WorldWideScience

Sample records for supersymmetric nambu-jona-lasinio model

  1. Nambu-Jona-Lasinio model with Wilson fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2017-01-01

    We present a lattice study of a Nambu-Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking...

  2. Topological solitons of the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Reinhardt, H.; Wuensch, R.

    1989-06-01

    The baryon number one soliton solution of the Nambu-Jona-Lasinio model are found numerically in the mean-field approximation with full inclusion of the Dirac sea using the proper-time regularization for the underlying fermion determinant (quark loop). Explicit breaking of chiral symmetry is included by bare (current) quark masses. The obtained lowest-energy chiral soliton solutions with baryon number one carry winding number one. Fitting the parameters of the model from low-energy pion data the classical energies of these solitons are of the order of the nucleon mass. (orig.)

  3. Nambu-Jona-Lasinio model in a parallel electromagnetic field

    Science.gov (United States)

    Wang, Lingxiao; Cao, Gaoqing; Huang, Xu-Guang; Zhuang, Pengfei

    2018-05-01

    We explore the features of the UA (1) and chiral symmetry breaking of the Nambu-Jona-Lasinio model without the Kobayashi-Maskawa-'t Hooft determinant term in the presence of a parallel electromagnetic field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. In order to characterize the strength of the UA (1) symmetry breaking, we evaluate the susceptibility associated with the UA (1) charge. The result shows that the susceptibility contributed from the chiral anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic excitations are also studied.

  4. A proposal of a renormalizable Nambu-Jona-Lasinio model

    Science.gov (United States)

    Cabo Montes de Oca, Alejandro

    2018-03-01

    A local and gauge invariant gauge field model including Nambu-Jona-Lasinio (NJL) and QCD Lagrangian terms in its action is introduced. Surprisingly, it becomes power counting renormalizable. This occurs thanks to the presence of action terms which modify the quark propagators, to become more decreasing that the Dirac one at large momenta in a Lee-Wick form, implying power counting renormalizability. The appearance of finite quark masses already in the tree approximation in the scheme is determined by the fact that the new action terms explicitly break chiral invariance. In this starting work we present the renormalized Feynman diagram expansion of the model and derive the formula for the degree of divergence of the diagrams. An explanation for the usual exclusion of the added Lagrangian terms is presented. In addition, the primitíve divergent graphs are identified. We start their evaluation by calculating the simpler contribution to the gluon polarization operator. The divergent and finite parts both result transverse as required by gauge invariance. The full evaluation of the various primitive divergences, which are required for completely defining the counterterm Feynman expansion will be considered in coming works, for further allowing to discuss the flavour symmetry breaking and unitarity.

  5. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  6. Thermodynamics of strongly interacting system from reparametrized Polyakov-Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Maity, Soumitra; Raha, Sibaji; Ray, Rajarshi; Saha, Kinkar; Upadhaya, Sudipa

    2017-01-01

    The Polyakov-Nambu-Jona-Lasinio model has been quite successful in describing various qualitative features of observables for strongly interacting matter, that are measurable in heavy-ion collision experiments. The question still remains on the quantitative uncertainties in the model results. Such an estimation is possible only by contrasting these results with those obtained from rst principles using the lattice QCD framework. Recently a variety of lattice QCD data were reported in the realistic continuum limit. Here we make a first attempt at reparametrizing the model so as to reproduce these lattice data

  7. The stability of nuclear matter in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. E-mail: athomas@physics.adelaide.edu.au

    2001-12-17

    Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simulate the effects of confinement leads to a scalar polarizability of the nucleon. This, in turn, leads to a less attractive effective interaction between the nucleons, helping to achieve saturation of the nuclear matter ground state. It is also pointed out that that the same effect naturally leads to a suppression of 'Z-graph' contributions with increasing scalar potential.

  8. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion

    International Nuclear Information System (INIS)

    Campos, Francisco Antonio Pena

    1995-01-01

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author)

  9. Monte Carlo simulations of hadronic fragmentation functions using the Nambu-Jona-Lasinio-jet model

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2011-01-01

    The recently developed Nambu-Jona-Lasinio--jet model is used as an effective chiral quark theory to calculate the quark fragmentation functions to pions, kaons, nucleons, and antinucleons. The effects of the vector mesons ρ, K * , and φ on the production of secondary pions and kaons are included. The fragmentation processes to nucleons and antinucleons are described by using the quark-diquark picture, which has been shown to give a reasonable description of quark distribution functions. We incorporate effects of next-to-leading order in the Q 2 evolution, and compare our results with the empirical fragmentation functions.

  10. Tensor Excitations in Nambu - Jona-Lasinio Model

    CERN Document Server

    Chizhov, M V

    1996-01-01

    It is shown that in the one-flavour NJL model the vector and axial-vector quasiparticles described by the antisymmetric tensor field are generated. These excitations have tensor interactions with quarks in contrast to usual vector ones. Phenomenological applications are discussed.

  11. Relation between the Lee-Wick and Nambu-Jona-Lasinio models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1990-01-01

    The connection between the sigma model of Lee and Wick and the Nambu-Jona-Lasinio (NJL) model is discussed. It is shown that the sigma field potential of the linear Lee-Wick model is identical in form with the variation of the vacuum energy of the NJL system with the baryonic scalar density n s . The sigma field is proportional to n s . Furthermore, the coupling constant and mass of this σ field are fully determined by the NJL model version of the Goldberger-Treiman relation. It is shown further that the restoration of chiral symmetry with increasing baryonic density always occurs via a second order transition in the NJL model, while it is necessarily of first order in the associated linear Lee-Wick model. (orig.)

  12. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  13. Calculating kaon fragmentation functions from the Nambu-Jona-Lasinio jet model

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2011-01-01

    The Nambu-Jona-Lasinio (NJL)-jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters. Earlier studies of the pion fragmentation functions using the NJL model within this framework showed qualitative agreement with the empirical parametrizations. Here we extend the NJL-jet model by including the strange quark. The corrections to the pion fragmentation functions and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation functions exhibit a qualitative agreement with the empirical parametrizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.

  14. Hadronic decays of tau-leptons in the extended Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Kostunin, Dmitriy [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik (IKP); Volkov, Mikhail; Arbuzov, Andrey [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2013-07-01

    Modern experiments have collected large statistics on tau-lepton decays and electron-positron annihilation into light hadrons. Therefore it is worthwhile to confront the experimental results with the corresponding theoretical predictions. The extended Nambu-Jona-Lasinio model is a good candidate for the theoretical description of these processes. Excited states of mesons in this version of the NJL model are described with the help of polynomial form-factors with minimal number of parameters. We worked out decays and cross-sections with ππ, ππ(1300), ωπ, ηπ, η'π, ηππ, η'ππ final states. Our calculations are in satisfactory agreement with the existing experimental results. Predictions for branching ratios of suppressed decays were obtained and compared with previous theoretical estimates.

  15. Shear viscosities from Kubo formalism in a large-Nc Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Lang, Robert Friedrich

    2015-01-01

    The quark-gluon plasma produced in heavy-ion collisions at RHIC and LHC is a hot and dense state of strongly correlated matter. It behaves like an almost-perfect fluid featuring a small ratio of shear viscosity to entropy density. In this thesis we calculate within a two-flavor Nambu-Jona-Lasinio model the shear viscosity as function of temperature and chemical potential. A new Kubo formula is developed, incorporating the full Dirac structure of the quark spectral function and avoiding commonly used on-shell approximations. Mesonic fluctuations occurring at Fock level provide the dominant dissipative process. The resulting parameter-free ratio is an overall decreasing function of temperature and chemical potential. In combination with hard-thermal-loop results we nd this ratio to feature a minimum slightly above the AdS/CFT benchmark.

  16. Shear viscosities from Kubo formalism in a large-Nc Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Lang, Robert; Kaiser, Norbert; Weise, Wolfram

    2015-01-01

    In this work the shear viscosity of strongly interacting matter is calculated within a two-flavor Nambu-Jona-Lasinio model as a function of temperature and chemical potential. The general Kubo formula is applied, incorporating the full Dirac structure of the thermal quark spectral function and avoiding commonly used on-shell approximations. Mesonic fluctuations contributing via Fock diagrams provide the dominant dissipative processes. The resulting ratio η/s (shear viscosity over entropy density) decreases with temperature and chemical potential. Interpolating between our NJL results at low temperatures and hard thermal loop results at high temperatures a minimum slightly above the AdS/CFT benchmark η/s = 1/4τ is obtained. (orig.)

  17. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)

    2017-08-15

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  18. Collective modes of the Nambu--Jona-Lasinio model with an external U(1) gauge field

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Jaenicke, J.; Lemmer, R.H.

    1991-01-01

    The effect of external color fields on the collective modes of the SU L (2)xSU R (2) chiral flavor version of the Nambu--Jona-Lasinio model is studied analytically in a U(1) approximation to the gauge fields. We show that the scalar and pseudoscalar modes respond differently to external chromomagnetic and -electric fields. In the former case, in which chiral asymmetry is enhanced, the modes remain well separated and vary slowly with the field, while in the latter case the scalar mode drops rapidly to become degenerate with the pseudoscalar mode in the chiral limit. In this regime, both modes are weakly coupled to quark matter, and the pseudoscalar pion mode in particular survives as a well-defined excitation as it enters the pair continuum. The Goldberger-Treiman relation, which is shown to hold in the presence of external fields, is responsible for this behavior. Chromoelectric and -magnetic polarizabilities are seen to be equal and opposite with absolute values β σ =2.0α s and β π =0.03α s for the scalar and pseudoscalar modes respectively

  19. Coupled-channel dynamics in the Nambu--Jona-Lasinio model

    International Nuclear Information System (INIS)

    Celenza, L.S.; Pantziris, A.; Shakin, C.M.; Szweda, J.

    1993-01-01

    We study the scalar-isoscalar sector of the Nambu--Jona-Lasinio (NJL) model and extend the model to include a description of the coupling of the quark-antiquark states to the two-pion continuum. The q bar q interaction gives rise to a sigma meson, which takes on a width and energy shift that depends upon the strength of the coupling for q+bar q→π+π. (For weak channel coupling, the resonance is located at the mass of the sigma, m σ congruent 2m q cons , where m q cons is the constituent quark mass of the NJL model.) We consider two models for the q bar q→ππ coupling. In the first model, we find a low-energy resonance, with the resonance energy E R ≤2m q cons . We then see that the values, obtained from the analysis of experimental data, of the scalar-isoscalar phase shift describing ππ scattering δ 0 0 , are not compatible with the existence of a low-mass sigma. In the second model, the resonance is pushed upward into the region of the two-quark continuum, E R >2m q cons . This second model provides an example of a phenomenon where the behavior of the q bar q T matrix is parametrized for q 2 ≤0 by a mass that is smaller than the physical mass that characterizes the pole in the T matrix. The behavior of the second model suggests how the absence of experimental evidence for a low-mass sigma may be reconciled with the importance of such a meson in nuclear structure studies

  20. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion; Bosonizacao do modelo de Nambu-Jona-Lasinio SU(3) generalizado na expansao 1/N

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Francisco Antonio Pena

    1995-12-31

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author) 32 refs., 11 figs., 5 tabs.

  1. Properties of vector and axial-vector mesons from a generalized Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bernard, V.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1988-01-01

    We construct a generalized Nambu-Jona-Lasinio lagrangian including scalar, pseudoscalar, vector and axial-vector mesons. We specialize to the two-flavor case. The properties of the structured vacuum as well as meson masses and coupling constants are calculated giving an overall agreement within 20% of the experimental data. We investigate the meson properties at finite density. In contrast to the mass of the scalar σ-meson, which decreases sharply with increasing density, the vector meson masses are almost independent of density. Furthermore, the vector-meson-quark coupling constants are also stable against density changes. We point out that these results imply a softening of the nuclear equation of state at high densities. Furthermore, we discuss the breakdown of the KFSR relation on the quark level as well as other deviations from phenomenological concepts such as universality and vector meson dominance. (orig.)

  2. Anomalous decay f1(1285 )→π+π-γ in the Nambu-Jona-Lasinio model

    Science.gov (United States)

    Osipov, A. A.; Volkov, M. K.

    2018-04-01

    Using the Nambu-Jona-Lasinio model with the U (2 )×U (2 ) chiral symmetric effective four-quark interactions, we derive the amplitude of the radiative decay f1(1285 )→π+π-γ , find the decay width Γ (f1→π+π-γ )=346 keV and obtain the spectral dipion effective mass distribution. It is shown that in contrast to the majority of theoretical estimates (which consider the a1(1260 ) meson exchange as the dominant one), the most relevant contribution to this process is the ρ0-resonance exchange related with the triangle f1ρ0γ anomaly. The spectral function is obtained to be confronted with the future empirical data.

  3. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Suganuma, Hideo

    1990-01-01

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  4. Enforced neutrality and color-flavor unlocking in the three-flavor Polyakov-loop Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Abuki, H.; Ciminale, M.; Nardulli, G.; Ruggieri, M.; Gatto, R.

    2008-01-01

    We study how the charge neutrality affects the phase structure of the three-flavor Polyakov-loop Nambu-Jona-Lasinio (PNJL) model. We point out that, within the conventional PNJL model at finite density, the color neutrality is missing because the Wilson line serves as an external colored field coupled to dynamical quarks. In this paper we heuristically assume that the model may still be applicable. To get color neutrality, one has then to allow nonvanishing color chemical potentials. We study how the quark matter phase diagram in (T,m s 2 /μ)-plane is affected by imposing neutrality and by including the Polyakov-loop dynamics. Although these two effects are correlated in a nonlinear way, the impact of the Polyakov loop turns out to be significant in the T direction, while imposing neutrality brings a remarkable effect in the m s 2 /μ direction. In particular, we find a novel unlocking transition, when the temperature is increased, even in the chiral SU(3) limit. We clarify how and why this is possible once the dynamics of the colored Polyakov loop is taken into account. Also we succeed in giving an analytic expression for T c for the transition from two-flavor pairing (2SC) to unpaired quark matter in the presence of the Polyakov loop.

  5. Renormalization of the Nambu-Jona Lasinio model and spontaneously broken Abelian Gauge model without fundamental scalar fields

    International Nuclear Information System (INIS)

    Snyderman, N.J.

    1976-01-01

    The Schwinger-Dyson equation for the Nambu-Jona Lasinio model is solved systematically subject to the constraint of spontaneously broken chiral symmetry. The solution to this equation generates interactions not explicitly present in the original Lagrangian, and the original 4-fermion interaction is not present in the solution. The theory creates bound-states with respect to which a perturbation theory consistent with the chiral symmetry is set up. The analysis suggests that this theory is renormalizable in the sense that all divergences can be grouped into a few arbitrary parameters. The renormalized propagators of this model are shown to be identical to those of a new solution to the sigma-model in which the bare 4-field coupling lambda 0 is chosen to be twice the π-fermion coupling g 0 . Also considered is spontaneously broken abelian gauge model without fundamental scalar fields by coupling an axial vector gauge field to the N ambu-Jona Lasinio model. It is shown how the Goldstone consequence of spontaneous symmetry breaking is avoided in the radiation gauge, and verify the Guralnik, Hagen, and Kibble theorem that under these conditions the global charge conservation is lost even though there is still local current conservation. This is contrasted with the Lorentz gauge situation. This also demonstrated the way the various noncovariant components of the massive gauge field combine in a gauge invariant scattering amplitude to propagate covariantly as a massive spin-1 particle, and this is compared with the Lorentz gauge calculation. F inally, a new model of interacting massless fermions is introduced, based on the models of Nambu and Jona Lasinio, and the Bjorken, which spontaneously breaks both chiral symmetry and Lorentz invariance. The content of this model is the same as that of the gauge model without fundamental scalar fields, but without fundamental gauge fields as well

  6. Extension of the Nambu-Jona-Lasinio model predictions at high temperatures and strong external magnetic field

    International Nuclear Information System (INIS)

    Gomes, Karina P.; Farias, R.L.S.; Pinto, M.B.; Krein, G.

    2013-01-01

    Full text: Recently much attention is dedicated to understand the effects of an external magnetic field on the QCD phase diagram. Actually there is a contradiction in the literature: while effective models of QCD like the Nambu-Jona- Lasinio model (NJL) and linear sigma model predict an increase of the critical temperature of chiral symmetry restoration a function of the magnetic field, recent lattice results shows the opposite behavior. The NJL model is nonrenormalizable; then the high momentum part of the model has to be regularized in a phenomenological way. The common practice is to regularize the divergent loop amplitudes with a three-dimensional momentum cutoff, which also sets the energy-momentum scale for the validity of the model. That is, the model cannot be used for studying phenomena involving momenta running in loops larger than the cutoff. In particular, the model cannot be used to study quark matter at high densities. One of the symptoms of this problem is the prediction of vanishing superconducting gaps at high baryon densities, a feature of the model that is solely caused by the use of a regularizing momentum cutoff of the divergent vacuum and also in finite loop integrals. In a renormalizable theory all the dependence on the cutoff can be removed in favor of running physical parameters, like the coupling constants of QED and QCD. The running is given by the renormalization group equations of the theory and is controlled by an energy scale that is adjusted to the scale of the experimental conditions under consideration. In a recent publication, Casalbuoni et al. have introduced the concept of a running coupling constant for the NJL model to extend the applicability of the model to high density. Their arguments are based on making the cutoff density dependent, using an analogy with the natural cutoff of the Debye frequency of phonon oscillations in an ordinary solid. In the present work we follow such an approach introducing a magnetic field

  7. Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.

    1992-01-01

    The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab

  8. On the stability of matter in the Nambu-Jona-Lasinio (NJL) model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The matter stability in the NJL model at zero temperature and finite density is reconsidered within the framework of the Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators. The numerical calculation in the Hartree-Fock (HF) approximation pointed out that for suitably chosen values of the model parameters the thermodynamical potential has a minimum at density k F 0 = 2.3 fm -1 , in the mean while, there is no such minimum in the energy per nucleon and consequently no stable matter. (author)

  9. The quark and gluon condensates in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-10-01

    Systematic study of the role of the nonperturbative gluon condensate arising in a QCD motivated NJL model is presented. The effects of the gluon condensate on meson coupling constants, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the decrease of the scale Λ of chiral symmetry breaking. (author). 21 refs

  10. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  11. Color superconductivity in the Nambu-Jona-Lasinio model complemented by a Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Blanquier, Eric

    2017-06-15

    The color superconductivity is studied with the Nambu and Jona-Lasinio (NJL) model. This one is coupled to a Polyakov loop, to form the PNJL model. A μ-dependent Polyakov loop potential is also considered (μPNJL model). An objective is to detail the analytical calculations that lead to the equations to be solved, in all of the treated cases. They are the normal quark (NQ), 2-flavor color-superconducting (2SC) and color-flavor-locked (CFL) phases, in an SU(3){sub f} x SU(3){sub c} description. The calculations are performed according to the temperature T, the chemical potentials μ{sub f} or the densities ρ{sub f}, with or without the isospin symmetry. The relation between the μ{sub f} and ρ{sub f} results is studied. The influence of the color superconductivity and the Polyakov loop on the found data is analyzed. A triple coincidence is observed at low T between the chiral restoration, the deconfinement transition described by the Polyakov loop and the NQ/2SC phase transition. Furthermore, an sSC phase is identified in the ρ{sub q}, ρ{sub s} plane. Possible links between certain of the obtained results and physical systems are pointed out. (orig.)

  12. Abnormal number of Nambu-Goldstone bosons in the color-asymmetric dense color superconducting phase of a Nambu-Jona-Lasinio-type model

    International Nuclear Information System (INIS)

    Blaschke, D.; Ebert, D.; Klimenko, K.G.; Volkov, M.K.; Yudichev, V.L.

    2004-01-01

    We consider an extended Nambu-Jona-Lasinio model including both (qq-bar) and (qq) interactions with two light-quark flavors in the presence of a single (quark density) chemical potential. In the color superconducting phase of the quark matter the color SU c (3) symmetry is spontaneously broken down to SU c (2). If the usual counting of Goldstone bosons would apply, five Nambu-Goldstone (NG) bosons corresponding to the five broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three gapless diquark excitations of quark matter. One of them is an SU c (2) singlet; the remaining two form an SU c (2) (anti)doublet and have a quadratic dispersion law in the small momentum limit. These results are in agreement with the Nielsen-Chadha theorem, according to which NG bosons in Lorentz-noninvariant systems, having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG bosons is shown to be related to a nonvanishing expectation value of the color charge operator Q 8 reflecting the lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are argued to become massless, resulting in a normal number of five NG bosons with the usual linear dispersion laws

  13. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee; Costa, Pedro; Borgnat, Pierre

    2015-01-01

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ CEP varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  14. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)

    2015-09-15

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  15. Interplay Between Quark-Antiquark and Diquark Condensates in Vacuum in a Two-Flavor Nambu-Jona-Lasinio Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2007-01-01

    By means of a relativistic effective potential, we analytically research competition between the quarkLasinio (NJL) model and obtain the Gs-Hs phase diagram, where Gs and Hs are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction to any given two-flavor NJL model which is intended to simulate QCD, i.e. in such model the resulting snallest ratio Gs/Hs after the Fierz transformations in the Hartree approximation must be larger than 2/3. A few phenomenological QCD-like NJL models are checked and analyzed.

  16. The SU(3)-Nambu-Jona-Lasinio soliton in the collective quantization formulation

    International Nuclear Information System (INIS)

    Blotz, A.; Goeke, K.; Diakonov, D.; Petrov, V.; Pobylitsa, P.V.; Park, N.W.

    1992-01-01

    On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3) R circle-times SU(3) L -symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These call be related to the imaginary part of the effective Euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory in the strange quark mass and by the Yabu-Audo method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann Okubo and Guadagnini and the latter one is able to describe the mass splittings up to a few MeV

  17. Condensation energy of the Nambu-Jona-Lasinio vacuum and the MIT bag constant

    International Nuclear Information System (INIS)

    Li, S.; Bhalerao, R.S.; Bhaduri, R.K.

    1991-01-01

    In this paper the energy densities of the vacuum in the Wigner and the Goldstone modes of the Nambu- Jona-Lasinio Hamiltonian are calculated. The difference of these two quantities is analogous to the condensation energy of a BCS superconductor, and is used here to estimate the temperature dependence of the MIT bag constant. The formalism of da Providencia et al is generalized to finite temperatures, yielding the same gap equation as the finite- temperature field theory. The thermodynamics of the vacuum in the two phases is studied

  18. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  19. Chiral symmetry restoration and pion properties in a q-deformed NJL model

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    We review the implementation of a q-deformed fermionic algebra in the Nambu-Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied. (author)

  20. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  1. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  2. Baryons as solitonic solutions of the chiral sigma model

    International Nuclear Information System (INIS)

    Bentz, W.; Hartmann, J.; Beck, F.

    1996-01-01

    Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society

  3. Nucleon quark distributions in a covariant quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org

    2005-08-18

    Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.

  4. Dynamical CP violation of the generalized Yang-Mills model

    International Nuclear Information System (INIS)

    Wang Dianfu; Chang Xiaojing; Sun Xiaoyu

    2011-01-01

    Starting from the generalized Yang-Mills model which contains, besides the vector part V μ , also a scalar part S and a pseudoscalar part P . It is shown, in terms of the Nambu-Jona-Lasinio (NJL) mechanism, that CP violation can be realized dynamically. The combination of the generalized Yang-Mills model and the NJL mechanism provides a new way to explain CP violation. (authors)

  5. Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model

    Energy Technology Data Exchange (ETDEWEB)

    Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)

    2011-04-15

    The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.

  6. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  7. An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.; Scherer, S.; Mainz Univ.

    1994-01-01

    In this work we present a strong chiral meson Lagrangian up to and including O(p 6 ) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs

  8. The phases of isospin-asymmetric matter in the two-flavor NJL model

    Energy Technology Data Exchange (ETDEWEB)

    Lawley, S. [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: slawley@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2006-01-19

    We investigate the phase diagram of isospin-asymmetric matter at T=0 in the two-flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a confined quark-diquark state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge-neutral matter and the structure of compact stars are discussed.

  9. Relativistic Faddeev description of baryons and nucleon structure function in the NJL model

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W.; Mineo, H.; Asami, H.; Yazaki, K

    2000-05-08

    In this work we use the Nambu-Jona-Lasinio (NJL) model as an effective quark theory based on QCD to describe the structure of baryons. Based on the solutions of the relativistic 3-quark Faddeev equation in the ladder approximation, we discuss the masses of the nucleon and the delta, the static properties of the nucleon, and the quark light cone momentum distributions in the nucleon.

  10. A renormalizable extension of the NJL-model

    International Nuclear Information System (INIS)

    Langfeld, K.; Kettner, C.; Reinhardt, H.

    1996-01-01

    The Nambu-Jona-Lasinio model is supplemented by the quark interaction generated by the one-gluon exchange. The employed gluon propagator exhibits the correct large-momentum behavior of QCD, whereas the Landau pole at low energies is screened. The emerging constituent quark model is one-loop renormalizable and interpolates between the phenomenologically successful Nambu-Jona-Lasinio model (modified by a transversal projector) at low energies and perturbative QCD at high momenta. Consequently, the momentum dependence of the quark self-energy at high energy coincides with the prediction from perturbative QCD. The chiral phase transition is studied in dependence on the low-energy four-quark interaction strength in the Dyson-Schwinger equation approach. The critical exponents of the quark self-energy and the quark condensate are obtained. The latter exponent deviates from the NJL-result. Pion properties are addressed by means of the Bethe-Salpeter equation. The validity of the Gell-Mann-Oakes-Renner relation is verified. Finally, we study the conditions under which the Nambu-Jona-Lasinio model is a decent approximation to our renormalizable theory as well as the shortcoming of the NJL-model due to its inherent non-renormalizability. (orig.)

  11. Structure functions from chiral soliton models

    International Nuclear Information System (INIS)

    Weigel, H.; Reinhardt, H.; Gamberg, L.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data

  12. 2d Model Field Theories at Finite Temperature and Density

    OpenAIRE

    Schoen, Verena; Thies, Michael

    2000-01-01

    In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...

  13. A chiral model for excited pions

    International Nuclear Information System (INIS)

    Volkov, M.K.; Weiss, C.

    1996-01-01

    We study radially excited mesons (π', σ') in a simple extension of the Nambu-Jona-Lasinio model with a polynomial meson-quark form factor. The form factor is introduced so that the usual form of the NJL gap equation remains unchanged. We derive the effective Lagrangian for π- and π'-mesons which describes the decoupling of the Goldstone pion in the chiral limit in agreement with current algebra. For π' masses in the range of 750 MeV and 1300 MeV f π' /f π is found to be of an order of one per cent. 12 refs

  14. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  15. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part V μ , also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  16. Transversity quark distributions in a covariant quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843 (United States)], E-mail: icloet@anl.gov; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)], E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States)], E-mail: awthomas@jlab.org

    2008-01-17

    Transversity quark light-cone momentum distributions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. Particular attention is paid to comparing our results with the recent experimental extraction of the transversity distributions by Anselmino et al. We also compare our transversity results with earlier spin-independent and helicity quark distributions calculated in the same approach.

  17. Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Noguera, Santiago [Departament de Fisica Teòrica and IFIC, Universitat de València - CSIC,E-46100 Burjassot (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia,via A. Pascoli, I - 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I - 06123 Perugia (Italy)

    2015-11-16

    An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny.

  18. Monte Carlo simulations of the NJL model near the nonzero temperature phase transition

    International Nuclear Information System (INIS)

    Strouthos, Costas; Christofi, Stavros

    2005-01-01

    We present results from numerical simulations of the Nambu-Jona-Lasinio model with an SU(2)xSU(2) chiral symmetry and N c = 4,8, and 16 quark colors at nonzero temperature. We performed the simulations by utilizing the hybrid Monte Carlo and hybrid Molecular Dynamics algorithms. We show that the model undergoes a second order phase transition. The critical exponents measured are consistent with the classical 3d O(4) universality class and hence in accordance with the dimensional reduction scenario. We also show that the Ginzburg region is suppressed by a factor of 1/N c in accordance with previous analytical predictions. (author)

  19. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANGDian-Fu; SONGHe-Shan; MIDong

    2004-01-01

    In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.

  20. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan; MI Dong

    2004-01-01

    In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.

  1. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  2. Effects of a multi-quark interaction on color superconducting phase transition in an extended NJL model

    International Nuclear Information System (INIS)

    Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2007-01-01

    We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach

  3. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  4. Abnormal number of Nambu-Goldstone bosons in the color-asymmetric 2SC phase of an NJL-type model

    OpenAIRE

    Blaschke, D.; Ebert, D.; Klimenko, K. G.; Volkov, M. K.; Yudichev, V. L.

    2004-01-01

    We consider an extended Nambu--Jona-Lasinio model including both (q \\bar q)- and (qq)-interactions with two light-quark flavors in the presence of a single (quark density) chemical potential. In the color superconducting phase of the quark matter the color SU(3) symmetry is spontaneously broken down to SU(2). If the usual counting of Goldstone bosons would apply, five Nambu-Goldstone (NG) bosons corresponding to the five broken color generators should appear in the mass spectrum. Unlike that ...

  5. Dynamically broken gauge model without fundamental scalar fields

    International Nuclear Information System (INIS)

    Snyderman, N.J.; Guralnik, G.S.

    1976-01-01

    It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to [anti psi psi]. One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda 0 = 2g 0 2 . This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number

  6. Dynamically broken gauge model without fundamental scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Snyderman, N. J.; Guralnik, G. S.

    1976-01-01

    It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to (anti psi psi). One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda/sub 0/ = 2g/sub 0//sup 2/. This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number.

  7. Quark fragmentation functions in NJL-jet model

    Science.gov (United States)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  8. Fierz-complete NJL model study: Fixed points and phase structure at finite temperature and density

    Science.gov (United States)

    Braun, Jens; Leonhardt, Marc; Pospiech, Martin

    2017-10-01

    Nambu-Jona-Lasinio-type models are frequently employed as low-energy models in various research fields. With respect to the theory of the strong interaction, this class of models is indeed often used to analyze the structure of the phase diagram at finite temperature and quark chemical potential. The predictions from such models for the phase structure at finite quark chemical potential are of particular interest as this regime is difficult to access with lattice Monte Carlo approaches. In this work, we consider a Fierz-complete version of a Nambu-Jona-Lasinio model. By studying its renormalization group flow, we analyze in detail how Fierz-incomplete approximations affect the predictive power of such model studies. In particular, we investigate the curvature of the phase boundary at small chemical potential, the critical value of the chemical potential above which no spontaneous symmetry breaking occurs, and the possible interpretation of the underlying dynamics in terms of difermion-type degrees of freedom. We find that the inclusion of four-fermion channels other than the conventional scalar-pseudoscalar channel is not only important at large chemical potential but also leaves a significant imprint on the dynamics at small chemical potential as measured by the curvature of the finite-temperature phase boundary.

  9. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  10. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  11. Subquark model of leptons and quarks

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1979-09-01

    1) First, various subquark models so far proposed are briefly reviewed. Classifications of leptons and quarks in the models and their comparison are made. Our spinor-subquark model of leptons and quarks in which leptons and quarks are made of three subquarks of spin 1/2 is discussed in detail. 2) The possibility that guage bosons and Higgs scalars are also made of a subquark-antisubquark pair is discussed. 3) Exotic states of subquarks such as leptons and quarks of spin 3/2, exotic fermions, and exotic bosons are predicted in our model. 4) Subquark currents and their algebra are proposed. 5) Two unified subquark models of strong and electroweak interactions are discussed. The one is a gauge model and the other is a model of the Nambu-Jona-Lasinio type. 6) A subquark model of gravity and its supergrand unification is proposed. 7) An finally, a speculation is made on ''color-space correspondence''. (author)

  12. Aspects of the Color Flavor Locking phase of QCD in the Nambu-Jona Lasinio approximation

    CERN Document Server

    Casalbuoni, Roberto; Nardulli, Giuseppe; Ruggieri, Marco

    2003-01-01

    We study two aspects of the CFL phase of QCD in the NJL approximation. The first one is the issue of the dependence on \\mu of the ultraviolet cutoff in the gap equation, which is solved allowing a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using the high density effective theory we perform an expansion in the parameter (m_s/\\mu)^2 after checking that its numerical validity is very good already at first order.

  13. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  14. NJL-jet model for quark fragmentation functions

    International Nuclear Information System (INIS)

    Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.

    2009-01-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.

  15. Kaon fragmentation function from NJL-jet model

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2010-01-01

    The NJL-jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters [1]. Earlier studies of the pion fragmentation functions using the Nambu-Jona-Lasinio (NJL) model within this framework showed good qualitative agreement with the empirical parameterizations. Here we extend the NJL-jet model by including the strange quark. The corrections to the pion fragmentation function and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation function exhibit a qualitative agreement with the empirical parameterizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark's. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.

  16. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  17. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part V μ , also an axial-vector part A μ , a scalar part S, a pseudoscalar part P, and a tensor part T μν , is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  18. Baryon number fluctuations and the phase structure in the PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guo-yun; Tang, Zhan-duo; Gao, Xue-yan; He, Wei-bo [Xi' an Jiaotong University, School of Science, Xi' an, Shaanxi (China)

    2018-02-15

    We investigate the kurtosis and skewness of net-baryon number fluctuations in the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model, and discuss the relations between fluctuation distributions and the phase structure of quark-gluon matter. The calculation shows that the traces of chiral and deconfinement transitions can be effectively reflected by the kurtosis and skewness of net-baryon number fluctuations not only in the critical region but also in the crossover region. The contour plot of baryon number kurtosis derived in the PNJL model can qualitatively explain the behavior of net-proton number kurtosis in the STAR beam energy scan experiments. Moreover, the three-dimensional presentations of the kurtosis and skewness in this study are helpful to understand the relations between baryon number fluctuations and QCD phase structure. (orig.)

  19. Fierz-complete NJL model study. II. Toward the fixed-point and phase structure of hot and dense two-flavor QCD

    Science.gov (United States)

    Braun, Jens; Leonhardt, Marc; Pospiech, Martin

    2018-04-01

    Nambu-Jona-Lasinio-type models are often employed as low-energy models for the theory of the strong interaction to analyze its phase structure at finite temperature and quark chemical potential. In particular, at low temperature and large chemical potential, where the application of fully first-principles approaches is currently difficult at best, this class of models still plays a prominent role in guiding our understanding of the dynamics of dense strong-interaction matter. In this work, we consider a Fierz-complete version of the Nambu-Jona-Lasinio model with two massless quark flavors and study its renormalization group flow and fixed-point structure at leading order of the derivative expansion of the effective action. Sum rules for the various four-quark couplings then allow us to monitor the strength of the breaking of the axial UA(1 ) symmetry close to and above the phase boundary. We find that the dynamics in the ten-dimensional Fierz-complete space of four-quark couplings can only be reduced to a one-dimensional space associated with the scalar-pseudoscalar coupling in the strict large-Nc limit. Still, the interacting fixed point associated with this one-dimensional subspace appears to govern the dynamics at small quark chemical potential even beyond the large-Nc limit. At large chemical potential, corrections beyond the large-Nc limit become important, and the dynamics is dominated by diquarks, favoring the formation of a chirally symmetric diquark condensate. In this regime, our study suggests that the phase boundary is shifted to higher temperatures when a Fierz-complete set of four-quark interactions is considered.

  20. Quark model calculations of current correlators in the nonperturbative domain

    International Nuclear Information System (INIS)

    Celenza, L.S.; Shakin, C.M.; Sun, W.D.

    1995-01-01

    The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab

  1. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  2. The deconfinement phase transition, hadronization and the NJL model

    International Nuclear Information System (INIS)

    Raha, Sibaji

    2000-01-01

    One of the confident predictions of QCD is that at sufficiently high temperature and/or density, hadronic matter should undergo a thermodynamic phase transition to a color deconfined state of matter-popularly called the Quark-Gluon Plasma (QGP). In low energy effective theories of Quantum Chromodynamics (QCD), one usually talks of the chiral transition for which a well defined order parameter exists. We investigate the dissociation of pions and kaons in a medium of hot quark matter described by the Nambu-Jona Lasinio (NJL) model. The decay widths of pion and kaon are found to be large but finite at temperature much higher than the critical temperature for the chiral (or deconfinement) transition, the kaon decay width being much larger. Thus pions and even kaons (with a lower density compared to pions) may coexist with quarks and gluons at such high temperatures. On the basis of such premises, we investigate the process of hadronization in quark-gluon plasma with special emphasis on whether such processes shed any light on acceptable low energy effective theories of QCD

  3. Phase structure of NJL model with weak renormalization group

    Science.gov (United States)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  4. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  5. Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral

    International Nuclear Information System (INIS)

    Nagata, Keitaro

    2003-01-01

    One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)

  6. Supersymmetric sigma models

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model

  7. Supersymmetric sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  8. Wilson Fermions with Four Fermion Interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...

  9. Comment on critical instability

    International Nuclear Information System (INIS)

    King, S.F.; Suzuki, Mahiko

    1992-01-01

    We discuss the problem of the mass splitting between top and bottom quarks, within the context of Nambu-Jona-Lasinio type models involving top and bottom quark condensates. We interpret the phenomenon of 'critical instability' recently proposed to account for such a mass splitting as the fine-tuning of two vacuum expectation values in a composite two-Higgs doublet model. (orig.)

  10. Supersymmetric models without R parity

    International Nuclear Information System (INIS)

    Ross, G.G.; Valle, J.W.F.

    1985-01-01

    We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)

  11. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  12. On the D → K-bar*e+νe form factors

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-01-01

    The infinite mass effective theory, when a heavy quark mass goes to infinity, and chiral perturbation theory at the quark level, based on the extended Nambu-Jona-Lasinio model, are applied for the calculation of the D → K-bar * e + ν e decay form factors. The theoretical results agree with experimental data. (author). 16 refs

  13. Bosonization with inclusion of the gluon condensate

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1994-01-01

    The effects of the gluon condensate on the quark condensate and on masses and coupling constants of composite mesons are discussed within a QCD-motivated Nambu-Jona-Lasinio model for zero temperature as well as for the case of finite temperature and baryon number density. (orig.)

  14. Dual chiral density wave in quark matter

    International Nuclear Information System (INIS)

    Tatsumi, Toshitaka

    2002-01-01

    We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)

  15. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  16. A supersymmetric Skyrme model

    International Nuclear Information System (INIS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin

    2016-01-01

    Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.

  17. Supersymmetric models and their phenomenology

    International Nuclear Information System (INIS)

    Ross, G.G.

    1995-01-01

    The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)

  18. Dynamics of inhomogeneous chiral condensates

    Science.gov (United States)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  19. Spontaneous baryogenesis in supersymmetric models

    International Nuclear Information System (INIS)

    Abel, S.A.; Cottingham, W.N.; Whittingham, I.B.

    1993-01-01

    In this paper we extent the results of previous work on spontaneous baryogenesis to general models involving charge-parity (CP) violation in the Higgs sector. We show how to deal with Chern-Simons terms appearing in the effective potential arising from phase changes in the vacuum expectation values of the Higgs fields. In particular, this enables us to apply this mechanism to general supersymmetric models including the minimal supersymmetric standard model, and the extended model with a gauge singlet. A comparison is made between this approach, and that in which one solves the equations of motion for Higgs winding modes. As anticipated in earlier work, the effect of the latter approach is found to be small. (Author)

  20. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  1. Supersymmetric models with light higgsinos

    International Nuclear Information System (INIS)

    Bruemmer, F.

    2012-05-01

    In the Minimal Supersymmetric Standard Model, the higgsinos can have masses around the electroweak scale, while the other supersymmetric particles have TeV-scale masses. This happens in models of gauge-mediated SUSY breaking with a high messenger scale, which are motivated from string theory. For particular choices of the messenger eld content, multi-TeV squark and gluino masses naturally lead to a much lower electroweak scale, somewhat similar to focus point supersymmetry. They also induce Higgs masses of 124-126 GeV, while making the discovery of supersymmetry at the LHC unlikely. The light higgsinos will be di cult to see at the LHC but may eventually be discovered at a linear collider.

  2. QCD bound states at finite temperature and baryon number

    International Nuclear Information System (INIS)

    Kalinovsky, Yu.L.; Muenchow, L.

    1991-04-01

    Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)

  3. Chiral symmetry and the charge asymmetry of the s bar s distribution in a proton

    International Nuclear Information System (INIS)

    Burkardt, M.

    1991-05-01

    Based on a simple K-cloud model, as well as the Gross-Neveu and the Nambu-Jona-Lasinio model, it is predicted that the s bar s sea in a proton is not charge symmetric at large Bjorken-x. The s quarks are shifted to larger values of x bj than the bar s quarks. Furthermore these large x bj s quarks carry a negative polarization. 9 refs., 2 figs

  4. Relativistic Many-Body Hamiltonian Approach to Mesons

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2001-01-01

    We represent QCD at the hadronic scale by means of an effective Hamiltonian, $H$, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model, chiral symmetry is explicity broken, however our approach is renormalizable and also includes confinement through a linear potential with slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity and we detail the computationally intensive procedure necessary for numerical solution. We focus upon app...

  5. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  6. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  7. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs

  8. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  9. Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)

    2017-11-15

    The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)

  10. Patterns of flavor signals in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    2007-11-15

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  11. Patterns of flavor signals in supersymmetric models

    International Nuclear Information System (INIS)

    Goto, T.; Tanaka, M.

    2007-11-01

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  12. The CQM Model

    International Nuclear Information System (INIS)

    Polosa, A. D.

    2000-01-01

    This work is devoted to introduce an effective Constituent-Quark-Meson model based on a Lagrangian incorporating the symmetries of heavy-quark effective theory, the chiral symmetry in the light-quark sector, see sect. 2, and, as is discussed in sect. 3, dynamical information derived from an underlying Nambu-Jona-Lasinio interaction. In sec. 4, together with the discussion of calculation techniques used for computing some relevant loop-integrals, it is shown how the determination of strong-coupling constants, parameterizing the low-energy effective hadron Lagrangian, proceeds through a comparison of the low-energy matrix elements wit the CQM computed amplitudes: CQM plays the role of a fundamental model (since it contains, besides meson fields, also the elementary heavy- and light-quark fields) with which the hadron theory must match at higher energy, see discussion in subsubsect. 2.1.1. With respect to lattice QCD and SVZ sum rules, CQM is a rough approach that, anyway, has shown to be a quite reliable and easy-to-use method. One of the very common problems of quark models is that of associating theoretical errors to predictions. This topic is discussed with reference to CQM in sect. 3, together with the problem of defining the light constituent quark mass. The constituent quark mass is typically heavier than the current mass, appearing in the QCD Lagrangian (and related to the Higgs field VEV): one can think of a constituent quark as of a current (bare) quark dressed by a cloud of virtual particles generated by strong interactions. The mechanism dressing the bare quark and giving the constituent quark its mass value, is an intrinsic feature of the model itself. Section 5 is devoted to the study of exclusive semileptonic decays of B mesons through the CQM model. Here are examined processes involving b → clv and b → ulv transitions, the former being related to V c b, the latter to V u b. In particular, CQM has allowed to obtain a prediction for the branching

  13. Non-supersymmetric orientifolds of Gepner models

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl

    2009-01-12

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.

  14. A supersymmetric SYK-like tensor model

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)

    2017-05-11

    We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.

  15. A supersymmetric SYK-like tensor model

    International Nuclear Information System (INIS)

    Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia

    2017-01-01

    We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.

  16. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  17. N=1 supersymmetric extension of the baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2011-01-01

    We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.

  18. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  19. A solution to the rho-π puzzle: Spontaneously broken symmetries of the quark model

    International Nuclear Information System (INIS)

    Caldi, D.G.; Pagels, H.

    1976-01-01

    This article proposes a solution to the long-standing rho-π puzzle: How can the rho and π be members of a quark model U(6) 36 and the π be a Nambu-Goldstone boson satisfying partial conservation of the axial-vector current (PCAC) Our solution to the puzzle requires a revision of conventional concepts regarding the vector mesons rho, ω, K*, and phi. Just as the π is a Goldstone state, a collective excitation of the Nambu--Jona-Lasinio type, transforming as a member of the (3, 3) + (3, 3) representation of the chiral SU(3) x SU(3) group, so also the rho transforms like (3, 3) + (3, 3) and is also a collective state, a ''dormant'' Goldstone boson that is a true Goldstone boson in the static chiral U(6) x U(6) limit. The static chiral U(6) x U(6) is to be spontaneously broken to static U(6) in the vacuum. Relativisitc effects provide for U(6) breaking and a massive rho. This viewpoint has many consequences. Vector-meson dominance is a consequence of spontaneously broken chiral symmetry: the mechanism that couples the axial-vector current to the π couples the vector current to the rho. The transition rate is calculated as γ/sub rho/ -1 = f/sub pi//m/sub rho/ in rough agreement with experiment. This picture requires soft rho's to decouple. The chiral partner of the rho is not the A 1 but the B (1235). The experimental absence of the A 1 is no longer a theoretical embarrassment in this scheme. As the analog of PCAC for the pion we establish a tensor-field identity for the rho meson in which the rho is interpreted as a dormant Goldstone state. The decays delta → eta + π, B → ω + π, epsilon → 2π are estimated and are found to be in agreement with the observed rates. A static U(6) x U(6) generalization of the Σ model is presented with the π, rho, sigma, B in the (6, 6) + (6, 6) representation. The rho emerges as a dormant Goldstone boson in this model

  20. Supersymmetric SO(10) models inspired by deconstruction

    International Nuclear Information System (INIS)

    Huang Chaoshang; Jiang Jing; Li Tianjun

    2004-01-01

    We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved

  1. Utilitarian supersymmetric gauge model of particle interactions

    International Nuclear Information System (INIS)

    Ma, Ernest

    2010-01-01

    A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.

  2. Hierarchy generation in compactified supersymmetric models

    International Nuclear Information System (INIS)

    Ross, G.G.

    1988-01-01

    The problem of generating a large hierarchy in compactified supersymmetric models is re-examined. It is shown how, even for the class of models for which Str M 2 is non-vanishing, a combination of non-perturbative effects and radiative corrections may lead to an exponentially large hierarchy. A corollary is that the couplings of the effective field theory in the visible sector should be small, i.e., perturbation theory should be applicable. (orig.)

  3. A constrained supersymmetric left-right model

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)

    2016-03-02

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.

  4. Topological solitons in the supersymmetric Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)

    2017-01-04

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  5. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  6. Asymptotically Free Natural Supersymmetric Twin Higgs Model

    Science.gov (United States)

    Badziak, Marcin; Harigaya, Keisuke

    2018-05-01

    Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.

  7. On the supersymmetric sine-Gordon model

    International Nuclear Information System (INIS)

    Hruby, J.

    1977-01-01

    The sine-Gordon model as the theory of a massless scalar field in one space and one time dimension with interaction Lagrangian density proportional to cosβsub(phi) is generalized for a scalar superfield and it is shown that the solution of the supercovariant sine-Gordon equation is the ''supersoliton'', it is the superfield, which has all ordinary fields in two dimensions as a type of the soliton solution. We also obtain the massive Thirring model and the new equations of motion coupling the Fermi field and the Bose field. The notice about supersymmetric ''SLAC-BAG'' model is done

  8. Supersymmetric flavon-chromon models

    International Nuclear Information System (INIS)

    Pati, J.C.; Salam, A.

    1983-07-01

    Using the supersymmetry and R-breaking mechanism induced by N=1 supergravity, we develop the minimal flavon-chromon preonic model where spin 1/2 and spin 0 components of four preonic chiral multiplets correspond to flavons and chromons, from which quarks and leptons are made as composites. The emergence of the concepts of flavour and colour, in this minimal model, is synonymous with R and supersymmetry breaking. This breaking also gives a heavy mass to the gaugino, which is necessary for the implementation of the model. (author)

  9. Beyond the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  10. Beyond the supersymmetric standard model

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned

  11. Studying medium effects with the optimized δ expansion

    International Nuclear Information System (INIS)

    Krein, G.; Menezes, D.P.; Nielsen, M.; Pinto, M.B.

    1995-04-01

    The possibility of using the optimized δ expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The δ expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the δ expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the δ expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs

  12. Studying medium effects with the optimized {delta} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Menezes, D P [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Nielsen, M [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Pinto, M B [Montpellier-2 Univ., 34 (France). Lab. de Physique Mathematique

    1995-04-01

    The possibility of using the optimized {delta} expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The {delta} expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the {delta} expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the {delta} expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs.

  13. Nuclear phenomena derived from quark-gluon strings

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; Providencia, Joao da

    2005-01-01

    provided that the chiral fields are identified with the two-particle strings, which are natural in a QCD framework. Moreover, the model is able to reconcile qualitatively such aspects of hadronic physics as saturation density and binding energy of nuclear matter, surface density of finite nuclei, mass......, for the occurrence of the phases of nuclear matter. The model exhibits a quark deconfinement transition and chiral restoration, which are ingredients of QCD and give qualitatively correct numerics. The effective model is shown to be isomorphic to the Nambu-Jona-Lasinio model and exhibits the correct chirality...

  14. Medium modifications of nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp

    2005-11-28

    We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.

  15. Singular charge density at the center of the pion?

    International Nuclear Information System (INIS)

    Miller, Gerald A.

    2009-01-01

    We relate the three-dimensional infinite momentum frame spatial charge density of the pion to its electromagnetic form factor F π (Q 2 ). Diverse treatments of the measured form factor data including phenomenological fits, nonrelativistic quark models, the application of perturbative quantum chromodynamics (QCD), QCD sum rules, holographic QCD, and the Nambu-Jona-Lasinio (NJL) model all lead to the result that the charge density at the center of the pion has a logarithmic divergence. Relativistic constituent quark models do not display this singularity. Future measurements planned for larger values of Q 2 may determine whether or not a singularity actually occurs.

  16. Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Noerenberg, W.

    1995-01-01

    The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)

  17. Description of hot compressed hadronic matter based on an effective chiral Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1996-11-01

    In this report we give the review of the recent results obtained in the Nambu-Jona-Lasinio (NJL) model, describing the properties of hot compressed matter. The first large class problems concerns the behaviour of static meson correlation functions. In particular, this includes the investigation of the screening of meson fields at finite temperature or density. Another wide range of problems presented in our report concerns the formulation of the transport theory for the NJL model and its applications to the description of high energy nuclear collision. 86 refs, 35 figs.

  18. Quark self-energy beyond the mean field at finite temperature

    International Nuclear Information System (INIS)

    Zhuang, P.

    1995-01-01

    The Nambu--Jona-Lasinio model, an effective low-energy model of QCD, is extended to the next to the leading order in the 1/N c expansion at finite temperature and density. The contributions to the quark self-energy and the constituent quark mass from the meson dressing are considered in a perturbative approach about the mean field. In particular, the temperature dependence of the quark mass is shown numerically at zero chemical potential. The correction to the quark mass from the meson dressing amounts to 20% compared to the result of the leading order at low temperature, and rapidly approaches zero at high temperature

  19. Description of hot compressed hadronic matter based on an effective chiral Lagrangian

    International Nuclear Information System (INIS)

    Florkowski, W.

    1996-11-01

    In this report we give the review of the recent results obtained in the Nambu-Jona-Lasinio (NJL) model, describing the properties of hot compressed matter. The first large class problems concerns the behaviour of static meson correlation functions. In particular, this includes the investigation of the screening of meson fields at finite temperature or density. Another wide range of problems presented in our report concerns the formulation of the transport theory for the NJL model and its applications to the description of high energy nuclear collision. 86 refs, 35 figs

  20. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  1. On the form factors of the D+s → φ μ+ υμ decay

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1995-05-01

    We apply the infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, to calculate the form factors of the D + s → φ μ + υ μ decay up to the first order in current s - quark mass. The theoretical results are compared with experimental data and found to be in good agreement. (author). 12 refs

  2. Current s - quark mass corrections to the form factors of D - meson semileptonic decays

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-11-01

    The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs

  3. Heavy hybrid stars from multi-quark interactions

    International Nuclear Information System (INIS)

    Benic, Sanjin

    2014-01-01

    We explore the possibility of obtaining heavy hybrid stars within the framework of the two flavor Nambu-Jona-Lasinio model that includes 8-quark interactions in the scalar and in the vector channel. The main impact of the 8-quark scalar channel is to reduce the onset of quark matter, while the 8-quark vector channel acts to stiffen the equation of state at high densities. Within the parameter space where the 4-quark vector channel is small, and the 8-quark vector channel sizeable, stable stars with masses of 2 M ⊙ and above are found to hold quark matter in their cores. (orig.)

  4. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  5. Flavour changing decays of Z0 in supersymmetric models

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.

    1987-01-01

    The possible existence of detectable flavour-changing branching modes of the Z 0 boson is examined in the context of supersymmetric models of currrent interest. An explicit calculation shows that in the so-called minimal version of the supersymmetric standard model the branching ratios for Z 0 →banti s or tanti c are not larger than in the standard model itself and are as such unobservable. On the contrary, we find that in a recently proposed extension of the supersymmetric standard model the mode Z 0 →tanti c may be at the order of being detectable. (orig.)

  6. Supersymmetric sigma models and composite Yang-Mills theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1980-04-01

    We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)

  7. Leptogenesis in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    2004-01-01

    We analyze the effects of the current neutrino data on thermal leptogenesis and 0νββ decay in a fully left-right extension of the minimal supersymmetric model. The model has several additional phases compared to the minimal supersymmetric model. These phases appear from both the heavy and light neutrino sectors: two CKM-type phases and four Majorana phases which give new contributions to CP-violating parameters and leptogenesis. We study observable effects of these phases on leptogenesis in most general neutrino mixing scenarios, with either hierarchical, inverse hierarchical, or quasidegenerate light and heavy neutrinos. We comment on the effects of these scenarios on the 0νββ decay. The CP-violating phases in both the heavy and light neutrino sectors of the left-right supersymmetric model have unique features, resulting in bounds on heavy neutrino masses different from the minimal scenario in leptogenesis, and which may distinguish the model from other supersymmetric scenarios

  8. Pseudoclassical supersymmetrical model for 2+1 Dirac particle

    OpenAIRE

    Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.

    1996-01-01

    A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.

  9. Lepton radiative decays in supersymmetric standard model

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.

    1988-01-01

    Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available

  10. Isospin breaking in nuclear physics: The Nolen-Schiffer effect

    International Nuclear Information System (INIS)

    Adami, C.; Brown, G.E.

    1991-01-01

    Using the QCD sum rules we calculate the neutron-proton mass difference at zero density as a function of the difference in bare quark mass m d -m u . We confirm results of Hatsuda, Hoegaasen and Prakash that the largest term results from the difference in up and down quark condensates, the explicit C (m d -m u ) entering with the opposite sign. The quark condensates are then extended to finite density to estimate the Nolen-Schiffer effect. The neutron-proton mass difference is extremely density dependent, going to zero at roughly nuclear matter density. The Ioffe formula for the nucleon mass is interpreted as a derivation, within the QCD sum rule approach, of the Nambu-Jona-Lasinio formula. This clarifies the N c counting and furthermore provides an alternative interpretation of the Borel mass. We compare calculations in the constituent quark model treated in the Nambu-Jona-Lasinio formalism with ours in the QCD sum rule approach. (orig.)

  11. Precision calculations in supersymmetric extensions of the Standard Model

    International Nuclear Information System (INIS)

    Slavich, P.

    2013-01-01

    This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)

  12. A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach

    Directory of Open Access Journals (Sweden)

    Aradhya Shukla

    2017-01-01

    Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.

  13. Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Seto, Osamu

    2011-01-01

    We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.

  14. Exterior calculus and two-dimensional supersymmetric models

    International Nuclear Information System (INIS)

    Sciuto, S.

    1980-01-01

    An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)

  15. Predictions for mt and MW in minimal supersymmetric models

    International Nuclear Information System (INIS)

    Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.

    2009-12-01

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)

  16. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  17. 90 - GeV Higgs boson in supersymmetric models

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Kalinowski, J.; Pokorski, S.

    1989-07-01

    We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)

  18. Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Manuel Ernst

    2015-12-18

    It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new

  19. Charged and neutral minimal supersymmetric standard model Higgs ...

    Indian Academy of Sciences (India)

    physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.

  20. Impact of the muon anomalous magnetic moment on supersymmetric models

    International Nuclear Information System (INIS)

    Baer, Howard; Balazs, Csaba; Ferrandis, Javier; Tata, Xerxes

    2001-01-01

    The recent measurement of a μ =(g μ -2)/2 by the E821 Collaboration at Brookhaven deviates from the quoted standard model (SM) central value prediction by 2.6σ. The difference between SM theory and experiment may be easily accounted for in a variety of particle physics models employing weak scale supersymmetry (SUSY). Other supersymmetric models are distinctly disfavored. We evaluate a μ for various supersymmetric models, including minimal supergravity, Yukawa unified SO(10) SUSY GUT's, models with inverted mass hierarchies, models with nonuniversal gaugino masses, gauge mediated SUSY breaking models, anomaly-mediated SUSY breaking models and models with gaugino mediated SUSY breaking. Models with Yukawa coupling unification or multi-TeV first and second generation scalars are disfavored by the a μ measurement

  1. Complete integrability of the supersymmetric (cos phi)2 model

    International Nuclear Information System (INIS)

    Kulish, P.P.; Tsyplyaev, S.A.

    1987-01-01

    Complete integrability of the supersymmetric two-dimensional sine-Gordon field-theoretical model is proved in the framework of the Hamiltonian interpretation of the inverse problem method. The classical r-matrix of this model is computed and shown to be equivalent to the r-matrix of the Grassmann Thirring model. Creation-annihilation variables are constructed and the elementary excitation spectrum is determined

  2. Supersymmetric standard model from the heterotic string (II)

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.

    2006-06-01

    We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  3. SCYNet. Testing supersymmetric models at the LHC with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-10-15

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)

  4. Quasicomplex N=2, d=1 Supersymmetric Sigma Models

    Directory of Open Access Journals (Sweden)

    Evgeny A. Ivanov

    2013-11-01

    Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.

  5. Higgs detectability in the extended supersymmetric standard model

    International Nuclear Information System (INIS)

    Kamoshita, Jun-ichi

    1995-01-01

    Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)

  6. Supersymmetric composite models on intersecting D-branes

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2004-01-01

    We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'

  7. Supersymmetric U(1)' model with multiple dark matters

    International Nuclear Information System (INIS)

    Hur, Taeil; Lee, Hye-Sung; Nasri, Salah

    2008-01-01

    We consider a scenario where a supersymmetric model has multiple dark matter particles. Adding a U(1) ' gauge symmetry is a well-motivated extension of the minimal supersymmetric standard model (MSSM). It can cure the problems of the MSSM such as the μ problem or the proton decay problem with high-dimensional lepton number and baryon number violating operators which R parity allows. An extra parity (U parity) may arise as a residual discrete symmetry after U(1) ' gauge symmetry is spontaneously broken. The lightest U-parity particle (LUP) is stable under the new parity becoming a new dark matter candidate. Up to three massive particles can be stable in the presence of the R parity and the U parity. We numerically illustrate that multiple stable particles in our model can satisfy both constraints from the relic density and the direct detection, thus providing a specific scenario where a supersymmetric model has well-motivated multiple dark matters consistent with experimental constraints. The scenario provides new possibilities in the present and upcoming dark matter searches in the direct detection and collider experiments

  8. Spontaneously broken abelian gauge invariant supersymmetric model

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)

  9. Supersymmetric models of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Egoryan, Eh.; Slavnov, A.A.

    1978-01-01

    Examples of realistic supergauge lepton models based on the SU(2)xU(1) and SU(2)xSU(2)xU(1) groups are considered. These models do not contradict to up-to-date experimental data, give a natural explanation for the Higgs mechanism and predict the existence of heavy leptons. The first model predicts the conservation of parity, the second one predicts parity breaking in atomic processes

  10. Flipped version of the supersymmetric strongly coupled preon model

    Energy Technology Data Exchange (ETDEWEB)

    Fajfer, S. (Institut za Fiziku, University of Sarajevo, Sarajevo, (Yugoslavia)); Milekovic, M.; Tadic, D. (Zavod za Teorijsku Fiziku, Prirodoslovno-Matematicki Fakultet, University of Zagreb, Croatia, (Yugoslavia))

    1989-12-01

    In the supersymmetric SU(5) (SUSY SU(5)) composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5){direct product}U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.

  11. Required experimental accuracy to select between supersymmetrical models

    Science.gov (United States)

    Grellscheid, David

    2004-03-01

    We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. This talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).

  12. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  13. A review of Higgs mass calculations in supersymmetric models

    DEFF Research Database (Denmark)

    Draper, P.; Rzehak, H.

    2016-01-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...

  14. Examining a renormalizable supersymmetric SO(10) model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Yong; Zhang, Da-Xin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)

    2017-10-15

    We examine a renormalizable SUSY SO(10) model without fine-tuning. We show how to construct MSSM doublets and to predict proton decay. We find that in the minimal set of Yukawa couplings the model is consistent with the experiments, while including 120{sub H} to fit the data there are inconsistencies. (orig.)

  15. One-scale supersymmetric inflationary models

    International Nuclear Information System (INIS)

    Bertolami, O.; Ross, G.G.

    1986-01-01

    The reheating phase is studied in a class of supergravity inflationary models involving a two-component hidden sector in which the scale of supersymmetry breaking and the scale generating inflation are related. It is shown that these models have an ''entropy crisis'' in which there is a large entropy release after nucleosynthesis leading to unacceptable low nuclear abundances. (orig.)

  16. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  17. Early universe cosmology. In supersymmetric extensions of the standard model

    International Nuclear Information System (INIS)

    Baumann, Jochen Peter

    2012-01-01

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the

  18. Supersymmetric sigma models and the heterotic string

    International Nuclear Information System (INIS)

    Hull, C.M.; Witten, E.

    1989-01-01

    The authors define the (1 + 1)-dimensional supersymmetry algebra of type (p, q) to be that generated by p right-handed Majorana-Weyl supercharges and q left-handed ones. They construct the non-linear sigma models with supersymmetry of type (1, 0) and (2, 0) and discuss their geometry and their relevance to compactifications of the heterotic superstring. The sigma-model anomalies can be canceled by a mechanism closely related to that used by Green and Schwarz to cancel gravitational and Yang-Mills anomalies for the superstring

  19. On radiative gauge symmetry breaking in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.; Zwirner, F.

    1990-01-01

    We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)

  20. Constraints on supersymmetric models from the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Carena, M.; Giudice, G.F.; Wagner, C.E.M.

    1996-10-01

    We study the impact of present and future (g - 2) μ measurements on supersymmetric models. The corrections to (g - 2) μ become particularly relevant in the presence of light sleptons, charginos and neutralinos, especially in the large tan β regime. For moderate or large values of tan β, it is possible to rule out scenarios in which charginos and sneutrinos are both light, but nevertheless escape detection at the LEP2 collider. Furthermore, models in which supersymmetry breaking is transferred to the observable sector through gauge interactions can be efficiently constrained by the (g - 2) μ measurement. (orig.)

  1. Charge and color breaking minima in supersymmetric models

    International Nuclear Information System (INIS)

    Brhlik, Michal

    2001-01-01

    Supersymmetric extensions of the Standard Model include complicated scalar sectors leading to the possible occurrence of non-standard minima along suitable directions in the field space. These minima usually break charge and/or color and their presence in the theory would require an explanation why the universe has settled in the standard electroweak symmetry breaking minimum. In this talk I illustrate the relevance of the charge and color breaking minima in the framework of the minimal supergravity model and a string motivated Horava-Witten scenario

  2. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    Porto, Stefano

    2015-06-01

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  3. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  4. Investigating multiple solutions in the constrained minimal supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.C. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); George, Damien P. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); Cavendish Laboratory, University of Cambridge,JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nachman, Benjamin [SLAC, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)

    2014-02-07

    Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion.

  5. New aspects of flavour model building in supersymmetric grand unification

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2010-01-01

    We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan β-enhanced threshold corrections which can be sizeable if tan β is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y μ /y s =9/2 or 6 or y τ /y b =3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan β where θ u 13 =θ d 13 =0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases δ u 12 and δ d 12 and the right unitarity triangle angle α which suggests a simple phase structure for the quark mass matrices where one matrix element is purely imaginary and the remaining ones are purely real. To complement

  6. New aspects of flavour model building in supersymmetric grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Spinrath, Martin

    2010-05-19

    We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan {beta}-enhanced threshold corrections which can be sizeable if tan {beta} is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y{sub {mu}}/y{sub s}=9/2 or 6 or y{sub {tau}}/y{sub b}=3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan {beta} where {theta}{sup u}{sub 13}={theta}{sup d}{sub 13}=0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases {delta}{sup u}{sub 12} and {delta}{sup d}{sub 12} and the right unitarity triangle angle {alpha} which suggests a simple phase structure for the quark mass matrices where

  7. Nucleon electric dipole moments in high-scale supersymmetric models

    International Nuclear Information System (INIS)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-01-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  8. Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models

    CERN Document Server

    Ilakovac, Amon; Popov, Luka

    2014-01-01

    We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.

  9. Nucleon electric dipole moments in high-scale supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-11-12

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  10. Neutron electric dipole moment in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.

    1995-01-01

    The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)

  11. Anatomy of Higgs mass in supersymmetric inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-07

    We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.

  12. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  13. Supersymmetric quantum mechanics, spinors and the standard model

    International Nuclear Information System (INIS)

    Woit, P.

    1988-01-01

    The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)

  14. Dual realizations of dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe

    2006-01-01

    We show the infrared equivalence between a recently proposed model containing a six dimensional scalar field with a four-dimensional localized Higgs type potential and the four-dimensional Nambu-Jona-Lasinio (NJL) model. In the dual NJL description, the fermions are localized at the origin of a large two-dimensional compact space. Due to a classical running effect above the compactification scale, the four-fermion coupling of the NJL model increases from the cutoff scale down to the compactification scale, providing the large Fermi coupling needed for the dynamical symmetry breaking. We also present a string theory embedding of our field-theory construction. On more general grounds, our results suggest that 4d models with dynamical symmetry breaking can be given a higher dimensional description in terms of field theories with nontrivial boundary conditions in the internal space

  15. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  16. Critical constraints on chiral hierarchies

    International Nuclear Information System (INIS)

    Chivukula, R.S.; Golden, M.; Simmons, E.H.

    1993-01-01

    Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB

  17. Chiral symmetry restoration and quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Krein, G.

    1989-01-01

    Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking

  18. Unification of all elementary-particle forces including gravity

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi; Chikashige, Yuichi; Matsuki, Takayuki; Akama, Keiichi.

    1978-07-01

    A unified model of the Nambu-Jona-Lasinio type for all elementary-particle forces including gravity is reviewed in some detail. Starting with a nonlinear fermion Lagrangian of the Heisenberg type and imposing the massless conditions of Bjorken on vector auxiliary fields, on effective Lagrangian is constructed, which combines the unified SU (2) x U (1) gauge theory of Weinberg and Salam for the weak and electromagnetic interactions of leptons and quarks and the Yang-Mills gauge theory of color SU (3) for the strong interaction of quarks. The photon, the weak vector bosons, and the physical Higgs scalar appear as collective excitations of lepton-antilepton or quark-antiquark pairs while the color-octet gluons appear as those of quark-antiquark pairs. The most important results of this unified model are presented. The Weinberg angle and the gluon coupling constant are determined, and the masses of the weak vector bosons are predicted. (Yoshimori, M.)

  19. The convergence radius of the chiral expansion in the Dyson-Schwinger approach

    International Nuclear Information System (INIS)

    Meissner, T.

    1994-01-01

    We determine the convergence radius m conv or the expansion in the current quark mass using the Dyson-Schwinger (DS) equation of QCD in the rainbow approximation. Within a Gaussian form for the gluon propagator D μ ν(p) ∼ δμνχ 2 e - Δ /p 2 we find that m conv increases with decreasing width Δ and increasing strength χ 2 . For those values of χ 2 and Δ, which provide the best known description of low energy hadronic phenomena, m conv lies around 2Λ QCD , which is big enough, that the chiral expansion in the strange sector converges. Our analysis also explains the rather low value of m conv ∼ 50...80 MeV in the Nambu-Jona-Lasinio model, which as itself can be regarded as a special case of the rainbow DS models, where the gluon propagator is a constant in momentum space

  20. EMC and polarized EMC effects in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia); Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org

    2006-11-09

    We determine nuclear structure functions and quark distributions for {sup 7}Li, {sup 11}B, {sup 15}N and {sup 27}Al. For the nucleon bound state we solve the covariant quark-diquark equations in a confining Nambu-Jona-Lasinio model, which yields excellent results for the free nucleon structure functions. The nucleus is described using a relativistic shell model, including mean scalar and vector fields that couple to the quarks in the nucleon. The nuclear structure functions are then obtained as a convolution of the structure function of the bound nucleon with the light-cone nucleon distributions. We find that we are readily able to reproduce the EMC effect in finite nuclei and confirm earlier nuclear matter studies that found a large polarized EMC effect.

  1. Supersymmetric models with tan β close to unity

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Babu, K.S.; Shafi, Q.

    1994-01-01

    Within the framework of supersymmetric grand unification, estimates of the b quark mass based on the asymptotic relation m b similar eqm τ single out the region with tan β close to unity, particularly if m t (m t ) < or ∼170 GeV. We explore the radiative breaking of the electroweak symmetry and the associated sparticle and higgs spectroscopy in models with 1 < tan β< or ∼1.6. The lightest scalar higgs is expected to have a mass below 100 GeV, while the remaining four higgs masses exceed 300 GeV. The lower bounds on some of the sparticle masses are within the range of LEP 200. ((orig.))

  2. Gauge hierarchy in an SO(10) supersymmetric grand unified model

    International Nuclear Information System (INIS)

    Zhiyong, Z.

    1982-01-01

    An SO(10) supersymmetric grand unified model is constructed in which the gauge hierarchy problem may be solved. Using Higgs superfields belonging to the SO(10) representations 16, 10 and 54, it is found that if SO(10) is broken down to SU(3)sub(c)xSU(2)sub(L)xU(1) via SO(6)xSO(4)approximately equal to SU(4)sub(c)xSU(2)sub(L)xSU(2)sub(R) at unification mass scales without supersymmetry breaking, the gauge hierarchy puzzle might be carried away. It is also shown that the colour-triplet Higgs, which mediates proton decay, is superheavy by an incredibly accurate, but 'natural' adjustment of parameters in the potential. (author)

  3. Renormalization of supersymmetric models without using auxiliary fields

    International Nuclear Information System (INIS)

    Urbanek, P.

    1986-01-01

    Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)

  4. Vector mesons on the light front

    International Nuclear Information System (INIS)

    Naito, K.; Maedan, S.; Itakura, K.

    2004-01-01

    We apply the light-front quantization to the Nambu-Jona-Lasinio model with the vector interaction, and compute vector meson's mass and light-cone wavefunction in the large N limit. Following the same procedure as in the previous analyses for scalar and pseudo-scalar mesons, we derive the bound-state equations of a qq-bar system in the vector channel. We include the lowest order effects of the vector interaction. The resulting transverse and longitudinal components of the bound-state equation look different from each other. But eventually after imposing an appropriate cutoff, one finds these two are identical, giving the same mass and the same (spin-independent) light-cone wavefunction. Mass of the vector meson decreases as one increases the strength of the vector interaction

  5. Neutron-proton mass difference in a baryonic medium and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Fiolhais, M.; Christov, C.; Neuber, T.; Bergmann, M.; Goeke, K.

    1991-01-01

    The neutron-proton mass difference ΔM np = M n - M p in a baryonic medium is evaluated in the framework of the Nambu-Jona-Lasinio model. It is demonstrated that ΔM np (ρ) increases with increasing medium density, ρ, a trend being opposite to the one required to explain the Nolen-Schiffer anomaly as suggested by Henley and Krein. In the same conceptual framework the quantity M n (ρ n ) - M p (ρ p ) is evaluated which takes into account that the valence orbits of the proton and the neutron are different. The calculations show that this quantity goes into the right direction, but the effect is an order of magnitude larger than needed to explain the Nolen-Schiffer anomaly. (orig.)

  6. Quark distributions in nuclear matter and the EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H.; Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Ishii, N.; Thomas, A.W.; Yazaki, K

    2004-05-03

    Quark light cone momentum distributions in nuclear matter and the structure function of a bound nucleon are investigated in the framework of the Nambu-Jona-Lasinio model. This framework describes the nucleon as a relativistic quark-diquark state, and the nuclear matter equation of state by using the mean field approximation. The scalar and vector mean fields in the nuclear medium couple to the quarks in the nucleon and their effect on the spin independent nuclear structure function is investigated in detail. Special emphasis is placed on the important effect of the vector mean field and on a formulation which guarantees the validity of the number and momentum sum rules from the outset.

  7. Axial vector diquark correlations in the nucleon: structure functions and static properties

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H. E-mail: mineo@nt.phys.s.u-tokyo.ac.jp; Bentz, W.; Ishii, N.; Yazaki, K

    2002-06-03

    In order to extract information on the strength of quark-quark correlations in the axial vector (a.v.) diquark channel (J{sup P}=1{sup +},T=1), we analyze the quark light cone momentum distributions in the nucleon, in particular their flavor dependencies, and the static properties of the nucleon. To construct the nucleon as a relativistic 3-quark bound state, we use a simple 'static' approximation to the full Faddeev equation in the Nambu-Jona-Lasinio model, including correlations in the scalar (J{sup P}=0{sup +},T=0) and a.v. diquark channels. It is shown that the a.v. diquark correlations should be rather weak compared to the scalar ones. From our analysis we extract information on the strength of the correlations as well as on the probability of the a.v. diquark channel.

  8. Two-color quark matter: U(1)A restoration, superfluidity, and quarkyonic phase

    International Nuclear Information System (INIS)

    Brauner, Tomas; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-01-01

    We discuss the phase structure of quantum chromodynamics (QCD) with two colors and two flavors of light quarks. This is motivated by the increasing interest in the QCD phase diagram as follows: (1) The QCD critical point search has been under intensive dispute and its location and existence suffer from uncertainty of effective U(1) A symmetry restoration. (2) A new phase called quarkyonic matter is drawing theoretical and experimental attention but it is not clear whether it can coexist with diquark condensation. We point out that two-color QCD is nontrivial enough to contain essential ingredients for (1) and (2) both, and most importantly, is a system without the sign problem in numerical simulations on the lattice. We adopt the two-flavor Nambu-Jona-Lasinio model extended with the two-color Polyakov loop and make quantitative predictions that can be tested by lattice simulations.

  9. Interplay between chiral symmetry breaking and color superconductivity in dense quark matter

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2003-01-01

    We investigate the QCD phase diagram in finite temperature and density in a simple Nambu-Jona-Lasinio model with the vector interaction. It is shown that the repulsive density-density interaction coming from the vector term enhances competition between the chiral symmetry breaking (χSB) and color superconducting (CSC) phase transition: When the vector coupling is increased, the first order transition between the χSB and CSC phase becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetries are dynamically broken comes to exist in a wider region in the T-μ plane. We find that the critical line of the first order transition can have two endpoints for an intermediate range of the vector coupling. (author)

  10. Strong UA(1) breaking in radiative η decays

    International Nuclear Information System (INIS)

    Takizawa, M.; Nemoto, Y.; Oka, M.

    1996-08-01

    We study the η → γγ, η → γμ - μ + and η → π 0 γγ decays using an extended three-flavor Nambu-Jona-Lasinio model that includes the 't Hooft instanton induced interaction. We find that the η-meson mass, the η → γγ, η → γμ - μ + and η → π 0 γγ decay widths are in good agreement with the experimental values when the U A (1) breaking is strong and the flavor SU(3) singlet-octet mixing angle θ is about zero. The calculated ηγγ * transition form factor has somewhat weaker dependence on the squared four-momentum of the virtual photon. The effects of the U A (1) anomaly on the scalar quark contents in the nucleon, the Σ πN and Σ KN terms and the baryon number one and two systems are also studied. (author)

  11. Elastic scattering and transport coefficients for a quark plasma in SUf(3) at finite temperatures

    Science.gov (United States)

    Rehberg, P.; Klevansky, S. P.; Hüfner, J.

    1996-02-01

    The temperature dependence of the elastic-scattering processes qq' → qq' and q overlineq' → q overlineq' , with q, q' = u, d, s is studied as a function of the scattering angle and the center-of-mass energy of the collision within the framework of the SUf(3) Nambu-Jona-Lasinio model. Critical scattering at threshold is observed in the q overlineq' → q overlineq' process, leading to an enhancement of the cross section as occurs in the phenomenon of critical opalescence. Transport properties such as viscosity, mean free paths and thermal relaxation times are calculated. Strangeness enhancement is investigated via the chemical relaxation times, which are found to be considerably higher than those calculated via perturbative QCD. A comparison with the experimental values for the strangeness enhancement in S + S collisions leads to an upper limit of 4 fm/ c for the lifetime of the plasma.

  12. Top and Higgs masses from dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    The standard model of electroweak interactions, with the gauge and Higgs bosons appearing as composites, is derived from a Nambu-Jona-Lasinio-type four-fermion interaction, assumed to be valid above a high scale μ. Simple relationships are found for the composite boson top quark mass ratios and for the weak angle. Assuming three generations and a 'desert' hypothesis, these relationships are evolved with the full renormalization group down to present experimental energies, yielding predictions for the top quark and Higgs-boson masses, near 155 GeV for the former and near 140 GeV for the latter. In this fashion, fermion-antifermion condensates can be shown to yield a top mass consistent with that indicated from electroweak loop corrections for LEP data. (author) 23 refs

  13. Transport coefficients of strongly interacting matter

    International Nuclear Information System (INIS)

    Heckmann, Klaus

    2011-01-01

    In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.)

  14. The electric dipole moment of the neutron in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    1999-01-01

    We calculate the neutron electric dipole moment (EDM) in the left-right supersymmetric model, including one-loop contributions from the chargino, the neutralino and the gluino diagrams. We discuss the dependence of the EDM on the phases of the model, as well as on the mass parameters in the left and right sectors. The neutron EDM imposes different conditions on the supersymmetric spectrum from either the electron EDM, or the neutron EDM in the minimal supersymmetric standard model. The neutron EDM may be a clue to an extended gauge structure in supersymmetry. (author)

  15. The GRACE system for the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Tanaka, H.; Kaneko, T.; Jimbo, M.; Kon, T.

    1997-01-01

    The algorithm of constructing the Feynman amplitudes for the GRACE system is extended to processes involving supersymmetric particles. New vertex amplitude subroutines needed to compute these processes are now part of the CHANEL library. (orig.)

  16. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  17. Dark Matter from the Supersymmetric Custodial Triplet Model

    CERN Document Server

    Delgado, Antonio; Ostdiek, Bryan; Quiros, Mariano

    2015-01-01

    The Supersymmetric Custodial Triplet Model (SCTM) adds to the particle content of the MSSM three $SU(2)_L$ triplet chiral superfields with hypercharge $Y=(0,\\pm1)$. At the superpotential level the model respects a global $SU(2)_L \\otimes SU(2)_R$ symmetry only broken by the Yukawa interactions. The pattern of vacuum expectation values of the neutral doublet and triplet scalar fields depends on the symmetry pattern of the Higgs soft breaking masses. We study the cases where this symmetry is maintained in the Higgs sector, and when it is broken only by the two doublets attaining different vacuum expectation values. In the former case, the symmetry is spontaneously broken down to the vectorial subgroup $SU(2)_V$ and the $\\rho$ parameter is protected by the custodial symmetry. However in both situations the $\\rho$ parameter is protected at tree level, allowing for light triplet scalars with large vacuum expectation values. We find that over a large range of parameter space, a light neutralino can supply the corre...

  18. Probes of Yukawa unification in supersymmetric SO(10) models

    Energy Technology Data Exchange (ETDEWEB)

    Westhoff, Susanne

    2009-10-23

    This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.

  19. The hyper-Kaehler supersymmetric sigma-model in six dimensions

    International Nuclear Information System (INIS)

    Sierra, G.; Townsend, P.K.

    1983-01-01

    The maximally supersymmetric, hyper-Kaehler, sigma-model is given in six-dimensional superfield form. The hyper-Kaehler condition follows from the requirements that the equations of motion be derivable from an action. (orig.)

  20. Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.

    1983-12-01

    The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)

  1. The gauge-invariant N=2 supersymmetric sigma-model with general scalar potential

    International Nuclear Information System (INIS)

    Sierra, G.; Townsend, P.K.

    1984-01-01

    We construct the supersymmetric sigma-model, in six dimensions, for an arbitrary hyper-Kaehler manifold, and its minimal coupling to super-Yang-Mills theory. Non-trivial reduction to five or four dimensions yields the corresponding five- or four-dimensional N=2 supersymmetric model with general scalar potential. We discuss briefly the coupling to supergravity in six dimensions and we give the on-shell supergravity torsion constraints. (orig.)

  2. (4,0) supersymmetric sigma-model and t-duality

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1997-08-01

    The conserved supercurrents J ++ and J -- are deduced for the (4,0) supersymmetric sigma model on harmonic superspace with arbitrary background gauge connection. These are introduced in the Lagrangian density of the model by their couplings to the analytic gauge superfields Γ -- and Γ ++ . The T-duality transformations are obtained by integrating out the analytic gauge superfields. Finally the (4,0) supersymmetric anomaly is derived. (author). 20 refs

  3. Chargino and neutralino production at the Large Hadron Collider in left-right supersymmetric models

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; Rausch de Traubenberg, Michel

    2013-10-04

    We present a complete and extensive analysis of associated chargino and neutralino production in the framework of a supersymmetric theory augmented by left-right symmetry. This model provides additional gaugino and higgsino states in both the neutral and charged sectors, thus potentially enhancing new physics signals at the LHC. For a choice of benchmark scenarios, we calculate cross sections for 7, 8 and 14 TeV. We then simulate events expected to be produced at the LHC, and classify them according to the number of leptons in the final state. We devise methods to reduce the background and compare the signals with consistently simulated events for the Minimal Supersymmetric Standard Model. We pinpoint promising scenarios where left-right symmetric supersymmetric signals can be distinguished both from background and from the Minimal Supersymmetric Standard Model events.

  4. On Newton's law in supersymmetric braneworld models

    Energy Technology Data Exchange (ETDEWEB)

    Palma, G.A.

    2007-05-15

    We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an S{sup 1}/Z{sub 2} orbifold. There is a scalar field {phi} in the bulk which, provided a superpotential W({phi}), determines the warped geometry of the 5-D spacetime. This type of scenario is common in string theory, where the bulk scalar field {phi} is related to the volume of small compact extra dimensions. We show that, after the moduli are stabilized by supersymmetry breaking terms localized on the branes, the only relevant degrees of freedom in the bulk consist of a 5-D massive spectrum of gravitons. Then we analyze the gravitational interaction between massive bodies localized at the positive tension brane mediated by these bulk gravitons. It is shown that the Newtonian potential describing this interaction picks up a non-trivial contribution at short distances that depends on the shape of the superpotential W({phi}). We compute this contribution for dilatonic braneworld scenarios W({phi})=e{sup {alpha}}{sup {phi}} (where {alpha} is a constant) and discuss the particular case of 5-D Heterotic M-theory: It is argued that a specific footprint at micron scales could be observable in the near future. (orig.)

  5. Electroweak precision observables in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Heinemeyer, S.; Hollik, W.; Weiglein, G.

    2006-01-01

    The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, M W , the effective leptonic weak mixing angle, sin 2 θ eff , the anomalous magnetic moment of the muon (g-2) μ , and the lightest CP-even MSSM Higgs boson mass, m h . We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly

  6. Bardeen-anomaly and Wess-Zumino term in the supersymmetric standard model

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo; Stora, Raymond Félix

    1994-01-01

    We construct the Bardeen anomaly and its related Wess-Zumino term in the supersymmetric standard model. In particular we show that it can be written in terms of a composite linear superfield related to supersymmetrized Chern-Simons forms, in very much the same way as the Green-Schwarz term in four-dimensional string theory. Some physical applications, such as the contribution to the g-2 of gauginos when a heavy top is integrated out, are briefly discussed.

  7. Low energy supersymmetric models for several generations and proton decay

    International Nuclear Information System (INIS)

    Deo, B.B.; Sarkar, U.

    1983-08-01

    It is found that by invoking additional horizontal gauge symmetries required to explain the generational structure the low energy standard supersymmetric unified theories avoid the renormalizable unsuppressed baryon number violating interactions in a natural way. Theories considered here are anomaly-free by construction. (author)

  8. Higgs boson masses in a non-minimal supersymmetric model

    International Nuclear Information System (INIS)

    Tiesi, Alessandro

    2002-01-01

    A study of the neutral Higgs spectrum in a general Z 3 -breaking Next to Minimal Supersymmetric Standard Model (NMSSM) is reported in several significant contexts. Particular attention has been devoted to the upper bound on lightest Higgs boson. In the CP-conserving case we show that the extra terms involved in the general Z 3 -breaking superpotential do not affect the upper bound which remains unchanged: it is ∼ 136 GeV when tan β = 2.7. The Spontaneous CP Violation scenario in the Z 3 -breaking NMSSM can occur at tree-level. When the phases of the fields are small the spectrum shows the lightest Higgs particle to be an almost singlet CP-odd. The second lightest particle, a doublet almost-CP-even state, still manifests the upper bound of the CP-conserving case. When the CP-violating phases are large the lightest particle is a doublet with no definite CP parity and its mass shows the usual upper bound at ∼ 136 GeV. The large number of parameters involved in the effective potential can be significantly reduced in the Infrared Quasi Fixed Point (IRQFP) resulting after solving the Renormalization Group (RG) equations assuming universality for the soft SUSY breaking masses. In the Z 3 -breaking NMSSM, unlike the Z 3 -conserving NMSSM, it is possible to find a Higgs spectrum which is still compatible with both experiment and universality at the unification scale. Because in the IRQFP regime tan β ∼ 1.8 and the stop mixing parameter is reduced then the upper bound on the lightest Higgs boson turns out to be ∼ 121 GeV. This result is compatible with experimental data coming from LEPII and might be one of the next predictions to be tested at hadron collider experiments. (author)

  9. Higgs particles in the standard model and supersymmetric theories

    International Nuclear Information System (INIS)

    Muehlleitner, M.M.

    2000-08-01

    This thesis presents a theoretical analysis of the properties of the Higgs bosons in the standard model (SM) and the minimal supersymmetric extension (MSSM), which can be investigated at the LHC and e + e - linear colliders. The final goal is the reconstruction of the Higgs potential and thus the verification of the Higgs mechanism. MSSM Higgs boson production processes at future γγ colliders are calculated in several decay channels. Heavy scalar and pseudoscalar Higgs bosons can be discovered in the bb final state in the investigated mass range 200 to 800 GeV for moderate and large values of tanβ. The τ + τ - channel provides a heavy Higgs boson discovery potential for large values of tanβ. Several mechanisms that can be exploited at e + e - linear colliders for the measurement of the lifetime of a SM Higgs boson in the intermediate mass range are analysed. In the WW mode, the lifetime of Higgs scalars with masses below ∝160 GeV can be determined with an error less than 10%. The reconstruction of the Higgs potential requires the measurement of the Higgs self-couplings. The SM and MSSM trilinear Higgs self-couplings are accessible in double and triple Higgs production. A theoretical analysis is presented in the relevant channels at the LHC and e + e - linear colliders. For high luminosities, the SM trilinear Higgs self-coupling can be measured with an accuracy of 20% at a 500 GeV e + e - linear collider. The MSSM coupling among three light Higgs bosons has to be extracted from continuum production. The other trilinear Higgs couplings are measurable in a restricted range of the MSSM parameter space. At the LHC, the Hhh coupling can be probed in resonant decays. (orig.)

  10. On q-deformed supersymmetric classical mechanical models

    International Nuclear Information System (INIS)

    Colatto, L.P.; Matheus Valle, J.L.

    1995-10-01

    Based on the idea of quantum groups and paragrassmann variables, we present a generalization of supersymmetric classical mechanics with a deformation parameter q=exp 2πi/k dealing with the k=3 case. The coordinates of the q-superspace are a commuting parameter t and a paragrassmann variable θ, where θ 3 =0. The generator and covariant derivative are obtained, as well as the action for some possible superfields. (author). 13 refs

  11. Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Min

    2010-09-15

    We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)

  12. Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky

    International Nuclear Information System (INIS)

    Kim, Ju Min

    2010-09-01

    We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)

  13. N = 1 supersymmetric indices and the four-dimensional A-model

    Science.gov (United States)

    Closset, Cyril; Kim, Heeyeon; Willett, Brian

    2017-08-01

    We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.

  14. Finiteness of Ricci flat supersymmetric non-linear sigma-models

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)

  15. Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model

    CERN Document Server

    Desrosiers, P; Mathieu, P; Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2003-01-01

    We present two constructions of the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement. These eigenfunctions are the superspace extension of the generalized Hermite (or Hi-Jack) polynomials. The conserved quantities of the rational supersymmetric model are first related to their trigonometric relatives through a similarity transformation. This leads to a simple expression for the generalized Hermite superpolynomials as a differential operator acting on the corresponding Jack superpolynomials. The second construction relies on the action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions. As an aside, the maximal superintegrability of the supersymmetric rational Calogero-Moser-Sutherland model is demonstrated.

  16. Predictions for m{sub t} and M{sub W} in minimal supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Cavanaugh, R. [Fermi National Accelerator Lab., Batavia, IL (United States); Illinois Univ., Chicago, IL (United States). Dept. of Physics; Roeck, A. de [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Universitaire Instelling Antwerpen, Wilrijk (Belgium); Ellis, J.R. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Flaecher, H. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Heinemeyer, S. [Instituto de Fisica de Cantabria, Santander (Spain); Isidori, G. [INFN, Laboratori Nazionali di Frascati (Italy); Technische Univ. Muenchen (Germany). Inst. for Advanced Study; Olive, K.A. [Minnesota Univ., Minnesota, MN (United States). William I. Fine Theoretical Physics Institute; Ronga, F.J. [ETH Zuerich (Switzerland). Institute for Particle Physics; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-12-15

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m{sub t}, and the W boson mass, m{sub W}. We find that the supersymmetric predictions for both m{sub t} and m{sub W}, obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)

  17. N=12 supersymmetric four-dimensional nonlinear σ-models from nonanticommutative superspace

    International Nuclear Information System (INIS)

    Hatanaka, Tomoya; Ketov, Sergei V.; Kobayashi, Yoshishige; Sasaki, Shin

    2005-01-01

    The component structure of a generic N=1/2 supersymmetric nonlinear sigma-model (NLSM) defined in the four-dimensional (Euclidean) nonanticommutative (NAC) superspace is investigated in detail. The most general NLSM is described in terms of arbitrary Kahler potential, and chiral and antichiral superpotentials. The case of a single chiral superfield gives rise to splitting of the NLSM potentials, whereas the case of several chiral superfields results in smearing (or fuzziness) of the NLSM potentials, while both effects are controlled by the auxiliary fields. We eliminate the auxiliary fields by solving their algebraic equations of motion, and demonstrate that the results are dependent upon whether the auxiliary integrations responsible for the fuzziness are performed before or after elimination of the auxiliary fields. There is no ambiguity in the case of splitting, i.e., for a single chiral superfield. Fully explicit results are derived in the case of the N=1/2 supersymmetric NAC-deformed CP n NLSM in four dimensions. Here we find another surprise that our results differ from the N=1/2 supersymmetric CP n NLSM derived by the quotient construction from the N=1/2 supersymmetric NAC-deformed gauge theory. We conclude that an N=1/2 supersymmetric deformation of a generic NLSM from the NAC superspace is not unique

  18. Hyperkaehlerian manifolds and exact β functions of two-dimensional N=4 supersymmetric σ models

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Perelomov, A.M.

    1984-01-01

    Two-dimensional supersymmetric sigma-models on cotangent bundles over CPsup(n) are investigated. These mannfolds are supplied with hyperkaehlerian metrics, and the corresponding σ-models possess N=4 supersymmetry. Also they admit instantonic solutions, which permits to apply the Novikov-Shifman-Vainshtein-Zakharov method and calculate exact β-functions. βsup(gsup(2)) = 0, as was expected

  19. Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry

    International Nuclear Information System (INIS)

    Hibberd, Katrina; Roditi, Itzhak; Links, Jon; Foerster, Angela

    1999-11-01

    The nested algebraic Bethe Ansatz is presented for the anisotropic supersymmetric U model maintaining quantum a supersymmetry. The Bethe Ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given. (author)

  20. Triviality bound on lightest Higgs mass in next to minimal supersymmetric model

    International Nuclear Information System (INIS)

    Choudhury, S.R.; Mamta; Dutta, Sukanta

    1998-01-01

    We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)

  1. Supersymmetric flaxion

    Science.gov (United States)

    Ema, Yohei; Hagihara, Daisuke; Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori

    2018-04-01

    Recently, a new minimal extension of the Standard Model has been proposed, where a spontaneously broken, flavor-dependent global U(1) symmetry is introduced. It not only explains the hierarchical flavor structure in the quark and lepton sector, but also solves the strong CP problem by identifying the Nambu-Goldstone boson as the QCD axion, which we call flaxion. In this work, we consider supersymmetric extensions of the flaxion scenario. We study the CP and flavor violations due to supersymmetric particles, the effects of R-parity violations, the cosmological gravitino and axino problems, and the cosmological evolution of the scalar partner of the flaxion, sflaxion. We also propose an attractor-like inflationary model where the flaxion multiplet contains the inflaton field, and show that a consistent cosmological scenario can be obtained, including inflation, leptogenesis, and dark matter.

  2. Non-renormalizability of supersymmetric non-linear sigma models in four dimensions

    International Nuclear Information System (INIS)

    Spence, B.

    1985-01-01

    The one-loop, on-shell, ultraviolet-divergent part of the effective action is calculated for the N=1 and 2 supersymmetric non-linear sigma models in four dimensions. These infinities cannot be absorbed into a redefinition of the bare Kaehler potential and the theories are not renormalizable. (orig.)

  3. Production and decay of neutralinos in the nonminimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Franke, F.

    1995-01-01

    In this thesis after a presentation of the nonminimal supersymmetric standard model the lower mass limits for neutralinos and Higgs bosons are calculated. Then some typical scenarios for the study of the neutralino production and decay at LEP2 are constructed, for which the cross sections are calculated. (HSI)

  4. N=2, D=4 supersymmetric σ-models and Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievetsky, V.

    1991-05-01

    A deep similarity is established between the Hamiltonian mechanics of point particle and supersymmetric N=2, D=4 σ-models formulated within harmonic superspace. An essential part of the latter, the sphere S 2 , comes out as a counterpart of the time variable. (author). 7 refs

  5. Decaying dark matter in supersymmetric SU(5) models

    International Nuclear Information System (INIS)

    Luo Mingxing; Wang Liucheng; Wu Wei; Zhu Guohuai

    2010-01-01

    Motivated by recent observations from PAMELA, Fermi and H.E.S.S., we consider dark matter decays in the framework of supersymmetric SU(5) grand unification theories. An SU(5) singlet S is assumed to be the main component of dark matters, which decays into visible particles through dimension six operators suppressed by the grand unification scale. Under certain conditions, S decays dominantly into a pair of sleptons with universal coupling for all generations. Subsequently, electrons and positrons are produced from cascade decays of these sleptons. These cascade decay chains smooth the e + +e - spectrum, which permit naturally a good fit to the Fermi-LAT data. The observed positron fraction upturn by PAMELA can be reproduced simultaneously. We have also calculated diffuse gamma-ray spectra due to the e ± excesses and compared them with the preliminary Fermi-LAT data from 0.1 GeV to 10 GeV in the region 0 deg. ≤l≤ 360 deg., 10 deg. ≤|b|≤20 deg. The photon spectrum of energy above 100 GeV, mainly from final state radiations, may be checked in the near future.

  6. Implications of improved Higgs mass calculations for supersymmetric models.

    Science.gov (United States)

    Buchmueller, O; Dolan, M J; Ellis, J; Hahn, T; Heinemeyer, S; Hollik, W; Marrouche, J; Olive, K A; Rzehak, H; de Vries, K J; Weiglein, G

    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, [Formula: see text], in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyse the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of [Formula: see text]and ATLAS searches for [Formula: see text] events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours [Formula: see text], though not in the NUHM1 or NUHM2.

  7. Implications of improved Higgs mass calculations for supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Dolan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Theory Group; Ellis, J. [King' s College, London (United Kingdom). Theoretical Particle Physics and Cosmology Group; and others

    2014-03-15

    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, M{sub h}, in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyze the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of BR(B{sub s}→μ{sup +}μ{sup -}) and ATLAS searches for E{sub T} events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours tan β

  8. Complete integrability of the supersymmetric model (cos phi)/sub ell/

    International Nuclear Information System (INIS)

    Kulish, P.P.; Tsyplyaev, S.A.

    1986-01-01

    Complete integrability of the supersymmetric, two-dimensional sine-Gordon model of field theory within the framework of the Hamiltonian interpretation of the method of the inverse problem is proved. The classical r-matrix of the model is computed, and its equivalence to the r-matrix the Grassmann Thirring model is established. Variables of creation-annihilation type are constructed, and the spectrum of elementary excitations of the system is obtained

  9. Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D

    International Nuclear Information System (INIS)

    Huijse, L

    2011-01-01

    We present a full identification of lattice model properties with their field theoretical counterparts in the continuum limit for a supersymmetric model for itinerant spinless fermions on a one-dimensional chain. The continuum limit of this model is described by an N=(2,2) superconformal field theory (SCFT) with central charge c = 1. We identify states and operators in the lattice model with fields in the SCFT and we relate boundary conditions on the lattice to sectors in the field theory. We use the dictionary we develop in this paper to give a pedagogical explanation of a powerful tool to study supersymmetric models based on spectral flow (Huijse 2008 Phys. Rev. Lett. 101 146406). Finally, we employ the developed machinery to explain numerically observed properties of the particle density on the open chain presented in Beccaria and De Angelis (2005 Phys. Rev. Lett. 94 100401)

  10. More supersymmetric standardlike models from intersecting D6-branes on type IIA orientifolds

    International Nuclear Information System (INIS)

    Cvetic, Mirjam; Papadimitriou, Ioannis

    2003-01-01

    We present new classes of supersymmetric standardlike models from a type IIA T 6 /(Z 2 xZ 2 ) orientifold with intersecting D6-branes. D6-branes can wrap general supersymmetric three-cycles of T 6 =T 2 xT 2 xT 2 , and any T 2 is allowed to be tilted. The models still suffer from additional exotics; however, we obtain solutions with fewer Higgs doublets, as well as models with all three families of left-handed quarks and leptons arising from the same intersecting sector, and examples of a genuine left-right symmetric model with three copies of left-handed and right-handed families of quarks and leptons

  11. Targeting the minimal supersymmetric standard model with the compact muon solenoid experiment

    Science.gov (United States)

    Bein, Samuel Louis

    An interpretation of CMS searches for evidence of supersymmetry in the context of the minimal supersymmetric Standard Model (MSSM) is given. It is found that supersymmetric particles with color charge are excluded in the mass range below about 400 GeV, but neutral and weakly-charged sparticles remain non-excluded in all mass ranges. Discussion of the non-excluded regions of the model parameter space is given, including details on the strengths and weaknesses of existing searches, and recommendations for future analysis strategies. Advancements in the modeling of events arising from quantum chromodynamics and electroweak boson production, which are major backgrounds in searches for new physics at the LHC, are also presented. These methods have been implemented as components of CMS searches for supersymmetry in proton-proton collisions resulting in purely hadronic events (i.e., events with no identified leptons) at a center of momentum energy of 13 TeV. These searches, interpreted in the context of simplified models, exclude supersymmetric gluons (gluinos) up to masses of 1400 to 1600 GeV, depending on the model considered, and exclude scalar top quarks with masses up to about 800 GeV, assuming a massless lightest supersymmetric particle. A search for non-excluded supersymmetry models is also presented, which uses multivariate discriminants to isolate potential signal candidate events. The search achieves sensitivity to new physics models in background-dominated kinematic regions not typically considered by analyses, and rules out supersymmetry models that survived 7 and 8 TeV searches performed by CMS.

  12. Beta functions and central charge of supersymmetric sigma models with torsion

    International Nuclear Information System (INIS)

    Guadagnini, E.; Mintchev, M.

    1987-01-01

    We present a method for the computation of the renormalization group β-functions and the central charge in two-dimensional supersymmetric sigma models in a gravitational background. The two-loops results are exhibited. We use the Pauli-Villars regularization which preserves supersymmetry and permits an unambiguous treatment of the model with torsion. The central charge we derive for a general manifold is in agreement with the expression found on group manifolds. (orig.)

  13. arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere

    CERN Document Server

    Closset, Cyril; Seong, Rak-Kyeong

    2018-05-04

    It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.

  14. Baryon-number generation in supersymmetric unified models: the effect of supermassive fermions

    International Nuclear Information System (INIS)

    Kolb, E.W.; Raby, S.

    1983-01-01

    In supersymmetric unified models, baryon-number-violating reactions may be mediated by supermassive fermions in addition to the usual supermassive bosons. The effective low-energy baryon-number-violating cross section for fermion-mediated reactions is sigma/sub DeltaB/approx.g 4 /m 2 , where g is a coupling constant and m is the supermassive fermion mass, as opposed to sigma/sub DeltaB/approx.g 4 s/m 4 for scalar- or vector-mediated reactions (√s is the center-of-mass energy). Since the fermion-mediated cross section is larger at low energy, it is more effective at damping the baryon number produced in decay of the supermassive particles. In this paper we calculate baryon-number generation in models with fermion-mediated baryon-number-violating reactions, and discuss implications for supersymmetric model building

  15. Application to supersymmetric models of Dirac-kaehler formalism on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.

    1987-01-01

    Using Dirac-Kaehler techniques we formulate some supersymmetric models on the lattice. Specifically we consider the Wess-Zumino model with N=2 in two dimensions which is formulated on a space lattice in its Hamiltonian version (continuous time) as well as on the space-time lattice in its Lagrangean version (euclidean space). On the space lattice (Hamiltonian formulation) we study also the supersymmetric Yanh-Mills model with N=4 in four dimensions. After the introduction of lattice covariant derivatives for fields in the adjoint representation of a compact group we write down some new relations which we have obtained and which constitute generalizations on the lattice of those which are known in the continuous case. (author) [pt

  16. Stochastic quantization of field theories on the lattice and supersymmetrical models

    International Nuclear Information System (INIS)

    Aldazabal, Gerardo.

    1984-01-01

    Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es

  17. BRST with background field method of the (4,0) supersymmetric σ-model in two dimensions

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1988-08-01

    A manifestly covariant background field formalism for (4,0) supersymmetric non-linear σ-model in two dimensions is presented. The BRST argument is used in order to obtain Faddeev-Popov ghost terms. (author). 13 refs

  18. Horizontal, anomalous U(1) symmetry for the more minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Nelson, A.E.; Wright, D.

    1997-01-01

    We construct explicit examples with a horizontal, open-quotes anomalousclose quotes U(1) gauge group, which, in a supersymmetric extension of the standard model, reproduce qualitative features of the fermion spectrum and CKM matrix, and suppress FCNC and proton decay rates without the imposition of global symmetries. We review the motivation for such open-quotes moreclose quotes minimal supersymmetric standard models and their predictions for the sparticle spectrum. There is a mass hierarchy in the scalar sector which is the inverse of the fermion mass hierarchy. We show in detail why ΔS=2 FCNCs are greatly suppressed when compared with naive estimates for nondegenerate squarks. copyright 1997 The American Physical Society

  19. Low-temperature specific heat of the degenerate supersymmetric t-J model in one dimension

    International Nuclear Information System (INIS)

    Lee, K.; Schlottmann, P.

    1996-01-01

    We consider the one-dimensional SU(N)-invariant t-J model, which consists of electrons with N spin components on a lattice with nearest-neighbor hopping t constrained by the excluded multiple occupancy of the sites and spin-exchange J between neighboring lattice sites. The model is integrable and has been diagonalized in terms of nested Bethe ansatze at the supersymmetric point t=J. The low-T specific heat is proportional to T. The γ-coefficient is extracted from the thermodynamic Bethe-ansatz equations and is expressed in terms of the spin wave velocities and the group velocity of the charges for arbitrary N, band filling, and splitting of the levels (magnetic and crystalline fields). Our results contain the following special cases: (i) For N=2 the traditional spin-1/2 supersymmetric t-J model, (ii) for exactly one electron per site the SU(N)-Heisenberg chain, and (iii) for N=4 the two-band supersymmetric t-J model with crystalline field splitting. copyright 1996 American Institute of Physics

  20. Signals of dark matter in a supersymmetric two dark matter model

    International Nuclear Information System (INIS)

    Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi

    2011-01-01

    Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively

  1. Family of fish-eye-related models and their supersymmetric partners

    International Nuclear Information System (INIS)

    Makowski, Adam J.

    2010-01-01

    A large family of potentials related to the Maxwell fish-eye model is derived with the help of conformal mappings. It is shown that the whole family admits square-integrable E=0 solutions of the Schroedinger equation for discrete values of the coupling constant. A corresponding supersymmetric family of partner potentials to the preceding ones is derived as well. Some applications of the considered potentials are also discussed.

  2. Decay properties of heavy leptons in the supersymmetric model of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Egorian, Ed.

    1979-01-01

    Decay properties of heavy leptons in the SU(2)xSU(2)xU(1) supersymmetric model of weak and electromagnetic interactions are studied. l anti νsub(e)ν leptonic and ν(νsup(c))h semihadronic decays, where l are leptons and h are hadrons, are considered. The partial and total decay rates and the production in p anti p collision of one of them are estimated for various values of its mass

  3. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    International Nuclear Information System (INIS)

    Aoki, Shuntaro; Yamada, Yusuke

    2015-01-01

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two

  4. Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Yasuaki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Wada, Taiki [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)

    2017-03-08

    We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.

  5. Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Wada, Taiki

    2017-01-01

    We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.

  6. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    Science.gov (United States)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  7. Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions

    CERN Document Server

    Ellis, Jonathan Richard; Zwirner, F; Ellis, John; Ridolfi, Giovanni; Zwirner, Fabio

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models.

  8. Higgs boson properties in the Standard Model and its supersymmetric extensions

    International Nuclear Information System (INIS)

    Ellis, J.; Ridolfi, G.; Zwirner, F.

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its 5 physical Higgs bosons. Finally, we discuss some non-minimal models. (authors)

  9. An Exactly Solvable Supersymmetric Model of Semimagic Nuclei

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac

    2008-01-01

    A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.

  10. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan Rainer

    2011-09-15

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and

  11. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    International Nuclear Information System (INIS)

    Liebler, Stefan Rainer

    2011-09-01

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in

  12. Renormalization of supersymmetric theories

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1998-06-01

    The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses

  13. Supersymmetric field-theoretic models on a supermanifold

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.H.T. [Centro de Estudos de Fisica Teorica, Belo Horizonte, MG (Brazil); Polito, Caio M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas

    2003-04-01

    We propose an extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a super manifold. (author)

  14. Anomaly mediated supersymmetric models and Higgs data from the LHC

    CERN Document Server

    Arbey, A; Mahmoudi, F; Tarhini, A

    2013-01-01

    Anomaly mediation models are well motivated supersymmetry breaking scenarios which appear as alternatives to the mSUGRA paradigm. These models are quite compelling from the theoretical point of view and it is therefore important to test if they are also viable models for phenomenology. We perform a study of these models in the light of all standard flavour, collider and dark matter constraints, including also the recent Higgs boson measurements for the mass and signal strengths in the different decay channels. The minimal AMSB scenario can satisfy in part of its parameter space the dark matter requirement but is only marginally consistent with the current Higgs boson mass value. The HyperCharge-AMSB and Mixed Moduli-AMSB scenarios can better describe present data from dark matter, flavour, low energy physics and are consistent with the measured mass of the Higgs boson. The inclusion of the preferred signal strengths for the Higgs boson decay channels shows that for tan(beta) > 5 the HC-AMSB and MM-AMSB models...

  15. Sneutrino warm inflation in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Bastero-Gil, Mar; Berera, Arjun

    2005-01-01

    The model of RH neutrino fields coupled to the MSSM is shown to yield a large parameter regime of warm inflation. In the strong dissipative regime, it is shown that inflation, driven by a single sneutrino field, occurs with all field amplitudes below the Planck scale. Analysis is also made of leptogenesis, neutrino mass generation and gravitino constraints. A new warm inflation scenario is purposed in which one scalar field drives a period of warm inflation and a second field drives a subsequent phase of reheating. Such a model is able to reduce the final temperature after inflation, thus helping to mitigate gravitino constraints

  16. Massive (p,q)-supersymmetric sigma models revisited

    International Nuclear Information System (INIS)

    Papadopoulos, G.

    1994-06-01

    We recently obtained the conditions on the couplings of the general two-dimensional massive sigma-model required by (p,q)-supersymmetry. Here wer compute the Poisson bracket algebra of the supersymmetry and central Noether charges, and show that the action is invariant under the automorphism group of this algebra. Surprisingly, for the (4,4) case the automorphism group is always a subgroup of SO(3), rather than SO(4). We also re-analyse the conditions for (2,2) and 4,4) supersymmetry of the zero torsion models without assumptions about the central charge matrix. (orig.)

  17. The quantum mechanics of the supersymmetric nonlinear sigma-model

    International Nuclear Information System (INIS)

    Davis, A.C.; Macfarlane, A.J.; Popat, P.C.; Holten, J.W. van

    1984-01-01

    The classical and quantum mechanical formalisms of the models are developed. The quantisation is done in such a way that the quantum theory can be represented explicitly in as simple a form as possible, and the problem of ordering of operators is resolved so as to maintain the supersymmetry algebra of the classical theory. (author)

  18. Non-generic couplings in supersymmetric standard models

    Directory of Open Access Journals (Sweden)

    Evgeny I. Buchbinder

    2015-09-01

    Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  19. On two-particle N=1 supersymmetric composite grand unified models

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1984-01-01

    A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields

  20. Repetition of the quark-lepton states in a supersymmetric composite model with complementarity

    International Nuclear Information System (INIS)

    Yamada, Hirofumi; Yasue, Masaki.

    1986-04-01

    In a supersymmetric composite model based on an SU(4) sc loc confining theory, complementarity is used to support the symmetry-breaking pattern and spectrum of massless particles in a confining phase. The model is found to accommodate two generations of quarks and leptons as quasi Nambu-Goldstone fermions and another two generations as chiral fermions. Masses of composite particles are examined and the quark-lepton generations are classified according to possible mass splittings. The suppression of dangerous flavor-changing interactions is also considered. (author)

  1. Two loop effective Kahler potential of (non)-renormalizable supersymmetric models

    International Nuclear Information System (INIS)

    Groot Nibbelink, S.; Nyawelo, T.S.

    2005-10-01

    We perform a supergraph computation of the effective Kahler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kahler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kahler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics. (author)

  2. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    Wit, B. de; Tollsten, A.K.; Nicolai, H.

    1993-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  3. Superfield Lax formalism of supersymmetric sigma model on symmetric spaces

    International Nuclear Information System (INIS)

    Saleem, U.; Hassan, M.

    2006-01-01

    We present a superfield Lax formalism of the superspace sigma model based on the target space G/H and show that a one-parameter family of flat superfield connections exists if the target space G/H is a symmetric space. The formalism has been related to the existence of an infinite family of local and non-local superfield conserved quantities. A few examples have been given to illustrate the results. (orig.)

  4. A supersymmetric D4 model for μ-τ symmetry

    Science.gov (United States)

    Adulpravitchai, A.; Blum, A.; Hagedorn, C.

    2009-03-01

    We construct a supersymmeterized version of the model presented by Grimus and Lavoura (GL) in \\cite{GL1} which predicts θ23 maximal and θ13 = 0 in the lepton sector. For this purpose, we extend the flavor group, which is D4 × Z2(aux) in the original model, to D4 × Z5. An additional difference is the absence of right-handed neutrinos. Despite these changes the model is the same as the GL model, since θ23 maximal and θ13 = 0 arise through the same mismatch of D4 subgroups, D2 in the charged lepton and Z2 in the neutrino sector. In our setup D4 is solely broken by gauge singlets, the flavons. We show that their vacuum structure, which leads to the prediction of θ13 and θ23, is a natural result of the scalar potential. We find that the neutrino mass matrix only allows for inverted hierarchy, if we assume a certain form of spontaneous CP violation. The quantity |mee|, measured in neutrinoless double beta decay, is nearly equal to the lightest neutrino mass m3. The Majorana phases phi1 and phi2 are restricted to a certain range for m3lesssim0.06 eV. We discuss the next-to-leading order corrections which give rise to shifts in the vacuum expectation values of the flavons. These induce deviations from maximal atmospheric mixing and vanishing θ13. It turns out that these deviations are smaller for θ23 than for θ13.

  5. A supersymmetric standard model from a local E6 GUT

    International Nuclear Information System (INIS)

    Braam, Felix Klaus

    2012-02-01

    In this thesis we have investigated to what extent the exceptional Lie-group E 6 can serve as unified gauge group. In the presence of the full E 6 matter content, unifcation can be realized by increasing the degree of gauge symmetry above some intermediate scale. We found that a full E 6 gauge invariant theory is disfavoured by phenomenological observations like proton stability and the smallness of flavour changing neutral currents. An appropriate framework to embed E 6 into a model for particle physics are higher dimensional orbifold constructions, where E 6 is the gauge group in the bulk and the intermediate symmetry group is the common subset of E 6 subgroups residing at the fixed-points of the orbifold. In this way the degree of symmetry in four space-time dimensions is reduced, such that the operators leading to the aforementioned dsastrous phenomenological consequences can be forbidden independently. In order to derive the implications of the model for the current experiments at the Large Hadron Collider (LHC), we developed an automated spectrum generator. It uses Monte-Carlo Markov-Chain techniques to cope with the high dimensionality of the space of input parameters and the complex interdependencies in the evolution of the Lagrangian parameters from the orbifold compactification scale to the TeV scale. For the spectra obtained with this program, we performed Monte-Carlo simulations of the production and decay of the Z ' boson stemming from the additional U(1) ' , using our own implementation of the model into the event generator WHIZARD.

  6. Double suppression of FCNCs in a supersymmetric model

    International Nuclear Information System (INIS)

    Kajiyama, Yuji

    2004-01-01

    A concrete model which can suppress FCNCs and CP violating phenomena is suggested. It is S 3 symmetric extension of MSSM in extra dimensions where only SU(2) and SU(3) gauge multiplet are assumed to propagate in the bulk. They are suppressed due to S 3 flavor symmetry at M SUSY , and the infrared attractive force of gauge interaction in extra dimensions are used to suppress them at the compactification scale. We find that O(1) disorders of the soft parameters are allowed at the cut-off scale to suppress FCNCs and CP violating phenomena. (author)

  7. Double suppression of FCNCs in a supersymmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Yuji [Kanazawa Univ., Dept. of Physics, Kanazawa, Ishikawa (Japan)

    2004-12-01

    A concrete model which can suppress FCNCs and CP violating phenomena is suggested. It is S{sub 3} symmetric extension of MSSM in extra dimensions where only SU(2) and SU(3) gauge multiplet are assumed to propagate in the bulk. They are suppressed due to S{sub 3} flavor symmetry at M{sub SUSY}, and the infrared attractive force of gauge interaction in extra dimensions are used to suppress them at the compactification scale. We find that O(1) disorders of the soft parameters are allowed at the cut-off scale to suppress FCNCs and CP violating phenomena. (author)

  8. Radiative breaking of the minimal supersymmetric left–right model

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2016-05-01

    Full Text Available We study a variation to the SUSY Left–Right symmetric model based on the gauge group SU(3c×SU(2L×SU(2R×U(1BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU(2R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU(2R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU(2R×U(1BL→U(1Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU(2R×U(1BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.

  9. Phenomenological study of the minimal R-symmetric supersymmetric standard model

    International Nuclear Information System (INIS)

    Diessner, Philip

    2016-01-01

    The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement

  10. Phenomenological study of the minimal R-symmetric supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Diessner, Philip

    2016-10-20

    The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement

  11. Constraints on supersymmetric flavour models from b→sγ

    International Nuclear Information System (INIS)

    Olive, Keith A.; Velasco-Sevilla, L.

    2008-01-01

    We consider the effects of departures from minimal flavour violations (MFV) in the context of CMSSM-like theories. Second and third generation off-diagonal elements in the Yukawa, sfermion, and trilinear mass matrices are taken to be non-zero at the GUT scale. These are run down together with MSSM parameters to the electroweak scale. We apply constraints from fermion masses and CKM matrix elements to limit the range of the new free parameters of the model. We determine the effect of the departure from MFV on the branching ratio of b→s γ. We find that only when the expansion parameter in the down-squark sector is relatively large there is a noticeable effect, which tends to relax the lower limit from b→s γ on the universal gaugino mass. We also find that the expansion parameter associated with the slepton sector needs to be smaller than the corresponding parameter in the down-squark sector in order to be compliant with the bound imposed by the branching ratio of τ→μγ.

  12. Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model.

    Science.gov (United States)

    Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam

    2003-03-07

    We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.

  13. Anomaly-free gauges in superstring theory and double supersymmetric sigma-model

    International Nuclear Information System (INIS)

    Demichev, A.P.; Iofa, M.Z.

    1991-01-01

    Superharmonic gauge which is a nontrivial analog of the harmonic gauge in bosonic string theory is constructed for the fermionic superstrings. In contrast to the conformal gauge, the harmonic gauge in bosonic string and superharmonic gauge in superstring theory are shown to be free from previously discovered BRST anomaly (in critical dimension) in higher orders of string perturbation theory and thus provide the setup for consistent quantization of (super)string theory. Superharmonic gauge appears to be closely connected with the supersymmetric σ-model with the target space being also a supermanifold. 28 refs

  14. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  15. CP asymmetry in tau slepton decay in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Yang Weimin; Du Dongsheng

    2002-01-01

    We investigate CP violation asymmetry in the decay of a tau slepton into a tau neutrino and a chargino in the minimal supersymmetric standard model. The new source of CP violation is the complex mixing in the tau slepton sector. The rate asymmetry between the decays of the tau slepton and its CP conjugate process can be of the order of 10 -3 in some region of the parameter space of the minimal supergravity scenario, which will possibly be detectable in near-future collider experiments

  16. A supersymmetric matrix model: II. Exploring higher-fermion-number sectors

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    Continuing our previous analysis of a supersymmetric quantum-mechanical matrix model, we study in detail the properties of its sectors with fermion number F=2 and 3. We confirm all previous expectations, modulo the appearance, at strong coupling, of {\\it two} new bosonic ground states causing a further jump in Witten's index across a previously identified critical 't Hooft coupling $\\lambda_c$. We are able to elucidate the origin of these new SUSY vacua by considering the $\\lambda \\to \\infty$ limit and a strong coupling expansion around it.

  17. Solving the flavour problem in supersymmetric Standard Models with three Higgs families

    International Nuclear Information System (INIS)

    Howl, R.; King, S.F.

    2010-01-01

    We show how a non-Abelian family symmetry Δ 27 can be used to solve the flavour problem of supersymmetric Standard Models containing three Higgs families such as the Exceptional Supersymmetric Standard Model (E 6 SSM). The three 27-dimensional families of the E 6 SSM, including the three families of Higgs fields, transform in a triplet representation of the Δ 27 family symmetry, allowing the family symmetry to commute with a possible high energy E 6 symmetry. The Δ 27 family symmetry here provides a high energy understanding of the Z 2 H symmetry of the E 6 SSM, which solves the flavour changing neutral current problem of the three families of Higgs fields. The main phenomenological predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate LSPs and two almost degenerate families of colour triplet D-fermions, providing a clear prediction for the LHC. In addition the model predicts PGBs with masses below the TeV scale, and possibly much lighter, which appears to be a quite general and robust prediction of all models based on the D-term vacuum alignment mechanism.

  18. Topics in supersymmetric theories

    International Nuclear Information System (INIS)

    Nemeschansky, D.D.

    1984-01-01

    This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds

  19. Supersymmetric Fits after the Higgs Discovery and Implications for Model Building

    CERN Document Server

    Ellis, John

    2014-01-01

    The data from the first run of the LHC at 7 and 8 TeV, together with the information provided by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment, provide important constraints on supersymmetric models. Important information is provided by the ATLAS and CMS measurements of the mass of the Higgs boson, as well as the negative results of searches at the LHC for events with missing transverse energy accompanied by jets, and the LHCb and CMS measurements off BR($B_s \\to \\mu^+ \\mu^-$). Results are presented from frequentist analyses of the parameter spaces of the CMSSM and NUHM1. The global $\\chi^2$ functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs mass and the missing transverse energy search, with best-fit values that are comparable to the $\\chi^2$ for the Standard Model. The $95\\%$ CL lower...

  20. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  1. The neutralino sector in the U(1)-extended supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National Univ., Jeonju (Korea). Dept. of Physics and RIPC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Haber, H.E. [California Univ., Santa Cruz, CA (United States). SCIPP; Kalinowski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics; Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[California Univ., Santa Cruz, CA (United States). SCIPP

    2006-12-15

    Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e{sup +}e{sup -} colliders are also discussed. (orig.)

  2. A Minimal Supersymmetric Model of Particle Physics and the Early Universe

    CERN Document Server

    Buchmüller, W; Kamada, K; Schmitz, K

    2014-01-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local $B$$-$$L$, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken $B$$-$$L$ symmetry, which ends in tachyonic preheating, i.e.\\ the decay of the false vacuum, followed by a matter dominated phase with heavy $B$$-$$L$ Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of g...

  3. A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model

    Science.gov (United States)

    Yamaguchi, Masahiro; Yin, Wen

    2018-02-01

    Discarding the prejudice about fine tuning, we propose a novel and efficient approach to identify relevant regions of fundamental parameter space in supersymmetric models with some amount of fine tuning. The essential idea is the mapping of experimental constraints at a low-energy scale, rather than the parameter sets, to those of the fundamental parameter space. Applying this method to the non-universal Higgs mass model, we identify a new interesting superparticle mass pattern where some of the first two generation squarks are light whilst the stops are kept heavy as 6 TeV. Furthermore, as another application of this method, we show that the discrepancy of the muon anomalous magnetic dipole moment can be filled by a supersymmetric contribution within the 1{σ} level of the experimental and theoretical errors, which was overlooked by previous studies due to the extremely fine tuning required.

  4. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    Energy Technology Data Exchange (ETDEWEB)

    de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  5. A K-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu; Walker, J.W. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: jwalker@physics.tamu.edu

    2005-10-06

    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1){sub X} factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)

  6. Twining genera of (0,4) supersymmetric sigma models on K3

    International Nuclear Information System (INIS)

    Harrison, Sarah; Kachru, Shamit; Paquette, Natalie M.

    2014-01-01

    Conformal field theories with (0,4) worldsheet supersymmetry and K3 target can be used to compactify the E 8 ×E 8 heterotic string to six dimensions in a supersymmetric manner. The data specifying such a model includes an appropriate configuration of 24 gauge instantons in the E 8 ×E 8 gauge group to satisfy the constraints of anomaly cancellation. In this note, we compute twining genera — elliptic genera with appropriate insertions of discrete symmetry generators in the trace — for (0,4) theories with various instanton embeddings. We do this by constructing linear sigma models which flow to the desired conformal field theories, and using the techniques of localization. We present several examples of such twining genera which are consistent with a moonshine relating these (0,4) models to the finite simple sporadic group M 24

  7. Large scale structure from the Higgs fields of the supersymmetric standard model

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2003-01-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, vertical bar n-1 vertical bar ∼0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum

  8. Supersymmetric mechanics

    International Nuclear Information System (INIS)

    Stelle, Kellogg S

    2007-01-01

    With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research

  9. Spin analysis of supersymmetric particles

    International Nuclear Information System (INIS)

    Choi, S.Y.; Martyn, H.U.

    2006-12-01

    The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)

  10. BPS states in N = 2 supersymmetric G2 and F4 models

    Science.gov (United States)

    Ahl Laamara, R.; Mellal, O.; Saidi, E. H.

    2017-07-01

    In BPS quiver theory of N = 2 supersymmetric pure gauge models with gauge invariance G, primitive BPS quivers Q0G are of two types: Q0ADE and Q0BCFG. In this study, we first show that Q0ADE have outer-automorphism symmetries inherited from the outer-automorphisms of the Dynkin diagrams of ADE Lie algebras. Then, we extend the usual folding operation of Dynkin diagrams ADE → BCFG to obtain the two following things: (i) relate Q0BCFG quivers and their mutations to the Q0ADE ones and their mutations; and (ii) link the BPS chambers of the N = 2ADE theories with the corresponding BCFG ones. As an illustration of this construction, we derive the BPS and anti-BPS states of the strong chambers QstgG2 and QstgF4 of the 4d N = 2 pure G2 and F4 gauge models.

  11. New supersymmetrizations of the generalized KDV hierarchies

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Stanciu, S.

    1993-03-01

    Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)

  12. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Wang, Jie

    2015-01-01

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system

  13. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Wang, Jie, E-mail: wangjie@iun.edu [Department of Computer Information Systems, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  14. Detecting the Higgs bosons of supersymmetric models in Z0 decays

    International Nuclear Information System (INIS)

    Barnett, R.M.; Gamberini, G.

    1990-01-01

    We propose a method to detect the associated pair production, at the Z 0 resonance, of the light scalar and pseudoscalar Higgs bosons predicted by the minimal supersymmetric model. The method would be useful to study Higgs boson masses in the range 15-50 GeV. We consider the banti b-banti b and banti b-τ + τ - decay combinations of the Higgs pair. We exploit the angular distributions of the decay products in order to suppress the background and accurately determine the mass of the two Higgs particles. The number of events is small, but the signals are very distinct, and a limited study strongly suggests that the backgrounds will not obscure the signals. (orig.)

  15. Neutrino masses and b - τ unification in the supersymmetric standard model

    International Nuclear Information System (INIS)

    Vissani, F.; Smirnov, A.Yu.

    1994-05-01

    There are several indications that the Majorana masses of the right-handed neutrino components, M R , are at the intermediate scale: M R ∼ (10 10 - 10 12 ) GeV or even lighter. The renormalization effects due to large Yukawa couplings of neutrinos from region of momenta M R G are studied in the supersymmetric standard model. It is shown that neutrino renormalization effect can increase the m b /m τ ratio up to (10/15)%. This strongly disfavors m b - m τ unification for low values of tan β s . Lower bound on M R and tan β from the b - τ unification condition were found. The implications of the results to the see-saw mechanism of the neutrino mass generation are discussed. (author). 17 refs, 4 figs

  16. The exact mass-gap of the supersymmetric CP$^{N-1}$ sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric \\CP^{n-1} sigma model (n > 1) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=\\sin(\\pi\\Delta)/(\\pi\\Delta) where \\Delta=1/n and m is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  17. The exact mass-gap of the supersymmetric O(N) sigma model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    A formula for the mass-gap of the supersymmetric O(N) sigma model (N>4) in two dimensions is derived: m/\\Lambda_{\\overline{\\rm MS}}=2^{2\\Delta}\\sin(\\pi\\Delta)/(\\pi\\Delta), where \\Delta=1/(N-2) and m is the mass of the fundamental vector particle in the theory. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of Shankar and Witten via the the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD ambiguities.

  18. Lepton electric dipole moments in non-degenerate supersymmetric Seesaw models

    CERN Document Server

    Ellis, Jonathan Richard; Raidal, Martti; Shimizu, Y; Ellis, John; Hisano, Junji; Raidal, Martti; Shimizu, Yasuhiro

    2002-01-01

    In the context of supersymmetric seesaw models of neutrino masses with non-degenerate heavy neutrinos, we show that Dirac Yukawa interactions N^c_i (Y_nu)_{ij} L_j H_2 induce large threshold corrections to the slepton soft masses via renormalization. While still yielding rates for lepton-flavour-violating processes below the experimental bounds, these contributions may increase the muon and electron electric dipole moments d_mu and d_e by several orders of magnitude. In the leading logarithmic approximation, this is due to three additional physical phases in Y_nu, one of which also contributes to leptogenesis. The naive relation d_mu/d_e\\approx -m_mu/m_e is violated strongly in the case of successful phenomenological textures for Y_nu, and the values of d_mu and/or d_e may be within the range of interest for the future experiments.

  19. Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

    Science.gov (United States)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-05-01

    We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

  20. All possible lightest supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    International Nuclear Information System (INIS)

    Grab, Sebastian

    2009-08-01

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b→sγ, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p T muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background at the LHC

  1. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  2. Constraining supersymmetric models using Higgs physics, precision observables and direct searches

    International Nuclear Information System (INIS)

    Zeune, Lisa

    2014-08-01

    We present various complementary possibilities to exploit experimental measurements in order to test and constrain supersymmetric (SUSY) models. Direct searches for SUSY particles have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at ∝126 GeV as well as of the W boson mass (M W ) can provide valuable indirect constraints, supplementing the ones from direct searches. This thesis is divided into three major parts: In the first part we present the currently most precise prediction for M W in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters and in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The evaluation includes the full one-loop result and all relevant available higher order corrections of Standard Model (SM) and SUSY type. We perform a detailed scan over the MSSM parameter space, taking into account the latest experimental results, including the observation of a Higgs signal. We find that the current measurements for M W and the top quark mass (m t ) slightly favour a non-zero SUSY contribution. The impact of different SUSY sectors on the prediction of M W as well as the size of the higher-order SUSY corrections are analysed both in the MSSM and the NMSSM. We investigate the genuine NMSSM contribution from the extended Higgs and neutralino sectors and highlight differences between the M W predictions in the two SUSY models. In the second part of the thesis we discuss possible interpretations of the observed Higgs signal in SUSY models. The properties of the observed Higgs boson are compatible with the SM so far, but many other interpretations are also possible. Performing scans over the relevant parts of the MSSM and the NMSSM parameter spaces and applying relevant constraints from Higgs searches, flavour physics and electroweak measurements, we find that a Higgs boson at ∝126 GeV, which decays into two photons, can in

  3. Instantons in supersymmetric theories

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.

    1982-01-01

    Instanton effects are considered for a sample of supersymmetric theories: quantum mechanics, gluodynamics. Higgs model. The problem is how to reconcile the apparent lack of the boson-fermion symmetry in the effective instanton induced interaction with supersymmetry of the corresponding lagrangians. It is shown that in case of quantum mechanics and Higgs model there is no conflict between supersymmetry and the instanton calculus since the Ward identities, associated with the supersymmetry transformations, are satisfied. In case of supersymmetric gluodynamics the standard instanton calculus explicity violates the Ward identities. This is due to the lack of symmetry in the standard class of classical solutions used in the instanton calculus

  4. Supersymmetric extensions of K field theories

    Science.gov (United States)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2012-02-01

    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.

  5. On the Higgs-like boson in the minimal supersymmetric 3-3-1 model

    Science.gov (United States)

    Ferreira, J. G.; Pires, C. A. de S.; da Silva, P. S. Rodrigues; Siqueira, Clarissa

    2018-03-01

    It is imperative that any proposal of new physics beyond the standard model possesses a Higgs-like boson with 125 GeV of mass and couplings with the standard particles that recover the branching ratios and signal strengths as measured by CMS and ATLAS. We address this issue within the supersymmetric version of the minimal 3-3-1 model. For this we develop the Higgs potential with focus on the lightest Higgs provided by the model. Our proposal is to verify if it recovers the properties of the Standard Model Higgs. With respect to its mass, we calculate it up to one loop level by taking into account all contributions provided by the model. In regard to its couplings, we restrict our investigation to couplings of the Higgs-like boson with the standard particles, only. We then calculate the dominant branching ratios and the respective signal strengths and confront our results with the recent measurements of CMS and ATLAS. As distinctive aspects, we remark that our Higgs-like boson intermediates flavor changing neutral processes and has as signature the decay t → h+c. We calculate its branching ratio and compare it with current bounds. We also show that the Higgs potential of the model is stable for the region of parameter space employed in our calculations.

  6. Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation

    International Nuclear Information System (INIS)

    Hiller, Gudrun; Hochberg, Yonit; Nir, Yosef

    2009-01-01

    We consider supersymmetric models where gauge mediation provides the dominant contributions to the soft supersymmetry breaking terms while gravity mediation provides sub-dominant yet non-negligible contributions. We further assume that the gravity-mediated contributions are subject to selection rules that follow from a Froggatt-Nielsen symmetry. This class of models constitutes an example of viable and natural non-minimally flavor violating models. The constraints from K 0 -K-bar 0 mixing imply that the modifications to the Standard Model predictions for B d -B-bar d and B s - B-bar s mixing are generically at most at the percent level, but can be of order ten percent for large tan β. The modifications for D 0 -D-bar 0 mixing are generically at most of order a few percent, but in a special subclass of models they can be of order one. We point out ΔB = 1 processes relevant for flavor violation in hybrid mediation.

  7. Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, Davide [Dipartimento di Matematica e Fisica, Università di Roma Tre,Via della Vasca Navale 84, 00146 Rome (Italy); Ohlsson, Tommy; Riad, Stella [Department of Physics, School of Engineering Sciences,KTH Royal Institute of Technology - AlbaNova University Center,Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2017-03-08

    We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10{sub H}, 120{sub H}, and 126{sub H} representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M{sub I}. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10{sub H} and 126{sub H} representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.

  8. Supersymmetric models for quarks and leptons with nonlinearly realized E8 symmetry

    International Nuclear Information System (INIS)

    Ong, C.L.

    1985-01-01

    We propose three supersymmetric nonlinear sigma models with global symmetry E 8 . The models can accommodate three left-handed families of quarks and leptons without incurring the Adler-Bell-Jackiw anomaly with respect to either the standard SU(3) x SU(2) x U(1) gauge group, or the SU(5), or SO(10) grand unifying gauge group. They also predict unambiguously a right-handed, fourth family of quarks and leptons. In order to explore the structure of the models, we develop a differential-form formulation of the Kahler manifolds, resulting in general expressions for the curvature tensors and other geometrical objects in terms of the structure constants of the algebra, and the squashing parameters. These results, in turn, facilitate a general method for determining the Lagrangian to quartic order, and so the structure of the inherent four-fermion interactions of the models. We observe that the Kahlerian condition dω = 0 on the fundamental two-form ω greatly reduces the number of the independent squashing parameters. We also point out two plausible mechanisms for symmetry breaking, involving gravity

  9. Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver

    2013-08-02

    We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.

  10. A minimal supersymmetric model of particle physics and the early universe

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-11-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  11. A minimal supersymmetric model of particle physics and the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-11-15

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  12. Supersymmetric Quantum Mechanics and Topology

    International Nuclear Information System (INIS)

    Wasay, Muhammad Abdul

    2016-01-01

    Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.

  13. Supersymmetric lattices

    International Nuclear Information System (INIS)

    Catterall, Simon

    2013-01-01

    Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.

  14. Supersymmetric technicolor

    International Nuclear Information System (INIS)

    Srednicki, M.

    1981-01-01

    I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV

  15. Top quark electric dipole moment in a minimal supersymmetric standard model extension with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10 -19 ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10 -19 ecm could be accessible in collider experiments such as the International Linear Collider.

  16. On SW-minimal models and N=1 supersymmetric quantum Toda-field theories

    International Nuclear Information System (INIS)

    Mallwitz, S.

    1994-04-01

    Integrable N=1 supersymmetric Toda-field theories are determined by a contragredient simple Super-Lie-Algebra (SSLS) with purely fermionic lowering and raising operators. For the SSLA's Osp(3/2) and D(2/1;α) we construct explicitly the higher spin conserved currents and obtain free field representations of the super W-algebras SW(3/2,2) and SW(3/2,3/2,2). In constructing the corresponding series of minimal models using covariant vertex operators, we find a necessary restriction on the Cartan matrix of the SSLA, also for the general case. Within this framework, this restriction claims that there be a minimum of one non-vanishing element on the diagonal of the Cartan matrix. This condition is without parallel in bosonic conformal field theory. As a consequence only two series of SSLA's yield minimal models, namely Osp(2n/2n-1) and Osp(2n/2n+1). Subsequently some general aspects of degenerate representations of SW-algebras, notably the fusion rules, are investigated. As an application we discuss minimal models of SW(3/2, 2), which were constructed with independent methods, in this framework. Covariant formulation is used throughout this paper. (orig.)

  17. Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Hajer, Jan

    2010-06-15

    Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)

  18. Gravitino and scalar τ-lepton decays in supersymmetric models with broken R-parity

    International Nuclear Information System (INIS)

    Hajer, Jan

    2010-01-01

    Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1) Q flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar τ-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar τ-leptons in collider experiments. (orig.)

  19. μ-τ symmetry and charged lepton mass hierarchy in a supersymmetric D4 model

    International Nuclear Information System (INIS)

    Hagedorn, C.; Ziegler, R.

    2010-01-01

    In this paper we discuss a supersymmetric D 4 xZ 5 model which leads to vanishing reactor mixing angle θ 13 =0 and maximal atmospheric mixing θ 23 =π/4 in the lepton sector at leading order, due to the preservation of nontrivial distinct D 4 subgroups in the charged lepton and neutrino sectors, respectively. The solar mixing angle θ 12 remains undetermined and is expected to be of order one. Since right-handed charged leptons transform as singlets under D 4 , the charged lepton mass hierarchy can be naturally accounted for. The model predicts inverted mass hierarchy for neutrinos. Additionally, we show that, unlike in most of the other models of this type, all vacuum expectation values of gauge singlets (flavons) can be determined through mass parameters of the superpotential. Next-to-leading order corrections to lepton masses and mixings are calculated and shown to be under control; in particular, the corrections to θ 23 =π/4 and θ 13 =0 are of the order of the generic expansion parameter ε≅0.04 and arise dominantly from the charged lepton sector.

  20. Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Brahmachari, B.

    1996-03-01

    Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab

  1. Study of Higgs self couplings of a supersymmetric E6 model at the international linear collider

    International Nuclear Information System (INIS)

    Ham, S. W.; Han, K. D.; Lee, J. I.; Oh, S. K.

    2010-01-01

    We study the Higgs self couplings of a supersymmetric E 6 model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in e + e - collisions at the International Linear Collider (ILC) via the double Higgs-strahlung process. For the center of mass energy of 500 GeV with an integrated luminosity of 500 fb -1 and an efficiency of 20%, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via the double Higgs-strahlung process.

  2. Z-Z' mass hierarchy in a supersymmetric model with a secluded U(1)'-breaking sector

    International Nuclear Information System (INIS)

    Erler, Jens; Langacker, Paul; Li Tianjun

    2002-01-01

    We consider the Z ' /Z mass hierarchy in a supersymmetric model in which the U(1) ' is broken in a secluded sector coupled to the ordinary sector only by gauge and possibly soft terms. A large mass hierarchy can be achieved while maintaining the normal sparticle spectra if there is a direction in which the tree level potential becomes flat when a particular Yukawa coupling vanishes. We describe the conditions needed for the desired breaking pattern, to avoid unwanted global symmetries, and for an acceptable effective μ parameter. The electroweak breaking is dominated by A terms rather than scalar masses, leading to tan β≅1. The spectrum of the symmetry breaking sector is displayed. There is significant mixing between the MSSM particles and new standard model singlets, for both the Higgs scalars and the neutralinos. A larger Yukawa coupling for the effective μ parameter is allowed than in the NMSSM because of the U(1) ' contribution to the running from a high scale. The upper bound on the tree-level mass of the lightest CP even Higgs doublet mass is about cx174 GeV, where c is of order unity, but the actual mass eigenvalues are generally smaller because of singlet mixing

  3. A non Supersymmetric SO(10) Grand Unified Model for All the Physics below $M_{GUT}$

    CERN Document Server

    Altarelli, Guido

    2013-01-01

    We present a renormalizable non supersymmetric Grand Unified SO(10) model which, at the price of a large fine tuning, is compatible with all compelling phenomenological requirements below the unification scale and thus realizes a minimal extension of the SM, unified in SO(10) and describing all known physics below $M_{GUT}$. These requirements include coupling unification at a large enough scale to be compatible with the bounds on proton decay; a Yukawa sector in agreement with all the data on quark and lepton masses and mixings and with leptogenesis as the origin of the baryon asymmetry of the Universe; an axion arising from the Higgs sector of the model, suitable to solve the strong CP problem and to account for the observed amount of Dark Matter. The above constraints imposed by the data are very stringent and single out a particular breaking chain with the Pati-Salam group at an intermediate scale $M_I\\sim10^{11}$ GeV.

  4. The t-J model at small t/j: Numerical, perturbative, and supersymmetric results

    International Nuclear Information System (INIS)

    Barnes, T.; Tennessee Univ., Knoxville, TN

    1991-02-01

    We discuss some recent results for one- and two-hole states in the t-J model at small t/J. These include numerical results (bandwidth determinations and accurate t/J values for 4 x 4 lattice one-hole ground-state level crossings), hopping-parameter perturbation theory (which gives the small-t/J one-hole bandwidth in terms of the static-vacancy ground state), and results at the supersymmetric point t/J = 1/2 (exact results for energies and bandwidths.) The perturbative results leads us to a new conjecture regarding the staggered magnetization of higher-spin states in the two-dimensional Heisenberg model. We also discuss extrapolation of small-t/J results to high-T c parameter values; in the two-hole ground states we find (t/J) λ behavior in the rms hole-hole separation, and an extrapolation to t/J = 3 gives a bulk-limit rms hole-hole separation of ∼ 7 angstrom. 18 refs., 6 figs

  5. Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics

    2012-01-15

    The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)

  6. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  7. Phases of QCD

    International Nuclear Information System (INIS)

    Roessner, Simon

    2009-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  8. The nucleon as a projected chiral soliton: vacuum and medium properties

    International Nuclear Information System (INIS)

    Fiolhais, M.; Alberto, P.; Ruiz Arriola, E.; Christov, C.V.; Bylgarska Akademiya na Naukite, Sofia

    1990-01-01

    Nucleon properties and nucleon form factors are computed within the framework of the projected linear chiral soliton model. To this end the Gell-Mann - Levy lagrangian is solved by means of variational methods which include angular momentum and isospin projection with trial quark-boson Fock states in generalized hedgehog configurations. The consistency of the treatment is checked by the fulfillment of virial theorems such as Goldberger-Treiman relation. In general the q 2 dependence of the nucleon form factors are well described although some of their values at zero momentum transfer come out too large, namely for the axial- and πN N- form factors. Electromagnetic form factors for the N - Δ transition are also calculated and compared with the available experimental data. Medium effects on the nucleon properties are investigated combining the projected chiral soliton model with the Nambu-Jona-Lasinio model. The latter is employed to compute the pion decay constant and the pion and sigma masses at finite medium density. These meson properties fix the parameters in the linear sigma model, which is then solved using the same variational methods as for the zero density. The nucleon mass shows a decrease of 17% and the proton radius an increase of 19% if the medium reaches nuclear matter density. The magnetic moments and g A are less affected by the medium. The nucleon electromagnetic form factors show remarkable changes at finite transfer numbers as well. (author)

  9. Electromagnetic properties of the pion as a composite Nambu-Goldstone boson

    International Nuclear Information System (INIS)

    Ito, H.; Buck, W.W.; Gross, F.

    1992-01-01

    Motivated by the Nambu--Jona-Lasinio model of light mesons, we introduce a covariant separable interaction to model the structure of relativistic quark-antiquark systems. The Schwinger-Dyson equation for the quark self-energy is solved analytically, generating a dynamical quark mass through spontaneous breaking of chiral symmetry, and yielding a pion which has zero mass in the chiral limit. The Bethe-Salpeter vertex function for this q bar q pion, which has a momentum distribution and composite structure associated with the interaction, is obtained analytically. Using this vertex function, and a similar one for the ρ meson, we calculate the electromagnetic observables of this composite Nambu-Goldstone boson, including effects from ρ-meson dominance processes. Our calculation takes the composite structure of the mesons into account. The ρ-meson effects are found to be very small in the pion charge form factor, but substantial in the charge radius. Using the model, predictions are made for γ * π 0 →γ and ρπγ transition form factors

  10. The ρππ form factor in the decays ω, φ → 3π and η,KL → π+ π- γ

    International Nuclear Information System (INIS)

    Volkov, M.K.; Osipov, A.A.

    1992-01-01

    The processes ω → 3π, φ → 3π, η → π + π - γ, and K L → π + π - γ have been studied for a long time and from various points of view both in theoretical and in experimental elementary-particle physics. However, appreciable changes have occurred recently in the experimental data on the decays ω → 3π and η → π + π - . The width of the first decay has decreased by 20%, and that of the second has increased by 40%. In this work, taking account of the new data, the authors give a self-consistent description of these processes within the framework of the quark model of superconducting type (QMST) proposed by them. This model is a variety of the well-known Nambu-Jona-Lasinio quark model. They shall take into account all the main effects which have an appreciable influence on the final results. The important role played by the nondiagonal π-α 1 transitions on external lines of quark box diagrams and by the form factor of the ρππ vertex in pole diagrams is shown

  11. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  12. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  13. Goldstone bosons in a crystalline chiral phase

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marco

    2017-07-24

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  14. Goldstone bosons in a crystalline chiral phase

    International Nuclear Information System (INIS)

    Schramm, Marco

    2017-01-01

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  15. Light-front realization of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Itakura, Kazunori; Maedan, Shinji

    2001-01-01

    We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)

  16. Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel

    2017-07-01

    In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.

  17. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Gongyo, Shinya

    2017-01-01

    We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.

  18. The nucleon as soliton in an effective chiral theory with polarized Dirac sea

    International Nuclear Information System (INIS)

    Meissner, T.

    1991-07-01

    We consider the Nambu-Jona-Lasinio model for SU(2) flavor with N F = 3 color degrees of freedom and a current mass m o =m u =m d , which interact via scalar-isoscalar and pseudoscalar-isovectorial 4-point coupling of the strength G. We show that it is for the soft-poin limit essentially equivalent to treat the 4-quark theory in the HFA+BSE and the bozonized theory with classical meson fields, if the collective field π with the physical pion. By the requirement that in the vacuum the experimental values for the pion mass m π =139 MeV and the weak pion decay constant f π =93 MeV are reproduced finally only one free parameter remains, which is in our case the constituent quark mass M. All other parameters and vacuum quantities can be calculated as function of M. We do this for the UV cut-off parameter Λ, the 4-quark coupling strength G, the quark current mass m O as well as the vacuum condensate (anti qq)v. Thereby especially the influence of the regularization scheme on m O and (anti q)v is studied. For the construction of states with good spin and isospin quantum numbers we apply the semiclassical cranking procedure. Finally we compare the NJL with the chiral sigma model of Gell-Mann and Levi, which is connected with the NJL by the gradient respectively heat-kernel expansion. (orig./HSI) [de

  19. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Laboratory of Physics of Living Matter, Far Eastern Federal University,Vladivostok (Russian Federation); Gongyo, Shinya [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Theoretical Research Division, Nishina Center, RIKEN,Saitama (Japan)

    2017-01-30

    We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.

  20. Color superconductivity in compact stellar hybrid configurations

    Science.gov (United States)

    Ranea-Sandoval, Ignacio F.; Orsaria, Milva G.; Han, Sophia; Weber, Fridolin; Spinella, William M.

    2017-12-01

    The discovery of pulsars PSR J1614-2230 and PSR J0348+0432 with masses of around 2 M⊙ imposes strong constraints on the equations of state of cold, ultradense matter. If a phase transition from hadronic matter to quark matter were to occur in the inner cores of such massive neutron stars, the energetically favorable state of quark matter would be a color superconductor. In this study, we analyze the stability and maximum mass of such neutron stars. The hadronic phase is described by nonlinear relativistic mean-field models, and the local Nambu-Jona Lasinio model is used to describe quark matter in the 2SC+s quark phase. The phase transition is treated as a Maxwell transition, assuming a sharp hadron-quark interface, and the "constant-sound-speed" (CSS) parametrization is employed to discuss the existence of stellar twin configurations. We find that massive neutron stars such as J1614-2230 and J0348+0432 can only exist on the connected stellar branch but not on the disconnected twin-star branch. The latter can only support stars with masses that are strictly below 2 M⊙ .

  1. Soft deconfinement — critical phenomena at the Mott transition in a field theory for quarks and mesons

    Science.gov (United States)

    Hüfner, J.; Klevansky, S. P.; Rehberg, P.

    1996-02-01

    Critical phenomena associated with Mott transitions are investigated in the finite temperature SUf(3) Nambu-Jona-Lasinio model, that describes quarks u, d, s and bound mesons π, K. Critical exponents for the behavior close to the Mott temperature TM are determined for the static properties of a pion, such as mπ( T), gπqq( T), fπ( T), π, and the pion polarizabilities αC, N, as well as for the behavior of mK( T), gKqs( T) fK( T) in the strange sector. The effect of the Mott transitions on the q overlineq and ππ scattering lengths and for hadronization cross sections σ q overlineq→ππ (T) is discussed. Divergencies that occur in these quantities at TM indicate an intransparence with respect to hadronic and photonic probes, much like the phenomenon of critical opalescence. Physically, the Mott transition models the deconfinement transition expected of QCD since it corresponds to a delocalizayion of the bound states when the temperature is raised above TM.

  2. Dark Matter in B – L supersymmetric Standard Model with inverse seesaw

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, W. [Department of Mathematics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Khalil, S., E-mail: awaleed@sci.cu.edu.eg, E-mail: s.khalil@zewailcity.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Giza 12588 (Egypt)

    2017-04-01

    We show that the B – L Supersymmetric Standard Model with Inverse Seesaw (BLSSMIS) provides new Dark Matter (DM) candidates (lightest right-handed sneutrino and lightest B – L neutralino) with mass of order few hundreds GeV, while most of other SUSY spectrum can be quite heavy, consistently with the current Large Hadron Collider (LHC) constraints. We emphasize that the thermal relic abundance and direct detection experiments via relic neutralino scattering with nuclei impose stringent constraints on the B – L neutralinos. These constraints can be satisfied by few points in the parameter space where the B – L lightest neutralino is higgsino-like, which cannot explain the observed Galactic Center (GC) gamma-ray excess measured by Fermi-LAT. The lightest right-handed sneutrino DM is analysed. We show that for a wide region of parameter space the lightest right-handed sneutrino, with mass between 80 GeV and 1.2 TeV, can satisfy the limits of the relic abundance and the scattering cross section with nuclei. We also show that the lightest right-handed sneutrino with mass O(100) GeV can account for the observed GC gamma-ray results.

  3. Exact scattering in the SU(n) supersymmetric principal chiral model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1997-01-01

    The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...

  4. Large N dynamics in QED in a magnetic field

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A.

    2003-01-01

    The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large number of the fermion flavor N in the framework of 1/N expansion. The existence of a threshold value N thr , dividing the theories with essentially different dynamics, is established. For the number of flavors N thr , the dynamical mass is very sensitive to the value of the coupling constant α b , related to the magnetic scale μ=√(vertical bar eB vertical bar). For N of the order of N thr or larger, a dynamics similar to that in the Nambu-Jona-Lasinio model with a cutoff of the order of √(vertical bar eB vertical bar) and the dimensional coupling constant G∼1/(N vertical bar eB vertical bar) takes place. In this case, the value of the dynamical mass is essentially α b independent (the dynamics with an infrared stable fixed point). The value of N thr separates a weak coupling dynamics (with α-tilde b ≡Nα b b > or approx. 1) and is of the order of 1/α b

  5. Loop corrections and other many-body effects in relativistic field theories

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Brown, G.E.; Prakash, M.; Weise, W.

    1988-01-01

    Incorporation of effective masses into negative energy states (nucleon loop corrections) gives rise to repulsive many-body forces, as has been known for some time. Rather than renormalizing away the three- and four-body terms, we introduce medium corrections into the effective σ-exchange, which roughly cancel the nucleon loop terms for densities ρ ≅ ρ nm , where ρ nm is nuclear matter density. Going to higher densities, the repulsive contributions tend to saturate whereas the attractive ones keep on growing in magnitude. The latter is achieved through use of a density-dependent effective mass for the σ-particle, m σ = m σ (ρ), such that m σ (ρ) decreases with increasing density. Such a behavior is seen e.g. in the Nambu-Jona-Lasinio model. It is argued that a smooth transition to chiral restoration implies a similar behavior. The resulting nuclear equation of state is, because of the self-consistency in the problem, immensely insensitive to changes in the mass or coupling constant of the σ-particle. (orig.)

  6. Low-energy QCD and ultraviolet renormalons

    International Nuclear Information System (INIS)

    Peris, S.

    1997-01-01

    We discuss the contribution of ultraviolet (UV) renormalons in QCD to two-point functions of quark current operators. This explicitly includes effects due to the exchange of one renormalon chain as well as two chains. It is shown that, when the external Euclidean momentum of the two-point functions becomes smaller than the scale Λ L associated with the Landau singularity of the QCD one-loop running coupling constant, the positions of the UV renormalons in the Borel plane become true singularities in the integration range of the Borel transform. This introduces ambiguities in the evaluation of the corresponding two-point functions. The ambiguities associated with the leading UV renormalon singularity are of the same type as the contribution due to the inclusion of dimension d=6 local operators in a low-energy effective Lagrangian valid at scales smaller than Λ L . We then discuss the inclusion of an infinite number of renormalon chains and argue that the previous ambiguity hints at a plausible approximation scheme for low-energy QCD, resulting in an effective Lagrangian similar to the one of the extended Nambu-Jona-Lasinio (ENJL) model of QCD at large N c . (orig.)

  7. Inhomogeneity driven by Higgs instability in a gapless superconductor

    International Nuclear Information System (INIS)

    Giannakis, Ioannis; Hou Defu; Huang Mei; Ren Haicang

    2007-01-01

    The fluctuations of the Higgs and pseudo Nambu-Goldstone fields in the 2-flavor color superconductivity (2SC) phase with mismatched pairing are described in the nonlinear realization framework of the gauged Nambu-Jona-Lasinio model. In the gapless 2SC phase, not only Nambu-Goldstone currents can be spontaneously generated, but also the Higgs field exhibits instablity. The Nambu-Goldstone currents generation indicates the formation of the single plane wave Larkin-Ovchinnikov-Fulde-Ferrel state and breaks rotation symmetry, while the Higgs instability favors spatial inhomogeneity and breaks translation invariance. In this paper, we focus on the Higgs instability which has not drawn much attention yet. The Higgs instability cannot be removed without a long range force, thus it persists in the gapless superfluidity and induces phase separation. In the case of gapless 2-flavor color superconductivity state, the Higgs instability can only be partially removed by the electric Coulomb energy. However, it is not excluded that the Higgs instability might be completely removed in the charge neutral gapless color-flavor locked phase by the color Coulomb energy

  8. Normal ground state of dense relativistic matter in a magnetic field

    International Nuclear Information System (INIS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-01-01

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  9. Anatomy of the magnetic catalysis by renormalization-group method

    Science.gov (United States)

    Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho

    2017-12-01

    We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.

  10. Strong U{sub A}(1) breaking in radiative {eta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Nemoto, Y.; Oka, M.

    1996-08-01

    We study the {eta} {yields} {gamma}{gamma}, {eta} {yields} {gamma}{mu}{sup -}{mu}{sup +} and {eta} {yields} {pi}{sup 0}{gamma}{gamma} decays using an extended three-flavor Nambu-Jona-Lasinio model that includes the `t Hooft instanton induced interaction. We find that the {eta}-meson mass, the {eta} {yields} {gamma}{gamma}, {eta} {yields} {gamma}{mu}{sup -}{mu}{sup +} and {eta} {yields} {pi}{sup 0}{gamma}{gamma} decay widths are in good agreement with the experimental values when the U{sub A}(1) breaking is strong and the flavor SU(3) singlet-octet mixing angle {theta} is about zero. The calculated {eta}{gamma}{gamma}{sup *} transition form factor has somewhat weaker dependence on the squared four-momentum of the virtual photon. The effects of the U{sub A}(1) anomaly on the scalar quark contents in the nucleon, the {Sigma}{sub {pi}N} and {Sigma}{sub KN} terms and the baryon number one and two systems are also studied. (author)

  11. Pre-critical phenomena of two-flavor color superconductivity in heated quark matter. Diquark-pair fluctuations and non-Fermi liquid behavior

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Kunihiro, Teiji; Koide, Tomoi; Nemoto, Yukio

    2005-01-01

    We investigate the fluctuations of the diquark-pair field and their effects on observables above the critical temperature T c in two-flavor color superconductivity (CSC) at moderate density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode, which has a prominent strength even well above T c . We show that the collective mode is actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific heat and the quark spectrum for T above but close to T c . We find that the specific heat exhibits singular behavior because of the pair fluctuations, in accordance with the general theory of second-order phase transitions. The quarks display a typical non-Fermi liquid behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density of states of the quarks in the vicinity of the critical point. Some experimental implications of the precursory phenomena are also discussed. (author)

  12. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  13. Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models

    Science.gov (United States)

    Yin, Wen

    2018-01-01

    Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

  14. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  15. All possible lightes supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Grab, Sebastian

    2009-08-15

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background

  16. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  17. Search for Minimal Standard Model and Minimal Supersymmetric Model Higgs Bosons in e+ e- Collisions with the OPAL detector at LEP

    International Nuclear Information System (INIS)

    Ganel, Ofer

    1993-06-01

    When LEP machine was turned on in August 1989, a new era had opened. For the first time, direct, model-independent searches for Higgs boson could be carried out. The Minimal Standard Model Higgs boson is expected to be produced in e + e - collisions via the H o Z o . The Minimal Supersymmetric Model Higgs boson are expected to be produced in the analogous e + e - -> h o Z o process or in pairs via the process e + e - -> h o A o . In this thesis we describe the search for Higgs bosons within the framework of the Minimal Standard Model and the Minimal Supersymmetric Model, using the data accumulated by the OPAL detector at LEP in the 1989, 1990, 1991 and part of the 1992 running periods at and around the Z o pole. An MInimal Supersymmetric Model Higgs boson generator is described as well as its use in several different searches. As a result of this work, the Minimal Standard Model Higgs boson mass is bounded from below by 54.2 GeV/c 2 at 95% C.L. This is, at present, the highest such bound. A novel method of overcoming the m τ and m s dependence of Minimal Supersymmetric Higgs boson production and decay introduced by one-loop radiative corrections is used to obtain model-independent exclusion. The thesis describes also an algorithm for off line identification of calorimeter noise in the OPAL detector. (author)

  18. Dynamics of supersymmetric chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy

    2013-01-01

    We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons

  19. Dynamics of supersymmetric chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-10-01

    We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.

  20. How to quantize supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1985-01-01

    A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe

  1. Information on the gauge principle from an N=1/2, D=2 supersymmetric model

    International Nuclear Information System (INIS)

    Dias, S.A.; Doria, R.M.; Valle, J.L.M.

    1988-01-01

    The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author) [pt

  2. Duality in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  3. Duality in supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs

  4. Chaos and random matrices in supersymmetric SYK

    Science.gov (United States)

    Hunter-Jones, Nicholas; Liu, Junyu

    2018-05-01

    We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.

  5. The massless limit of supersymmetric QCD

    International Nuclear Information System (INIS)

    Davis, A.C.; Dine, M.; Seiberg, N.

    1983-01-01

    We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, msub(q), has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as msub(q)->0. We study the possibility of supersymmetric breaking at msub(q)=0. (orig.)

  6. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model.

    Science.gov (United States)

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G

    2014-04-11

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS.

  7. Supersymmetric extension of Hopf maps: N = 4 {sigma}-models and the S{sup 3} {yields} S{sup 2} fibration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L. Faria; Toppan, F., E-mail: leofc@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their associated one-dimensional -models and their mutual relations. They are given by I - the (4, 4){sub lin} linear 'root' supermultiplet (supersymmetric extension of R{sup 4}), II - the (3, 4, 1){sub lin} linear supermultiplet (supersymmetric extension of R3), III - the (3, 4, 1){sub nl} non-linear supermultiplet living on S{sup 3} and IV - the (2, 4, 2){sub nl} non-linear supermultiplet living on S{sup 2}. The I {yields} II map is the supersymmetric extension of the R4 {yields} R3 bilinear map, while the II {yields} IV map is the supersymmetric extension of the S{sup 3} {yields} S{sup 2} first Hopf fibration. The restrictions on the S{sup 3}, S{sup 2} spheres are expressed in terms of the stereo graphic projections. The non-linear supermultiplets, whose super transformations are local differential polynomials, are not equivalent to the linear supermultiplets with the same field content. The -models are determined in terms of an unconstrained pre potential of the target coordinates. The Uniformization Problem requires solving an inverse problem for the pre potential. The basic features of the supersymmetric extension of the second and third Hopf maps are briefly sketched. Finally, the Schur's lemma (i.e. the real, complex or quaternionic property) is extended to all minimal linear supermultiplets up to N {<=} 8. (author)

  8. N-anti N oscillation in SO(10) and SU(6) supersymmetric grand unified models

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Zhiyong, Z.

    1982-06-01

    N-anti N oscillation in SO(10) and SU(6) S.G.U.M. is considered. We find a new type of diagram leading to a faster oscillation rate than in non-supersymmetric case. It is also noted that in SO(10) S.G.U.M. with intermediate SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) symmetry N-anti N oscillation would be highly suppressed, which may not necessarily be the case for SU(6) S.G.U.M. (author)

  9. On the supersymmetric solitons and monopoles

    International Nuclear Information System (INIS)

    Hruby, J.

    1978-01-01

    The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension

  10. Modified Higgs boson phenomenology from gauge or gaugino mediation in the next-to-minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Morrissey, David E.; Pierce, Aaron

    2008-01-01

    In the next-to-minimal supersymmetric standard model (NMSSM), the presence of light pseudoscalars can have a dramatic effect on the decays of the standard model-like Higgs boson. These pseudoscalars are naturally light if supersymmetry breaking preserves an approximate U(1) R symmetry, spontaneously broken when the Higgs bosons take on their expectation values. We investigate two classes of theories that possess such an approximate U(1) R at the mediation scale: modifications of gauge and gaugino mediation. In the models we consider, we find two disjoint classes of phenomenologically allowed parameter regions. One of these regions corresponds to a limit where the singlet of the NMSSM largely decouples. The other can give rise to a standard model-like Higgs boson with dominant branching into light pseudoscalars.

  11. Supersymmetric classical mechanics

    International Nuclear Information System (INIS)

    Biswas, S.N.; Soni, S.K.

    1986-01-01

    The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)

  12. Constraints on the rare tau decays from μ→eγ in the supersymmetric see-saw model

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Simonetto, Cristoforo

    2008-01-01

    It is now a firmly established fact that all family lepton numbers are violated in Nature. In this paper we discuss the implications of this observation for future searches for rare tau decays in the supersymmetric see-saw model. Using the two loop renormalization group evolution of the soft terms and the Yukawa couplings we show that there exists a lower bound on the rate of the rare process μ→eγ of the form BR(μ→eγ) ∼> C x BR(τ→μγ)BR(τ→eγ), where C is a constant that depends on supersymmetric parameters. Our only assumption is the absence of cancellations among the high-energy see-saw parameters. We also discuss the implications of this bound for future searches for rare tau decays. In particular, for large regions of the mSUGRA parameter space, we show that present B-factories could discover either τ→μγ or τ→eγ, but not both

  13. Improved perturbative calculations in field theory; Calculation of the mass spectrum and constraints on the supersymmetric standard model; Calculs perturbatifs variationnellement ameliores en theorie des champs; Calcul du spectre et contraintes sur le modele supersymetrique standard

    Energy Technology Data Exchange (ETDEWEB)

    Kneur, J.L

    2006-06-15

    This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.

  14. The gauge technique in supersymmetric QED2

    NARCIS (Netherlands)

    Roo, M. de; Steringa, J.J.

    1988-01-01

    We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge

  15. Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Huitu, Katri [Department of Physics, and Helsinki Institute of Physics,P.O.B 64 (Gustaf Hällströmin katu 2), FI-00014 University of Helsinki (Finland); Niyogi, Saurabh [The Institute of Mathematical Sciences,CIT Campus, Chennai (India)

    2016-07-04

    We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z{sub 3} symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W{sup ±} boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb{sup −1} at the LHC center of mass energy of 13 and 14 TeV.

  16. Top and Higgs mass predictions in supersymmetric SU(5) model with big top quark Yukawa coupling constant

    International Nuclear Information System (INIS)

    Krasnikov, N.V.; Rodenberg, R.

    1993-01-01

    From the requirement of the absence of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck scale in SU(5) supersymmetric model we find an upper bound m t ≤ 187 GeV for the top quark mass. For the SU(5) fixed point renormalization group solution for top quark Yukawa coupling constant which can be interpreted as the case of composite superhiggs we find that m t ≥ 140 GeV. Similar bound takes place in all models with big anti h t (m t ). For m t ≤ 160 GeV we find also that the Higgs boson is lighter than m Z and hence it can be discovered at LEP2

  17. Supersymmetric flipped SU(5) revitalized

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.

    1987-08-06

    We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.

  18. Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at √s = 8 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 2014, č. 11 (2014), s. 1-32 ISSN 1126-6708 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : scattering * minimal supersymmetric standard model * parameter space * scalar particle * branching ratio * Higgs particle * ATLAS * CERN LHC Coll Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012

  19. Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at √s = 7 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav

    2013-01-01

    Roč. 2013, č. 2 (2013), s. 1-47 ISSN 1029-8479 R&D Projects: GA MŠk LA08032 Institutional support: RVO:68378271 Keywords : CERN * scattering * leptonic decay * Higgs particle * mass * jet * bottom * minimal supersymmetric standard model * parameter space * ATLAS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 6.220, year: 2013

  20. Exploring the supersymmetric U(1 ) B -L×U(1 ) R model with dark matter, muon g - 2 , and Z' mass limits

    Science.gov (United States)

    Frank, Mariana; Özdal, Özer

    2018-01-01

    We study the low scale predictions of the supersymmetric standard model extended by U (1 )B -L×U (1 )R symmetry, obtained from S O (10 ) breaking via a left-right supersymmetric model, imposing universal boundary conditions. Two singlet Higgs fields are responsible for the radiative U (1 )B -L×U (1 )R symmetry breaking, and a singlet fermion S is introduced to generate neutrino masses through an inverse seesaw mechanism. The lightest neutralino or sneutrino emerge as dark matter candidates, with different low scale implications. We find that the composition of the neutralino lightest supersymmetric particle (LSP) changes considerably depending on the neutralino LSP mass, from roughly half U (1 )R bino, half minimal supersymmetric model (MSSM) bino, to a singlet higgsino, or completely dominated by the MSSM higgsino. The sneutrino LSP is statistically much less likely, and when it occurs it is a 50-50 mixture of right-handed sneutrino and the scalar S ˜. Most of the solutions consistent with the relic density constraint survive the XENON 1T exclusion curve for both LSP cases. We compare the two scenarios and investigate parameter space points and find consistency with the muon anomalous magnetic moment only at the edge of a 2 σ deviation from the measured value. However, we find that the sneutrino LSP solutions could be ruled out completely by the strict reinforcement of the recent Z' mass bounds. We finally discuss collider prospects for testing the model.

  1. Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model

    International Nuclear Information System (INIS)

    Nastase, Horatiu; Papageorgakis, Constantinos

    2009-01-01

    Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .

  2. Aspects of supersymmetric inflation

    International Nuclear Information System (INIS)

    Lindblom, P.R.

    1987-01-01

    A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed

  3. On quantization of supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1985-01-01

    A recipe to resolve ordering ambiguities in the quantum hamiltonian of supersymmetric theories is suggested. The Weyl ordering prescription for supercharge operators should be employed to preserve SUSY algebra on the quantum level. The quantum hamiltonian does not generally coincide with the Weyl ordered classical hamiltonian, the difference being due to the fact that the Weyl symbol of anticommutator of supercharges does not generally coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The suggested procedure is applied in the examples of N=1 and N=2 supersymmetric σ-models analyzed in the constant field limit

  4. 1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)

    1980-01-01

    The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived

  5. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  6. Supersymmetric Recipes (1/3)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In these lectures, I shall describe the theory of supersymmetry accessible to people with a knowledge of basic quantum field theory. The lectures will contain recipes of how to calculate which interactions (and which special relations) are in supersymmetry, without providing detailed proofs of where they come from. We shall also cover: motivation for weak-scale supersymmetry and the minimal supersymmetric standard model.

  7. Effective Lagrangian for the χi+χj0H- interaction in the minimal supersymmetric standard model and charged Higgs decays

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran; Psinas, Anastasios

    2004-01-01

    We extend previous analyses of the supersymmetric loop correction to the charged Higgs couplings to include the coupling H ± χ ± χ 0 . The analysis completes the previous analyses where similar corrections were computed for H + t-barb (H - tb-bar), and for H + τ - ν-bar τ (H - τ + ν τ ) couplings within the minimal supersymmetric standard model. The effective one loop Lagrangian is then applied to the computation of the charged Higgs decays. The sizes of the supersymmetric loop correction on branching ratios of the charged Higgs H + (H - ) into the decay modes tb-bar (t-barb), τ-barν τ (τν-bar τ ), and χ i + χ j 0 (χ i - χ j 0 )(i=1,2; j=1-4) are investigated and the supersymmetric loop correction is found to be significant, i.e., in the range 20-30 % in significant regions of the parameter space. The loop correction to the decay mode χ 1 ± χ 2 0 is examined in specific detail as this decay mode leads to a trileptonic signal. The effects of CP phases on the branching ratio are also investigated. A brief discussion of the implications of the analysis for colliders is given

  8. Supersymmetric particles at LEP

    International Nuclear Information System (INIS)

    Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.

    1979-10-01

    The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)

  9. Phenomenological analysis of supersymmetric σ-models on coset spaces SO(10)/U(5) and E6/[SO(10)xU(1)

    International Nuclear Information System (INIS)

    Nyawelo, T.S.

    2004-12-01

    We discuss some phenomenological aspects of gauged supersymmetric σ-models on homogeneous coset-spaces E 6 /[SO(10)xU(1)] and SO(10)/U(5) which are some of the most interesting for phenomenology. We investigate in detail the vacuum configurations of these models, and study the resulting consequences for supersymmetry breaking and breaking of the internal symmetry. Some supersymmetric minima for both models with gauged full isometry groups E 6 and SO(10) are physically problematic as the Kaehler metric becomes singular ad hence the kinetic terms of the Goldstone boson multiplets vanish. This leads us to introduce recently proposed soft supersymmetry-breaking mass terms which displace the minimum away from the singulax point. A non-singular Kaehler metric breaks the linear subgroup SO(10)xU(1) of the E 6 model spontaneously. The particle spectrum of all these different models is computed. (author)

  10. Deformed supersymmetric mechanics

    International Nuclear Information System (INIS)

    Ivanov, E.; Sidorov, S.

    2013-01-01

    Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry

  11. Sign of the neutron-proton mass difference in an SU(2)xU(1) supersymmetric toy model: A possible scenario for solving the old puzzle

    International Nuclear Information System (INIS)

    Desai, B.R.; Xu, G.

    1990-01-01

    Based on the idea that electromagnetism is responsible for mass differences within isotopic multiplets (e.g., pointlike neutron and proton or u and d quarks), we generalize an SU(2)xU(1) model in a toy field theory of vectors to a supersymmetric model and investigate the finite mass difference within the isotopic doublet. It is found that under soft-supersymmetry breaking, a positive n-p mass difference can be obtained under reasonable assumptions for the parameters involved

  12. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  13. Supersymmetric family unification

    International Nuclear Information System (INIS)

    Frampton, P.H.; Kephart, T.W.

    1983-01-01

    The superheavy symmetry breaking of the gauge group in supersymmetrized unified theories is studied. The requirement that supersymmetry be unbroken strongly constrains the possible gauge group breaking, and we systematize such constraints group theoretically. In model building, one issue is whether to permit an adjoint matter superfield with concomitant color exotic fermions. A second issue is that of naturalness which is complicated by the well-known supersymmetry non-renormalization theorems. Both with and without an adjoint matter superfield, the most promising group appears to be SU(9) where three families can be naturally accommodated, at least for low-energy gauge group SU(3) x SU(2) x U(1). With an extra U(1) factor, as advocated by Fayet, the non-renormalization theorem must be exploited. (orig.)

  14. Supersymmetric Higgs bosons and beyond

    International Nuclear Information System (INIS)

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose

    2010-01-01

    We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.

  15. Search for Higgs bosons of the minimal supersymmetric standard model in ppˉ collisions at √s=1.96 TeV

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2012-01-01

    Roč. 710, 4-5 (2012), s. 569-577 ISSN 0370-2693 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : D0 * Higgs particle * lower limit * tau * pair production * minimal supersymmetric standard model * parameter space Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://www. science direct.com/ science /article/pii/S0370269312002857

  16. Consistent momentum space regularization/renormalization of supersymmetric quantum field theories: the three-loop β-function for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta

    2003-01-01

    We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)

  17. Search for electroweak production of supersymmetric states in Non-Universal Higgs Mass model with two extra parameters compressed scenario with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529728

    The ATLAS and CMS collaborations announced the discovery of the Higgs boson in July 2012, completing the particle content of the Standard Model. Although the Standard Model is a great triumph, it is not considered to be the complete theory of particle physics. Several new theories have been proposed which seek to move beyond the Standard Model. Among the newly-developed theories, Supersymmetry (SUSY) is one of the most promising ones. SUSY predicts the existence of supersymmetric partner particles and it is one of the best-motivated extensions of the space-time symmetry of particle interactions. There are supersymmetric partner particles associated with each SM particles in which the spin differs by 1/2. This dissertation focuses on a search for electroweak production of supersymmetric particles with compressed mass spectra in the final states with exactly two low-momentum leptons and missing transverse momentum. The proton-proton collision data is recorded by the ATLAS detector at the Large Hadron Collider i...

  18. Four-loop divergences of the two-dimensional (1,1) supersymmetric non-linear sigma model with a Wess-Zumino-Witten term

    International Nuclear Information System (INIS)

    Deriglazov, A.A.; Ketov, S.V.

    1991-01-01

    The four-loop divergences of the (1,1) supersymmetric two-dimensional non-linear σ-model with a Wess-Zumino-Witten term are analyzed. All the four-loop 1/ε-divergences in the general case (and an overall coefficient at the total four-loop contribution to the β-function) are shown to be reducible to only structures proportional to ζ(3). We explicitly calculate non-derivative contributions to the four-loop β-function from logarithmically divergent graphs. As a by-product, we obtain the complete four-loop β-function for the supersymmetric Wess-Zumino-Witten model. We use the partial results for the general four-loop β-function to shed some light on the structure of the (α') 3 -corrections to the superstring effective-action with antisymmetric-tensor field coupling. An inconsistency of the supersymmetrical dimensional regularisation via dimensional reduction in the presence of torsion is discovered at four loops, unless the string interpretation for the σ-model is adopted. (orig.)

  19. Precise determination of the Higgs mass in supersymmetric models with vectorlike tops and the impact on naturalness in minimal GMSB

    CERN Document Server

    Nickel, Kilian

    2015-01-01

    We present a precise analysis of the Higgs mass corrections stemming from vectorlike top partners in supersymmetric models. We reduce the theoretical uncertainty compared to previous studies in the following aspects: (i) including the one-loop threshold corrections to SM gauge and Yukawa couplings due to the presence of the new states to obtain the $\\bar{\\text{DR}}$ parameters entering all loop calculations, (ii) including the full momentum dependence at one-loop, and (iii) including all two-loop corrections but the ones involving $g_1$ and $g_2$. We find that the additional threshold corrections are very important and can give the largest effect on the Higgs mass. However, we identify also parameter regions where the new two-loop effects can be more important than the ones of the MSSM and change the Higgs mass prediction by up to 10 GeV. This is for instance the case in the low $\\tan\\beta$, small $M_A$ regime. We use these results to calculate the electroweak fine-tuning of an UV complete variant of this mod...

  20. One-loop analysis of the electroweak breaking in supersymmetric models and the fine-tuning problem

    CERN Document Server

    De Carlos, B

    1993-01-01

    We examine the electroweak breaking mechanism in the minimal supersymmetric standard model (MSSM) using the {\\em complete} one-loop effective potential $V_1$. First, we study what is the region of the whole MSSM parameter space (i.e. $M_{1/2},m_o,\\mu,...$) that leads to a succesful $SU(2)\\times U(1)$ breaking with an acceptable top quark mass. In doing this it is observed that all the one-loop corrections to $V_1$ (even the apparently small ones) must be taken into account in order to get reliable results. We find that the allowed region of parameters is considerably enhanced with respect to former "improved" tree level results. Next, we study the fine-tuning problem associated with the high sensitivity of $M_Z$ to $h_t$ (the top Yukawa coupling). Again, we find that this fine-tuning is appreciably smaller once the one-loop effects are considered than in previous tree level calculations. Finally, we explore the ambiguities and limitations of the ordinary criterion to estimate the degree of fine-tuning. As a r...

  1. Basic model of fermion dark matter. Indirect detection of supersymmetric dark matter in γ astronomy with the CELESTE telescope

    International Nuclear Information System (INIS)

    Lavalle, J.

    2004-10-01

    The purpose of this thesis is to discuss both phenomenological and experimental aspects of Dark Matter, related to its indirect detection with gamma-ray astronomy. In the MSSM (Minimal Supersymmetric Standard Model) framework, neutralinos arise as natural candidates to non-baryonic and Cold Dark Matter, whose gravitational effects manifest in the Universe at different scales. As they are Majorana particles, they may in principle annihilate in high density regions, as the centres of galaxies, and produce gamma rays. Nevertheless, the expected fluxes are basically low compared to experimental sensitivities. After estimating gamma fluxes from M31 and Draco galaxies in the MSSM scheme, we first generalize the MSSM couplings by studying an effective Lagrangian. We show that the only constraint of imposing a relic abundance compatible with recent measurements obviously deplete significantly the gamma ray production, but also that predictions in this effective approach are more optimistic for indirect detection than the MSSM. In a second part, we present the indirect searches for Dark Matter performed with the CELESTE Cherenkov telescope towards the galaxy M31. We propose a statistical method to reconstruct spectra, mandatory to discriminate classical and exotic spectra. The M31 data analysis enables the extraction of an upper limit on the gamma ray flux, which is the first worldwide for a galaxy in the energy range 50-500 GeV, and whose astrophysical interest goes beyond indirect searches for Dark Matter. (author)

  2. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  3. Effective field theories of baryons and mesons, or, what do quarks do?

    International Nuclear Information System (INIS)

    Keaton, G.L.

    1995-01-01

    This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N 2 . To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark

  4. Integrating out the Dirac sea

    International Nuclear Information System (INIS)

    Karbstein, Felix

    2009-01-01

    We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''π meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)

  5. Production and decay of supersymmetric particles at future colliders

    International Nuclear Information System (INIS)

    Bartl, A.; Majerotto, W.; Moesslacher, B.

    1991-01-01

    We describe how supersymmetric particles could be detected at the new colliders HERA, LEP 200, LHC, SSC, and at the possible future linear e + e - collider. We shall present theoretical predictions for production cross sections and decay probabilities, as well as for the important signatures. Our calculations will be based on the Minimal Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension of the Standard Model. (authors)

  6. Duality and supersymmetric monopoles

    International Nuclear Information System (INIS)

    Gauntlett, J.P.

    1998-01-01

    Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)

  7. Probing the hidden Higgs bosons of the Y=0 triplet- and singlet-extended Supersymmetric Standard Model at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Corianò, Claudio [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); STAG Research Centre and Mathematical Sciences, University of Southampton,Southampton SO17 1BJ (United Kingdom); Costantini, Antonio [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy)

    2015-12-18

    We investigate the scalar sector in an extension of the Minimal Supersymmetric Standard Model (MSSM) containing a SU(2) Higgs triplet of zero hypercharge and a gauge singlet beside the SU(2) scalar doublets. In particular, we focus on a scenario of this model which allows a light pseudoscalar and/or a scalar below 100 GeV, consistent with the most recent data from the LHC and the earlier data from the LEP experiments. We analyze the exotic decay of the discovered Higgs (h{sub 125}) into two light (hidden) Higgs bosons present in the extension. The latter are allowed by the uncertainties in the Higgs decay h{sub 125}→WW{sup ∗}, h{sub 125}→ZZ{sup ∗} and h{sub 125}→γγ. The study of the parameter space for such additional scalars/pseudoscalars decay of the Higgs is performed in the gluon fusion channel. The extra hidden Higgs bosons of the enlarged scalar sector, if they exist, will then decay into lighter fermion paris, i.e., bb̄, ττ̄ and μμ̄ via the mixing with the doublets. A detailed simulation using PYTHIA of the 2b+2τ, ≥3τ, 2b+2μ and 2τ+2μ final states is presented. From our analysis we conclude that, depending on the selected benchmark points, such decay modes can be explored with an integrated luminosity of 25 fb{sup −1} at the LHC at a center of mass energy of 13 TeV.

  8. Analysis of the production of Higgs boson pairs at the one-loop level in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Philippov, Yu. P.

    2009-01-01

    Within the minimal supersymmetric standard model, the amplitudes and total cross sections for the processes e + e - → hh, e + e - → hH, e + e - → HH, and e + e - → AA are calculated in the first order of perturbation theory with allowance for a complete set of one-loop diagrams in the m e → 0 approximation. Analytic expressions are obtained for the quantities under consideration; numerical results are presented in a graphical form. It is shown that the cross section for the process e + e - → hh is larger than those for the other processes (and is on the same order of magnitude as the cross section for the corresponding processes in the Standard Model). In the case of the collision energy equal to √s = 500 GeV, an integrated luminosity in the region ∫ L ≥ 500 fb -1 , and a longitudinal polarization of the e + e- beams used, 520, 320, and 300 production events are possible in the processes e + e - → hh (at M h = 115 GeV), e + e - → HH, and e + e - → AA (at M H,A = 120 GeV), respectively. Even at M H,A ∼ 500 GeV and √s = 1.5 TeV, not less than 200 events for each of the processes can be accumulated. The cross section for the process e + e - → hH is small (about 10 -2 fb), which complicates the detection of the sought signal significantly.

  9. Supersymmetric extensions of Calogero-Moser-Sutherland-like models: construction and some solutions

    International Nuclear Information System (INIS)

    Kohler, Heiner; Guhr, Thomas

    2005-01-01

    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero-Moser-Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a quasi-one-dimensional semiconductor. Another model is quasi-two-dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole-dipole or tensor forces

  10. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, William M. [Computational Science Research Center San Diego State University, San Diego, CA (United States); San Diego State University, Department of Physics, San Diego, CA (United States); Weber, Fridolin [San Diego State University, Department of Physics, San Diego, CA (United States); University of California San Diego, Center for Astrophysics and Space Sciences, La Jolla, CA (United States); Contrera, Gustavo A. [CONICET, Buenos Aires (Argentina); CONICET - Dept. de Fisica, UNLP, IFLP, La Plata (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Orsaria, Milva G. [CONICET, Buenos Aires (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina)

    2016-03-15

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (

  11. Supersymmetric color superconductivity

    International Nuclear Information System (INIS)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2004-01-01

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ f c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f =N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c +1≤ N f c and find that baryon number is broken dynamically for μ > mu c . We also give a qualitative description of the phases in the 'conformal window', 3/2 N c f c , at finite density. (author)

  12. Supersymmetric color superconductivity

    International Nuclear Information System (INIS)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2003-01-01

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential μ, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ > Λ. We find that for N F c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f = N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c + 1 (le) N f c and find that baryon number is broken dynamically for μ > μ c . We also give a qualitative description of the phases in the ''conformal window'', 3/2 N c f c , at finite density

  13. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  14. Goldstone boson condensation and effects of the axial anomaly in color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Basler, Hannes Gregor Steffen

    2011-01-12

    One of the central objects of interest in high energy physics is the phase diagram of strongly interacting matter, the behavior of quarks and gluons in dependence of temperature and chemical potential. At very high densities and low temperatures it is expected that quarks form a superconductor, the so-called color superconductor. Such a color superconductor might be realized in the inner core of a neutron star. To study the phase structure of a color superconductor under neutron star conditions the Nambu-Jona-Lasinio model is used. The diquark condensates appearing in a color superconductor may break the original symmetries and give rise to Goldstone bosons. In this work we study the possible condensation of these Goldstone bosons. On the level of diquark condensates the condensation of Goldstone bosons is realized by a rotation of scalar into pseudoscalar diquark condensates. The phase diagram is studied, including pseudoscalar diquark condensates, for several different values of the lepton number chemical potential. The masses and thereby the condensation of the Goldstone bosons is effected by a six-point interaction that breaks the axial U(1) symmetry. Usually this six-point interaction is implemented in the NJL model in such a way that is does not effect the diquark sector. This can be fixed by adding an second six-point interaction term to the NJL Lagrangian. The coupling strength of this new interaction term has a great influence on the phase digram. In this context also the effect on the chiral phase transition is studied. (orig.)

  15. Fun with supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Freedman, B.; Cooper, F.

    1984-04-01

    One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references

  16. Higgs bosons in the next-to-minimal supersymmetric standard model at the LHC

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2011-01-01

    We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly standard-model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a standard-model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels. (orig.)

  17. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Science.gov (United States)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  18. Fixing the EW scale in supersymmetric models after the Higgs discovery

    CERN Document Server

    Ghilencea, D M

    2013-01-01

    TeV-scale supersymmetry was originally introduced to solve the hierarchy problem and therefore fix the electroweak (EW) scale in the presence of quantum corrections. Numerical methods testing the SUSY models often report a good likelihood L (or chi^2=-2ln L) to fit the data {\\it including} the EW scale itself (m_Z^0) with a {\\it simultaneously} large fine-tuning i.e. a large variation of this scale under a small variation of the SUSY parameters. We argue that this is inconsistent and we identify the origin of this problem. Our claim is that the likelihood (or chi^2) to fit the data that is usually reported in such models does not account for the chi^2 cost of fixing the EW scale. When this constraint is implemented, the likelihood (or chi^2) receives a significant correction (delta_chi^2) that worsens the current data fits of SUSY models. We estimate this correction for the models: constrained MSSM (CMSSM), models with non-universal gaugino masses (NUGM) or higgs soft masses (NUHM1, NUHM2), the NMSSM and the ...

  19. Dark matter constraints in the minimal and nonminimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Stephan, A.

    1998-01-01

    We determine the allowed parameter space and the particle spectra of the minimal SUSY standard model (MSSM) and nonminimal SUSY standard model (NMSSM) imposing correct electroweak gauge symmetry breaking and recent experimental constraints. The parameters of the models are evolved with the SUSY renormalization group equations assuming universality at the grand unified scale. Applying the new unbounded from below constraints we can exclude the lightest SUSY particle singlinos and light scalar and pseudoscalar Higgs singlets of the NMSSM. This exclusion removes the experimental possibility to distinguish between the MSSM and NMSSM via the recently proposed search for an additional cascade produced in the decay of the B-ino into the LSP singlino. Furthermore, the effects of the dark matter condition for the MSSM and NMSSM are investigated and the differences concerning the parameter space, the SUSY particle, and Higgs sector are discussed. thinsp copyright 1998 The American Physical Society

  20. Symmetry breaking of u(6/2j+1) supersymmetric models

    International Nuclear Information System (INIS)

    Baake, M.; Reinicke, P.

    1985-09-01

    In this paper, we present the group theory of models with broken u(6/2j+1) supersymmetry described by the chain u(6/2j+1) contains usub(B)(6) x usub(F)(2j+1) contains usub(B)(6) x spsub(F)(2j+1) contains ... contains sosub(B)(3) x susub(F)(2) contains susub(B+F)(2) which has recently been suggested for application to nuclear physics. We present all invariants that are needed for the construction of the general Hamiltonian for this model. (orig.)

  1. The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    CERN Document Server

    Baer, Howard W; Tata, Xerxes; Baer, Howard; Tata, Xerxes

    1999-01-01

    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to $m_{H_{SM}}\\sim 120$ GeV via $WH_{SM} \\to \\ell\

  2. Use of a variational principle for the study of supersymmetric models

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1985-01-01

    A variational principle is used for study of the possibility of spontaneous symmetry breaking. It is shown that if supersymmetry in the generalized Wess-Zumino model is not broken at the classical level, taking account of quantum corrections also does not lead to symmetry breaking

  3. Mono-jet, -photon and -Z signals of a supersymmetric (B−L) model at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, W. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Department of Mathematics, Faculty of Science, Cairo University,Giza (Egypt); Fiaschi, J. [School of Physics and Astronomy, University of Southampton,Highfield, Southampton (United Kingdom); Khalil, S. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Moretti, S. [School of Physics and Astronomy, University of Southampton,Highfield, Southampton (United Kingdom)

    2016-02-23

    Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and -Z boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of R-parity conservation, owing to the presence in their spectra of a stable neutralino as a Dark Matter (DM) candidate. We assume here as theoretical framework the Supersymmetric version of the (B−L) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be the Z{sup ′} boson present in this scenario. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the Z{sup ′} is naturally massive and constrained by direct searches and Electro-Weak Precision Tests (EWPTs) to be at least in the TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the Standard Model (SM) background is very high. This somehow compensates the rather meagre production rates. Another special feature of this invisible BLSSM signal is its composition, which is often dominated by sneutrino decays (alongside the more traditional neutrino and neutralino modes). Sensitivity of the CERN machine to these two features can therefore help disentangling the BLSSM from more popular SUSY models. We assess in this analysis the scope of the LHC in establishing the aforementioned invisible signals through a sophisticated signal-to-background simulation carried out in presence of parton shower, hadronisation as well as detector effects. We find that significant sensitivity exists already after 300 fb{sup −1} during Run 2. We find that mono-jet events can be readily accessible at the LHC, so as to enable one to claim a prompt discovery, while mono-photon and -Z signals can be used as diagnostic tools of the underlying scenario.

  4. Algebraic approach to q-deformed supersymmetric variants of the Hubbard model with pair hoppings

    International Nuclear Information System (INIS)

    Arnaudon, D.

    1997-01-01

    Two quantum spin chains Hamiltonians with quantum sl(2/1) invariance are constructed. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings. A cubic algebra that admits the Birman-Wenzl-Murakami algebra as a quotient allows exact solvability of the periodic chain. The two Hamiltonians, respectively built using the distinguished and the fermionic bases of U q (sl(2/1)) differ only in the boundary terms. They are actually equivalent, but the equivalence is non local. Reflection equations are solved to get exact solvability on open chains with non trivial boundary conditions. Two families of diagonal solutions are found. The centre and the s-Casimir of the quantum enveloping algebra of sl(2/1) appear as tools for the construction of exactly solvable Hamiltonians. (author)

  5. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    Science.gov (United States)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  6. Analytic supersymmetric regularization for the pure N=1 super-Yang-Mills model

    International Nuclear Information System (INIS)

    Abdalla, E.; Jasinschi, R.S.

    1987-01-01

    We calculate for the pure N=1 super-Yang-Mills model the quantum correction to the background field strength up to two loops. In using background field method, analytic regularization and Seeley coefficient expansion we show how these corrections arise. Our method differs from the dimensional regularization via dimensional reduction scheme in various respects, in particular to the origin of the background field strength as appearing in the divergent expressions. (orig.)

  7. A supersymmetric standard model from a local E{sub 6} GUT

    Energy Technology Data Exchange (ETDEWEB)

    Braam, Felix Klaus

    2012-02-15

    In this thesis we have investigated to what extent the exceptional Lie-group E{sub 6} can serve as unified gauge group. In the presence of the full E{sub 6} matter content, unifcation can be realized by increasing the degree of gauge symmetry above some intermediate scale. We found that a full E{sub 6} gauge invariant theory is disfavoured by phenomenological observations like proton stability and the smallness of flavour changing neutral currents. An appropriate framework to embed E{sub 6} into a model for particle physics are higher dimensional orbifold constructions, where E{sub 6} is the gauge group in the bulk and the intermediate symmetry group is the common subset of E{sub 6} subgroups residing at the fixed-points of the orbifold. In this way the degree of symmetry in four space-time dimensions is reduced, such that the operators leading to the aforementioned dsastrous phenomenological consequences can be forbidden independently. In order to derive the implications of the model for the current experiments at the Large Hadron Collider (LHC), we developed an automated spectrum generator. It uses Monte-Carlo Markov-Chain techniques to cope with the high dimensionality of the space of input parameters and the complex interdependencies in the evolution of the Lagrangian parameters from the orbifold compactification scale to the TeV scale. For the spectra obtained with this program, we performed Monte-Carlo simulations of the production and decay of the Z{sup '} boson stemming from the additional U(1){sup '}, using our own implementation of the model into the event generator WHIZARD.

  8. Supersymmetric and supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.

    1986-01-01

    The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations

  9. Dispersive and damping properties of supersymmetric sound. 2

    International Nuclear Information System (INIS)

    Lebedev, V.V.; Smilga, A.V.

    1988-01-01

    This paper is the second part of the work devoted to the massless fermionic collective excitation in supersymmetric media at nonzero temperature. The solution to generalized kinetic equations for the Wess-Zumino model at low temperatures is presented and the situation at high temperatures is discussed. Supersymmetric gauge models are also discussed

  10. Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in $e^+ e^-$ Interactions at $\\sqrt{s}$=192-202 GeV

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    A search for the lightest neutral CP-even and the neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 233.2 pb-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies 192-202 GeV. No signal is observed and lower mass limits are given as a function of tan(beta) for two scalar top mixing hypotheses. For tan(beta) greater than 0.8, they are mh > 83.4 GeV and mA > 83.8 GeV at 95 % confidence level.

  11. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  12. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  13. Applications of supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Rietdijk, R.H.

    1992-01-01

    The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs

  14. Supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Crombrugghe, M. de; Rittenberg, V.

    1982-12-01

    We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)

  15. Supersymmetric reflection matrices

    International Nuclear Information System (INIS)

    Moriconi, M.; Schoutens, K.

    1997-04-01

    We briefly review the general structure of integrable particle theories in 1 + 1 dimensions having N = 1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N = 1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N = 1 supersymmetry algebra contains non-trivial topological charges. (author). 8 refs, 2 figs

  16. Supersymmetric leptogenesis with a light hidden sector

    International Nuclear Information System (INIS)

    De Simone, Andrea

    2010-04-01

    Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we pro- pose a simple way to circumvent this tension and accommodate naturally ther- mal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed. (orig.)

  17. Vector supersymmetric multiplets in two dimensions

    International Nuclear Information System (INIS)

    Khattab, Mohammad

    1990-01-01

    Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields

  18. Supersymmetric quantum mechanics: another nontrivial quantum superpotential

    International Nuclear Information System (INIS)

    Cervero, J.M.

    1991-01-01

    A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)

  19. Solvable potentials derived from supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Levai, G.

    1994-01-01

    The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)

  20. Supersymmetric Higgs boson production in Z decays

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)

  1. Indirect detection of heavy supersymmetric dark matter

    International Nuclear Information System (INIS)

    Kamionkowski, M.

    1991-02-01

    If neutralinos reside in the galactic halo they will be captured in the Sun and annihilate therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark-matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. 10 refs., 2 figs

  2. R&D; studies on the hadronic calorimeter and physics simulations on the Standard Model and minimal supersymmetric Standard Model Higgs bosons in the CMS experiment

    CERN Document Server

    Duru, Firdevs

    2007-01-01

    This thesis consists of two main parts: R&D; studies done on the Compact Muon Solenoid (CMS) Hadronic Calorimeter (HCAL) and physics simulations on the Higgs boson for a Minimal Supersymmetric Standard Model (MSSM) and a Standard Model (SM) channel. In the first part, the air core light guides used in the read-out system of the Hadronic Forward (HF) calorimeter and the reflective materials used in them are studied. Then, tests and simulations were performed to find the most efficient way to collect Cerenkov light from the quartz plates, which are proposed as a substitute for the scintillator tiles in the Hadronic Endcap (HE) calorimeter due to radiation damage problems. In the second part physics simulations and their results are presented. The MSSM channel H/A[arrow right]ττ [arrow right]l l v v v v is studied to investigate the jet and missing transverse energy (MET) reconstruction of the CMS detector. The effects of the jet and MET corrections on the Higgs boson mass reconstruction are investigated. ...

  3. Supersymmetric symplectic quantum mechanics

    Science.gov (United States)

    de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.

    2018-02-01

    Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.

  4. Ultraviolet divergences in non-renormalizable supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.

    2017-01-01

    We present a pedagogical review of our current understanding of the ultraviolet structure of N =(1, 1) 6D supersymmetric Yang-Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higher-dimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially of extended supersymmetric theories) is that these counterterms may not be invariant off-shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on-shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behavior.

  5. Supersymmetrically transformed periodic potentials

    OpenAIRE

    C, David J. Fernandez

    2003-01-01

    The higher order supersymmetric partners of a stationary periodic potential are studied. The transformation functions associated to the band edges do not change the spectral structure. However, when the transformation is implemented for factorization energies inside of the forbidden bands, the final potential will have again the initial band structure but it can have bound states encrusted into the gaps, giving place to localized periodicity defects.

  6. Planarizable Supersymmetric Quantum Toboggans

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2011-01-01

    Roč. 7, - (2011), 018/1-018/23 ISSN 1815-0659. [Workshop on Supersymmetric Quantum Mechanics and Spectral Design. Benasque, 18.07.2010-30.07. 2010] R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : supersymmetry * Schrodinger equation * complexified coordinates Subject RIV: BE - Theoretical Physics Impact factor: 1.071, year: 2011

  7. The calculation of sparticle and Higgs decays in the minimal and next-to-minimal supersymmetric standard models: SOFTSUSY4.0

    Science.gov (United States)

    Allanach, B. C.; Cridge, T.

    2017-11-01

    We describe a major extension of the SOFTSUSY spectrum calculator to include the calculation of the decays, branching ratios and lifetimes of sparticles into lighter sparticles, covering the next-to-minimal supersymmetric standard model (NMSSM) as well as the minimal supersymmetric standard model (MSSM). This document acts as a manual for the new version of SOFTSUSY, which includes the calculation of sparticle decays. We present a comprehensive collection of explicit expressions used by the program for the various partial widths of the different decay modes in the appendix. Program Files doi:http://dx.doi.org/10.17632/5hhwwmp43g.1 Licensing provisions: GPLv3 Programming language:C++, fortran Nature of problem: Calculating supersymmetric particle partial decay widths in the MSSM or the NMSSM, given the parameters and spectrum which have already been calculated by SOFTSUSY. Solution method: Analytic expressions for tree-level 2 body decays and loop-level decays and one-dimensional numerical integration for 3 body decays. Restrictions: Decays are calculated in the real R -parity conserving MSSM or the real R -parity conserving NMSSM only. No additional charge-parity violation (CPV) relative to the Standard Model (SM). Sfermion mixing has only been accounted for in the third generation of sfermions in the decay calculation. Decays in the MSSM are 2-body and 3-body, whereas decays in the NMSSM are 2-body only. Does the new version supersede the previous version?: Yes. Reasons for the new version: Significantly extended functionality. The decay rates and branching ratios of sparticles are particularly useful for collider searches. Decays calculated in the NMSSM will be a particularly useful check of the other programs in the literature, of which there are few. Summary of revisions: Addition of the calculation of sparticle and Higgs decays. All 2-body and important 3-body tree-level decays, including phenomenologically important loop-level decays (notably, Higgs decays to

  8. Supersymmetric quantum corrections and Poisson-Lie T-duality

    International Nuclear Information System (INIS)

    Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-07-01

    The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)

  9. Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in $e^{+}e^{-}$ Interactions at $\\sqrt{s}$ up to 209 GeV

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    A search for the lightest neutral CP-even and neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 216.6 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies between 203 and 209 GeV. No indication of a signal is found. Including our results from lower centre-of-mass energies, lower limits on the Higgs boson masses are set as a function of tan(beta) for several scenarios. For tan(beta) greater than 0.7 they are mh > 84.5 GeV and mA > 86.3 GeV at 95% confidence level.

  10. Effects of the R-parity violation in the minimal supersymmetric standard model on dilepton pair production at the CERN LHC

    CERN Document Server

    Jun, Y; Lang-Hui, W; Ren Zhao You; Jun, Yin; Wen-Gan, Ma; Lang-Hui, Wan; Ren-You, Zhang

    2002-01-01

    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the parent process $pp \\to e^+ e^- + X$ at the CERN Large Hadron Collider (LHC). The numerical comparisons between the contributions of the R-parity violating effects to the parent process via the Drell-Yan subprocess and the gluon-gluon fusion are made. We find that the R-violating effects on $e^+ e^-$ pair production at the LHC could be significant. The results show that the cross section of the $ e^+ e^-$ pair productions via gluon-gluon collision at the LHC can be of the order of $10^2$ fb, and this subprocess maybe competitive with the production mechanism via the Drell-Yan subprocess. We give also quantitatively the analysis of the effects from both the mass of sneutrino and coupling strength of the R-parity violating interactions.

  11. Search for neutral minimal supersymmetric standard model Higgs bosons decaying to tau pairs in pp collisions at √s=7 TeV.

    Science.gov (United States)

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Damiao, D De Jesus; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; Martins, C De Oliveira; De Souza, S Fonseca; Mundim, L; Nogima, H; Oguri, V; Da Silva, W L Prado; Santoro, A; Do Amaral, S M Silva; Sznajder, A; De Araujo, F Torres Da Silva; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Ahmad, W Haj; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Tancini, V; Buontempo, S; Montoya, C A Carrillo; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jeong, M S; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Seo, E; Shin, S; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Lopez-Fernandez, R; Magaña Villalba, R; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Musella, P; Nayak, A; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Gennai, S; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Garrido, R Gomez-Reino; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Polese, G; Racz, A; Antunes, J Rodrigues; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Del Arbol, P Martinez Ruiz; Meridiani, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguiló, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, M Ivova; Mejias, B Millan; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Topaksu, A Kayis; Nart, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Jackson, J; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Macevoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Bose, T; Jarrin, E Carrera; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Sanchez, M Calderon De La Barca; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Sierra, R Vasquez; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bandurin, D; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Ceballos, G Gomez; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Pegna, D Lopes; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Vargas, J E Ramirez; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-06-10

    A search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions at the LHC at a center-of-mass energy of 7 TeV is presented. The results are based on a data sample corresponding to an integrated luminosity of 36  pb(-1) recorded by the CMS experiment. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent new bounds in the MSSM parameter space.

  12. Search for Higgs bosons of the minimal supersymmetric standard model in p(bar p) collisions at √s = 1.96 TeV

    International Nuclear Information System (INIS)

    2012-01-01

    We report results from searches for neutral Higgs bosons produced in p(bar p) collisions recorded by the D0 experiment at the Fermilab Tevatron Collider. We study the production of inclusive neutral Higgs boson in the ττ final state and in association with a b quark in the bττ and bbb final states. These results are combined to improve the sensitivity to the production of neutral Higgs bosons in the context of the minimal supersymmetric standard model (MSSM). The data are found to be consistent with expectation from background processes. Upper limits on MSSM Higgs boson production are set for Higgs boson masses ranging from 90 to 300 GeV. We exclude tan β > 20-30 for Higgs boson masses below 180 GeV. These are the most stringent constraints on MSSM Higgs boson production in p(bar p) collisions.

  13. Supersymmetric reciprocal transformation and its applications

    International Nuclear Information System (INIS)

    Liu, Q. P.; Popowicz, Ziemowit; Tian Kai

    2010-01-01

    The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a Baecklund-type transformation between these two equations, is adopted to construct a recursion operator for the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated with the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.

  14. A new supersymmetric index

    International Nuclear Information System (INIS)

    Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.

    1992-01-01

    We show that Tr(-1) F F e -βH is an index for N = 2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β. For integrable theories we can also compute the index thermodynamically, using the exact S-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations. (orig.)

  15. Supersymmetric inflation: Recent progress

    International Nuclear Information System (INIS)

    Ovrut, B.A.; Steinhardt, P.J.

    1986-01-01

    The new inflationary universe scenario is, in principle, a simple and powerful approach to resolving a large number of fundamental cosmological problems. However, in order for the scenario to be considered a complete theory, one critical question remains to be answered: What is the physics responsible for the phase transition that triggers the exponential expansion (inflation) of the universe? One possibility that the authors and several other groups have been pursuing is that the physics responsible for the phase transition involves (local) supersymmetry. The goal of this paper is to review the present status of ''Supersymmetric Inflation'', particularly emphasizing some very exciting results that they recently obtained

  16. Supersymmetric Extension of Technicolor & Fermion Mass Generation

    DEFF Research Database (Denmark)

    Antola, Matti; Di Chiara, Stefano; Sannino, Francesco

    2012-01-01

    We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....

  17. Small numbers in supersymmetric theories of nature

    International Nuclear Information System (INIS)

    Graesser, Michael L.

    1999-01-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject

  18. Supersymmetric hadronic mechanics and procedures for isosupersymmetrization

    International Nuclear Information System (INIS)

    Ntibashirakandi, L.; Callebaut, D.K.

    1994-01-01

    In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs

  19. Vacuum fluctuations of the supersymmetric field in curved background

    International Nuclear Information System (INIS)

    Bilić, Neven; Domazet, Silvije; Guberina, Branko

    2012-01-01

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  20. Vacuum fluctuations of the supersymmetric field in curved background

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)

    2012-01-16

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  1. Supersymmetric U boson and the old U(1) problem

    International Nuclear Information System (INIS)

    Kim, B.R.

    1983-01-01

    In the supersymmetric SU(3)xSU(2)xU(1)xUsup(')(1) model the new gauge group Usup(')(1) enforces the introduction of mirror fermions. In this note we address the inverse question. If one starts with SU(3)xSU(2)xU(1) including mirror fermions, what physical arguments other than the supersymmetric require the introduction of a new gauge group Usup(')(1). It turns out that the old U(1) problem is closely related with this question. Further we give an estimate for the upper bound for the parameter of the supersymmetric U boson r and x. (orig.)

  2. Supersymmetric seesaw inflection

    International Nuclear Information System (INIS)

    Aulakh, Charanjit S.; Garg, Ila

    2013-01-01

    We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)

  3. Supersymmetric Majoron inflation

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2017-03-31

    We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.

  4. New Supersymmetric String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit

    2002-11-25

    We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.

  5. SO(10) supersymmetric grand unified theories

    Science.gov (United States)

    Dermisek, Radovan

    The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.

  6. Properties of supersymmetric particles and processes

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-01-01

    The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs

  7. On negative norm states in supersymmetric theories

    International Nuclear Information System (INIS)

    Ellwanger, U.

    1983-01-01

    We study the effective kinetic energy of scalar fields for two classes of supersymmetric theories. In theories with very large VEVs of scalar fields, as proposed by Witten, the use of the renormalization group improved effective action prevents the appearance of negative norm states. For simpler theories a general criterium for the absence of negative norm states is given, which is violated in a model with O(N)-symmetry proposed recently. (orig.)

  8. The Supersymmetric Top-Ten Lists

    OpenAIRE

    Haber, Howard E.

    1993-01-01

    Ten reasons are given why supersymmetry is the leading candidate for physics beyond the Standard Model. Ultimately, the experimental discovery of supersymmetric particles at future colliders will determine whether supersymmetry is relevant for TeV scale physics. The grand hope of supersymmetry enthusiasts is to connect TeV scale supersymmetry with Planck scale physics. The ten most pressing theoretical problems standing in the way of this goal are briefly described.

  9. On supersymmetric effective theories of axion

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics

    2011-04-15

    We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)

  10. Supersymmetric SU(5) GUT with Stabilized Moduli

    CERN Document Server

    Antoniadis, Ignatios; Panda, Binata

    2008-01-01

    We construct a minimal example of a supersymmetric grand unified model in a toroidal compactification of type I string theory with magnetized D9-branes. All geometric moduli are stabilized in terms of the background internal magnetic fluxes which are of "oblique" type (mutually non-commuting). The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only three families of quarks and leptons transforming in the $10+{\\bar 5}$ representations.

  11. Planar Quantum Mechanics: an Intriguing Supersymmetric Example

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.

  12. Supersymmetric field theories at finite temperature

    International Nuclear Information System (INIS)

    Dicus, D.A.; Tata, X.R.

    1983-01-01

    We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry

  13. Collisional processes in supersymmetric plasma

    International Nuclear Information System (INIS)

    Czajka, Alina; Mrowczynski, Stanislaw

    2011-01-01

    Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.

  14. Basic hypergeometry of supersymmetric dualities

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar, E-mail: ilmar.gahramanov@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D14476 Potsdam (Germany); Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, D12489 Berlin (Germany); Institute of Radiation Problems ANAS, B.Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku (Azerbaijan); Rosengren, Hjalmar, E-mail: hjalmar@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg (Sweden)

    2016-12-15

    We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.

  15. Continuous degeneracy of non-supersymmetric vacua

    International Nuclear Information System (INIS)

    Sun Zheng

    2009-01-01

    In global supersymmetric Wess-Zumino models with minimal Kaehler potentials, F-type supersymmetry breaking always yields instability or continuous degeneracy of non-supersymmetric vacua. As a generalization of the original O'Raifeartaigh's result, the existence of instability or degeneracy is true to any higher order corrections at tree level for models even with non-renormalizable superpotentials. The degeneracy generically coincides the R-axion direction under some assumptions of R-charge assignment, but generally requires neither R-symmetries nor any assumption of generic superpotentials. The result also confirms the well-known fact that tree level supersymmetry breaking is a very rare occurrence in global supersymmetric theories with minimal Kaehler potentials. The implication for effective field theory method in the landscape is discussed and we point out that choosing models with minimal Kaehler potentials may result in unexpected answers to the vacuum statistics. Supergravity theories or theories with non-minimal Kaehler potentials in general do not suffer from the existence of instability or degeneracy. But very strong gauge dynamics or small compactification dimension reduces the Kaehler potential from non-minimal to minimal, and gravity decoupling limit reduces supergravity to global supersymmetry. Instability or degeneracy may appear in these limits. Away from these limits, a large number of non-SUSY vacua may still be found in an intermediate region.

  16. A review of supersymmetric GUT and its implication to proton decay

    International Nuclear Information System (INIS)

    Sakai, N.

    1983-01-01

    Supersymmetric grand unification and its implication to proton decay are reviewed. The author discusses prototype models and reviews recent studies of model building, in particular models with an intermediate scale (10/sup 10/ -- 10/sup 12/ Gev) supersymmetry breaking. Finally proton decay in supersymmetric models is reviewed

  17. Search for supersymmetric particles at CDF

    International Nuclear Information System (INIS)

    Wagner, R.G.

    1989-01-01

    Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab

  18. Supersymmetric extensions of Schrodinger-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte; Unterberger, Jeremie

    2006-01-01

    The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values

  19. Effective Higgs theories in supersymmetric grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)

  20. Quantum integrability and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)