanical structures. "Spontaneous supersymmetry breaking" is identified as the need to gap all modes in the bulk to create the topological isostatic lattice state. Since ground states of magnetic systems also satisfy local constraint conditions (such as the vanishing of the total spin on a triangle), I identify a similar SUSY structure for many common models of antiferromagnets including the square, triangluar, kagome, pyrochlore nearest-neighbor antiferromagnets, and the J2=J1/2 square-lattice antiferromagnet. Remarkably, the kagome family of antiferromagnets is the analog of topological isostatic lattices among this collection of models. Thus, a solid-state realization of the theory of phonon topological band structure may be found in frustrated magnetic materials.

  9. de Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications

    Science.gov (United States)

    Buchmuller, Wilfried; Dierigl, Markus; Ruehle, Fabian; Schweizer, Julian

    2016-07-01

    We consider six-dimensional supergravity with Abelian bulk flux compactified on an orbifold. The effective low-energy action can be expressed in terms of N =1 chiral moduli superfields with a gauged shift symmetry. The D -term potential contains two Fayet-Iliopoulos terms which are induced by the flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The Green-Schwarz term also leads to a correction of the gauge kinetic function which turns out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli stabilization is achieved by the interplay of the D -term and a nonperturbative superpotential. Varying the gauge coupling and the superpotential parameters, the scale of the extra dimensions can range from the GUT scale down to the TeV scale. Supersymmetry is broken by F - and D -terms, and the scale of gravitino, moduli, and modulini masses is determined by the size of the compact dimensions.

  10. SUSY Searches in the ATLAS Experiment

    CERN Document Server

    Lee JR, Lawrence; The ATLAS collaboration

    2014-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  11. SUSY Searches: Recent Results from ATLAS & CMS

    CERN Document Server

    Rammensee, Michael; The ATLAS collaboration

    2015-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS and CMS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  12. Overview of SUSY searches at ATLAS

    CERN Document Server

    Bianco, Michele; The ATLAS collaboration

    2014-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  13. A family-universal anomalous U(1) in string models as the origin of supersymmetry breaking and squark degeneracy

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics

    1997-12-01

    Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.

  14. A family-universal anomalous U(1) in string models as the origin of supersymmetry breaking and squark degeneracy

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics

    1997-12-01

    Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.

  15. Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry

    Science.gov (United States)

    Choi, Kiwoon; Im, Sang Hui

    2016-01-01

    We discuss a scheme to implement the relaxion solution to the hierarchy problem with multiple axions, and present a UV-completed model realizing the scheme. All of the N axions in our model are periodic with a similar decay constant f well below the Planck scale. In the limit N ≫ 1, the relaxion ϕ corresponds to an exponentially long multi-helical flat direction which is shaped by a series of mass mixing between nearby axions in the compact field space of N axions. With the length of flat direction given by Δ ϕ = 2 πf eff ˜ e ξN f for ξ = O(1) , both the scalar potential driving the evolution of φ during the inflationary epoch and the ϕ-dependent Higgs boson mass vary with an exponentially large periodicity of O{f}_{eff}) , while the back reaction potential stabilizing the relaxion has a periodicity of O(f) . A natural UV completion of our scheme can be found in high scale or (mini) split supersymmetry (SUSY) scenario with the axion scales generated by SUSY breaking as f˜ √{m_{SUSY}{M}_{ast }} , where the soft SUSY breaking scalar mass m SUSY can be well above the weak scale, and the fundamental scale M * can be identified as the Planck scale or the GUT scale.

  16. Pure gravity mediation and spontaneous B–L breaking from strong dynamics

    Directory of Open Access Journals (Sweden)

    Kaladi S. Babu

    2016-04-01

    Full Text Available In pure gravity mediation (PGM, the most minimal scheme for the mediation of supersymmetry (SUSY breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number B and lepton number L. The F-term of the SUSY-breaking field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–L at a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, ΛN∼m3/2. Assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–L is identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–L D-term.

  17. de Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications

    CERN Document Server

    Buchmuller, Wilfried; Ruehle, Fabian; Schweizer, Julian

    2016-01-01

    We consider six-dimensional supergravity with Abelian bulk flux compactified on an orbifold. The effective low-energy action can be expressed in terms of N=1 chiral moduli superfields with a gauged shift symmetry. The D-term potential contains two Fayet-Iliopoulos terms which are induced by the flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The Green-Schwarz term also leads to a correction of the gauge kinetic function which turns out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli stabilization is achieved by the interplay of the D-term and a nonperturbative superpotential. Varying the gauge coupling and the superpotential parameters, the scale of the extra dimensions can range from the GUT scale down to the TeV scale. Supersymmetry is broken by F- and D-terms, and the scale of gravitino, moduli, and modulini masses is determined by the size of the compact dimensions.

  18. Naturalizing supersymmetry with a two-field relaxion mechanism

    Science.gov (United States)

    Evans, Jason L.; Gherghetta, Tony; Nagata, Natsumi; Thomas, Zachary

    2016-09-01

    We present a supersymmetric version of a two-field relaxion model that naturalizes tuned versions of supersymmetry. This arises from a relaxion mechanism that does not depend on QCD dynamics and where the relaxion potential barrier height is controlled by a second axion-like field. During the cosmological evolution, the relaxion rolls with a nonzero value that breaks supersymmetry and scans the soft supersymmetric mass terms. Electroweak symmetry is broken after the soft masses become of order the supersymmetric Higgs mass term and causes the relaxion to stop rolling for superpartner masses up to ˜ 109 GeV. This can explain the tuning in supersymmetric models, including split-SUSY models, while preserving the QCD axion solution to the strong CP problem. Besides predicting two very weakly-coupled axion-like particles, the supersymmetric spectrum may contain an extra Goldstino, which could be a viable dark matter candidate.

  19. The early universe with high-scale supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)

    2015-08-15

    A small tensor-to-scalar ratio r may lead to distinctive phenomenology of high-scale supersymmetry. Assuming the same origin of SUSY breaking between the inflation and visible sector, we show model independent features. The simplest hybrid inflation, together with a new linear term for the inflaton field which is induced by a large gravitino mass, is shown to be consistent with all experimental data for r of order 10{sup -5}. For superpartner masses far above the weak scale we find that the reheating temperature after inflation might be below the value required by thermal leptogenesis if the inflaton decays to its products perturbatively, but above it if the decay is non-perturbatively instead. Remarkably, the gravitino overproduction can be evaded in such high-scale supersymmetry because of the kinematically blocking effect. (orig.)

  20. Naturalizing Supersymmetry with a Two-Field Relaxion Mechanism

    CERN Document Server

    Evans, Jason L; Nagata, Natsumi; Thomas, Zachary

    2016-01-01

    We present a supersymmetric version of a two-field relaxion model that naturalizes tuned versions of supersymmetry. This arises from a relaxion mechanism that does not depend on QCD dynamics and where the relaxion potential barrier height is controlled by a second axion-like field. During the cosmological evolution, the relaxion rolls with a nonzero value that breaks supersymmetry and scans the soft supersymmetric mass terms. Electroweak symmetry is broken after the soft masses become of order the supersymmetric Higgs mass term and causes the relaxion to stop rolling for superpartner masses up to $\\sim 10^9$ GeV. This can explain the tuning in supersymmetric models, including split-SUSY models, while preserving the QCD axion solution to the strong CP problem. Besides predicting two very weakly-coupled axion-like particles, the supersymmetric spectrum may contain an extra Goldstino, which could be a viable dark matter candidate.

  1. Theory of supersymmetry ``protected'' topological phases of isostatic lattices and highly frustrated magnets

    Science.gov (United States)

    Lawler, Michael

    I generalize the theory of phonon topological band structures of isostatic lattices to highly frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs which also applies to geometrically frustrated magnets. The Witten index of the SUSY model, when restricted to the single body problem (meaningful for linearized phonons), is then shown to be the Calladine-Kane-Lubensky index of mechanical structures that forms the cornerstone of the phonon topological band structure theory. ``Spontaneous supersymmetry breaking'' is then identified as the need to gap all modes in the bulk to create the topological state. The many-body SUSY formulation shows that the topology is not restricted to a band structure problem but extends to systems of coupled bosons and fermions that are in principle also realizable in solid state systems. The analogus supersymmetry of the magnon problem turns out to be particularly useful for highly frustrated magnets with the kagome family of antiferromagnets an analog of topological isostatic lattices. Thus, a solid state realization of the theory of phonon topological band structure may be found in highly frustrated magnets. However, our results show that this topology is protected not

  2. Search for gauge mediated SUSY breaking topologies in $e^+ e^-$ collisions at centre-of-mass energies up to 209 GeV

    CERN Document Server

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Halley, A.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2002-01-01

    A total of 628$\\invpb$ of data collected with the ALEPH detector at centre-of-mass energies from 189 to 209\\,GeV is analysed in the search for gauge mediated SUSY breaking (GMSB) topologies. These topologies include two acoplanar photons, non-pointing single photons, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and multi-leptons plus missing energy final states. No evidence is found for new phenomena, and lower limits on masses of supersymmetric particles are derived. A scan of a minimal GMSB parameter space is performed and lower limits are set for the next-to-lightest supersymmetric particle (NLSP) mass at 54$\\gevcc$ and for the mass scale parameter $\\Lambda$ at 10$\\tevcc$, independently of the NLSP lifetime. Including the results from the neutral Higgs boson searches, a NLSP mass limit of 77$\\gevcc$ is obtained and values of $\\Lambda$ up to 16$\\tevcc$ are excluded.

  3. Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-06-01

    The results of a search for new physics in final states with photons and missing transverse energy are reported. The study is based on a sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb-1. Final states with two photons and significant missing transverse energy are used to search for supersymmetric particles in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersymmetry breaking. No excess is observed with respect to the standard model expectation, and the results are used to set limits on gluino pair production and squark pair production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark masses below 1.37 TeV are excluded at a 95% confidence level.

  4. Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Sharma, Archana; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Alexakhin, Vadim; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-06-10

    The results of a search for new physics in final states with photons and missing transverse energy are reported. The study is based on a sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. Final states with two photons and significant missing transverse energy are used to search for supersymmetric particles in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersymmetry breaking. No excess is observed with respect to the standard model expectation, and the results are used to set limits on gluino pair production and squark pair production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark masses below 1.37 TeV are excluded at a 95% confidence level.

  5. Supersymmetry without prejudice at the LHC

    Science.gov (United States)

    Conley, John A.; Gainer, James S.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.

    2011-07-01

    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (sqrt{s}=14 TeV, 1 fb-1) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of ˜71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all (two-thirds) of the pMSSM model points are discovered with a significance S>5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.

  6. Supersymmetry Without Prejudice at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conley, John A.; /Bonn U.; Gainer, James S.; /Argonne /Northwestern U.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC

    2011-08-19

    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ({radical}s = 14 TeV, 1 fb{sup -1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of {approx} 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S > 5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.

  7. Neutralino Phenomenology at LEP2 in Supersymmetry with Bilinear Breaking of R-parity

    CERN Document Server

    Bartl, Alfred; Restrepo, D A; Romão, J C; Valle, José W F

    2001-01-01

    We discuss the phenomenology of the lightest neutralino in models where an effective bilinear term in the superpotential parametrizes the explicit breaking of R-parity. We consider supergravity scenarios where the lightest supersymmetric particle (LSP) is the lightest neutralino and which can be explored at LEP2. We present a detailed study of the LSP decay properties and general features of the corresponding signals expected at LEP2.

  8. Natural Supersymmetry and Unification in Five Dimensions

    CERN Document Server

    Abdalgabar, Ammar; Deandrea, Aldo; McGarrie, Moritz

    2015-01-01

    We explore unification and natural supersymmetry in a five dimensional extension of the standard model in which the extra dimension may be large, of the order of 1-10 TeV. Power law running generates a TeV scale A_ term allowing for the observed 125 GeV Higgs and allowing for stop masses below 2 TeV, compatible with a natural SUSY spectrum. We supply the full one-loop RGEs for various models and use metastability to give a prediction that the gluino mass should be lighter than 3.5 TeV for A_t <= 2.5 TeV, for such a compactification scale, with brane localised 3rd generation matter. We discuss why models in which the 1st and 2nd generation of matter fields are located in the bulk are likely to be ruled out. We also look at electroweak symmetry breaking in these models.

  9. Reduction of couplings and heavy top quark in the minimal SUSY GUT

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Jisuke (Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany)); Mondragon, Myriam (Institut fuer Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany)); Zoupanos, George (Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany))

    1994-08-08

    Out of 256 independent reduction solutions that can be found within the minimal supersymmetric SU(5) GUT, there are exactly two asymptotically free solutions which can restrict the top quark mass m[sub t] and do not contradict the observed mass spectrum of the first two fermion generations. A numerical analysis shows that these two solutions lie on the same renormalization group invariant surface on which m[sub t] and the bottom quark mass m[sub b] assume relatively stable values for a given supersymmetry breaking scale m[sub SUSY]. For m[sub SUSY] =200 GeV with [alpha][sub S](M[sub Z])=0.12, [alpha][sub em](M[sub Z])=(127.9)[sup -1] and m[sub [tau

  10. Search for Gauge Mediated SUSY Breaking in Diphoton Events in proton anti-proton Collisions at √s = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsuk [Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-12-01

    The authors present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 pb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV they observe no candidate events, with an expected standard model background of 0.27 ± 0.07(stat) ± 0.10(syst) events. The results exclude a lightest chargino of mass less than 167 GeV/c2, and lightest neutralino of 93 GeV/c2 at 95% confidence level in a gauge-mediated supersymmetry-breaking model with a light gravitino.

  11. Search for Gauge Mediated SUSY Breaking in Diphoton Events in proton anti-proton Collisions at s**(1/2) = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsuk

    2004-12-01

    The authors present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV they observe no candidate events, with an expected standard model background of 0.27 {+-} 0.07(stat) {+-} 0.10(syst) events. The results exclude a lightest chargino of mass less than 167 GeV/c{sup 2}, and lightest neutralino of 93 GeV/c{sup 2} at 95% confidence level in a gauge-mediated supersymmetry-breaking model with a light gravitino.

  12. Supersymmetry Without Prejudice

    CERN Document Server

    CERN. Geneva

    2009-01-01

    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.

  13. Supersymmetry Without Prejudice

    CERN Document Server

    Berger, C F; Hewett, J L; Rizzo, T G

    2009-01-01

    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.

  14. Searching for Supersymmetry with the ATLAS detector

    CERN Document Server

    White, Martin J

    2006-01-01

    This thesis presents a new method by which one may use data from the ATLAS detector of the Large Hadron Collider at CERN to measure the parameters of the theory of supersymmetry (SUSY). The technique uses a Markov Chain Monte Carlo sampling algorithm to combine measurements of exclusive variables, in the form of kinematic endpoints that arise in the invariant mass distributions of leptons and jets given out in sparticle decay chains, with inclusive data, in the form of the cross-section of events passing a missing transverse energy cut. This improves the precision of sparticle mass measurements (beyond that obtained using exclusive data alone), whilst also enabling experimental uncertainties to be handled in an intuitive fashion. The method is demonstrated on an mSUGRA benchmark model, and is also used to constrain a model with a greater number of parameters. Throughout, an attempt is made to break some of the unrealistic assumptions that characterise current SUSY search techniques, and to this end it is succ...

  15. Supersymmetry Without Prejudice at the LHC

    CERN Document Server

    Conley, John A; Hewett, JoAnne L; Le, My Phuong; Rizzo, Thomas G

    2010-01-01

    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters, $\\sim 100$, in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ($\\sqrt s=14$ TeV, 1 fb$^{-1}$) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard MET and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of $\\sim 71$k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 MET analyses as closely as possible, we explore all of these $\\sim 71$k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then s...

  16. Supersymmetry : the ultimate hierarchy of matter ? Conference MT17

    CERN Multimedia

    2001-01-01

    The concept of "Supersymmetry", SUSY for short, promises a solution to the hierarchy problem. SUSY enlarges the space-time symmetry of physical laws, by connecting the realms of particles and fields. It predicts a variety of new species of particles at the energy scale around 1 TeV - waiting to be discovered at the LHC.

  17. Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy

    CERN Multimedia

    Pauline Gagnon

    2012-01-01

    Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection.   Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...

  18. Supersymmetry searches in ATLAS

    CERN Document Server

    Meloni, Federico; The ATLAS collaboration

    2015-01-01

    This document summarises recent ATLAS results for searches for supersymmetric particles using LHC proton-proton collision data. Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. We consider both R-Parity conserving and R-Parity violating SUSY scenarios. The searches involve final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.

  19. SUSY searches with the ATLAS detector

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  20. SUSY searches with the ATLAS detector

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2017-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 \\TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  1. SUSY searches at the LHC Run2

    CERN Document Server

    Giordano, Ferdinando

    2016-01-01

    After a period of maintenance the LHC was restarted in 2015 delivering p-p collision at a new center of mass energy of 13 TeV, this new achievement by the machine opened the phase space of many searches for physics beyond the standard model (BSM). In this talk a summary of the LHC searches for supersymmetry (SUSY) pursued by the ATLAS and CMS collaborations is presented, covering a broad number of models and scenarios. Even at this early stage the new searches greatly extend the reach of the previous Run1 analyses limiting the phase space for natural SUSY to exist.

  2. SUSY searches with the ATLAS detector

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  3. Latest news on SUSY from the ATLAS experiment

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.

  4. RPV SUSY searches at ATLAS and CMS

    CERN Document Server

    Pettersson, Nora Emilia; The ATLAS collaboration

    2015-01-01

    Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...

  5. Simplified SUSY at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, Mikael

    2013-08-15

    At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.

  6. Improved LEP lower bound on the lightest SUSY Higgs mass from Radiative Electroweak Breaking and its Experimental Consequences

    CERN Document Server

    López, J; Pois, H; Wang, X; Zichichi, A; 10.1016/0370-2693(93)91140-I

    2009-01-01

    We show that the present LEPI lower bound on the Standard Model Higgs boson mass ($M_H\\gsim60\\GeV$) applies as well to the lightest Higgs boson ($h$) of the minimal $SU(5)$ and no-scale flipped $SU(5)$ supergravity models. This result would persist even for the ultimate LEPI lower bound ($M_H\\gsim70\\GeV$). We show that this situation is a consequence of a decoupling phenomenon in the Higgs sector driven by radiative electroweak breaking for increasingly larger sparticle masses, and thus it should be common to a large class of supergravity models. A consequence of $m_h\\gsim60\\GeV$ in the minimal $SU(5)$ supergravity model is the exclusion from the allowed parameter space of `spoiler modes' ($\\chi^0_2\\to\\chi^0_1 h$) which would make the otherwise very promising trilepton signal in $p\\bar p\\to\\chi^\\pm_1\\chi^0_2X$ unobservable at Fermilab. Within this model we also obtain stronger upper bounds on the lighter neutralino and chargino masses, \\ie, $m_{\\chi^0_1}\\lsim50\\GeV$, $m_{\\chi^0_2,\\chi^\\pm_1}\\lsim100\\GeV$. Thi...

  7. Improved LEP lower bound on the lightest SUSY Higgs mass from radiative electroweak breaking and its experimental consequences

    CERN Document Server

    López, J L; Pois, H; Wang, X; Zichichi, Antonino

    1993-01-01

    We show that the present LEPI lower bound on the Standard Model Higgs boson mass ($M_H\\gsim60\\GeV$) applies as well to the lightest Higgs boson ($h$) of the minimal $SU(5)$ and no-scale flipped $SU(5)$ supergravity models. This result would persist even for the ultimate LEPI lower bound ($M_H\\gsim70\\GeV$). We show that this situation is a consequence of a decoupling phenomenon in the Higgs sector driven by radiative electroweak breaking for increasingly larger sparticle masses, and thus it should be common to a large class of supergravity models. A consequence of $m_h\\gsim60\\GeV$ in the minimal $SU(5)$ supergravity model is the exclusion from the allowed parameter space of `spoiler modes' ($\\chi^0_2\\to\\chi^0_1 h$) which would make the otherwise very promising trilepton signal in $p\\bar p\\to\\chi^\\pm_1\\chi^0_2X$ unobservable at Fermilab. Within this model we also obtain stronger upper bounds on the lighter neutralino and chargino masses, \\ie, $m_{\\chi^0_1}\\lsim50\\GeV$, $m_{\\chi^0_2,\\chi^\\pm_1}\\lsim100\\GeV$. Thi...

  8. Exploring QCD uncertainties when setting limits on compressed SUSY spectra

    CERN Document Server

    Dreiner, Herbert; Tattersall, Jamie

    2012-01-01

    If Supersymmetry (SUSY) has a compressed spectrum the current limits from the LHC can be drastically reduced. We take possible `worst case' scenarios where combinations of the stop, squark and gluino masses are degenerate with the mass of the lightest SUSY particle. To accurately derive limits in the model, care must be taken when describing QCD radiation and we examine this in detail. Lower mass bounds are then produced by considering all the 7 TeV hadronic SUSY and monojet searches. The evolution of the limits as the mass splitting is varied is also presented.

  9. Comments on interactions in the SUSY models

    CERN Document Server

    Upadhyay, Sudhakar; Mandal, Bhabani Prasad

    2016-01-01

    We consider the special supersymmetry (SUSY) transformations with $m$ generators $\\overleftarrow{s}_\\alpha,$ for some class of the models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and set of group-like elements with finite parameters being by a functionals of field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to appearance of the Jacobian under change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian leads, first, to appearance of only trivial interactions in the transformed action, second, to the presence of modified Ward identity, which reduceds to the standard Ward identities for constant parameters. We examine the case of ${N}=1$, $N=2$ supersymmetric harmonic oscillator to illustrate the general concept on a free simple model with $(1,1)$ physical degrees of freedom. It is shown that the interaction terms, $U_{tr}...

  10. SUSY-Cosmology at the LHC

    Science.gov (United States)

    Gurrola, Alfredo; Arnowitt, Richard; Dutta, Bhaskar; Kamon, Teruki; Kolev, Nikolay; Krislock, Abram; Simeon, Paul

    2006-10-01

    Supersymmetry (SUSY) is a very attractive theory of particle physics that could connect to cosmology and explain the early universe. With an assumption of the lightest supersymmetric neutral gauge boson (neutralino) to be a dark matter (DM), the recent measurement of the amount of DM of the universe with other experimental results constrains a SUSY parameter space where a mass difference between the supersymmetric tau lepton (stau) and the neutralino is very small (5 to 15 GeV). The Large Hadron Collider (LHC) will produce the SUSY events copiously and contain two or more tau leptons in the final state. We systematically study an experimental requirement of measuring the characteristic mass difference at the LHC. Within a benchmark framework of minimal supergravity, we confirm the conclusion in our previous publication that the tau lepton must be identified with a transverse energy above 20 GeV.

  11. Strategy for early SUSY searches at ATLAS

    CERN Document Server

    Yamamoto, Shimpei

    2008-01-01

    The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which comprises many progresses in the data-driven technique for the SM background estimations.

  12. Strategy for early SUSY searches at ATLAS

    CERN Document Server

    Yamamoto, S

    2007-01-01

    The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of â€ワmultijets + missing transverse energy” will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb−1, which comprises many progresses in the data-driven technique for the SM background estimations.

  13. Strategy for early SUSY searches at ATLAS

    CERN Document Server

    Yamamoto, S

    2007-01-01

    The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which includes many progresses in the data-driven technique for the SM background estimations.

  14. Search for supersymmetry in di-photon final states at $\\sqrt{s}$ = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V. M.; et al.

    2007-10-01

    We report results of a search for supersymmetry (SUSY) with gauge-mediated symmetry breaking in di-photon events collected by the D0 experiment at the Fermilab Tevatron Collider in 2002–2006.In 1.1 fb-1 of data, we find no significant excess beyond the background expected from the standard model and set the most stringent lower limits to date for a standard benchmark model on the lightestneutralino and chargino masses of 125 GeV and 229 GeV, respectively, at 95% confidence.

  15. Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets, and at Least One Tau Lepton in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare

    2012-01-01

    A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton, with zero or one additional light lepton (e/mu), has been performed using 4.7 fb-1 of proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% confidence level visible cross-section upper limit for new phenomena is set. In the framework of gauge-mediated SUSY-breaking models, lower limits on the mass scale Lambda are set at 54 TeV in the regions where the stau is the next-to-lightest SUSY particle (tan(beta) > 20). These limits provide the most stringent tests to date of GMSB models in a large part of the parameter space considered.

  16. Search for Anomalous Production of Diphoton Events with Missing Transverse Energy at CDF and Limits on Gauge-Mediated Supersymmetry-Breaking Models

    CERN Document Server

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas-Maestro, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D V; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A S; Nigmanov, T; Nodulman, L; Norniella, O; Österberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R G C; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer--, O; Chilton; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Varganov, A; Vataga, E; Vejcik, S; Velev, G V; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2004-01-01

    We present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 $\\invpb$ of $\\ppbar$ collisions at $\\sqrt{s}=1.96$ TeV we observe no candidate events, with an expected standard model background of $0.27\\pm0.07({\\rm stat})\\pm0.10({\\rm syst})$ events. The results exclude a lightest chargino of mass less than 167 GeV/$c^2$, and lightest neutralino of mass less than 93 GeV/$c^2$ at 95% C.L. in a gauge--mediated supersymmetry-- breaking model with a light gravitino.

  17. Study of constrained minimal supersymmetry

    CERN Document Server

    Kane, G L; Roszkowski, Leszek; Wells, J D; Chris Kolda; Leszek Roszkowski; James D Wells

    1994-01-01

    Taking seriously phenomenological indications for supersymmetry, we have made a detailed study of unified minimal SUSY, including effects at the few percent level in a consistent fashion. We report here a general analysis without choosing a particular unification gauge group. We find that the encouraging SUSY unification results of recent years do survive the challenge of a more complete and accurate analysis. Taking into account effects at the 5-10% level leads to several improvements of previous results, and allows us to sharpen our predictions for SUSY in the light of unification. We perform a thorough study of the parameter space. The results form a well-defined basis for comparing the physics potential of different facilities. Very little of the acceptable parameter space has been excluded by LEP or FNAL so far, but a significant fraction can be covered when these accelerators are upgraded. A number of initial applications to the understanding of the SUSY spectrum, detectability of SUSY at LEP II or FNAL...

  18. Testing split supersymmetry with inflation

    Science.gov (United States)

    Craig, Nathaniel; Green, Daniel

    2014-07-01

    Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.

  19. Implications of the partial width Z --> bb for supersymmetry searches and model-building

    CERN Document Server

    Wells, J D; Kane, G L; James D Wells; Chris Kolda

    1994-01-01

    Assuming that the actual values of the top quark mass at FNAL and of the ratio of partial widths Z->bb/Z->hadrons at LEP are within their current one-sigma reported ranges, we present a No-Lose Theorem for superpartner searches at LEP II and an upgraded Tevatron. We impose only two theoretical assumptions: the Lagrangian is that of the Minimal Supersymmetric Standard Model with arbitrary soft-breaking terms, and all couplings remain perturbative up to scales of order 10^16 GeV; there are no assumptions about the soft SUSY breaking parameters, proton decay, cosmology, etc. In particular, if the LEP and FNAL values hold up and supersymmetry is responsible for the discrepancy with the SM prediction of the partial width of Z->bb, then we must have charginos and/or top squarks observable at the upgraded machines. Furthermore, little deviation from the SM is predicted within "super-unified" SUSY. Finally, it appears to be extremely difficult to find any unified MSSM model, regardless of the form of soft SUSY breaki...

  20. A completely invariant SUSY transform of supersymmetric QED

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M L [College of Natural Sciences and Department of Applied Physics, Kyung Hee University, Yong-In, KyongGi, 449-701 (Korea, Republic of)

    2004-09-01

    We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.

  1. A completely invariant SUSY transform of supersymmetric QED

    Science.gov (United States)

    Walker, M. L.

    2004-09-01

    We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.

  2. Neutralino Annihilation into Massive Quarks with SUSY-QCD Corrections

    CERN Document Server

    Herrmann, Björn; Kovarik, Karol

    2009-01-01

    We compute the full O(alpha_s) supersymmetric (SUSY) QCD corrections for neutralino annihilation into massive quarks through gauge or Higgs bosons and squarks in the Minimal Supersymmetric Standard Model (MSSM), including the known resummation of logarithmically enhanced terms. The numerical impact of the corrections on the extraction of SUSY mass parameters from cosmological data is analyzed for gravity-mediated SUSY breaking scenarios and shown to be sizable, so that these corrections must be included in common analysis tools.

  3. Supersymmetry and String Theory

    Science.gov (United States)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.

  4. F-Susy And The Three States Potts Model

    CERN Document Server

    Sedra, M B

    2009-01-01

    In view of its several involvements in various physical and mathematical contexts, 2D-fractional supersymmetry (F-susy) is once again considered in this work. We are, for instance, interested to study the three states Potts model $(k = 3)$ which represents with the tricritical Ising model $(k = 2)$ the two leading examples of more general spin $1/k$ fractional supersymmetric theories.

  5. The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt A.; Purves, Austin

    2016-07-01

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass . The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.

  6. Search for Supersymmetry in final states with jets, missing transverse momentum and at least one lepton with the ATLAS Experiment

    CERN Document Server

    Janus, Michel

    A search for Supersymmetry (SUSY) in final states with at least one lepton and large missing transverse energy based on proton-proton collisions recorded with the ATLAS detector at the LHC is presented. The leptons are reconstructed in the hadronic decay mode. Final states with leptons o er a good sensitivity for SUSY models where the coupling to the third generation of fermions is enhanced, e.g. gauge mediated SUSY breaking (GMSB) models, for which the supersymmetric partner of the lepton is the next-to-lightest SUSY particle (NLSP) and its decay to electrons or muons is strongly suppressed. To search for new physics in final states with hadronic -lepton decays a reliable and e cient re- construction algorithm for hadronic decays is needed to separate real decays and backgrounds from quark- or gluon-initiated jets and electrons. As part of this thesis two existing -reconstruction al- gorithms were further developed and integrated into a single algorithm that has by now become the standard algorithm for recon...

  7. Search for Long-lived Chargino with Anomaly-Mediated Supersymmetry Breaking Scenarios in pp Collisions at $\\sqrt s$ = 7 TeV

    CERN Document Server

    Azuma, Yuya

    A search for long-lived charginos in anomaly-mediated supersymmetry breaking (AMSB) mod- els is performed using 4.7 fb 1 data of pp collisions at p s = 7 TeV with the ATLAS detector. In the AMSB models, the wino is the lightest gaugino and the lightest chargino and neutralino (as the lightest supersymmetric particle) are dominantly composed of the charged and neutral winos, respectively. Furthermore, the masses of the charged and neutral winos are highly de- generate, which results in a significant lifetime of the chargino. The lightest chargino decays into a neutralino and a soft charged pion. Due to the mass degeneracy, the momentum of the pion originating from the chargino decay is too soft to be reconstructed in collider experiments. The neutralino escapes detection, therefore, the decaying chargino could be identified as a high- momentum track breaking up in the tracking volume ( disappearing track ). In this dissertation, a method for detecting such chargino tracks is newly developed. The tran- sition r...

  8. Event shape variables in supersymmetry searches at 7 TeV LHC

    Indian Academy of Sciences (India)

    Dipan Sngupta

    2012-11-01

    Supersymmetry (SUSY) signatures are probed at the Large Hadron Collider with 7 TeV energy in the framework of CMSSM with a new set of cuts based on event shapes and jet energy scales. It is showed that with our cuts, it is possible to probe a large portion of CMSSM parameter space in situations, where the SUSY cascade decay chain produces hard multijets + missing energy. We also extend our analysis to include other supersymmetries which produce hard multijets + missing energy.

  9. Supersymmetry Parameter Analysis

    CERN Document Server

    Kalinowski, Jan

    2002-01-01

    Supersymmetric particles can be produced copiously at future colliders. From the high-precision data taken at e+e- linear colliders, TESLA in particular, and combined with results from LHC, and CLIC later, the low-energy parameters of the supersymmetric model can be determined. Evolving the parameters from the low-energy scale to the high-scale by means of renormalization group techniques the fundamental supersymmetry parameters at the high scale, GUT or Planck, can be reconstructed to reveal the origin of supersymmetry breaking.

  10. Topological supersymmetry breaking: The definition and stochastic generalization of chaos and the limit of applicability of statistics

    Science.gov (United States)

    Ovchinnikov, Igor V.; Schwartz, Robert N.; Wang, Kang L.

    2016-03-01

    The concept of deterministic dynamical chaos has a long history and is well established by now. Nevertheless, its field theoretic essence and its stochastic generalization have been revealed only very recently. Within the newly found supersymmetric theory of stochastics (STS), all stochastic differential equations (SDEs) possess topological or de Rahm supersymmetry and stochastic chaos is the phenomenon of its spontaneous breakdown. Even though the STS is free of approximations and thus is technically solid, it is still missing a firm interpretational basis in order to be physically sound. Here, we make a few important steps toward the construction of the interpretational foundation for the STS. In particular, we discuss that one way to understand why the ground states of chaotic SDEs are conditional (not total) probability distributions, is that some of the variables have infinite memory of initial conditions and thus are not “thermalized”, i.e., cannot be described by the initial-conditions-independent probability distributions. As a result, the definitive assumption of physical statistics that the ground state is a steady-state total probability distribution is not valid for chaotic SDEs.

  11. SUSY GUTs A practical introduction

    CERN Document Server

    López, J

    1993-01-01

    An introduction to the most important concepts in the subject of supersymmetric unified theories is presented. The emphasis is on the practical aspects leading to state-of-the-art calculations in this renascent subject. The topics covered include: generalities of supersymmetric unified theories, gauge and Yukawa coupling unification including the most up-to-date numerical analyses, soft supersymmetry breaking, and radiative electroweak symmetry breaking enforced using the tree-level and one-loop effective potentials. This class of supersymmetric models can be described in terms of five parameters: the top-quark mass ($m_t$), the ratio of Higgs vacuum expectation values ($\\tan\\beta$), and three universal soft-supersymmetry-breaking parameters ($m_{1/2},m_0,A$). Thus, highly correlated predictions can be expected for all conceivable experimental observables. In effect, these general models provide a basic framework upon which more constrained models can be built.

  12. Searches for Supersymmetry with the ATLAS Experiment

    CERN Document Server

    Lee, Lawrence; The ATLAS collaboration

    2017-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches used proton-proton collisions at sqrt{s} = 13 TeV, and involved final states including jets, missing transverse momentum, light leptons as well as long-lived particle signatures.

  13. Search for supersymmetry with jets, missing transverse momentum, tau leptons and one light lepton at the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Desch, Klaus; Schaepe, Steffen; Schultens, Martin [University of Bonn (Germany)

    2015-07-01

    The search for supersymmetric extensions of the Standard Model of particle physics (SUSY) is one of the main objectives in the physics program of the ATLAS experiment at the Large Hadron Collider (LHC). However, there has been no evidence for Supersymmetry during the first data taking period in 2010 and 2012 and stringent exclusion limits could be set in various signal models. For the second run of the LHC improved analysis methods will be important. One possibility to reach better exclusion power is using a multi-bin shape fit approach rather than a simple one-bin exclusion fit. The gain from such binned signal regions has been studied for an analysis using final states with tau leptons and one lighter lepton (electron or muon). The analysis was performed on the full 2012 LHC dataset with an integrated luminosity of 21 fb{sup -1} and the results were interpreted in four different SUSY scenarios: Gauge-Mediated Supersymmetry Breaking (GMSB), Natural Gauge Mediation (NGM), Gravity Mediated Symmetry Breaking (MSUGRA) and Bilinear R-Parity Violation (BRPV).

  14. Supersymmetry from the Top Down

    CERN Document Server

    Dine, Michael

    2011-01-01

    If supersymmetry turns out to be a symmetry of nature at low energies, the first order of business to measure the soft breaking parameters. But one will also want to understand the symmetry, and its breaking, more microscopically. Two aspects of this problem constitute the focus of these lectures. First, what sorts of dynamics might account for supersymmetry breaking, and its manifestation at low energies. Second, how might these features fit into string theory (or whatever might be the underlying theory in the ultraviolet). The last few years have seen a much improved understanding of the first set of questions, and at least a possible pathway to address the second.

  15. Edge Quantum Criticality and Emergent Supersymmetry in Topological Phases

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong

    2017-09-01

    Proposed as a fundamental symmetry describing our Universe, spacetime supersymmetry (SUSY) has not been discovered yet in nature. Nonetheless, it has been predicted that SUSY may emerge in low-energy physics of quantum materials such as topological superconductors and Weyl semimetals. Here, by performing state-of-the-art sign-problem-free quantum Monte Carlo simulations of an interacting two-dimensional topological superconductor, we show convincing evidence that the N =1 SUSY emerges at its edge quantum critical point (EQCP) while its bulk remains gapped and topologically nontrivial. Remarkably, near the EQCP, we find that the edge Majorana fermion acquires a mass that is identical with that of its bosonic superpartner. To the best of our knowledge, this is the first observation that fermions and bosons have equal dynamically generated masses, a hallmark of emergent SUSY. We further discuss experimental signatures of such EQCP and associated SUSY.

  16. Aspects of the Supersymmetry Algebra in Four Dimensional Euclidean Space

    CERN Document Server

    McKeon, D G C

    1998-01-01

    The simplest supersymmetry (SUSY) algebra in four dimensional Euclidean space ($4dE$) has been shown to closely resemble the $N = 2$ SUSY algebra in four dimensional Minkowski space ($4dM$). The structure of the former algebra is examined in greater detail in this paper. We first present its Clifford algebra structure. This algebra shows that the momentum Casimir invariant of physical states has an upper bound which is fixed by the central charges. Secondly, we use reduction of the $N = 1$ SUSY algebra in six dimensional Minkowski space ($6dM$) to $4dE$; this reproduces our SUSY algebra in $4dE$. Moreover, this same reduction of supersymmetric Yang-Mills theory (SSYM) in $6dM$ reproduces Zumino's SSYM in $4dE$. We demonstrate how this dimensional reduction can be used to introduce additional generators into the SUSY algebra in $4dE$.

  17. Comments on interactions in the SUSY models

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker; Mandal, Bhabani Prasad [Banaras Hindu University, Department of Physics, Varanasi (India); Reshetnyak, Alexander [Institute of Strength Physics and Materials Science of SB RAS, Tomsk (Russian Federation)

    2016-07-15

    We consider special supersymmetry (SUSY) transformations with m generators /leftarrow s{sub α}, for some class of models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and a set of group-like elements with finite parameters being functionals of the field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to the appearance of the Jacobian under a change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian implies, first of all, the appearance of trivial interactions in the transformed action, and, second, the presence of a modified Ward identity which reduces to the standard Ward identities in the case of constant parameters. We examine the case of the N = 1 and N = 2 supersymmetric harmonic oscillators to illustrate the general concept by a simple free model with (1, 1) physical degrees of freedom. It is shown that the interaction terms U{sub tr} have a corresponding SUSY-exact form: U{sub tr} = (V{sub (1)} /leftarrow s; V{sub (2)} /leftarrow anti s /leftarrow s) generated naturally under such generalized formulation. We argue that the case of a non-trivial interaction cannot be obtained in such a way. (orig.)

  18. Phenomenological consequences of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I.; Littenberg, L.

    1982-01-01

    This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6.

  19. Supersymmetry and Inflation

    CERN Document Server

    Ferrara, S

    2015-01-01

    Theories with elementary scalar degrees of freedom seem nowadays required for simple descriptions of the Standard Model and of the Early Universe. It is then natural to embed theories of inflation in supergravity, also in view of their possible ultraviolet completion in String Theory. After some general remarks on inflation in supergravity, we describe examples of minimal inflaton dynamics which are compatible with recent observations, including higher-curvature ones inspired by the Starobinsky model. We also discuss different scenarios for supersymmetry breaking during and after inflation, which include a revived role for non-linear realizations. In this spirit, we conclude with a discussion of the link, in four dimensions, between "brane supersymmetry breaking" and the super--Higgs effect in supergravity.

  20. Supersymmetry Without (Too Much) Prejudice

    CERN Document Server

    Rizzo, Thomas G

    2009-01-01

    We have recently completed a detailed scan of the 19-dimensional parameter space of the phenomenological MSSM, i.e., the CP-conserving MSSM assuming Minimal Flavor Violation(MFV) with the first two sfermion generations degenerate. We found a large set of parameter space points that satisfied all of the existing experimental and theoretical constraints. This analysis allows us to examine the general features of the MSSM without reference to any particular SUSY breaking scenario or any other assumptions about physics at higher scales. This study opens up new possibilities for SUSY phenomenology both at colliders and in astrophysical observations.

  1. Supersymmetry Without (Too Much) Prejudice

    Science.gov (United States)

    Rizzo, Thomas G.

    2010-02-01

    We have recently completed a detailed scan of the 19-dimensional parameter space of the phenomenological MSSM, i.e., the CP-conserving MSSM assuming Minimal Flavor Violation(MFV) with the firs two sfermion generations degenerate. We found a large set of parameter space points that satisfie all of the existing experimental and theoretical constraints. This analysis allows us to examine the general features of the MSSM without reference to any particular SUSY breaking scenario or any other assumptions about physics at higher scales. This study opens up new possibilities for SUSY phenomenology both at colliders and in astrophysical observations.

  2. Model building and phenomenology in supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim Jong Soo

    2008-09-15

    Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)

  3. Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at sqrt(s) = 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-07-11

    Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650-730 GeV.

  4. Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $ \\sqrt{s} = $ 8 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Krammer, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Shopova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Assran, Yasser; Mahmoud, Mohammed; Mahrous, Ayman; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio

    2017-01-01

    Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at $ \\sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses ...

  5. Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb$^{-1}$ of $\\sqrt{s}$=8 TeV proton-proton collision data with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale $\\Lambda$ below 63 TeV are excluded, independently of tan$\\beta$. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a fra...

  6. Status of Supersymmetry: Foundations and Applications

    CERN Document Server

    Ferrara, Sergio

    2011-01-01

    We review some aspects of the foundations of supersymmetry as a conjectural in­variance of the Laws of Nature. This symmetry bypasses the Coleman-Mandula Theorem by enlarging the funda­mental space -time symmetries to the Superworld. Application of supersymmetry to particle physics requires its spontaneous breaking, as it happens for the electroweak symmetry of the Standard Model.

  7. Prospects for SUSY discovery based on inclusive searches with the ATLAS detector

    CERN Document Server

    Ventura, A

    2008-01-01

    The search for Supersymmetry (SUSY) among the possible scenarios of New Physics is one of the most relevant goals of the ATLAS experiment running at CERN's Large Hadron Collider. In the present work the expected prospects for discovering SUSY with the ATLAS detector are reviewed, and in particular for the first fb^-1 of collected integrated luminosity. All studies and results reported here are based on inclusive search analyses realized with Monte Carlo signal and background data simulated through the ATLAS apparatus.

  8. How To Determine SUSY Mass Scales Now

    CERN Document Server

    Heinemeyer, S

    2008-01-01

    Currently available experimental data from electroweak precision observables (EWPO), B-physics observables (BPO) and cosmological data can be combined to extract the preferred value of SUSY mass scales. We review recent results on the predictions of the masses of supersymmetric particles and the indirect determination of the lightest Higgs boson mass. Special emphasis is put on models going beyond the Constrained Minimal Supersymmetric Standard Model (CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and anomaloy mediated SUSY breaking.

  9. How To Determine SUSY Mass Scales Now

    Science.gov (United States)

    Heinemeyer, S.

    2008-11-01

    Currently available experimental data from electroweak precision observables (EWPO), B-physics observables (BPO) and cosmological data can be combined to extract the preferred value of SUSY mass scales. We review recent results on the predictions of the masses of supersymmetric particles and the indirect determination of the lightest Higgs boson mass. Special emphasis is put on models going beyond the Constrained Minimal Supersymmetric Standard Model (CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and anomaloy mediated SUSY breaking.

  10. Supersymmetry : the ultimate hierarchy of matter? Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The concept of "Supersymmetry", SUSY for short, promises a solution to the 'hierarchy' problem: the mystery of the enormous ratio between the electroweak scale (at 100-300 GeV), defined by the masses of the W and Z particles, and possibly the Higgs particle, and the Planck scale (10 19 GeV), when gravitational effects become comparable to the other forces.

  11. Hangout with CERN: All about SUSY (S03E09)

    CERN Multimedia

    Kahle, Kate

    2013-01-01

    On 4th July 2012, CERN announced the discovery of a new boson later confirmed to be "a Higgs boson", but which one? Is it the Higgs boson predicted by the Standard Model of particle physics or one of the five Higgs bosons associated with "supersymmetry", a principle that attempts to fix the few remaining problems of the Standard Model?In this week's hangout we talk about supersymmetry, also known as "SUSY". What is it, why, and how does it link with the Higgs boson? Our host CMS physicist Freya Blekman is joined by SUSY theorist John Ellis, ATLAS physicist Xavier Portell Bueso and CMS physicist Josh Thompson, as well as student intern Jayendra Minakshisundar, with CMS physicist Seth Zenz monitoring social media.Find out more about supersymmetry by watching these videos by Don Lincoln from Fermilab: What is Supersymmetry? http://www.youtube.com/watch?v=0CeLRrBAI60 and Why Supersymmetry? http://www.youtube.com/watch?v=09VbAe9JZ8YRecorded live on 20th June 20...

  12. R-Parity Violating SUSY Results from ATLAS and CMS

    CERN Document Server

    Pettersson, Nora Emilia; The ATLAS collaboration

    2015-01-01

    Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...

  13. Yukawa-unified natural supersymmetry

    CERN Document Server

    Baer, Howard; Kulkarni, Suchita

    2012-01-01

    Previous work on t-b-\\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\\sim125 GeV. As Yukawa unification requires large tan\\beta\\sim50, while EWFT requires rather light third generation squarks and low \\mu\\sim100-250 GeV, B-physics constraints from BR(B\\to X_s\\gamma) and BR(B_s\\to \\mu+\\mu-) can be severe. We are able to find models with EWFT \\Delta\\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be a...

  14. An extended phase-space SUSY quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Kazarian, G [Byurakan Astrophysical Observatory, Byurakan 378433, Aragatsotn District (Armenia)], E-mail: gago_50@yahoo.com

    2009-02-06

    In the present paper, we will concern ourselves with the extended phase-space quantum mechanics of particles which have both bosonic and fermionic degrees of freedom, i.e., the quantum field theory in (0 + 1) dimensions in q-(position) and p-(momentum) spaces, exhibiting supersymmetry. We present (N = 2) realization of extended supersymmetry algebra and discuss the vacuum energy and topology of super-potentials. Shape invariance of exactly solvable extended SUSY potentials allows us to obtain analytic expressions for the entire energy spectrum of an extended Hamiltonian with, for example, Scarf potential without ever referring to an underlying differential equation.

  15. Dynamical supersymmetry of the spin particle-magnetic field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ngome, J-P; Horvathy, P A [Laboratoire de Mathematiques et de Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson, CNRS Parc de Grandmont, 37200 Tours (France); Van Holten, J W, E-mail: juste.ngome@lmpt.univ-tours.f, E-mail: horvathy@lmpt.univ-tours.f, E-mail: t32@nikhef.n [NIKHEF, PO Box 41882, 1009 DB Amsterdam (Netherlands)

    2010-07-16

    We study the dynamical and supersymmetries of a fermion in a D = d = 3-dimensional monopole background. The Hamiltonian also involves an additional spin-orbit coupling term, which is parameterized by the gyromagnetic ratio. We construct the superinvariants associated with the system using a SUSY extension of a previously proposed algorithm, based on Grassmann-valued Killing tensors. Conserved quantities arise for certain definite values of the gyromagnetic factor: N=1 SUSY requires g = 2; a Kepler-type dynamical symmetry only arises, however, for the anomalous values g = 0 and g = 4. The two anomalous systems can be unified into an N=2 SUSY system built by doubling the number of Grassmann variables. For D = d = 2, the planar system also exhibits an N=2 supersymmetry without Grassmann variable doubling.

  16. Electric dipole moments in natural supersymmetry

    Science.gov (United States)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  17. Supersymmetry and noncommutative geometry

    CERN Document Server

    Beenakker, Wim; Suijlekom, Walter D van

    2016-01-01

    In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far. The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic `building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model. This book is ...

  18. Experimental Status of Supersymmetry after the LHC Run-I

    CERN Document Server

    Autermann, Christian

    2016-01-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb^-1 and 20 fb^-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  19. Experimental status of supersymmetry after the LHC Run-I

    Science.gov (United States)

    Autermann, Christian

    2016-09-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  20. Naturalness and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, Kaustubh [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum.

  1. Higgs, Binos and Gluinos: Split Susy Within Reach

    CERN Document Server

    Alves, Daniele S M; Wacker, Jay G

    2011-01-01

    Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  2. Determining SUSY particle mixing with polarized hadron beams

    CERN Document Server

    Klasen, M

    2010-01-01

    While SUSY particles, if they exist at the TeV-scale, will be discovered at the Tevatron or the LHC, the determination of the SUSY-breaking scenario and its free parameters will require additional information, e.g. from a future International Linear Collider. We point out that such information, in particular on SUSY-particle mixing and the associated soft SUSY-breaking parameters, can also be obtained from measurements at existing or future polarized hadron colliders, since the polarization of initial-state quarks, transmitted through weak gauge bosons or squarks, can be strongly correlated with the helicity and gaugino/higgsino mixing of final-state sleptons, squarks, neutralinos and charginos.

  3. Determining SUSY particle mixing with polarized hadron beams

    Science.gov (United States)

    Klasen, M.

    While SUSY particles, if they exist at the TeV-scale, will be discovered at the Tevatron or the LHC, the determination of the SUSY-breaking scenario and its free parameters will require additional information, e.g. from a future International Linear Collider. We point out that such information, in particular on SUSY-particle mixing and the associated soft SUSY-breaking parameters, can also be obtained from measurements at existing or future polarized hadron colliders, since the polarization of initial-state quarks, transmitted through weak gauge bosons or squarks, can be strongly correlated with the helicity and gaugino/higgsino mixing of final-state sleptons, squarks, neutralinos and charginos.

  4. Supersymmetry: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, E.C. (ed.)

    1985-07-01

    Some lectures in these proceedings examine the theoretical basis for supersymmetry, recent developments in theories with compact dimensions, and experimental searches for supersymmetric signatures. Technologies are explored for obtaining very high energy electron-positron colliding beams. Separate abstracts were prepared for 35 papers in these conference proceedings. (LEW)

  5. Cosmological aspects of gauge mediated supersymmetry breakdown

    CERN Document Server

    Dalianis, Ioannis

    2011-01-01

    In this thesis, we study the details of some fundamental cosmological problems of the gauge mediated supersymmetry breakdown and we probe the supersymmetry breaking sector by cosmological arguments. We manifest that problems like the metastable vacuum selection and the gravitino overproduction in the reheated early universe are naturally absent in the most general class of gauge mediation models without including additional ingredients or assumptions. We also find that the gravitino can generically account for the bulk dark matter of the universe. Cosmological implications of a stringy UV-completion of the supersymmetry breaking sector have been also considered.

  6. The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)

    2016-07-08

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.

  7. Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in √(s)=8 TeV pp collisions with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Manuel

    2015-09-25

    The results of two analyses searching for supersymmetry (SUSY) in data of the ATLAS experiment are presented in this thesis. The data were recorded in proton-proton collisions at the Large Hadron Collider in 2012 at a centre of mass energy of √(s)=8 TeV and correspond to an integrated luminosity of Ldt=20.3 fb{sup -1}. The first search is performed in signatures containing an opposite-sign electron or muon pair, which is compatible with originating from a Z boson decay, in addition to jets and large missing transverse momentum. The analysis targets the production of squarks and gluinos in R-parity conserving (RPC) models with SUSY breaking via General Gauge Mediation (GGM). The main Standard Model (SM) backgrounds are t anti t, WW, W+t and Z →ττ processes which are entirely estimated from data using different-flavour events. Besides that, the SM production of Z bosons in association with jets and large fake missing momentum from mismeasurements plays a role and is predicted with the data-driven jet smearing method. Backgrounds from events with fake leptons are estimated with the data-driven matrix method. WZ/ZZ production as well as smaller background contributions are determined from Monte-Carlo simulations. The search observes an excess of data over the SM prediction with a local significance of 3.0σ in the electron channel, 1.7σ in the muon channel and 3.0σ when the two channels are added together. The results are used to constrain the parameters of the GGM model. The second analysis uses the already published results of an ATLAS search for SUSY in events with one isolated electron or muon, jets and missing transverse momentum to reinterpret them in the context of squark and gluino production in SUSY models with R-parity violating (RPV) LQ anti D-operators. In contrast to RPC models, the lightest SUSY particle (LSP) is not stable but decays into SM particles. ''Standard'' analyses often do not consider SUSY models with RPV although

  8. Nonlocal N=1 Supersymmetry

    CERN Document Server

    Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide

    2016-01-01

    We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  9. Susy and Such

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.

    1997-01-13

    In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories.

  10. Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in pp collisions at s=8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D' Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Aly, R.; El-khateeb, E.; Elkafrawy, T.; Lotfy, A.; Mohamed, A.; Radi, A.; Salama, E.; Sayed, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D' Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bisello, D.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall' Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell' Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D' imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Dattola, D.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D' Alfonso, M.; d' Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D' Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O' Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O' Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny III, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-03-19

    The results of a search for new physics in final states with photons and missing transverse energy are reported. The study is based on a sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 inverse femtobarns. Final states with two photons and significant missing transverse energy are used to search for supersymmetric particles in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersymmetry breaking. No excess is observed with respect to the standard model expectation, and the results are used to set limits on gluino pair production and squark pair production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark masses below 1.37 TeV are excluded at a 95% confidence level.

  11. CP violation in supersymmetry, Higgs sector and the large hadron collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2006-11-01

    In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the $\\tilde{}^{±}$, $\\tilde{}_{2}^{0}$ sector at the Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≲ 50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels.

  12. Natural Supersymmetry from Extra Dimensions

    CERN Document Server

    Delgado, Antonio; Nardini, Germano; Quiros, Mariano

    2016-01-01

    We show that natural supersymmetry can be embedded in a five-dimensional theory with supersymmetry breaking \\`a la Scherk-Schwarz (SS). There is no 'gluino-sucks' problem for stops localized in the four-dimensional brane and gluinos propagating in the full five-dimensional bulk, and sub-TeV stops are easily accommodated. The $\\mu / B_\\mu$ problem is absent as well; the SS breaking generates a Higgsino Dirac mass and no bilinear Higgs mass parameter in the superpotential is required. Moreover, for non-maximal SS twists leading to $\\tan \\beta \\simeq 1$, the Higgs spectrum is naturally split, in agreement with LHC data. The 125-GeV Higgs mass and radiative electroweak symmetry breaking can be accommodated by minimally extending the Higgs sector with $Y=0$ $SU(2)_L$ triplets.

  13. The SSM with Suppressed SUSY Charge

    Directory of Open Access Journals (Sweden)

    John A. Dixon

    2016-10-01

    Full Text Available The concept of Suppressed SUSY Charge, introduced in a recent Letter, is used here to assemble a new version of the SSM. This new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level. It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit ‘soft’ breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU(3×SU(2×U(1 to SU(3×U(1 in the model assembled here implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge Bosons. As it stands, this model probably gives rise to too many W+ decays to be consistent with experiment. The Feynman loop expansion of this theory also needs further examination.

  14. The SSM with Suppressed SUSY Charge

    Science.gov (United States)

    Dixon, John A.

    2016-10-01

    The concept of Suppressed SUSY Charge, introduced in a recent Letter, is used here to assemble a new version of the SSM. This new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level). It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit 'soft' breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU (3) × SU (2) × U (1) to SU (3) × U (1) in the model assembled here implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge Bosons. As it stands, this model probably gives rise to too many W+ decays to be consistent with experiment. The Feynman loop expansion of this theory also needs further examination.

  15. Natural Supersymmetry in Warped Space

    CERN Document Server

    Heidenreich, Ben

    2014-01-01

    We explore the possibility of solving the hierarchy problem by combining the paradigms of supersymmetry and compositeness. Both paradigms are under pressure from the results of the Large Hadron Collider (LHC), and combining them allows both a higher confinement scale -- due to effective supersymmetry in the low energy theory -- and heavier superpartners -- due to the composite nature of the Higgs boson -- without sacrificing naturalness. The supersymmetric Randall-Sundrum model provides a concrete example where calculations are possible, and we pursue a realistic model in this context. With a few assumptions, we are led to a model with bulk fermions, a left-right gauge symmetry in the bulk, and supersymmetry breaking on the UV brane. The first two generations of squarks are decoupled, reducing LHC signatures but also leading to quadratic divergences at two loops. The model predicts light $W'$ and $Z'$ gauge bosons, and present LHC constraints on exotic gauge bosons imply a high confinement scale and mild tuni...

  16. Search for supersymmetry at CDF

    Energy Technology Data Exchange (ETDEWEB)

    CDF Collaboration

    1994-05-01

    We have conducted a search for trilepton events from supersymmetry (SUSY) in p{bar p} collisions at {radical}s = 1.8 TeV. In the Supersymmetric Standard Model (MSSM), trilepton events are expected from chargino-neutralino ({tilde {chi}}{sub 1}{sup {plus_minus}}{tilde {chi}}{sub 2}{sup {minus}0}) pair production, with subsequent decay into leptons. In all possible combinations of electron and muon channels in 19 pb{sup {minus}1} data, we observe no events which pass our trilepton selection criteria. Employing the GUT hypothesis within the framework of the MSSM, our preliminary excludes M({tilde {chi}}{sub 1}{sup {plus_minus}}) <46 GeV/c{sup 2} c{sup 2} for {minus}500 < {mu} < {minus}400 GeV, 2.0 < tan({beta}) < 15.0, and M({tilde q}) = 1.2 {times} M({tilde g}).

  17. Post LHC8 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  18. Supersymmetry Without Prejudice at the 7 TeV LHC

    CERN Document Server

    Conley, John A; Hewett, JoAnne L; Le, My Phuong; Rizzo, Thomas G

    2011-01-01

    We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for ~71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S>5 for 1 fb^{-1} of integrated luminosity. We then examine the model chara...

  19. The Minimal SUSY $B-L$ Model: From the Unification Scale to the LHC

    CERN Document Server

    Ovrut, Burt A; Spinner, Sogee

    2015-01-01

    This paper introduces a random statistical scan over the high-energy initial parameter space of the minimal SUSY $B-L$ model--denoted as the $B-L$ MSSM. Each initial set of points is renormalization group evolved to the electroweak scale--being subjected, sequentially, to the requirement of radiative $B-L$ and electroweak symmetry breaking, the present experimental lower bounds on the $B-L$ vector boson and sparticle masses, as well as the lightest neutral Higgs mass of $\\sim$125 GeV. The subspace of initial parameters that satisfies all such constraints is presented, shown to be robust and to contain a wide range of different configurations of soft supersymmetry breaking masses. The low-energy predictions of each such "valid" point - such as the sparticle mass spectrum and, in particular, the LSP - are computed and then statistically analyzed over the full subspace of valid points. Finally, the amount of fine-tuning required is quantified and compared to the MSSM computed using an identical random scan. The ...

  20. The minimal SUSY B−L model: from the unification scale to the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ovrut, Burt A.; Purves, Austin; Spinner, Sogee [Department of Physics, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States)

    2015-06-26

    This paper introduces a random statistical scan over the high-energy initial parameter space of the minimal SUSY B−L model — denoted as the B−L MSSM. Each initial set of points is renormalization group evolved to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of initial parameters that satisfies all such constraints is presented, shown to be robust and to contain a wide range of different configurations of soft supersymmetry breaking masses. The low-energy predictions of each such “valid” point — such as the sparticle mass spectrum and, in particular, the LSP — are computed and then statistically analyzed over the full subspace of valid points. Finally, the amount of fine-tuning required is quantified and compared to the MSSM computed using an identical random scan. The B−L MSSM is shown to generically require less fine-tuninng.

  1. Yukawa-unified natural supersymmetry

    Science.gov (United States)

    Baer, Howard; Kraml, Sabine; Kulkarni, Suchita

    2012-12-01

    Previous work on t - b - τ Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m h 125 GeV. As Yukawa unification requires large tan β 50, while EWFT requires rather light third generation squarks and low μ ≈ 100 - 250 GeV, B-physics constraints from BR( B → X s γ) and BR( B s → μ + μ -) can be severe. We are able to find models with EWFT Δ ≲ 50 - 100 (better than 1-2% EWFT) and with Yukawa unification as low as R yuk 1.2 (20% unification). The unification is lessened to R yuk 1.3 when B-physics constraints are imposed. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1 - 2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A → μ + μ - decay might allow a determination of tan β 50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e + e - collider with sqrt{s}˜ 0.5 TeV.

  2. Explicitly broken supersymmetry with exactly massless moduli

    Science.gov (United States)

    Dong, Xi; Freedman, Daniel Z.; Zhao, Yue

    2016-06-01

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a super-gravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  3. Measuring supersymmetry at the large hadron collider

    Indian Academy of Sciences (India)

    B C Allanach

    2003-02-01

    The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a fine-tuning parameter, precision measurements of edge variables, anomaly- or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at first glance more difficult to detect, but proves to be possible by using leptons from cascade decays.

  4. Recent progress in lattice supersymmetry: from lattice gauge theory to black holes

    CERN Document Server

    Kadoh, Daisuke

    2016-01-01

    Supersymmetry (SUSY) is a fascinating topic in theoretical physics, because of its unique and counterintuitive properties. It is expected to emerge as new physics beyond the standard model, and it is also a building block for supergravity and superstring theory. A number of exact results obtained via SUSY theories provide insights into field theory. However, the dynamics of many SUSY theories are not yet fully understood, and numerical study of SUSY theories through lattice simulations is promising as regards furthering this understanding. In this paper, I overview the current status of lattice SUSY by discussing its development in chronological order, and by reviewing some simple models. In addition, I discuss the numerical verification of gauge/gravity duality, which is one of the recent significant developments in this field.

  5. Search for supersymmetry at CMS in events with photons, jets and low missing transverse energy

    Science.gov (United States)

    Adams, Jordon Rowe

    The Standard Model (SM) of particle physics offers the most complete quantum description of the known universe to date, however is unable to address some still unanswered questions. Supersymmetry (SUSY) is a theory which proposes partner particles for all SM particles and offers explanations for many of these questions. Many SUSY searches performed rely on signatures of high missing transverse energy due to a heavy SUSY particle escaping the detector, however these searches have not yet yielded positive results and therefore new search strategies must be employed. In this analysis, a search for new physics is performed at the CERN LHC which targets signatures of SUSY. Specifically, a search for Stealth SUSY is performed, based on a sample of proton-proton collisions at √s = 8 TeV corresponding to 19.7 fb-1 of integrated luminosity collected with the CMS detector in 2012. Stealth SUSY is a unique brand of SUSY which conserves R-Parity and naturally produces a low amount of missing transverse energy. The search strategy utilized is sen- sitive to a wide variety of new physics models including compressed spectra and long decay chains. The Stealth SUSY final state topology considered in this analysis consists of two photons, many jets and low missing transverse energy. The results of this data-driven search for new physics are reported, and good agreement is observed with the background expectation. The data are thus used to determine limits on squark/gaugino masses in the Stealth SUSY framework.

  6. Precision Corrections to Fine Tuning in SUSY

    CERN Document Server

    Buckley, Matthew R; Shih, David

    2016-01-01

    Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners -- in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and threshold corrections. This improved calculation more accurately connects the tuning measure with the physical masses of the superpartners at LHC-accessible energies. After these refinements, the tuning bound on the stop is now also sensitive to the masses of the 1st and 2nd generation squarks, which limits how far these can be decoupled in Effective SUSY scenarios. We find that, for a fixed level of tuning, our bounds can allow for heavier gluinos and stops than previously considered. Despite this, the natural region of supersymmetry is under pressure from the LHC constraints, with high messenger scales particularly disfavored.

  7. Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at $\\sqrt{s}$=7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare

    2013-01-01

    A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at $\\sqrt{s}$ = 7 TeV using 4.7 fb$^{-1}$ of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.

  8. Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste

    2012-04-27

    In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.

  9. Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at $\\sqrt{s}$=7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare

    2013-01-01

    A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at $\\sqrt{s}$ = 7 TeV using 4.7 fb$^{-1}$ of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.

  10. Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Fopma, Johan; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.

  11. Supersymmetry reviewed from the past to the future

    CERN Document Server

    Louis, J

    2003-01-01

    The DESY laboratory in Hamburg, Germany, hosted the 10th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY02) in June 2002, providing a forum for discussing the present status and future developments of supersymmetry (SUSY). In the week-long meeting organized by Pran Nath of Northeastern University, US, and Peter Zerwas of DESY - theoretical ideas, analyses of experimental data, the expectations for physics at CERN's Large Hadron Collider (LHC) and the proposed tera-electronvolt range electron-positron linear colliders were on the agenda. A lively and exciting atmosphere prevailed, with established practitioners exchanging standard and not-so-standard views on the evolution of particle physics with enthusiastic youngsters. The excitement had its roots in the fascinating prospect of addressing fundamental problems of physics in the new generation of accelerators, and in the well-founded hope of hearing about long- awaited breakthroughs that would answer many of the out...

  12. Third generation SUSY searches in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354291; The ATLAS collaboration

    2016-01-01

    Supersymmetry (SUSY) is one of the most popular and promising extensions to the Standard Model (SM) of particle physics. It predicts partner particles for all SM particles with a spin difference of $1/2$. These SUSY partners, if they exist within a reachable energy scale, should be produced at the Large Hadron Collider (LHC). The events are usually characterized by high missing transverse energy and can have varying jet and lepton multiplicities, depending on the model used. Searches for partners of third generation squarks are of special interest because of their special event topologies.\\\\ Many searches have been performed in proton-proton collisions at $\\sqrt{s}=13$ TeV at the LHC with the ATLAS detector, using an integrated luminosity of $3.2$ fb$^{-1}$. Several of these will be presented in these proceedings.\\\\ No significant deviations from the SM expectations have been observed and exclusion limits have been set for the respective models. Most analysis already exceed the sensitivity achieved with Run1 ...

  13. Sensitivity of High-Scale SUSY in Low Energy Hadronic FCNC

    Directory of Open Access Journals (Sweden)

    Morimitsu Tanimoto

    2015-05-01

    Full Text Available We discuss the sensitivity of the high-scale supersymmetry (SUSY at \\(10\\–\\(1000\\ TeV in  \\(B^0\\, \\(B_s\\, \\(K^0\\ and \\(D\\ meson systems together with the neutron electric dipole moment (EDM and the mercury EDM.  In order to estimate the contribution of the squark flavor mixing to these flavor changing neutral currents (FCNCs, we calculate the squark mass spectrum, which is consistent with  the recent Higgs discovery.  The SUSY contribution in \\(\\epsilon_K\\ could be large, around \\(40\\%\\ in the region of the SUSY scale \\(10\\–\\(100\\ TeV. The neutron EDM and the mercury EDM are also sensitive to the SUSY contribution induced by the gluino-squark interaction. The predicted EDMs are roughly proportional to \\(|\\epsilon_K^{\\rm SUSY}|\\. If the SUSY contribution is the level of \\({\\cal O}(10\\%\\ for \\(\\epsilon_K\\, the neutron EDM is expected to be discovered in the region of \\(10^{-28}\\–\\(10^{-26}\\ ecm. The mercury EDM also gives a strong constraint for the gluino-squark interaction. The SUSY contribution of \\(\\Delta M_D\\ is also discussed.

  14. Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC

    CERN Document Server

    Arana-Catania, M; Herrero, M J

    2013-01-01

    The recent discovery of a SM-like Higgs boson at the LHC, with a mass around 125-126 GeV, together with the absence of results in the direct searches for supersymmetry, is pushing the SUSY scale ($m_\\text{SUSY}$) into the multi-TeV range. This discouraging situation from a low-energy SUSY point of view has its counterpart in indirect SUSY observables which present a non-decoupling behavior with $m_\\text{SUSY}$. This is the case of the one-loop lepton flavor violating Higgs decay rates induced by SUSY, which may remain constant or even increase as $m_\\text{SUSY}$ grows, depending on the class of intergenerational mixing in the slepton sector which are taken into account ($LL$, $LR$, $RL$ or $RR$). In this work we focus on the LFV decays of the three neutral MSSM Higgs bosons $h$, $H$, $A \\to \\tau \\mu$, considering the four types of slepton mixing ($\\delta_{23}^{LL}$, $\\delta_{23}^{LR}$, $\\delta_{23}^{RL}$, $\\delta_{23}^{RR}$), and show that all the three channels could be measurable at the LHC, being $h \\to \\t...

  15. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  16. Commutator-based linearization of $N = 1$ nonlinear supersymmetry

    CERN Document Server

    Tsuda, Motomu

    2016-01-01

    We consider the linearization of $N = 1$ nonlinear supersymmetry (NLSUSY) based on a commutator algebra in Volkov-Akulov NLSUSY theory. We show explicitly that $U(1)$ gauge and scalar supermultiplets in addition to a vector supermultiplet with general auxiliary fields in linear SUSY theories are obtained from a same set of bosonic and fermionic functionals (composites) which are expressed as simple products of the powers of a Nambu-Goldstone fermion and a fundamental determinant in the NLSUSY theory.

  17. On the role of the commutator algebra for nonlinear supersymmetry

    CERN Document Server

    Shima, Kazunari

    2016-01-01

    We discuss the closure of commutator algebra for general functionals in terms of Nambu-Goldstone fermions and their derivative terms under nonlinear supersymmetry (NLSUSY) both in flat spacetime and in curved spacetime. We show that the variations of the general functionals (uniquely) determine the general structure of linear supermutiplets with general auxiliary fields for arbitrary $N$ SUSY, where the closure of the commutator algebra for NLSUSY plays a crucial role.

  18. Post LHC7 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.

  19. Unified Maximally Natural Supersymmetry

    CERN Document Server

    Huang, Junwu

    2016-01-01

    Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ unification: $\\sin^2 \\theta_W(M_Z) \\simeq 0.231$ is predicted to $\\pm 2\\%$ by unifying $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ into a 5D $SU(3)_{\\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \\sim 4.4\\,{\\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \\sim 40 \\,{\\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\\rm EW}$ with masses lighter than $\\sim 1.2\\,{\\rm TeV}$, and squarks in the mass range $1.4\\,{\\rm TeV} - 2.3\\,{\\rm TeV}$, providing distinct signature...

  20. The 750 GeV Diphoton Excess and SUSY

    Science.gov (United States)

    Heinemeyer, S.

    The LHC experiments ATLAS and CMS have reported an excess in the diphoton spectrum at ˜750 GeV. At the same time the motivation for Supersymmetry (SUSY) remains unbowed. Consequently, we review briefly the proposals to explain this excess in SUSY, focusing on "pure" (N)MSSM solutions. We then review in more detail a proposal to realize this excess within the NMSSM. In this particular scenario a Higgs boson with mass around 750 GeV decays to two light pseudo-scalar Higgs bosons. Via mixing with the pion these pseudo-scalars decay into a pair of highly collimated photons, which are identified as one photon, thus resulting in the observed signal.

  1. The 750 GeV diphoton excess and SUSY

    CERN Document Server

    Heinemeyer, S

    2016-01-01

    The LHC experiments ATLAS and CMS have reported an excess in the diphoton spectrum at \\sim 750 GeV. At the same time the motivation for Supersymmetry (SUSY) remains unbowed. Consequently, we review briefly the proposals to explain this excess in SUSY, focusing on "pure" (N)MSSM solutions. We then review in more detail a proposal to realize this excess within the NMSSM. In this particular scenario a Higgs boson with mass around 750 GeV decays to two light pseudo-scalar Higgs bosons. Via mixing with the pion these pseudo-scalars decay into a pair of highly collimated photons, which are identified as one photon, thus resulting in the observed signal.

  2. Flavor violating Z′ from SO(10 SUSY GUT in High-Scale SUSY

    Directory of Open Access Journals (Sweden)

    Junji Hisano

    2015-05-01

    Full Text Available We propose an SO(10 supersymmetric grand unified theory (SUSY GUT, where the SO(10 gauge symmetry breaks down to SU(3c×SU(2L×U(1Y×U(1X at the GUT scale and U(1X is radiatively broken at the SUSY-braking scale. In order to achieve the observed Higgs mass around 126 GeV and also to satisfy constraints on flavor- and/or CP-violating processes, we assume that the SUSY-breaking scale is O(100 TeV, so that the U(1X breaking scale is also O(100 TeV. One big issue in the SO(10 GUTs is how to realize realistic Yukawa couplings. In our model, not only 16-dimensional but also 10-dimensional matter fields are introduced to predict the observed fermion masses and mixings. The Standard-Model quarks and leptons are linear combinations of the 16- and 10-dimensional fields so that the U(1X gauge interaction may be flavor-violating. We investigate the current constraints on the flavor-violating Z′ interaction from the flavor physics and discuss prospects for future experiments.

  3. Prospects for Supersymmetry at the LHC & Beyond

    CERN Document Server

    AUTHOR|(CDS)2108556

    2015-01-01

    Run 1 of the LHC has provided three new motivations for supersymmetry: the need to stabilize the electroweak vacuum, the mass of the Higgs boson, and the fact that its couplings are Standard Model-like (so far). The prospects for discovering (and measuring) supersymmetry during future runs of the LHC are discussed in the frameworks of the constrained MSSM (CMSSM), models with non-universal soft supersymmetry-breaking contributions to Higgs masses (NUHM1,2) and the phenomenological MSSM with 10 arbitrary soft supersymmetry-breaking parameters (pMSSM10). In addition to the classic searches for missing transverse energy, searches for long-lived charged sparticles may also be promising. If supersymmetry does show up at the LHC, there are good prospects for measurements of the spectrum that can be compared with the indirect indications from other experiments. On the other hand, a higher-energy future circular proton-proton collider may be the best option for discovering supersymmetry if it does not appear at the L...

  4. Non-Hermitian supersymmetry and singular PT symmetrized oscillators

    CERN Document Server

    Znojil, M

    2002-01-01

    SUSY partnership between singular potentials often breaks down. Via regularization it can be restored on certain ad hoc subspaces of Hilbert space [Das and Pernice, Nucl. Phys. B 561 (1999) 357]. Within the naturally complexified (so called PT symmetric) quantum mechanics we show how SUSY between strongly singular harmonic oscillators can completely be re-established. Our recipe leads to a new form of the bosonic creation and annihilation operators and proves continuous near the usual regular (i.e., linear harmonic) limit.

  5. Search for supersymmetry in final states with jets, missing transverse momentum and the least one {tau} lepton with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Janus, Michel

    2013-04-15

    The first search for Supersymmetry (SUSY) in final states with at least one {tau} lepton, two or more jets and large missing transverse energy based on {tau} leptons are reconstructed in the hadronic decay mode. To search for new physics in final states with hadronic {tau}-lepton decays a reliable and efficient reconstruction algorithm for hadronic {tau} decays is needed. As part of this thesis two existing {tau}-reconstruction algorithms were further developed and integrated into a single algorithm that has by now become the standard algorithm for {tau} reconstruction in ATLAS. The suppression of jet background, one of the crucial aspects of {tau} reconstruction and the SUSY analysis in this thesis, was studied and the probabilities of misidentifying quark- or gluon-initiated jets as hadronic {tau}-lepton decays were measured in both the 2010 and 2011 ATLAS data at a centre-of-mass energy of {radical}(s)=7 TeV, using samples of di-jet events. The ATLAS data used for the SUSY search in this thesis was recorded between March and August 2011 and corresponds to an integrated luminosity of 2.05 fb{sup -1}. Eleven events are observed in data, consistent with the total Standard Model background expectation of 13.2{+-}4.2 events. As no excess of data over the expected backgrounds is observed, 95% confidence level limits are set within the framework of gauge mediated SUSY breaking (GMSB) models as a function of the GMSB parameters {Lambda} and tan {beta}, for fixed values of the other GMSB parameters: M{sub mess}=250 TeV, N{sub 5}=3, sign({mu})=+ and C{sub grav}=1. In addition to the GMSB interpretation, a model-independent upper limit of 8.5 on the number of events from potential non-Standard Model sources is derived at the 95% confidence level.

  6. SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate

    Energy Technology Data Exchange (ETDEWEB)

    Arbey, A. [Universite de Lyon, Lyon F-69000 (France); Universite Lyon 1, Villeurbanne F-69622 (France); Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex F-69561 (France); CNRS, UMR 5574, Ecole Normale Superieure de Lyon, Lyon (France)], E-mail: arbey@obs.univ-lyon1.fr; Mahmoudi, F. [High Energy Physics, Uppsala University, Box 535, 75121 Uppsala (Sweden)

    2008-10-30

    The sensitivity of the lightest supersymmetric particle relic density calculation to the variation of the cosmological expansion rate before nucleosynthesis is discussed. Such a modification of the expansion rate, even extremely modest and with no consequence on the cosmological observations, can greatly enhance the calculated relic density, and therefore change the constraints on the SUSY parameter space drastically. We illustrate this variation in two examples of SUSY models, and show that it is unsafe to use the lower bound of the WMAP limits in order to constrain supersymmetry. We therefore suggest to use only the upper value {omega}{sub DM}h{sup 2}<0.135.

  7. Supersymmetry At Proton-antiproton, Proton-proton And Electron-positron Colliders In Light Of Wmpa Measurements Of The Dark Matter Density Of The Universe

    CERN Document Server

    Krupovnickas, T

    2004-01-01

    The Standard Model (SM) describes almost all the particle physics experiments with a high accuracy. However, the SM has a lot of conceptual problems (spontaneous symmetry breaking is introduced by hand, the Higgs boson mass has to be very finely fine-tuned, there is no explanation for the number of generations or particle quantum numbers, there are at least 19 arbitrary model parameters). Therefore, it is reasonable to search for theories solving some or all of the problems that the SM has. One class of such theories is based on an assumption that at some large energy scale Nature chooses the maximal possible space-time symmetry, called supersymmetry (SUSY). Once the theory is constructed, it has to be tested against the experiment. This thesis explores various collider signals in the framework of minimal Supergravity model (mSUGRA) and gaugino mediated SUSY breaking model (inoMSB). We calculate whether the signal predicted by these models could be detected at the Fermilab Tevatron and at the CERN LHC hadroni...

  8. The Minimal SUSY $B-L$ Model: Simultaneous Wilson Lines and String Thresholds

    CERN Document Server

    Deen, Rehan; Purves, Austin

    2016-01-01

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY $B-L$ model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ${\\mathbb Z}_{3}\\times {\\mathbb Z}_{3}$ Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass $\\left$. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects--particularly heavy string thresholds, which we calculate st...

  9. Searches for supersymmetry in the photon(s) plus missing energy channels at $\\sqrt{s}$ = 161 GeV and 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 \\pb\\ at $\\sqrt{s} = 161 ~\\, \\rm GeV$, 1.1 \\pb\\ at 170 \\gev\\ and 9.5 \\pb\\ at 172 GeV. The \\eenunu\\ cross se ction is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 \\gevsq\\ at 95\\% C.L. is set on the mass of the lightest neutralin o ($\\tau_{\\chi_{1}^{0}} \\leq $ 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models.

  10. Tasting the SU(5) nature of supersymmetry at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica,São Paulo State University,São Paulo (Brazil); International Institute of Physics, UFRN,Av. Odilon Gomes de Lima, 1722 Capim Macio, 59078-400 Natal-RN (Brazil); Herrmann, Björn; Stoll, Yannick [LAPTh, Université de Savoie, CNRS,9 Chemin de Bellevue, B.P. 110, F-74941 Annecy-le-Vieux (France)

    2015-05-19

    We elaborate on a recently found SU(5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU(5) tests realizable at the LHC. These SU(5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU(5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU(5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3σ significance for all of these tests. In addition, we propose a set of precision measurements in ultraperipheral collisions in order to search for the flavour-changing dipole operators of Heavy supersymmetry.

  11. SUSY Without Prejudice at Linear Colliders

    CERN Document Server

    Rizzo, Thomas G

    2008-01-01

    We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale $e^+e^-$ linear colliders(LC) are discussed.

  12. Search for dark matter and supersymmetry in the vector boson fusion topology in proton-proton collisions at CMS

    CERN Document Server

    Celik, Ali

    2017-01-01

    A search for pair production of dark matter candidates and supersymmetry production (SUSY) with two jets in vector-boson fusion (VBF) topology is presented using data collected by the CMS detector in proton-proton collisions at the LHC. Final states with no leptons are expected in pair production of dark matter particles or scalar quarks in SUSY compressed mass-spectra scenarios. Final states with low-energy leptons are expected in the production of charginos and neutralinos in SUSY compressed mass-spectra scenarios. Results for both zero and two lepton final states at 8 TeV are presented with brief prospects at 13 TeV.

  13. SUSY Dark Matter in Universal and Nonuniversal Gaugino Mass Models

    CERN Document Server

    Roy, D P

    2016-01-01

    We review the phenomenology of SUSY dark matter in various versions of MSSM, with universal and nonuniversal gaugino masses at the GUT scale. We start with the universal case (CMSSM), where the cosmologically compatible dark matter relic density is achieved only over some narrow regions of parameter space, involving some fine-tuning. Moreover, most of these regions are seriously challenged by the constraints from collider and direct dark matter detection experiments. Then we consider some simple and predictive nonuniversal gaugino mass models, based on SU(5) GUT. Several of these models offer viable SUSY dark matter candidates, which are compatible with the cosmic dark matter relic density and the above mentioned experimental constraints. They can be probed at the present and future collider and dark matter search experiments. Finally, we consider the nonuniversal gaugino mass model arising from anomaly mediated SUSY breaking. In this case the cosmologically compatible dark matter relic density requires dark ...

  14. Search for SUSY at LHC

    CERN Document Server

    Dova, MT; The ATLAS collaboration

    2012-01-01

    This is a talk on Search for SUSY at LHC (ATLAS + CMS) to be presented at SILAFAE2012 (IX Simposio Latinoamericano de Fisica de Altas Energías) to be held in Sao Paulo, Brazil (10-14 December) . The content of the slides is mainly with results presented at SUSY2012 with a few updates from HCP results.

  15. Type 1 2HDM as Effective Theory of Supersymmetry

    Institute of Scientific and Technical Information of China (English)

    邵华

    2012-01-01

    It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higge doublet model can also be as the effective of supersymmetry in a specific ease with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.

  16. Fast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniques

    CERN Document Server

    Buckley, A; White, M J

    2011-01-01

    A pressing problem for supersymmetry (SUSY) phenomenologists is how to incorporate Large Hadron Collider search results into parameter fits designed to measure or constrain the SUSY parameters. Owing to the computational expense of fully simulating lots of points in a generic SUSY space to aid the calculation of the likelihoods, the limits published by experimental collaborations are frequently interpreted in slices of reduced parameter spaces. For example, both ATLAS and CMS have presented results in the Constrained Minimal Supersymmetric Model (CMSSM) by fixing two of four parameters, and generating a coarse grid in the remaining two. We demonstrate that by generating a grid in the full space of the CMSSM, one can interpolate between the output of an LHC detector simulation using machine learning techniques, thus obtaining a superfast likelihood calculator for LHC-based SUSY parameter fits. We further investigate how much training data is required to obtain usable results, finding that approximately 2000 po...

  17. Identifying Supersymmetry at the CERN LHC and Indirect Dark Matter Detection Experiments

    CERN Document Server

    Grajek, Phillip

    Supersymmetry (SUSY) remains the most well-motivated scenario for new physics beyond the Standard Model. There is strong reason to expect that if nature is supersymmetric it will be observed at the LHC. Consequently, searches for SUSY are among the primary tasks of the LHC program. However, much of this work focuses on scenarios such as mSUGRA, which include many simplifying assumptions. It is necessary, therefore, to consider the broader SUSY parameter space, and explore the implications of various other model choices on the spectrum of possible experimental signatures. This thesis addresses this phenomenologically challenging problem. We present several studies that examine the relationship between various SUSY scenarios and experimental phenomena, and introduce new techniques to extract meaningful information about fundamental parameters. First, we discuss identification of multiple top quark production from gluino decay at the LHC. We find that 4-top production can be discovered in excess of Standard Mode...

  18. More on two-dimensional O (N ) models with N =(0 ,1 ) supersymmetry

    Science.gov (United States)

    Peterson, Adam J.; Kurianovych, Evgeniy; Shifman, Mikhail

    2016-03-01

    We study the behavior of two-dimensional supersymmetric connections of n copies of O (N ) models with an N =(0 ,1 ) heterotic deformation generated by a right-moving fermion. We develop the model in analogy with the connected N =(0 ,2 ) C P (N -1 ) models for the case of a single connecting fermionic superfield. We calculate the effective potential in the large-N limit and determine the vacuum field configurations. Similarly to other supersymmetry (SUSY) connected models we find that SUSY is unbroken under certain conditions despite the vanishing of the Witten index. Specifically, this preservation of SUSY occurs when we have an even number n of O (N ) families. As in previous cases we show that this result follows from a Zn symmetry under a particular exchange of the O (N ) families. This leads to a definition of a modified Witten index, which guarantees the preservation of SUSY in this case.

  19. Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections.

    Science.gov (United States)

    Noth, David; Spira, Michael

    2008-10-31

    We present two-loop supersymmetry (SUSY) QCD corrections to the effective bottom Yukawa couplings within the minimal supersymmetric extension of the standard model (MSSM). The effective Yukawa couplings include the resummation of the nondecoupling corrections Deltam_{b} for large values of tanbeta. We have derived the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-quark-induced SUSY-electroweak contributions to Deltam_{b}. The scale dependence of the resummed Yukawa couplings is reduced from O(10%) to the percent level. These results reduce the theoretical uncertainties of the MSSM Higgs branching ratios to the accuracy which can be achieved at a future linear e;{+}e;{-} collider.

  20. Origin and consequence of the supersymmetry breaking: -) phenomenology of neutralinos annihilation in Zh and WW, -) (0,1/2) representation and duality; Origine et manifestation de la brisure de supersymetrie: phenomenologie de l'annihilation de neutralinos en Zh et WW. Representation (0,1/2) et dualite

    Energy Technology Data Exchange (ETDEWEB)

    Labonne, B

    2007-01-15

    Supersymmetry is an interesting extension of the Standard Model. Hence, its formal and phenomenological aspects need to be understood before establishing it as realized in Nature. Supersymmetry offers a natural dark matter candidate. To check this hypothesis, a crucial point would be the indirect detection of neutralino annihilation products. Among annihilation channels, the one with a Z boson and a Higgs scalar, is of interest because of the hard spectrum it yields. However, the spectra needs to be weighted by branching ratios.The Zh channel is then known to be suppressed. We notice that the deeper broken the supersymmetry, the stronger the suppression. Thus the channel suppression has to be understood in terms of gauge independence of different diagrams involved, and high energy unitarity. A key element of the suppression for this channel is the Z boson polarization, which comes from the initial Majorana particles at rest. Finally, we investigate the role of polarization in the WW channel. Here, polarization does not suppress the channel but modifies the shape of the decay products spectra. This could be important from an experimental point of view. On a more formal side, we point out different kinds of representations of the (0,1/2) multiplet in superspace. First we focus on a new kind of superfield called X. Next we present a duality in 4 dimensions, before showing its extension to superspace. Without supersymmetry, this duality links a 3-form to a constant. In superspace, we find that the duality links a 3-form superfield to the new X superfield. It is essential to understand that some components of the 3-form and the X superfield seem to help supersymmetry breaking. Finally we try to transmit this breaking to usual chiral superfields. (author)

  1. Searches for R-Parity violating SUSY with the ATLAS detector

    CERN Document Server

    Hou, Suen; The ATLAS collaboration

    2016-01-01

    The violation of R-parity allows new signatures to be pursued in the search for supersymmetry at the LHC. This talk presents the latest results from the ATLAS experiment on searches for R-parity violating SUSY using data from pp collisions at a centre-of-mass energy of 13 TeV. The results presented are for dedicated searches for resonances, as well as a systematic analysis of the constraints placed on R-parity violating models.

  2. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  3. How low can SUSY go? Matching, monojets and compressed spectra

    CERN Document Server

    Dreiner, Herbi K

    2012-01-01

    If supersymmetry (SUSY) has a compressed spectrum then the current mass limits from the LHC can be drastically reduced. We consider a possible 'worst case' scenario where the gluino and/or squarks are degenerate with the lightest SUSY particle (LSP). The most sensitive searches for these compressed spectra are via the final state LSPs recoiling against initial state radiation (ISR). Therefore it is vital that the ISR is understood and possible uncertainties in the predictions are evaluated. We use both MLM (with Pythia 6) and CKKW- L (with Pythia 8) matching and vary matching scales and parton shower properties to accurately determine the theoretical uncertainties in the kinematic distributions. All current LHC SUSY and monojet analyses are employed and we find the most constraining limits come from the CMS Razor and CMS monojet searches. For a scenario of squarks degenerate with the LSP and decoupled gluinos we find $M_{\\tilde{q}}>340$ GeV. For gluinos degenerate with the LSP and decoupled squarks, $M_{\\tild...

  4. The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2014-11-01

    Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.

  5. Deconstruction, Holography and Emergent Supersymmetry

    CERN Document Server

    Nakai, Yuichiro

    2014-01-01

    We study a gauge theory in a 5D warped space via the dimensional deconstruction that a higher dimensional gauge theory is constructed from a moose of 4D gauge groups. By the AdS/CFT correspondence, a 5D warped gauge theory is dual to a 4D conformal field theory (CFT) with a global symmetry. As far as physics of the gauge theory, we obtain the one-to-one correspondence between each component of a moose of gauge groups and that of a CFT. We formulate a supersymmetric extension of deconstruction and explore the framework of natural supersymmetry in a 5D warped space -- the supersymmetric Randall-Sundrum model with the IR-brane localized Higgs and bulk fermions -- via the gauge moose. In this model, a supersymmetry breaking source is located at the end of the moose corresponding to the UV brane and the first two generations of squarks are decoupled. With left-right gauge symmetries in the bulk of the moose, we demonstrate realization of accidental or emergent supersymmetry of the Higgs sector in comparison with t...

  6. An attractor for natural supersymmetry

    Science.gov (United States)

    Cohen, Timothy; Hook, Anson; Torroba, Gonzalo

    2012-12-01

    We propose an attractor mechanism which generates the more minimal supersymmetric standard model from a broad class of supersymmetry breaking boundary conditions. The hierarchies in the fermion masses and mixings are produced by the same dynamics and a natural weak scale results from gaugino mediation. These features arise from augmenting the standard model with a new SU(3) gauge group under which only the third generation quarks are charged. The theory flows to a strongly interacting fixed point which induces a negative anomalous dimension for the third generation quarks and a positive anomalous dimension for the Higgs. As a result, a split-family natural spectrum and the flavor hierarchies are dynamically generated.

  7. Supersymmetry Without Prejudice at the 7 TeV LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conley, John A.; /Bonn U.; Gainer, James S.; /Argonne /Northwestern U.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC

    2011-08-12

    We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for {approx} 71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S {ge} 5 for 1 fb{sup -1} of integrated luminosity. We then examine the model characteristics for the cases which cannot be discovered and find several contributing factors. We find that a blanket statement that squarks and gluinos are excluded with masses below a specific value cannot be made. We next explore possible modifications to the kinematic cuts in these analyses that may improve the pMSSM model coverage. Lastly, we examine the implications of a null search at the 7 TeV LHC in terms of the degree of fine-tuning that would be present in this model set and for sparticle production at the 500 GeV and 1 TeV Linear Collider.

  8. Supersymmetry discovery potential in the 2 leptons channel with ATLAS

    CERN Document Server

    De Sanctis, U

    2008-01-01

    The main argument of the PhD thesis is the evaluation of the ATLAS detector potential to discover Supersymmetry and to estimate the masses of the supersymmetric particles produced in events with two isolated leptons (electrons or muons) in the final state. The Supersymmetry (SUSY) is one of the most credited theories to extend the Standard Model (SM). This theory foresees a new class of particles that can be detected reconstructing their decay chains. Under some basic assumptions that define the mSUGRA model, all these chains finish with the Lightest SUSY Particle (LSP) that is stable, neutral and weakly interacting: a good candidate for the Cold Dark Matter. The LSP escapes the detection originating a large amount of missing energy in the detector. Within the mSUGRA model, this channel is then characterised by the presence of two isolated leptons, missing energy and energetic jets. A strategy to estimate the SM background in this channel using only real data has been developed allowing the discovery of SUSY ...

  9. Twisted Supersymmetry in a Deformed Wess-Zumino Model in (2+1) Dimensions

    CERN Document Server

    Palechor, C; Quinto, A G

    2016-01-01

    Non-anticommutative deformations have been studied in the context of supersymmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its important properties, both at the formal algebraic level (e.g., preserving the associativity of the deformed theory) as well as at the physical level (e.g., maintaining renormalizability). The Hopf algebra formalism allows the definition of algebraically consistent deformations of SUSY, but this algebraic consistency does not guarantee that physical models build upon these structures will be consistent from the physical point of view. We will investigate a deformation induced by a Drinfel'd twist of the ${\\cal N}=1$ SUSY algebra in three space-time dimensions. The use of the Hopf algebra formalism allows the construction of deformed ${\\cal N}=1$ SUSY algebras that should still preserve a deformed version of supersymmetry. We will construct the simplest deformed versi...

  10. Soft See-Saw: Radiative Origin of Neutrino Masses in SUSY Theories

    CERN Document Server

    Megrelidze, Luka

    2016-01-01

    Radiative neutrino mass generation within supersymmetric (SUSY) construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires extensions of the MSSM with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2)_w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.

  11. Soft see-saw: Radiative origin of neutrino masses in SUSY theories

    Directory of Open Access Journals (Sweden)

    Luka Megrelidze

    2017-01-01

    Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.

  12. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  13. Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in $\\sqrt{s} = 8 TeV pp$ collisions with the ATLAS detector

    CERN Document Server

    AUTHOR|(SzGeCERN)706167; Ströhmer, Raimund

    The results of two analyses searching for supersymmetry (SUSY) in data of the ATLAS experiment are presented in this thesis. The data were recorded in proton-proton collisions at the Large Hadron Collider in 2012 at a centre of mass energy of $\\sqrt{s} = 8$ TeV and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The first search is performed in signatures containing an opposite-sign electron or muon pair, which is compatible with originating from a $Z$ boson decay, in addition to jets and large missing transverse momentum. The analysis targets the production of squarks and gluinos in R-parity conserving (RPC) models with SUSY breaking via General Gauge Mediation (GGM). The main Standard Model (SM) backgrounds are $t \\overline{t}$, $WW$, $W+t$ and $Z \\rightarrow \\tau\\tau$ processes which are entirely estimated from data using different-flavour events. Besides that, the SM production of $Z$ bosons in association with jets and large fake missing momentum from mismeasurements plays a role and is pre...

  14. Tasting the SU(5) nature of supersymmetry at the LHC

    CERN Document Server

    Fichet, Sylvain; Stoll, Yannick

    2015-01-01

    We elaborate on a recently found SU(5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU(5) tests realizable at the LHC. These SU(5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU(5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU(5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3-sigma significance f...

  15. Pushing SUSY’s boundaries : searches and prospects for strongly-produced supersymmetry at the LHC with the ATLAS detector

    NARCIS (Netherlands)

    Besjes, G.J.

    2015-01-01

    In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The

  16. Non-trivial Supersymmetry Correlations between ATLAS and CMS Observations

    CERN Document Server

    Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W

    2012-01-01

    We present definite correlations between the CMS 5 \\fb all-hadronic search employing the stransverse mass variable $M_{T2}$ and the ATLAS 5 \\fb all-hadronic and multijet supersymmetry (SUSY) searches, suggesting the possibility that both the ATLAS and CMS experiments are already registering a faint but legitimate SUSY signal at the LHC. We isolate this prospective mutual productivity beyond the Standard Model in the framework of the supersymmetric No-Scale Flipped $SU$(5) grand unified theory, supplemented with extra vector-like matter (flippons). Evident overproduction is observed in three CMS \\mt2 and four ATLAS hadronic and multijet signal regions, where a \\x2 fitting procedure of the CMS 5 \\fb \\mt2 search establishes a best fit SUSY mass in sharp agreement with corresponding ATLAS searches of equivalently heightened signal significance. We believe this correlated behavior across two distinct experiments at precisely the same SUSY mass scale to be highly non-trivial, and potentially indicative of an existi...

  17. Minimal bosonization of supersymmetry with Z{sub p}-graded parity

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Won Sang [Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-06-15

    In this paper we consider the Z{sub p}-graded parity generalizing the ordinary (or Z{sub 2}-graded) parity. Using the Z{sub p}-graded parity operator, we discuss the minimal bosonization of the N=2 SUSY with Z{sub p}-graded parity. The lowest energy level is shown to be infinitely degenerate. In order to avoid the infinite degeneracy of the ground state we introduce the paraboson algebra to obtain the para-supersymmetry. Finally, we discuss the hidden SUSY with Z{sub 3}-graded parity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The status of supersymmetry phenomenology

    Indian Academy of Sciences (India)

    Amitava Datta

    2000-07-01

    In this brief review the following topics are discussed: Direct searches for SUSY in mSUGRA: a brief review of the relevant mass limits, the clean trilepton signal, the hunt for the third generation of sfermions, Direct searches beyond mSUGRA: search prospects in models with nonuniversal gaugino masses, search prospects in models with nonuniversal scalar masses, Indirect searches for SUSY: precision electroweak observables and SUSY, '/ and SUSY.

  19. Theoretical Developments in SUSY

    Science.gov (United States)

    Shifman, M.

    2009-01-01

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.

  20. Theoretical developments in SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2009-01-15

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)

  1. Supersymmetry from Typicality

    CERN Document Server

    Nomura, Yasunori

    2014-01-01

    We argue that under a set of simple assumptions the multiverse leads to low energy supersymmetry with the spectrum often called spread or mini-split supersymmetry: the gauginos are in the TeV region with the other superpartners two or three orders of magnitude heavier. We present a particularly simple realization of supersymmetric grand unified theory using this idea.

  2. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  3. Quantum Extended Supersymmetries

    CERN Document Server

    Grigore, D R; Grigore, Dan Radu; Scharf, Gunter

    2003-01-01

    We analyse some quantum multiplets associated with extended supersymmetries. We study in detail the general form of the causal (anti)commutation relations. The condition of positivity of the scalar product imposes severe restrictions on the (quantum) model. It is problematic if one can find out quantum extensions of the standard model with extended supersymmetries.

  4. Search for Supersymmetry with Vector Boson Fusion-like Topology

    Science.gov (United States)

    Celik, Ali; CMS Collaboration

    2017-01-01

    A search of supersymmetry (SUSY) with two jets in vector-boson fusion (VBF) topology is presented using data collected by the CMS detector in proton-proton collisions at the LHC. Final states containing at least one low energy lepton are expected in SUSY compressed mass spectra for pair production of charginos and neutralinos. The standard model backgrounds are reduced by requiring a presence of missing energy and two jets with large rapidity separation expected in VBF topology. The final state without leptons in VBF dijet + MET topology provides a stringent limit on squark mass in the compressed mass scenario. We will show results from zero and dilepton final states at 8 TeV and single lepton study at 13 TeV.

  5. Stealth Supersymmetry Simplified

    CERN Document Server

    Fan, JiJi; Pinner, David; Reece, Matthew; Ruderman, Joshua T

    2015-01-01

    In Stealth Supersymmetry, bounds on superpartners from direct searches can be notably weaker than in standard supersymmetric scenarios, due to suppressed missing energy. We present a set of simplified models of Stealth Supersymmetry that motivate 13 TeV LHC searches. We focus on simplified models within the Natural Supersymmetry framework, in which the gluino, stop, and Higgsino are assumed to be lighter than other superpartners. Our simplified models exhibit novel decay patterns that differ significantly from topologies of the Minimal Supersymmetric Standard Model, with and without $R$-parity. We determine limits on stops and gluinos from searches at the 8 TeV LHC. Existing searches constitute a powerful probe of Stealth Supersymmetry gluinos with certain topologies. However, we identify simplified models where the gluino can be considerably lighter than 1 TeV. Stops are significantly less constrained in Stealth Supersymmetry than the MSSM, and we have identified novel stop decay topologies that are complete...

  6. Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the lattice

    CERN Document Server

    Giguère, Eric

    2015-01-01

    We perform lattice simulations of two-dimensional supersymmetric Yang-Mills theory with sixteen supercharges with a lattice action which has two exact supercharges (Sugino lattice action). According to the gauge/gravity duality, the theory at finite temperature is expected to be well described by the corresponding black 1-branes, at low temperature in the large N limit. We aim to confirm the duality conjecture by comparing the lattice results with the theoretical predictions obtained in the gravity side. In this article, at the beginning of this study, we examine the supersymmetric Ward-Takahashi identity to test whether the lattice action reproduces the correct continuum theory. Numerical results of the SUSY WTI strongly suggest us that any cut-off effects, which break supersymmetry, disappear in the continuum limit. In addition, we study the issue of degenerate vacua and find that the admissiblilty condition or any other constraints of the link fields which guarantee the unique vacuum are not always needed.

  7. Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Giguère, Eric [Department of Physics, University of Hokkaido,Sapporo, Hokkaido 060-0810 (Japan); Kadoh, Daisuke [KEK Theory Center, High Energy Accelerator Research Organization (KEK),Tsukuba, Ibaraki 305-0801 (Japan)

    2015-05-18

    We perform lattice simulations of two-dimensional supersymmetric Yang-Mills theory with sixteen supercharges with a lattice action which has two exact supercharges (Sugino lattice action). According to the gauge/gravity duality, the theory at finite temperature is expected to be well described by the corresponding black 1-branes, at low temperature in the large N limit. We aim to confirm the duality conjecture by comparing the lattice results with the theoretical predictions obtained in the gravity side. In this article, at the beginning of this study, we examine the supersymmetric Ward-Takahashi identity to test whether the lattice action reproduces the correct continuum theory. Numerical results of the SUSY WTI strongly suggest us that any cut-off effects, which break supersymmetry, disappear in the continuum limit. In addition, we study the issue of degenerate vacua and find that the admissiblilty condition or any other constraints of the link fields which guarantee the unique vacuum are not always needed.

  8. SUSY Searches at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Zivkovic, L.

    2011-07-01

    In this article results from supersymmetry searches at D0 and CDF are reported. Searches for third generation squarks, searches for gauginos, and searches for models with R-parity violation are described. As no signs of supersymmetry for these models are observed, the most stringent limits to date are presented.

  9. Search for GMSB supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at sqrt(s) = 13 TeV

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search for supersymmetry with gauge-mediated supersymmetry breaking in electroweak and strong production and final states with photons and large missing transverse momentum is presented in this note. The data sample was collected in 2016 in pp collisions at $\\sqrt{s}=13$ TeV with the CMS detector at the LHC and corresponds to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$. Scenarios are studied, in which the lightest neutralino has bino- or wino-like components, resulting in decays to photons and gravitinos, where the gravitinos escape undetected. The event selection was optimised for high sensitivity to both electroweak and strong production SUSY scenarios. No indication for the presence of new physics is observed. The analysis excludes gaugino masses below 750 GeV at the $95\\%$ confidence level in a simplified model with electroweak production of mass-degenerate charginos and neutralinos and sets stringent limits in four strong production simplified models based on gluino and squark pair-production. ...

  10. Susi astus rektori kohalt tagasi / Sigrid Laev

    Index Scriptorium Estoniae

    Laev, Sigrid

    2003-01-01

    Concordia rektor Mart Susi ja prorektor Mari-Ann Susi astusid kooli juhtimisest tagasi ja kuulutasid välja Concordia Varahalduse OÜ pankroti. Concordia töötajate loodud ühing hakkas looma uut õppeasutust

  11. Three point SUSY Ward identities without Ghosts

    CERN Document Server

    Walker, M L

    2004-01-01

    We utilise a non-local gauge transform which renders the entire action of SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing condition, to derive two- and three-point ghost-free SUSY Ward identities in SUSY QED. We use the cluster decomposition principle to find the Green's function Ward identities and then takes linear combinations of the latter to derive identities for the proper functions.

  12. Emergent gauge theories and supersymmetry: a QED primer

    CERN Document Server

    Chkareuli, J L

    2013-01-01

    It is well known that spontaneous Lorentz invariance violation (SLIV) in general vector field theories may lead to an appearance of massless Nambu-Goldstone modes which are identified with photons and other gauge fields in the Standard Model. Nonetheless, it may turn out that SLIV is not the only reason for emergent massless photons to appear if spacetime symmetry is further enlarged. In this connection, a special link may be related to supersymmetry that we try to illustrate in this note by the supersymmetric QED example. We argue that a generic source for massless photons could be spontaneously broken supersymmetry rather than physically manifested SLIV. We consider supersymmetric QED model extended by an arbitrary polynomial potential of massive vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon emerges as a companion of massless photino which is in fact the Goldstone fermion state in the tree approximation. However, being mixed with anoth...

  13. Supersymmetry searches in ATLAS at the LHC

    CERN Document Server

    Romero Adam, Elena; Bernabeu Alberola, Jose

    This Thesis presents two different SUSY searches in strong production using ATLAS data. The first analysis presented, searches for Supersymmetry in final states containing seven or more jets (multijets), one isolated lepton (electron or muon) and missing transverse energy (ETmiss). The search is based on data from the full 2011 data-taking period, corresponding to an integrated luminosity of 4.7/fb and a centre-of-mass energy sqrt(s) = 7 TeV. The results of this analysis are interpreted in the context of a bilinear R-parity violating (bRPV) mSUGRA/CMSSM model. The second analysis is a search for Supersymmetry in final states characterised by a Z boson that decays to an electron or a muon pair, large ETmiss and jets. The proton-proton collision data used in this search were collected at a centre-of-mass energy sqrt(s) = 8 TeV by the ATLAS detector at the LHC and correspond to an integrated luminosity of 20.3/fb. The results are interpreted in the context of a GGM supersymmetric model.

  14. SUSY naturalness without prejudice

    Science.gov (United States)

    Ghilencea, D. M.

    2014-05-01

    Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation δχ2 (from χmin2 of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, provided that the EW scale v ˜mZ is indeed regarded as a function v =v(γ). It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the δχ2 and the s-standard deviation confidence interval by using v =v(γ) and the theoretical approximation (loop order) considered for the calculation of the observables. This upper bound avoids subjective criteria for the "acceptable" level of EW fine-tuning for which the model is still "natural."

  15. SUSY naturalness without prejudice

    CERN Document Server

    Ghilencea, D M

    2014-01-01

    Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale $v$ at the quantum level and {\\it predict} that $v$ is a function of the TeV-valued SUSY parameters ($\\gamma_\\alpha$) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation $\\delta\\chi^2$ (from $\\chi^2_{min}$ of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, {\\it provided that} the EW scale $v\\sim m_Z$ is indeed regarded as a function $v=v(\\gamma)$. It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among $\\gamma_\\alpha$ exist (due to GUT symmetries, etc). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the $\\delta\\chi^2$ and the s-standard deviation conf...

  16. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  17. Cosmological Probes for Supersymmetry

    CERN Document Server

    Khlopov, Maxim

    2015-01-01

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  18. The heterotic string yields natural supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Krippendorf, Sven, E-mail: krippendorf@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Nilles, Hans Peter, E-mail: nilles@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Ratz, Michael, E-mail: michael.ratz@tum.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Winkler, Martin Wolfgang, E-mail: martin.winkler@tum.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2012-05-30

    The most promising MSSM candidates of the heterotic string reveal some distinctive properties. These include gauge-top unification, a specific solution to the {mu}-problem and mirage pattern for the gaugino masses. The location of the top- and the Higgs-multiplets in extra dimensions differs significantly from that of the other quarks and leptons leading to a characteristic signature of suppressed soft breaking terms, reminiscent of a scheme known as natural supersymmetry.

  19. Massive Gravity with N=1 local Supersymmetry

    CERN Document Server

    Malaeb, Ola

    2013-01-01

    A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N =1 fields. Coupling to N = 1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N = 1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos with different masses, and a massive vector.

  20. Exclusive search for supersymmetry with same-flavour di-lepton final states with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Michael

    2012-06-15

    Supersymmetry (SUSY) is one of the most promising extensions of the Standard Model of particle physics. It introduces a new symmetry between fermions and bosons by adding a bosonic superpartner to each SM fermion and a fermionic one to a each SM boson. If an excess of SUSY like signal is observed, SUSY particle properties (e.g. masses or mass differences) must be measured in order to determine the underlying SUSY parameters. Therefore, exclusive SUSY decay cascades with two leptons in the final state are isolated by the flavour subtraction method, in order to fit the endpoint of the invariant mass distribution of these leptons and determine SUSY particle mass differences. This analysis uses a data sample collected during the first half of 2011, corresponding to an integrated luminosity of 1 fb{sup -1} of {radical}(s)=7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Since no significant same flavour excess is observed, the variable S, which is the measure of a same-flavour excess, is used to determine model-independent and model-dependent limits for different SUSY scenarios. The tightest limits can be set for models expecting exactly two opposite-sign same-flavour leptons and missing transverse momentum larger than 250 GeV. Assuming no combinatorial SUSY background events from different decay chains (ll'), models with di-lepton decays (ll) with SUSY same-flavour excess S{sub s} {>=}4.5 can be excluded at 95% CL. Considering a combinatorial SUSY background contribution with a ratio BR(ll')/BR(ll)=50% (100%) models with S{sub s}{>=}5.5(6.7) can be excluded at 95% CL. For the GMSB model with a slepton NLSP, this translates into a limit of the GMSB parameter {lambda}=40 TeV exceeding the current LEP limits.

  1. Superworld without Supersymmetry

    CERN Document Server

    Chakdar, Shreyashi; Nandi, S

    2015-01-01

    It is a possibility that the superworld (supersymmetric partners of our world) does exist without supersymmetry. The two worlds are being distinguished by an unbroken discrete $Z_2$ symmetry (similar to R-parity in supersymmetry). We lose the solution to the hierarchy problem. However, such a scenario has several motivations. For example, the lightest neutral superworld particle will be a candidate for dark matter. The other being, as in supersymmetry, it is possible to achieve gauge coupling unification. One major difference with the supersymmetric theory is that such a theory is much more general since it is not constrained by supersymmetry. For example, some of the gauge couplings connecting the Standard Model particles with the superpartners now become free Yukawa couplings. As a result, the final state signals as well as the limits on the superworld particles can be modified both qualitatively and quantitatively. The reach for these superworld particles at the Large Hadron Collider (LHC) can be much high...

  2. Resolving Fermi, PAMELA and ATIC anomalies in split supersymmetry without R-parity

    CERN Document Server

    Chen, Chuan-Hung; Zhuridov, Dmitry V

    2009-01-01

    A long-lived decaying dark matter as a resolution to Fermi, PAMELA and ATIC anomalies is investigated in the framework of split supersymmetry (SUSY) without R-parity, where the neutralino is regarded as the dark matter and the extreme fine-tuned couplings for the long-lived neutralino are naturally evaded in the usual approach. The energy spectra of electron and positron are from not only the direct neutralino decays denoted by $\\chi\\to e^+ e^- \

  3. Searches for supersymmetry with electroweak and third generation squark production at ATLAS

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Searches for supersymmetric sleptons, neutralinos and charginos, and top and bottom squarks, have been conducted taking advantage of the large pp collision dataset recorded by ATLAS in 2015 and 2016 at a centre-of-mass energy of 13 TeV. These searches provide constraints on the most natural SUSY scenarios. The seminar will present the latest results from these searches, interpreted considering R-Parity conserving and violating supersymmetry scenarios.

  4. SUSY-inspired one-dimensional transformation optics

    CERN Document Server

    Miri, Mohammad-Ali; Christodoulides, Demetrios N

    2014-01-01

    Transformation optics aims to identify artificial materials and structures with desired electromagnetic properties by means of pertinent coordinate transformations. In general, such schemes are meant to appropriately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and three dimensions. Here we introduce a new class of one-dimensional optical transformations that exploits the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to synthesize photonic configurations with identical reflection and transmission characteristics, down to the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer. Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a given high-contrast structure that would have been otherwise beyond the reach of available materials and existing fabrication techniques. Similar strategies can also be adopted to re...

  5. Supersymmetry Searches with ATLAS

    CERN Document Server

    Hill, Ewan; The ATLAS collaboration

    2015-01-01

    Supersymmetry is one of the best motivated and studied theories of physics beyond the Standard Model. This talk summarises recent ATLAS results on searches for supersymmetric particles. Weak and strong production Supersymmetry scenarios are considered, along with direct production of third generation supersymmtric particles. The searches involve final states including jets, missing transverse momentum, leptons, and long lived particles. Sensitivity projections for the 13 TeV data are also presented.

  6. SUSY Les Houches Accord 2

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Goto, T.; Guasch, J.; Guchait, M.; Hahn, T.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Kreiss, S.; Lykken, J.; Moortgat, F.; /Cambridge U., DAMTP /Monash U. /Annecy, LAPTH /Bonn U. /Harish-Chandra Res. Inst. /Orsay, LPT /Turin U. /INFN, Turin /Bangalore, Indian Inst. Sci. /KEK, Tsukuba /Barcelona U. /Tata Inst. /Munich, Max Planck Inst. /Cantabria Inst. of Phys. /Montpellier U. /CERN /SLAC /Edinburgh U. /Fermilab /Zurich, ETH /Southampton U.

    2007-11-08

    The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalizations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavor, as well as the simplest next-to-minimal model.

  7. SUSY Les Houches Accord 2

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Goto, T.; /Cambridge U., DAMTP /Monash U. /Annecy, LAPTH /Bonn U. /Harish-Chandra Res. Inst. /Orsay, LPT /Turin U. /INFN, Turin /Bangalore, Indian Inst. Sci. /KEK, Tsukuba /Barcelona U.

    2007-11-08

    The Supersymmetry Les Houches Accord (SLHA) [1] provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalizations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavor, as well as the simplest next-to-minimal model.

  8. The Early Universe with High-Scale Supersymmetry

    CERN Document Server

    Zheng, Sibo

    2014-01-01

    The large tensor-to-scalar ratio reported by BICEP2 collaboration may lead to distinctive phenomenology of high-energy scale. Assuming the same origin of SUSY breaking between inflation and MSSM, we show model independent features in such high-scale SUSY. The simplest hybrid inflation, together with a new linear term for inflaton field which is induced by large gravitino mass, is excluded by BICEP2 data. For superpartner masses far above electroweak scale we estimate the reheating temperature $T_R$ after inflation. We find that $T_R$ might be beneath the value required by thermal leptogenesis if inflaton decays to its products perturbatively, but above it if non-perturbatively instead. Due to kinematically blocking effect the gravitino overproduction can be also evaded in high-scale SUSY.

  9. Prospects for natural SUSY

    Science.gov (United States)

    Kim, J. S.; Rolbiecki, K.; Ruiz, R.; Tattersall, J.; Weber, T.

    2016-11-01

    As we anticipate the first results of the 2016 run, we assess the discovery potential of the LHC to "natural supersymmetry." To begin with, we explore the region of the model parameter space that can be excluded with various center-of-mass energies (13 TeV and 14 TeV) and different luminosities (20 fb-1 , 100 fb-1 , 300 fb-1 and 3000 fb-1 ). We find that the bounds at 95% C.L. on stops vary from mt˜1≳800 GeV expected this summer to mt˜1≳1500 GeV at the end of the high luminosity run, while gluino bounds are expected to range from mg ˜≳1700 GeV to mg ˜≳2500 GeV over the same time period. However, more pessimistically, we find that if no signal begins to appear this summer, only a very small region of parameter space can be discovered with 5 σ significance. For this conclusion to change, we find that both theoretical and systematic uncertainties will need to be significantly reduced.

  10. Dark matter in gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.D.

    1997-05-01

    In R parity conserving supersymmetric theories, the lightest superpartner (LSP) is stable. The LSPs may comprise a large fraction of the energy density of the current universe, which would lead to dramatic astrophysical consequences. In this talk, he discusses some of the main points they have learned about supersymmetric models from relic abundance considerations of the LSP.

  11. Gaugino condensation, duality and supersymmetry breaking

    CERN Document Server

    Quevedo, Fernando

    1995-01-01

    The status of gaugino condensation in low-energy string theory is reviewed. Emphasis is given to the determination of the efective action below condensation scale in terms of the 2PI and Wilson actions. We illustrate how the different perturbative duality symmetries survive this simple nonperturbative phenomenon, providing evidence for the believe that these are exact nonperturbative symmetries of string theory. Consistency with T duality lifts the moduli degeneracy. The B_{\\mu\

  12. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio

    2014-01-01

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  13. Overview of SUSY results from the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Federico Brazzale Simone

    2014-04-01

    Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.

  14. (Delta a) curiosities in some 4d susy RG flows

    CERN Document Server

    Amariti, Antonio

    2012-01-01

    We explore some curiosities in 4d susy RG flows. One issue is that the compelling candidate a-function, from a-maximization with Lagrange multipliers, has a `strange branch," with reversed RG flow properties, monotonically increasing instead of decreasing. The branch flip to the strange branch occurs where a double-trace deformation Delta W=O ^2 passes through marginality, reminiscent of the condition for the chiral symmetry breaking, out of the conformal window transition in non-susy gauge theories. The second issue arises from Higgsing vevs for IR-free fields, which sometimes superficially violate the a-theorem. The resolution is that some vevs trigger marginal or irrelevant interactions, leading to Delta a=0 and decoupled dilaton on a subspace of the moduli space of vacua. This is contrary to classical intuition about Higgsing. This phenomenon often (but not always) correlates with negative R-charge for the Higgsing chiral operator.

  15. On Setting Limits for Supersymmetry

    Science.gov (United States)

    Simeon, Paul; Toback, David

    2004-10-01

    When searching for new particles two separate production mechanisms from the same theory may produce the same final state. For example, in gauge mediated supersymmetry breaking with \\chi^0_1arrow γ tildeG at least two production mechanisms, \\chi^0_1\\chi^±1 and \\chi^0_2\\chi^±_1, can cascade to produce events with two photons and missing transverse energy. If there is no discovery one wants to set the best possible limits. While it seems obvious that the goal is to find the lowest possible cross section limit, one should be careful and focus on excluding the largest amount of parameter space for a theory. We show that the combined cross section limit from both (or all) production mechanisms that produce the same final state is the most sensitive way to attempt to exclude a theory.