WorldWideScience

Sample records for supersonic flying qualities

  1. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  2. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  3. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    Science.gov (United States)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  4. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  5. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  6. Requirements for satisfactory flying qualities of airplanes

    Science.gov (United States)

    Gilruth, R R

    1943-01-01

    Report discusses the results of an analysis of available data to determine what measured characteristics are significant in defining satisfactory flying qualities, what characteristics are reasonable to require of an airplane, and what influence the various design features have on the observed flying qualities.

  7. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  8. Flying Qualities (Qualites de Vol)

    Science.gov (United States)

    1991-02-01

    CIIANAIT DUMINIIG MA𔃼I1 FXCURSIOH /~o --- ~A 0- /10 CMFIGURE 4 AL-PHA-JETr ELEVATOR CONTROL CINEMATIC ; LP HEINi" KINEMATIC HORIZONTAL STABILIZER...ih-flight simulation is the ultimale assessment techntque providing high realism , flexibility, and credibility. rhe utilization (,f an in-fli:,ht si...1london, UK ()PERATIONAL H-ELICOPTER IIN - FLIGHT SIMULATOR (HIGH REALISM ) I(HIGH FLEAiBILITY Fligt t A tehrtqueTechnology implementation Flight t

  9. Flying spin qualities testing of airplane

    Directory of Open Access Journals (Sweden)

    Kostić Čedomir J.

    2015-01-01

    Full Text Available In this paper is presented the theoretical analysis of origins and characteristics of spinning motion. There are precise explanation of every stage spin flight and basic meaning of notion. Personated equation of motion in spin and equitation of motion airplane in settled spin motion, analysis of them and general recommendation for pilots for recovering from spins. Introduced in valid military and civil specifications flight test demonstration requirements for departure resistance and flying stall and spin qualities testing of airplane. Special attention was given on predicting departure, stall and spin susceptibility and theoretical analysis in the name of magnify flight testing security. There are explanation of test equipment and methodology of flying qualities testing of airplanes. Like a support of this theme are described method and results of flight stall and spin qualities testing of airplane G-4(N-62 super see-gull with precise recommendation for pilots for recovering from spins, from TOC SLI VS (Technical testing center, department for fight testing Air Force of Serbia.

  10. Genetic quality control in mass-reared melon flies

    International Nuclear Information System (INIS)

    Miyatake, T.

    2002-01-01

    Quality control in mass-reared melon flies, Bactrocera cucurbitae, after eradication is discussed, based on the results of artificial selection experiments. First, a brief history of quality control in mass-rearing of insects is described. In practical mass- rearing of melon fly, many traits have already been differentiated between mass-reared and wild flies. These differing traits are reviewed and the factors which caused these differences are considered. It was considered that the differences between wild and mass-reared melon flies depended on the selection pressures from the mass-rearing method. Next, the results of several artificial selection experiments using the melon fly are reviewed. Finally, consideration is given to some correlated responses to artificial selection in mass-rearing. Longevity that is correlated to early fecundity was successfully controlled by artificial selection for reproduction in the mass-rearing system. On the basis of these results, an improved method for quality control in mass-reared melon fly with considerations for quantitative genetics is discussed

  11. The effect of fly ash on the quality of mortars

    Energy Technology Data Exchange (ETDEWEB)

    Hovy, M F [Blue Circle Cement (Pty) Ltd., Industria West (South Africa)

    1994-12-31

    A comparative study of the commercially available blends of the fly cement was made. The focus of the research was to determine the suitability of fly ash blends in mortars. A comparative evaluation was made to establish the differences between laboratory analysis and on site practice. These comparisons were made using 4 different building sands. The laboratory evaluations were confined to specified test methods to determine the suitability of the mortar. However, the in-situ tests required an innovative approach such as: conducting tests on mortar joints to determine the in-situ compressive strengths. (A new technique was developed, which involves shooting nails into the mortar joint, determining the penetration depth and its pull out strength. This is then calibrated against cube strengths); and conducting tests using the SABS approach to determine the resistance to water penetration through a brick wall. The trends in the laboratory evaluations were as expected in terms of improved water demands, water retention and reduced compressive strengths. The in-situ mortar compressive strengths were marginally lower when using fly ash blends compared to ordinary portland cement. The use of fly ash blends improved the resistance of water penetration through a brick wall. In-situ tests are probably the only meaningful way to determine the effectiveness of a mortar in fulfilling its functions in a wall as laid down by SABS 0164:1990. With this in mind, the same quality or an improved quality mortar will be obtained using fly ash blended cements rather than ordinary portland cement. 10 refs., 13 figs., 5 tabs.

  12. Temporal and spatial variations in fly ash quality

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  14. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  15. Comparison of Anastrepha ludens (Diptera: Tephritidae) Bisexual and Genetic Sexing (Tapachula-7) Strains: Effect of Hypoxia, Fly Density, Chilling Period, and Food Type on Fly Quality.

    Science.gov (United States)

    Arredondo, José; Ruiz, Lía; Hernández, Emilio; Montoya, Pablo; Díaz-Fleischer, Francisco

    2016-04-01

    The use of genetic sexing strain (GSS) insects in the sterile insect technique (SIT) makes necessary the revision of quality parameters of some stressful steps used during the packing process for aerial release because of possible differences in tolerance between fly strains. Here, we determined the effect of three periods of hypoxia (12, 24, and 36 h at pupal stage), three cage densities (1.0, 1.3, and 1.5 flies/cm2), two different foods (protein/sugar (1/24) and Mubarqui), and three chilling times (20 min [control], 90, and 180 min) on the quality parameters of flies of two Anastrepha ludens (Loew) strains (bisexual and GSS Tapachula-7). In general, the response to stressful conditions of both fly strains was qualitatively equivalent but quantitatively different, as flies of both strains responded equally to the stressful factors; however, flies of Tapachula-7 exhibited lower quality parameters than the control flies. Thus, hypoxia affected the flying ability but not the emergence or longevity of flies. The food type affected the adult weight; protein/sugar produced heavier flies that also survived longer and had a greater mating propensity. Flies under the lowest density were better fliers that those at the other two densities. Increasing chilling time reduced flight ability but not longevity or mating propensity. The implications of these findings for the use of A. ludens GSS in SIT programs are discussed herein.

  16. Mineralogical study of Brazilian fly ashes; origin, characteristics and quality

    International Nuclear Information System (INIS)

    Kihara, Y.

    1984-01-01

    Thirty-one fly ash samples from the five main Brazilian coal-powered thermoelectric plants were subjected to gravimetric chemical analysis, complexometry, flame photometry, X-ray diffractometry, thermodifferential and thermogravimetric analysis, transmitted and reflected light microscopy, electron microprobe analysis and transmited and scanning electron microscopy. (Author) [pt

  17. Interaction of feel system and flight control system dynamics on lateral flying qualities

    Science.gov (United States)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  18. Quality of the oriental fruit fly, bactrocera dorsalis (Hendel) after sifting pupae by mechanical sifter

    International Nuclear Information System (INIS)

    Sutantawong, M.; Uthaisarn, K.

    1996-01-01

    Quality of fruit fly, bactrocera dorsalis (Hendel) in mass production is important for controlling pest populations by means of the sterile insect technique. The experiment was to study the quality of fruit fly after sifting pupae by mechanical sifter. Laboratory-reared pupae, held at 26 ± 1 degree C were sifted at intensity of 18 rpm in a rotary sifting device at 1, 2, 3, 4, 5, 6, 7 and 8 days of age. The quality of fruit flies were determined on adult eclosion and flight capability. The results showed that there were no significantly different (P < 0.05) in adult eclosion between control with sifted pupae at 1 to 8 days of age. However, there were significantly different (P < 0.05) in flight capability between control and sifted pupae at 1, 5, 6, 7, 8 days of age with sifted pupae at 2, 3, 4 days of age

  19. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    Science.gov (United States)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  20. Quality management systems for fruit fly (Diptera: Tephritidae) sterile insect technique

    International Nuclear Information System (INIS)

    Caceres, C.; Robinson, A.; McInnis, D.; Shelly, T.; Jang, E.; Hendrichs, J.

    2007-01-01

    The papers presented in this issue are focused on developing and validating procedures to improve the overall quality of sterile fruit flies for use in area-wide integrated pest management (AW-IPM) programs with a sterile insect technique (SIT) component. The group was coordinated and partially funded by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, under a five-year Coordinated Research Project (CRP) on 'Quality Assurance in Mass-Reared and Released Fruit Flies for Use in SIT Programmes'. Participants in the CRP from 16 countries came from both basic and applied fields of expertise to ensure that appropriate and relevant procedures were developed. A variety of studies was undertaken to develop protocols to assess strain compatibility and to improve colonization procedures and strain management. Specific studies addressed issues related to insect nutrition, irradiation protocols, field dispersal and survival, field cage behavior assessments, and enhancement of mating competitiveness. The main objective was to increase the efficiency of operational fruit fly programs using sterile insects and to reduce their cost. Many of the protocols developed or improved during the CRP will be incorporated into the international quality control manual for sterile tephritid fruit flies, standardizing key components of the production, sterilization, shipment, handling, and release of sterile insects. (author) [es

  1. Acoustic Method for Testing the Quality of Sterilized Male Tsetse Flies Glossina Pallidipes

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, H [Department of Evolutionary Biology, University of Vienna, Halsriegelstr. 34, Vienna A-1090 (Austria); Noll, A [Institut fuer Schallforschung, Oe Ak d Wiss, Wohllebengasse 12-14, Vienna A-1040 (Austria); Bolldorf, J [Umweltbundesamt, Spittelauer Laende 5, Vienna A-1090 (Austria); Parker, A G [Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf A-2444 (Austria)

    2012-07-15

    Tsetse flies are able to emit different acoustic signals. An acoustic method to test the quality of sterilized male tsetse flies was developed. Differences in the sound characteristics between males and females, between sterilized and unsterilized males, and between males sterilized in air and nitrogen, were determined. Also, the acoustic parameters (frequency, time, sound pressure level) of the sounds that are useful as criteria for quality control were determined. It was demonstrated that only the so-called 'feeding sounds' can be used as a quality criterion. Both sexes emitted feeding sounds while feeding on a host. These sounds were also used to find sexual partners, and had an effect on male copulation success. An acoustic sound analysis programme was developed; it automatically measured sound activity (only feeding sounds) under standard conditions (random sample, relative humidity, temperature, light intensity). (author)

  2. Primary display latency criteria based on flying qualities and performance data

    Science.gov (United States)

    Funk, John D., Jr.; Beck, Corin P.; Johns, John B.

    1993-01-01

    With a pilots' increasing use of visual cue augmentation, much requiring extensive pre-processing, there is a need to establish criteria for new avionics/display design. The timeliness and synchronization of the augmented cues is vital to ensure the performance quality required for precision mission task elements (MTEs) where augmented cues are the primary source of information to the pilot. Processing delays incurred while transforming sensor-supplied flight information into visual cues are unavoidable. Relationships between maximum control system delays and associated flying qualities levels are documented in MIL-F-83300 and MIL-F-8785. While cues representing aircraft status may be just as vital to the pilot as prompt control response for operations in instrument meteorological conditions, presently, there are no specification requirements on avionics system latency. To produce data relating avionics system latency to degradations in flying qualities, the Navy conducted two simulation investigations. During the investigations, flying qualities and performance data were recorded as simulated avionics system latency was varied. Correlated results of the investigation indicates that there is a detrimental impact of latency on flying qualities. Analysis of these results and consideration of key factors influencing their application indicate that: (1) Task performance degrades and pilot workload increases as latency is increased. Inconsistency in task performance increases as latency increases. (2) Latency reduces the probability of achieving Level 1 handling qualities with avionics system latency as low as 70 ms. (3) The data suggest that the achievement of desired performance will be ensured only at display latency values below 120 ms. (4) These data also suggest that avoidance of inadequate performance will be ensured only at display latency values below 150 ms.

  3. The High Flying Leadership Qualities: What Matters the Most

    Science.gov (United States)

    2016-04-01

    operational and functional background of its personnel steeped in both DoD and industry experience. Research Methodology Based on their experiences...DeLorean Motors, Levitz Furniture , Enron, and many other corporations like these learned what happens when key leadership qualities lose all lift...graduate of the Canadian Force Command and Staff College in Toronto, Ontario, Canada; and the U.S. Army War College in Carlisle Barracks

  4. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  5. USAF Test Pilot School. Flying Qualities Textbook, Volume 2, Part 1

    Science.gov (United States)

    1986-04-01

    Qualities Flight Testing, Performance and Flying Qaulities Branch, Flight Test Engneerd ision, 6510th Test Wing, Air Force Flight Mayst Ce1ter, Edwards...For these aircraft, the program manager may re*uire a mil spec written specifically for the aircraft and control system involwd. 5.20.2 _EL k,Tt...OR MANAGED IN CONTEXT OF MISSION, WITH AVAILABLE PILOT ATTENTION. S UNCONTROLLABLE CONTROL WILL BE LOST DURING SOME PORTION OF MISSION. ACCEPTABLE

  6. Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation

    Directory of Open Access Journals (Sweden)

    João Otávio Falcão Arantes Filho

    2016-07-01

    Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.

  7. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  8. A computational study of the supersonic coherent jet

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Kim, Heuy Dong

    2003-01-01

    In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets

  9. Product quality control, irradiation and shipping procedures for mass-reared tephritid fruit flies for sterile insect release programmes

    International Nuclear Information System (INIS)

    1999-05-01

    This document represents the recommendations, reached by consensus of an international group of quality control experts, on the standard procedures for product quality control (QC) for mass reared tephritid flies that are to be used in Sterile Insect Technique (SIT) programs. In addition, the manual describes recommended methods of handling and packaging pupae during irradiation and shipment. Most of the procedures were designed specifically for use with Mediterranean fruit flies, Ceratitis capitata (Wied.), but they are applicable, with minor modification in some cases, for other tephritid species such as Caribbean fruit fly Anastrepha suspense, Mexican fruit fly A. ludens, and various Bactrocera species. The manual is evolving and subject to periodic updates. The future additions will include other fruit flies as the need is identified. If followed, procedures described in this manual will help ensure that the quality of mass-produced flies is measured accurately in a standardised fashion, allowing comparisons of quality over time and across rearing facilities and field programmes. Problems in rearing, irradiation and handling procedures, and strain quality can be identified and hopefully corrected before control programmes are affected. Tests and procedures described in this document are only part of a total quality control programme for tephritid fly production. The product QC evaluations included in this manual are, unless otherwise noted, required to be conducted during SIT programmes by the Field programme staff not the production staff. Additional product QC tests have been developed and their use is optional (see ancillary test section). Production and process QC evaluations (e.g., analysis of diet components, monitoring the rearing environment, yield of larvae, development rate, etc.) are not within the scope of this document. Quality specifications are included for minimum and mean acceptability of conventional strains of C. capitata, A. ludens, and A

  10. A pilot's assessment of helicopter handling-quality factors common to both agility and instrument flying tasks

    Science.gov (United States)

    Gerdes, R. M.

    1980-01-01

    A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.

  11. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  12. Developing Quality Control Procedures to Sustain a Supply of High Quality Blood for Mass Rearing Tsetse Flies

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, C J; Venter, G J; Potgieter, F T [ARC-Onderstepoort Veterinary Institute, Old Soutpans Road, Private Bag X05, 0110 Onderstepoort (South Africa)

    2012-07-15

    Mass rearing tsetse flies Glossina spp. is dependent on the sustained availability of a high quality blood diet. In any mass rearing facility, the logistics for obtaining sterile, high quality fresh blood is challenging. An added complication is the influence of potential chemical, physical and microbiological elements present in the blood of donors, as well as contamination during collection, handling and storage. Research at the Agricultural Research Council - Onderstepoort Veterinary institute (ARC-OVI) is directed towards the development of quality control procedures for the supply of the in vitro diet used to maintain productive colonies of Glossina brevipalpis Newstead and Glossina austeni Newstead. Factors that may influence the blood diet, e.g. defibrination, feeding times, collection of blood in anticoagulants, treatment of blood with taste stimuli, repeated freezing and thawing of blood, effect of bovine growth hormones, and also a preference for bovine or porcine blood were tested. A 25 day bioassay was used to determine the effects of these factors on tsetse survival and reproduction. Defibrination of the blood for 10 to 15 minutes gave the best results for both species. It was found that G. brevipalpis should be fed three times per week for 5 minutes each time, and G. austeni three times per week for 10 minutes. Heparin, acid citrate dextrose (ACD), citric acid, citrate phosphate dextrose adenine (CPDA) and a combination of sodium citrate and citric acid were effective anticoagulants in the blood diets of G. brevipalpis and G. austeni. Blood treated with inosine triphosphate (ITP) gave the highest quality factor (QFC) values for both G. austeni and G. brevipalpis. Repeated freezing and thawing of blood definitely affects pupal production negatively; G. brevipalpis especially produced significantly smaller pupae. A premixed diet of equal amounts of bovine and porcine blood was found to be best suited for G. brevipalpis, and for G. austeni a mixture of

  13. Quality control method to measure predator evasion in wild and mass-reared Mediterranean fruit flies (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    Hendrichs, M.; Wornoayporn, V.; Hendrichs, J.; Katsoyannos, B.

    2007-01-01

    Sterile male insects, mass-reared and released as part of sterile insect technique (SIT) programs, must survive long enough in the field to mature sexually and compete effectively with wild males for wild females. An often reported problem in Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) SIT programs is that numbers of released sterile males decrease rapidly in the field for various reasons, including losses to different types of predators. This is a serious issue in view that most operational programs release sterile flies at an age when they are still immature. Previous field and field-cage tests have confirmed that flies of laboratory strains are less able to evade predators than wild flies. Such tests involve, however, considerable manipulation and observation of predators and are therefore not suitable for routine measurements of predator evasion. Here we describe a simple quality control method with aspirators to measure agility in medflies and show that this parameter is related to the capacity of flies to evade predators. Although further standardization of the test is necessary to allow more accurate inter-strain comparisons, results confirm the relevance of measuring predator evasion in mass-reared medfly strains. Besides being a measure of this sterile male quality parameter, the described method could be used for the systematic selection of strains with a higher capacity for predator evasion. (author) [es

  14. Flight Measurements of the Flying Qualities of a Lockheed P-80A Airplane (Army No. 44-85099) - Stalling Characteristics

    Science.gov (United States)

    Anderson, Seth B.; Cooper, George E.

    1947-01-01

    This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.

  15. Sterile insect technique: a field evaluation of the quality of mass-reared fruit flies

    International Nuclear Information System (INIS)

    1985-01-01

    To optimize the use of the sterile insect technique it is essential to establish precise programmes for the evaluation of mass-reared flies in comparison with the natural population. This video presents a programme carried out at the island of Prosida which represents an extremely favourable habitat for the development of the flies; the flies are a new strain mass-reared in the IAEA's Laboratory at Seibersdorf, Austria. The technique employed is the Marked Release Recapture Technique, which consists of colouring a predetermined number of flies with fluorescent powder before they are released, and then recapturing them. This method provides valuable data about the flies' adaptability, orientation to the habitat, motility, sexual activity and reproduction

  16. Sterile insect technique: a field evaluation of the quality of mass-reared fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-12-31

    To optimize the use of the sterile insect technique it is essential to establish precise programmes for the evaluation of mass-reared flies in comparison with the natural population. This video presents a programme carried out at the island of Prosida which represents an extremely favourable habitat for the development of the flies; the flies are a new strain mass-reared in the IAEA`s Laboratory at Seibersdorf, Austria. The technique employed is the Marked Release Recapture Technique, which consists of colouring a predetermined number of flies with fluorescent powder before they are released, and then recapturing them. This method provides valuable data about the flies` adaptability, orientation to the habitat, motility, sexual activity and reproduction

  17. Development of quality control procedures for mass produced and released oriental fruit flies, Bactrocera philippinensis for SIT programmes

    International Nuclear Information System (INIS)

    Resilva, Sotero S.; Obra, Glenda B.

    2001-01-01

    This report summarizes different quality control tests necessary to monitor the behavior of oriental fruit fly, B. philippinensis from the mass rearing facility to the release site. Results of routine quality control tests revealed that pupal size, emergence, fliers, sex ration, stress tests, mating index and fertility tests were all above satisfactory levels in pre-and post-irradiation treatment. Tests at the release site showed similar findings except for mating index where poor performance of flies were observed. Fertility and fecundity tests indicate that complete sterility of OFF was achieved at dose ranging from 68-104 Gy. Standard specifications required for weekly and monthly quality control tests was not yet established because release of sterile flies in Guimaras started only last April, 2001. In determining eye color changes in relation to physiological development, eye appearance of the pupae is dark yellowish brown (HUE 10 YR 3/6) at 7 days old where irradiation is to be applied for sterilization. Cross correlation of results showed large pupae had great advantage over medium and small pupae in terms of flight dispersal. Poor emergence and fliers of small pupae were observed when irradiated and chilled for 24 hours. However, no significant difference was observed on mating preference, longevity and fertility among the three pupal size groups. (Author)

  18. Quality of closed chest compression on a manikin in ambulance vehicles and flying helicopters with a real time automated feedback.

    Science.gov (United States)

    Havel, Christof; Schreiber, Wolfgang; Trimmel, Helmut; Malzer, Reinhard; Haugk, Moritz; Richling, Nina; Riedmüller, Eva; Sterz, Fritz; Herkner, Harald

    2010-01-01

    Automated verbal and visual feedback improves quality of resuscitation in out-of-hospital cardiac arrest and was proven to increase short-term survival. Quality of resuscitation may be hampered in more difficult situations like emergency transportation. Currently there is no evidence if feedback devices can improve resuscitation quality during different modes of transportation. To assess the effect of real time automated feedback on the quality of resuscitation in an emergency transportation setting. Randomised cross-over trial. Medical University of Vienna, Vienna Municipal Ambulance Service and Helicopter Emergency Medical Service Unit (Christophorus Flugrettungsverein) in September 2007. European Resuscitation Council (ERC) certified health care professionals performing CPR in a flying helicopter and in a moving ambulance vehicle on a manikin with human-like chest properties. CPR sessions, with real time automated feedback as the intervention and standard CPR without feedback as control. Quality of chest compression during resuscitation. Feedback resulted in less deviation from ideal compression rate 100 min(-1) (9+/-9 min(-1), ptime. Applied work was less in the feedback group compared to controls (373+/-448 cm x compression; ptime automated feedback improves certain aspects of CPR quality in flying helicopters and moving ambulance vehicles. The effect of feedback guidance was most pronounced for chest compression rate. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Selected factors affecting the quality of Mediterranean fruit fly used in sterile release programs

    International Nuclear Information System (INIS)

    Serghiou, C.S.

    1977-01-01

    Adult irradiation of ceratitis capitata (Wiedemann) males resulted in a lower degree of sterility and a higher degree of competitiveness compared to pupal irradiation. It was consistently observed with both adult and pupal irradiation that the increased level of sterility obtained with increasing dose was counteracted to the same extent by decreasing level of male competitiveness. In a test in which the marking efficiency and persistence of fluorescent powders was tested, best results were obtained with Tinopal-SFG. Marking did not have any adverse effect either on male competitiveness or on fly survival. Competitiveness of irradiated male flies decreased as their exposure to chilling increased. Chilling, however, did not have any adverse effect on fly survival

  20. Impact assessment of fly ash on ground water quality: An experimental study using batch leaching tests.

    Science.gov (United States)

    Dandautiya, Rahul; Singh, Ajit Pratap; Kundu, Sanghamitra

    2018-05-01

    The fly ash, generated at the coal-based thermal power plant, is always a cause of concern to environmentalists owing to its adverse impact on air, water and land. There exists a high environmental risk when it is disposed to the environment. Thus, two different type of fly ash samples (FA-1 and FA-2) have been considered in this study to examine the leaching potential of the elements magnesium, aluminium, silicon, calcium, titanium, vanadium, chromium, manganese, iron, nickel, cobalt, copper, zinc, arsenic, selenium, strontium, cadmium, barium and lead for different types of leachant. Toxicity characteristics leaching procedure and ASTM tests have been performed in the laboratory to simulate different natural leaching scenarios. Characterisation of samples have been done through X-ray diffraction and field emission gun scanning electron microscope. The effect of different liquid to solid ratios (i.e. 5, 10, 20 and 50) on the mobilisation of elements has been analysed. The results indicated that the maximum leaching of all elements occurred at a liquid to solid ratio of 5 except for arsenic, barium and silicon. The groundwater analysis has also been done to understand the actual effects of leachate. The elements presenting the highest leachability in the two fly ash samples under all tested conditions were magnesium, aluminium, silicon and calcium. It has been observed that calcium exhibits greater leaching effects than all other constituents. The study presented here has been found very useful for assessing contamination levels in groundwater owing to leaching effects of fly ash under different scenarios, which can be helpful to prevent spreading of the contaminants by efficient management of fly ash.

  1. Mass rearing of the melon fly in Okinawa, Japan - Special reference to quality control

    International Nuclear Information System (INIS)

    Yamagishii, Masaaki; Kakinohana, Hiroyuki

    2000-01-01

    The melon fly, Bactrocera cucurbitae (Coquillett), had been completely eradicated from Okinawa, Japan in 1993 (Yamagishi et al. 1993, Kakinohana 1994, Kuba et al. 1996). Following the expansion of target areas during the eradication campaign, the number of flies produced was increased from 5 million to 280 million per week. In the process of the eradication project, the mass reared strains had been replaced three times with new strains. The aim of this paper is to show the changes in various traits of the third strain that were regularly monitored in the factory. First, unintentional and intentional artificial selections to which the strain was exposed are mentioned. Second, the changes in the monitored traits are shown, and finally, the relation between selection and the response to selection is discussed

  2. Evolution of Flying Qualities Analysis: Problems for a New Generation of Aircraft

    Science.gov (United States)

    2010-03-29

    speed. . . Inability to balance and steer still confronts students of the flying problem . . .When this one feature has been worked out, the age of...30 −20 −10 0 10 20 M ag ni tu de ( dB ) 10 −1 10 0 10 1 10 2 −180 −135 −90 −45 0 P ha se ( de g) Bode Diagram, ω n =4, ζ = 0.65 Frequency (rad/sec... Unicorn Silverfox Vertex SPAARO C 152 R ey no ld s N um be r Gross Takeoff Weight (lbs) Comparison of Aircraft Figure 5.4: Aircraft operational

  3. The Trojan. [supersonic transport

    Science.gov (United States)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  4. A second-generation supersonic transport

    Science.gov (United States)

    Humphrey, W.; Grayson, G.; Gump, J.; Hutko, G.; Kubicko, R.; Obrien, J.; Orndorff, R.; Oscher, R.; Polster, M.; Ulrich, C.

    1989-01-01

    Ever since the advent of commercial flight vehicles, one goal of designers has been to develop aircraft that can fly faster and carry more passengers than before. After the development of practical supersonic military aircraft, this desire was naturally manifested in a search for a practical supersonic commercial aircraft. The first and, to date, only supersonic civil transport is the Concorde, manufactured by a consortium of British and French aerospace companies. Unfortunately, due to a number of factors, including low passenger capacity and limited range, the Concorde has not been an economic success. It is for this reason that there is considerable interest in developing a design for a supersonic civil transport that addresses some of the inadequacies of the Concorde. For the design of such an aircraft to be feasible in the near term, certain guidelines must be established at the outset. Based upon the experience with the Concorde, whose 100-passenger capacity is not large enough for profitable operation, a minimum capacity of 250 passengers is desired. Second, to date, because of the limited range of the Concorde, supersonic commercial flight has been restricted to trans-Atlantic routes. In order to broaden the potential market, any new design must have the capability of trans-Pacific flight. A summary of the potential markets involved is presented. Also, because of both the cost and complexity involved with actively cooling an entire aircraft, an additional design constraint is that the aircraft as a whole be passively cooled. One additional design constraint is somewhat less quantitative in nature but of great importance nonetheless. Any time a new design is attempted, the tendency is to assume great strides in technology that serve as the basis for actual realization of the design. While it is not always possible to avoid this dependence on 'enabling technology,' since this design is desired for the near term, it is prudent, wherever possible, to rely on

  5. Production and quality assurance in the SIT Africa Mediterranean fruit fly (Diptera: Tephritidae) rearing facility in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B [Plant Protection Division, ARC Infruitec-Nietvoorbij Fruit, Vine and Wine Institute, Stellenbosch, 7599 (South Africa); Rosenberg, S; Arnolds, L; Johnson, J [SIT Africa (Pty) Ltd., Stellenbosch, 7599 (South Africa)

    2007-03-15

    A mass-rearing facility for Mediterranean fruit fly Ceratitis capitata (Wiedemann) was commissioned in Stellenbosch in 1999 to produce sterile male fruit flies for a sterile insect technique (SIT) project in commercial fruit orchards and vineyards in the Western Cape province of South Africa. The mass-rearing procedure was largely based on systems developed by the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria. A number of genetic sexing strains were used to produce only males for release. Initial cramped rearing and quality management conditions were alleviated in 2001 with the construction of a new adult rearing room and quality control laboratory. In 2002 a comprehensive Quality Management System was implemented, and in 2003 an improved genetic sexing strain, VIENNA 8, was supplied by the FAO/IAEA Laboratory in Seibersdorf. For most of the first 3 years the facility was unable to supply the required number of sterile male Mediterranean fruit flies for the SIT program without importing sterile male pupae from another facility. From mid-2002, after the quality management system was implemented, both production and quality improved but remained below optimum. After the introduction of the VIENNA 8 genetic sexing strain, and together with an improvement in the climate control equipment, production stability, and quality assurance parameters improved substantially. The critical factors influencing production and quality were an inadequate rearing infrastructure, problems with the quality of the larval diet, and the initial absence of a quality management system. The results highlight the importance of effective quality management, the value of a stable and productive genetic sexing strain, and the necessity for a sound funding base for the mass-rearing facility. (author) [Spanish] La facilidad para criar en masa la mosca mediterranea de la fruta, Ceratitis capitata (Wiedemann) fue comisionada en Stellenbosch en 1999 para producir machos

  6. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  7. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    Science.gov (United States)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  8. Gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Amirav, Aviv; Gordin, Alexander; Poliak, Marina; Fialkov, Alexander B

    2008-02-01

    Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation. (c) 2008 John Wiley & Sons, Ltd.

  9. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate.

    Science.gov (United States)

    Gray, Lindsey J; Simpson, Stephen J; Polak, Michal

    2018-01-01

    Optimal life-history strategies are those that best allocate finite environmental resources to competing traits. We used the geometric framework for nutrition to evaluate life-history strategies followed by Drosophila melanogaster by measuring the condition-dependent performance of life-history traits, including the morphology of male secondary sexual characters, sex combs. We found that depending on their rearing environment flies faced different forms of trait trade-offs and accordingly followed different life-history strategies. High-energy, high-carbohydrate, low-protein diets supported development of the largest and most symmetrical sex combs, however, consistent with handicap models of sexual selection these foods were associated with reduced fly survival and developmental rate. Expressing the highest quality sex combs may have required secondary sexual trait quality to be traded-off with developmental rate, and our results indicated that flies unable to slow development died. As larval nutritional environments are predominantly determined by female oviposition substrate choice, we tested where mated female flies laid the most eggs. Mothers chose high-energy, high-protein foods associated with rapid larval development. Mothers avoided high-carbohydrate foods associated with maximal sex comb expression, showing they may avoid producing fewer 'sexy' sons in favour of producing offspring that develop rapidly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  11. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  12. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  13. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    Science.gov (United States)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  14. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  15. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  16. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  17. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  18. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  19. Does leaching of naturally occurring radionuclides from roadway pavements stabilised with coal fly ash have negative impacts on groundwater quality and human health?

    Science.gov (United States)

    Almahayni, T; Vanhoudt, N

    2018-05-05

    We assessed the potential impact of using coal fly ash to stabilise roadway pavements on groundwater quality and human health. The leaching potential of naturally occurring radionuclides (NORs) typically present in the fly ash was assessed with the HYDRUS-1D code and data representative of a segment of the Wisconsin State Trunk Highway 60 as a case study. Our assessment suggests that the impact would be mainly from the chemical toxicity of uranium (U). In our particular case study, U concentration in the leachate exceeded the maximum contaminant level for this element (MCL = 30 μg L -1 ) in almost all the scenarios. In the groundwater, the MCL was only exceeded under conditions of high leaching and low dilution in the aquifer. The radiological toxicity from the consumption of the contaminated groundwater by a hypothetical adult, however, was at maximum 43% of the individual dose criterion (IDC = 0.1 mSv y -1 ). The results also highlight the need to consider site-specific conditions such as climate and hydrogeology when assessing the environmental impacts of utilising fly ash in roadway construction applications since they could have profound effects on the assessment findings. There is also a pressing need for reliable and representative data to support realistic assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    Science.gov (United States)

    2007-07-01

    used and developed during recent wing / winglet / morphing design programmes (Refs.13-14). By exploiting this method, we have assessed the aerodynamics ...parameters, Propulsion Issues, Size Issues, Aero-elastic effects 15. SUBJECT TERMS EOARD, Control System, Aerodynamics 16...

  1. Store Separations From a Supersonic Cone

    National Research Council Canada - National Science Library

    Simko, Richard J

    2006-01-01

    ... analyses of supersonic store separations. Also included in this research is a study of supersonic base pressure profiles, near-wake velocity profiles, wind tunnel shock interactions and force/moment studies on a conical store and parent vehicle...

  2. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    Science.gov (United States)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  3. Flying Cities

    DEFF Research Database (Denmark)

    Ciger, Jan

    2006-01-01

    The Flying Cities artistic installation brings to life imaginary cities made from the speech input of visitors. In this article we describe the original interactive process generating real time 3D graphics from spectators' vocal inputs. This example of cross-modal interaction has the nice property....... As the feedback we have received when presenting Flying Cities was very positive, our objective now is to cross the bridge between art and the potential applications to the rehabilitation of people with reduced mobility or for the treatment of language impairments....

  4. Flying Cities

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Lasserre, Sebastien; Ciger, Jan

    2008-01-01

    Flying Cities is an artistic installation which generates imaginary cities from the speech of its visitors. Thanks to an original interactive process analyzing people's vocal input to create 3D graphics, a tangible correspondence between speech and visuals opens new possibilities of interaction....... This cross-modal interaction not only supports our artistic messages, but also aims at providing anyone with a pleasant and stimulating feedback from her/his speech activity. As the feedback we have received when presenting Flying Cities was very positive, our objective is now to cross the bridge between art...

  5. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  6. Studies on mating competition of irradiated melon flies

    International Nuclear Information System (INIS)

    Limohpasmanee, W.

    1994-01-01

    Mating competition is the key factor for fruit flies control by using sterile insect technique project. Mass rearing and irradiation can reduce the mating competition of fruit flies. This experiment has purpose to evaluate the mating competition of the irradiated melon fly. The results show that mating competition values of irradiated melon flies were 0.36 and 0.24 when they mated with normal and irradiated females. Both normal male and female can mate more frequency than irradiated flies. (Z=1.322, P<0.05; Z=1.851, P<0.05). The results show that quality of mass rearing and irradiated melon fly was lower than the normal flies. So that quality of irradiated fly must be improved and the number of released flies as less must be higher than natural flies 6 time

  7. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  8. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  9. Advanced supersonic propulsion study, phase 3

    Science.gov (United States)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  10. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  11. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  12. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2004-11-26

    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  13. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant

    International Nuclear Information System (INIS)

    Hower, James C.; Thomas, Gerald A.; Mardon, Sarah M.; Trimble, Alan S.

    2005-01-01

    Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal

  14. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  15. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  16. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  17. Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model

    Science.gov (United States)

    Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore

    FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.

  18. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  19. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  20. Nonlinear stability of supersonic jets

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  1. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  2. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    Campylobacter in flies Flies of the Muscidae family forage on all kind of faeces – various fly species have different preferences. M domestica prefer pigs, horses and cattle faeces, animals which are all known to frequently excrete Campylobacter. As a result, the insects pick up pathogenic micro...

  3. The Fly Printer - Extended

    DEFF Research Database (Denmark)

    Beloff, Laura; Klaus, Malena

    2016-01-01

    Artist talk / Work-in-progress What is the purpose of a machine or an artifact, like the Fly Printer, that is dislocated, that produces images that have no meaning, no instrumentality, that depict nothing in the world? The biological and the cultural are reunited in this apparatus as a possibility...... to break through a common way of depicting the world, trying to find different surfaces and using strange apparatus to insist in the interstice of visibility. The Fly Printer is a printing apparatus in a form of a closed environment that contains a flock of fruit flies. The flies eat special food...... that is prepared for them that is mixed with laser jet printer inks. The flies digest the food and gradually print different color dots onto the paper that is placed under the fly habitat. In the Fly Printer biological organisms are used for replacing a standard part of our common printer technology. The work...

  4. Can E. coli fly?

    DEFF Research Database (Denmark)

    Lindeberg, Yrja Lisa; Egedal, Karen; Hossain, Zenat Zebin

    2018-01-01

    , and the numbers of flies landing on the exposed rice were counted. Following exposure, the surface of the rice was microbiologically and molecularly analysed for the presence of E. coli and genes of diarrheagenic E. coli and Shigella strains. RESULTS: Rice was at greater risk (p ... with E. coli if flies landed on the rice than if no flies landed on the rice (odds ratio 5·4 (p ...-landings, the average CFU per fly-landing was > 0·6 x 103 CFU. Genes of diarrheagenic E. coli and Shigella species were detected in 39 of 60 (65%) of exposed rice samples. Two fly species were identified; the common housefly (Musca domestica) and the oriental latrine fly (Chrysomya megacephala). CONCLUSION: Flies may...

  5. Future fly ash marketing; Flugaschevermarktung in der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Mauder, R.; Hugot, A. [Evonik Power Minerals GmbH, Dinslaken (Germany)

    2008-07-01

    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig.)

  6. 75 FR 8427 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2010-02-24

    ... entitled, ``State of the Art of Supersonics Aircraft Technology--What has progressed in science since 1973... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Civil Supersonic Aircraft Panel Discussion AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation...

  7. A fundamental study of the supersonic microjet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, M. S.; Kim, H. S.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  8. A fundamental study of the supersonic microjet

    International Nuclear Information System (INIS)

    Jeong, M. S.; Kim, H. S.; Kim, H. D.

    2001-01-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length

  9. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  10. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  11. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  12. An evaluation of supersonic STOVL technology

    Science.gov (United States)

    Kidwell, G. H., Jr.; Lampkin, B. A.

    1983-01-01

    The purpose of this paper is to document the status of supersonic STOVL aircraft technology. The major focus is the presentation of summaries of pertinent aspects of supersonic STOVL technology, such as justification for STOVL aircraft, current designs and their recognized areas of uncertainty, recent research programs, current activities, plans, etc. The remainder of the paper is an evaluation of the performance differential between a current supersonic STOVL design and three production (or near production) fighters, one of them the AV-8B. The results indicate that there is not a large range difference between a STOL aircraft and a STOVL aircraft, and that other aspects of performance, such as field performance or combat maneuverability, may more than make up for this decrement.

  13. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  14. Supersonic cruise vehicle research/business jet

    Science.gov (United States)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  15. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  16. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    Science.gov (United States)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  17. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  18. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  19. Study of Pressure Oscillations in Supersonic Parachute

    Science.gov (United States)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  20. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  1. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  2. The onion fly

    International Nuclear Information System (INIS)

    Loosjes, M.

    1990-01-01

    This paper describes the origin, practical application, problems in application and prospects of control of the onion fly, Delia antiqua (Diptera: Anthomyiidae), in the Netherlands by the Sterile Insect Technique (SIT). The larva of the onion fly is a severe pest in onions in temperate regions. Development of resistance of the onion fly against insecticides caused research on the SIT to be started by the Dutch Government in 1965. This research was on mass-rearing, long-term storage of pupae, sterilization, and release and ratio assessment techniques. By 1979 sufficient information had been turned over to any interested private company. In the case of the onion fly the SIT can be applied like a control treatment instead of chemical control to individual onion fields. This is due to the limited dispersal activity of the flies and the scattered distribution of onion fields in the Netherlands, with 5-10% of the onion growing areas planted with onions

  3. Measurement of Flying Qualities of a Dehavilland Mosquito F-8 Airplane (AAF No. 43-334960) I: Lateral and Directional Stability and Control Characteristics

    Science.gov (United States)

    Gray, W.E.; Talmage, D.B.; Crane, H.L.

    1945-01-01

    The data presented have no bearing on performance characteristics of airplane, which were considered exceptionally good in previous tests. Some of the undesirable features of lateral and directional stability and control characteristics of the F-8 are listed. Directional stability, with rudder fixed, did not sufficiently restrict aileron yaw; rudder control was inadequate during take-off and landing, and was insufficient to fly airplane with one engine; in clean condition, power of ailerons was slightly below minimum value specified; it was difficult to trim airplane in rough air.

  4. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  5. Supersonic expansion of argon into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Habets, A H.M.

    1977-01-21

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements.

  6. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  7. Supersonic expansion of argon into vacuum

    International Nuclear Information System (INIS)

    Habets, A.H.M.

    1977-01-01

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements

  8. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  9. Fruit fly eradication: Argentina

    International Nuclear Information System (INIS)

    2003-01-01

    Fruit exports account for 9% of Argentina's total agricultural exports and generate annually close to $450 million. This could be increased but for fruit flies that cause damage equivalent to 15% to 20% of present production value of fruit and also deny export access to countries imposing quarantine barriers. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Joint FAO/IAEA Division, to eradicate the Mediterranean fruit fly using the Sterile Insect Technique (SIT). (IAEA)

  10. Characterization of supersonic radiation diffusion waves

    International Nuclear Information System (INIS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-01-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. - Highlights: • The supersonic, diffusion of x-rays through sub-solid density materials is studied. • The data are more diffusive and of higher velocity than any prior work. • Scaled 1D analytic diffusion models reproduce the heat front evolution. • Refined radiation transport approximations are tested in numerical simulations. • Simulations match the data if material properties are adjusted within uncertainties

  11. Trends in Supersonic Separator design development

    Directory of Open Access Journals (Sweden)

    Altam Rami Ali

    2017-01-01

    Full Text Available Supersonic separator is a new technology with applications in hydrocarbon dew pointing and gas dehydration which can be used to condensate and separate water and heavy hydrocarbons from natural gas. Many researchers have studied the design, performance and efficiency, economic viability, and industrial applications of these separators. The purpose of this paper is to succinctly review recent progress in the design and application of supersonic separators and their limitations. This review has found that while several aspects of this study are well studied, considerable gaps within the published literature still exists in the areas such as turndown flexibility which is a critical requirement to cater for variation of mass flow and since almost all the available designs have a fixed geometry and therefore cannot be considered suitable for variable mass flow rate, which is a common situation in actual site. Hence, the focus needs to be more on designing a flexible geometry that can maintain a high separation efficiency regardless of inlet conditions and mass flow variations. This review is focusing only on the design and application of the supersonic separators without going through the experimental facilities, industrial platform, pilot plants as well as theoretical, analytical, and numerical modelling.

  12. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    NARCIS (Netherlands)

    Giskes, Ella; Verschoof, Ruben A.; Segerink, Frans B.; Venner, Cornelis H.

    2017-01-01

    Benefiting from the development of increasingly advanced high speed cameras, flow visualization and analysis nowadays yield detailed data of the flow field in many applications. Notwithstanding this progress, for high speed and supersonic flows it is still not trivial to capture high quality images.

  13. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  14. Hydrogen tube vehicle for supersonic transport: Analysis of the concept

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R. [Vehicle Projects LLC and Supersonic Tube Vehicle LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)

    2008-04-15

    I propose and analyze a concept vehicle that operates in a hydrogen atmosphere contained within a tube, or pipeline, and because of the high speed of sound in hydrogen, it delays the onset of the sound barrier. Mach 1.2 in air corresponds to only Mach 0.32 in hydrogen. The proposed vehicle, a cross between a train and an airplane, is multi-articulated, runs on a guideway, is propelled by propfans, and flies on a hydrogen aerostatic fluid film. Vehicle power is provided by onboard hydrogen-oxygen fuel cells. Hydrogen fuel is taken from the tube itself, liquid oxygen (LOX) is carried onboard, and the product water is collected and stored until the end of a run. Thus, unlike conventional vehicles, it breathes its fuel, stores its oxidant, and its weight increases during operation. Taking hydrogen fuel from the tube solves the problem of vehicular hydrogen storage, a major challenge of contemporary hydrogen fuel-cell vehicles. The foundation of the feasibility analysis is extrapolation of aerodynamic properties of a mid-sized turboprop airliner, the Bombardier Dash 8 Q400 trademark. Based on the aerodynamic analysis, I estimate that the hydrogen tube vehicle would require 2.0 MW of power to run at 1500 km/h, which is supersonic with respect to air. It would require 2.64 h to travel from New York City to Los Angeles, consuming 2330 L of onboard LOX and producing 2990 L of liquid water during the trip. Part of the feasibility analysis shows that it is possible to package the corresponding fuel-cell stacks, LOX systems, and water holding tanks in the tube vehicle. The greatest technical challenge is levitation by aerostatic hydrogen bearings. Risk of fire or detonation within the tube, similar to that of existing large natural-gas pipelines, is expected to be manageable and acceptable. (author)

  15. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  16. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  17. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... awareness of the continuing technological advancements in supersonic aircraft technology aimed at reducing... Wednesday, April 21, 2010, as part of the joint meeting of the 159th Acoustical Society of America and NOISE... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA...

  18. Flies without centrioles.

    Science.gov (United States)

    Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W

    2006-06-30

    Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.

  19. IPCS implications for future supersonic transport aircraft

    Science.gov (United States)

    Billig, L. O.; Kniat, J.; Schmidt, R. D.

    1976-01-01

    The Integrated Propulsion Control System (IPCS) demonstrates control of an entire supersonic propulsion module - inlet, engine afterburner, and nozzle - with an HDC 601 digital computer. The program encompasses the design, build, qualification, and flight testing of control modes, software, and hardware. The flight test vehicle is an F-111E airplane. The L.H. inlet and engine will be operated under control of a digital computer mounted in the weapons bay. A general description and the current status of the IPCS program are given.

  20. A systematic study of supersonic jet noise.

    Science.gov (United States)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  1. Advanced supersonic propulsion study, phase 4

    Science.gov (United States)

    Howlett, R. A.

    1977-01-01

    Installation characteristics for a Variable Stream Control Engine (VSCE) were studied for three advanced supersonic airplane designs. Sensitivity of the VSCE concept to change in technology projections was evaluated in terms of impact on overall installed performance. Based on these sensitivity results, critical technology requirements were reviewed, resulting in the reaffirmation of the following requirements: low-noise nozzle system; a high performance, low emissions duct burner and main burner; hot section technology; variable geometry components; and propulsion integration features, including an integrated electronic control system.

  2. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  3. The Study of Compound Quality of various Siam Weed (Eupatorium odoratum) Extracts and Toxicity Detoxification mechanisms Against 3rd Instar Larvae of Fruit Fly (Dacus dorsalis)

    International Nuclear Information System (INIS)

    Sutthivaiyakit, Pakawadee; Visetson, Suraphon; Sutthivaiyakit, Somyote; Patharakorn, Thipamon; Patharakorn, Surapol; Piadang, Patharakorn

    2006-09-01

    The 1H-NMR spectroscopy showed signals of DeltaH tild0.71.6 from hexane-leaf extracts from Siam weed (Eupatorium odoratum) These signals derive from protons of non-polar compounds which include fatty acid residues and terpinoids. In addition, the amplification of the signals indicated of some minor DeltaH tild6.2-7.7. This revealed protons from aromatic rings possibly involving in flavonoids from 1H-NMR spectrum. This is a believe that is a believe that these compounds could be varied from slightly polar compounds to moderately polar compounds. Furthermore, the Thin Layer Chromatography (TLC) of hexane, chloroform and methanol fractions showed the extracts composed of majority of less polar. It is and indication of the method of separation is quite food for separation of polarity basis from these extracts. Finally, the TLC of hexane fraction distinctively produced 7-8 compounds from the extracts. Toxicity testing using topical spray method showed that methnoloc extracts gave highest toxicity against 3rd instar larvae of fruit fly (Darcus dorsalis). The root extracts produced ca. 5 fold mohile GSH-S-transferase ws elevated 2-3 fold. The addition of dimethyl maleate into the extraccts increased their toxicity. The persistent experiment of eupathal from the extracts showed that the extracts can be stabilixed under aqueous solution upto 1 month with losing the compound. Finally, the Siam weed extracts prosuced non toxic to non-target organisms such as gabbies, bee, and mouse. The results of LC50 showed 15,000-26,000 mg/L 6,000-15,000 mg/L and 3,000-10,000 mg/L from hexane, chloroform and methanol extracts, respectively.

  4. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    other to make the aircraft roll. For example, a downward dis- placement of the left aileron causes the airplane to roll to the right. In Figure 4 the elevators have been deflected downwards, giving rise to a 'nose-down' moment about the pitch axis. Delaying Turbulence. In the last few decades, flying machines have proliferated ...

  5. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An Opportunity for Hydrogen Fueled Supersonic Airliners

    Directory of Open Access Journals (Sweden)

    Alex Forbes

    2011-02-01

    Full Text Available This paper takes a new look at the prospects for developing supersonic civil airliners, considering global demographics, climate change issues, fuel prices and technological advances. Dramatic changes have occurred in the demographics, economics, and market intensity of the Eastern Hemisphere since the 1990s. Carbon reduction imperatives provide a major incentive to invest in developing hydrogen-fueled airliners. The “point-to-point” air route architecture has proved viable with long range mid-size airliners. With a cruise Mach number of 1.4, a large number of destinations become viable for overland supersonic flight. A conceptual design process is used to estimate cost per seat mile for a range of hydrocarbon and hydrogen fuel costs. An argument based on the ideal shape for minimal wave drag, estimates the drag penalty from using hydrogen. Viable aircraft geometries are shown to exist, that match the theoretical ideal shape, showing that the drag estimate is achievable. Conservative design arguments and market estimates suggest that hydrogen-fueled airliners can achieve seat-mile costs low enough to open a large worldwide market and justify a viable fleet size.

  7. Effect of symbiotic bacteria added to the larval environment on the quality of the sterile male Mediterranean fruit fly, Ceratitis capitata

    International Nuclear Information System (INIS)

    Fekiri, Abdelwaheb; Arfaoui, Chaker

    2009-01-01

    The program of fight against Ceratite being based on the TIS becomes increasingly efficient when one controls these various factors well mainly the performances of the produced sterile males. While basing itself on the symbiotic relation between the bacteria present in the intestine of Ceratite and the latter, we have in this present adopted work at a method of breeding which could improve qualities of the male. This method consists in introducing certain beneficial bacteria in Ceratite (Pseudomonas, Citrobacter and Klebsiella) into the medium of breeding following various combinations. The effect of these bacteria was analyzed by carrying out various tests of quality control to release the parameters of quality (Productivity, Poids, Emergence and Aptitude for the flight) and the parameters of the sexual behavior (Latency time, Duration of coupling and competitiveness). (author)

  8. WAYS OF ACQUIRING FLYING PHOBIA.

    Science.gov (United States)

    Schindler, Bettina; Vriends, Noortje; Margraf, Jürgen; Stieglitz, Rolf-Dieter

    2016-02-01

    The few studies that have explored how flying phobia is acquired have produced contradictory results. We hypothesized that classical conditioning plays a role in acquiring flying phobia and investigated if vicarious (model) learning, informational learning through media, and experiencing stressful life events at the time of onset of phobia also play a role. Thirty patients with flying phobia and thirty healthy controls matched on age, sex, and education were interviewed with the Mini-DIPS, the short German version of the Anxiety Disorders Interview Schedule (DSM-IV diagnostic criteria) and the Fear-of-Flying History Interview. Fifty Percent of patients with flying phobia and 53% of healthy controls reported frightening events in the air. There was no significant difference between the two samples. Thus there were not more classical conditioning events for patients with flying phobia. There also was no significant difference between the two samples for vicarious (model) learning: 37% of flying phobia patients and 23% of healthy controls felt influenced by model learning. The influence of informational learning through media was significantly higher for the clinical sample (70%) than for the control group (37%). Patients with flying phobia experienced significantly more stressful life events in the period of their frightening flight experience (60%) than healthy controls (19%). Frightening experiences while flying are quite common, but not everybody develops a flying phobia. Stressful life events and other factors might enhance conditionability. Informational learning through negative media reports probably reinforces the development of flying phobia. Clinical implications are discussed. © 2015 Wiley Periodicals, Inc.

  9. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  10. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  11. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  12. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  13. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  14. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  15. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  16. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  17. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  18. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  19. A pilot's opinion of the F-8 digital fly-by-wire airplane

    Science.gov (United States)

    Krier, G. E.

    1976-01-01

    The handling qualities of the F-8 digital fly by wire airplane are evaluated by using the Cooper-Harper rating scale. The reasons for the ratings are given, as well as a short description of the flying tasks. It was concluded that the handling qualities of the airplane were good in most situations, although occasional ratings of unsatisfactory were given.

  20. Numerical simulation of gap effect in supersonic flows

    Directory of Open Access Journals (Sweden)

    Song Mo

    2014-01-01

    Full Text Available The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.

  1. Growing quasi-modes in dynamics of supersonic collapse

    International Nuclear Information System (INIS)

    Malkin, V.M.; Khudik, V.N.

    1989-01-01

    The hypothesis of globally stable self-similar regimes existence for supersonic Langmuir collapse plays a significant role in the attempts to construct a theory of strong Langmuir turbulence. A possibility for destruction of the stable against infinitely small perturbations self-similar regime of supersonic collapse by growing quasi-modes is demonstrated via the numerical solution of Cauchi problem for Zakharov equations. The quantitative criterion for the destruction of self-similar regimes is formulated. 9 refs.; 5 figs

  2. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  3. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  4. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  5. Visibility and Persistence of Marker Dyes and Effect on the Quality and Mating Competitiveness of Mass-Reared Flies (Diptera: Tephritidae): Anastrepha obliqua and Bisexual and Genetic Sexing (Tapachula-7) Strains of A. ludens.

    Science.gov (United States)

    Arredondo, José; Ruiz, Lia; López, Gladis; Díaz-Fleischer, Francisco

    2017-08-01

    Fluorescent dyes are commonly used in the sterile insect technique (SIT) for marking insects for a proper identification after recapture. However, the quality of the mark must be balanced against insect performance, because dyes can negatively affect some parameters of insect performance and reduce their effectiveness in control with the SIT. We determined the visibility and persistence and the effect of dyes on the quality of Anastrepha obliqua (Macquart) and Anastrepha ludens (Loew) (bisexual and genetic sexing strains) by testing four concentrations of a dye (Day-Glo) from 0 to 2.5 g dye/kg of pupae. Visibility and persistence of the mark were positively affected by dose and negatively affected by the length of time the samples were kept in a solution of 75% alcohol. However, upon dissection, even the lowest dose of dye was visible under a fluorescence microscope. Between dyed and undyed pupae (control), no significant differences were observed in rates of emergence, fliers and flight ability, and survival in two tests, with water and without food and without water and food, at any of the concentrations tested. Furthermore, no significant difference in mating competitiveness was detected between control pupae and those dyed at 1.0 and 2.5 g dye/kg pupae. We discuss our results with the possibility of reducing the dose of dye in these three flies, because the heads are large enough to capture sufficient particles to permit identification with the current methods of detection. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Flying car design and testing

    OpenAIRE

    Klein, S.; Smrcek, L.

    2009-01-01

    This paper is primarily concerned with the inverted design process and manufacture of a flying car prototype which can overcome the problem of traffic management in the world today. A possible solution to the problem of overcrowded roads would be to design a flying or hovering car. Given technological advances in aircraft construction, navigation and operation, flying cars or personal aircraft are now a feasible proposition. The viability of such a concept was investigated in terms of produci...

  7. Mediterranean fruit fly

    International Nuclear Information System (INIS)

    1982-01-01

    The Mediterranean Fruit Fly (Medfly, Ceratitis capitata), widespread in most tropical and subtropical area, lays eggs under the skin of fruit. Its larvae feed on the pulp, causing tremendous losses for agriculture. Insecticides, besides being hazardous for the environment, have proven too slow for effective pest control (eradication in 20 generations). This training film demonstrates in 7 detailed steps how the Sterile Insect Technique (SIT) can lead to elimination of the insect population within 6 generations. It shows different stages of breeding and describes the sterilization of pupae by exposure to gamma rays provided by a cobalt 60 source

  8. Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The Mediterranean Fruit Fly (Medfly, Ceratitis capitata), widespread in most tropical and subtropical area, lays eggs under the skin of fruit. Its larvae feed on the pulp, causing tremendous losses for agriculture. Insecticides, besides being hazardous for the environment, have proven too slow for effective pest control (eradication in 20 generations). This training film demonstrates in 7 detailed steps how the Sterile Insect Technique (SIT) can lead to elimination of the insect population within 6 generations. It shows different stages of breeding and describes the sterilization of pupae by exposure to gamma rays provided by a cobalt 60 source

  9. Mass rearing methods for fruit fly

    International Nuclear Information System (INIS)

    Dominguez Gordillo, J.C.

    1999-01-01

    The most common rearing methods used for mass rearing of fruit flies, with emphasis on those of economic importance in Mexico such as Anastrepha ludens (the Mexican fruit fly). Anastrepha obliqua (the mango and plum fruit fly) and the exotic fruit fly Ceratitis capitata (the Mediterranean fruit fly) are described here. (author)

  10. Prospects for the Development of Innovative Technology of Supersonic Gas-Powder Surfacing Coatings from Alloys of the System Ni-Cr-B-Si

    Science.gov (United States)

    Radchenko, Mikhail V.; Kiselev, Vadim S.; Shevtsov, Yuri O.; Radchenko, Tatyana B.

    2017-10-01

    The article is devoted to the research and development of technological recommendations of supersonic gas-powder surfacing, an example of the practical use of the developed technology is given. Market research indicates that demand for these products is stable due to the growing quality requirements of components and parts produced by the largest machine-building enterprises of Russia.

  11. Physics of flying

    Science.gov (United States)

    Vetrone, Jim

    2015-05-01

    Column editor's note: As the school year comes to a close, it is important to start thinking about next year. One area that you want to consider is field trips. Many institutions require that teachers plan for a field trip well in advance. Keeping that in mind, I asked Jim Vetrone to write an article about the fantastic field trip he takes his AP Physics students on. I had the awesome opportunity to attend a professional development day that Jim arranged at iFLY in the Chicago suburbs. The experience of "flying" in a wind tunnel was fabulous. Equally fun was watching the other physics teachers come up with experiments to have the professional "flyers" perform in the tube. I could envision my students being similarly excited about the experience and about the development of their own experiments. After I returned to school, I immediately began the process of trying to get this field trip approved for the 2015-16 school year. I suggest that you start your process as well if you hope to try a new field trip next year. The key to getting the approval, in my experience, is submitting a proposal early that includes supporting documentation from sources. Often I use NGSS or state standards as justifications for my field trips. I have also quoted College Board expectations for AP Physics 1 and 2 in my documents when requesting an unusual field trip.

  12. The Flying University

    Science.gov (United States)

    Friesen, Catherine

    The Flying University is solo theater performance framed as an academic lecture about Marie Curie and her discovery of radium, delivered to a group of women who have gathered in secret to further their education. As the lecture proceeds, the professor brings in her own research based on a study of Esther Horsch (1905-1991) who lived on a farm in central Illinois. She introduces data from Esther's journals, personal memories, and dreams about Esther's life. The professor's investigation of radium plays at the intersections of magical and mundane, decay and the transformation of life, and the place of ambition in these two women's lives. The intention of this piece is to explore these themes, which are full of mystery, through the traces of the daily lives of Mme. Curie and Esther. Their words and photos are used as roots from which to imagine the things that echo beyond their familiar work; elemental and also fantastically radiant. The Flying University was written and performed by Catherine Friesen April 27-29, 2012 in the Center for Performance Experiment at Hamilton College as part of the University of South Carolina MFA Acting Class of 2013 showcase, Pieces of Eight.

  13. Performance evaluation of clay fly ash brick masonry

    Energy Technology Data Exchange (ETDEWEB)

    Kute, S.; Deodhar, S.V. [K.K. Wagh College of Engineering, Panchavati (India). Dept. of Civil Engineering

    2003-07-01

    Despite inexorable trends of automation in manufacturing industry throughout the world, the conventional brick manufacturing practices have remained largely unchanged since the dawn of civilization in India. This has imposed restrictions on quality of bricks in general. The paper highlights the results derived from an extensive experimental work on performance evaluation of brick masonry. Four types of bricks, three values of joint thickness and fineness modulus of sand, and two grades of mortar with four different proportions were used as samples. Fly ash was from Nashik Thermal Power Station in Maharashtra, India. The results show that the brick masonry of 40% fly ash bricks and mortar with 20% fly ash as replacement to cement with 1:4 and 1:6 proportion gives optimum strength and advocates use of fly ash for this combination. 8 tabs.

  14. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  15. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  16. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  17. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  18. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  19. Molecular description of steady supersonic free jets

    Science.gov (United States)

    Montero, S.

    2017-09-01

    A detailed analysis of the non-local thermal equilibrium (n-LTE) problem in the paraxial zone of silence of supersonic free jets is reported. The study is based on a hybrid approach that combines Navier-Stokes equations with a kinetic equation derived from the generalized Boltzmann (Waldmann-Snider) equation. The resulting system is solved for those flow quantities not easily amenable to experimental measure (translational temperature, flow velocity, and entropy) in terms of the quantities that can be measured accurately (distance, number density, population of rotational states, and their gradients). The reported solutions are essentially exact and are formulated in terms of macroscopic quantities, as well as in terms of elementary collision processes. Emphasis is made on the influence of dissipative effects onto the flow (viscous and diabatic) and of the breakdown of thermal equilibrium onto the evolution of entropy and translational temperature. The influence of inelastic collisions onto these effects is analysed in depth. The reported equations are aimed at optimizing the experimental knowledge of the n-LTE problem and its quantitative interpretation in terms of state-to-state rates for inelastic collisions.

  20. System design overview of JAXA small supersonic experimental airplane (NEXST-1)

    OpenAIRE

    Takami, Hikaru; 高見 光

    2007-01-01

    The system of JAXA small supersonic experimental airplane (NEXST-1: National EXperimental Supersonic Transport-1) has been briefly explained. Some design problems that the designers have encountered have also been briefly explained.

  1. The flying radiation case

    International Nuclear Information System (INIS)

    Brownell, J.H.; Bowers, R.L.

    1997-01-01

    The Los Alamos foil implosion program has the goal of producing an intense, high-energy density x-ray source by converting the energy of a magnetically imploded plasma into radiation and material energy. One of the methods for converting the plasma energy into thermal energy and radiation and utilizing it for experiments is called the flying radiation case (FRC). In this paper the authors shall model the FRC and provide a physical description of the processes involved. An analytic model of a planar FRC in the hydrodynamic approximation is used to describe the assembly and shock heating of a central cushion by a conducting liner driver. The results are also used to benchmark a hydrodynamics code for modeling an FRC. They then use a radiation-hydrodynamics computational model to explore the effects of radiation production and transport when a gold plasma assembles on a CH cushion. Results are presented for the structure and evolution of the radiation hohlraum

  2. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  3. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  4. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  5. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  6. Flowfield Behavior of Supersonic Impinging Jets

    Science.gov (United States)

    Iyer, K. G.; Alvi, F. S.

    1998-11-01

    A detailed study is being conducted which examines the behavior of normally impinging, supersonic jets, issuing from axisymmetric a Mach 1.5 C-D and a sonic nozzle. Our goal is to understand the physics of this flowfield (commonly observed in STOVL aircraft) and its influence on the acoustic and aerodynamic loading on the ground plane and the airframe. The airframe is simulated by a circular disc ('lift' plate) with an annular hole from which the jet is issued. Tests are carried out for a wide range of pressure ratios and the ground plane distance is varied from 1.5 to 60 nozzle diameters. Flowfield measurements include Particle Image Velocimetry (PIV) and schlieren/shadowgraph visualization. Surface measurements on the ground and lift plates include mean and unsteady surface pressure distributions and the surface streamline visualization. Near-field acoustic measurements using a microphone are also obtained. For certain cases, the PIV measurements -- first of their kind, to our knowledge -- clearly show the presence of large-scale coherent turbulent structures which, upon jet impingement, propagate into the resulting wall jet. These structures are believed to generate very high unsteady pressure loads on the ground plane thus leading to ground erosion. They are also suspected to be the source of acoustic waves which lead to a feedback loop causing violent oscillations of the primary jet and can result in increased acoustic loading and subsequent damage to the aircraft. As a result of this detailed study over a wide parametric space, we hope to gain a much better understanding of the physical mechanisms governing this complex flow.

  7. Wave induced supersonic rotation in mirrors

    Science.gov (United States)

    Fetterman, Abraham

    2010-11-01

    Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).

  8. Numerical simulation of liquid droplet breakup in supersonic flows

    Science.gov (United States)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  9. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  10. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  11. Africa and the tsetse fly

    International Nuclear Information System (INIS)

    1985-01-01

    Trypanosomiasis, an infection transmitted by the tsetse fly and causing sleeping sickness in man and Nagana disease in animals, is widespread in Africa. It affects 37 countries (an area as large as the United States) and leads to great losses in the national economy. It can be fought effectively by programmes to eradicate the tsetse fly with the sterile insect technique. The film shows the tsetse habitats and biology and demonstrates how its reproduction circle can be interrupted by sterilization of male flies with gamma rays. This method has proven an effective alternative to the use of pesticides because its efficiency increases with each generation and it causes no environmental pollution problems

  12. Africa and the tsetse fly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-12-31

    Trypanosomiasis, an infection transmitted by the tsetse fly and causing sleeping sickness in man and Nagana disease in animals, is widespread in Africa. It affects 37 countries (an area as large as the United States) and leads to great losses in the national economy. It can be fought effectively by programmes to eradicate the tsetse fly with the sterile insect technique. The film shows the tsetse habitats and biology and demonstrates how its reproduction circle can be interrupted by sterilization of male flies with gamma rays. This method has proven an effective alternative to the use of pesticides because its efficiency increases with each generation and it causes no environmental pollution problems

  13. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  14. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  15. Advanced supersonic technology and its implications for the future

    Science.gov (United States)

    Driver, C.

    1979-01-01

    A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.

  16. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  17. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  18. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations.

    Science.gov (United States)

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-10-17

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  19. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    Directory of Open Access Journals (Sweden)

    Xuemin Cheng

    2016-10-01

    Full Text Available The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  20. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  1. Competitiveness of irradiated methyl eugenol fed oriental fruit fly, Bactrocera philippinensis

    International Nuclear Information System (INIS)

    Resilva, Sotero; Obra, Glenda B.

    2001-01-01

    The effectiveness of methyl eugenol feeding in the sexual competitiveness of oriental fruit fly, Bactrocera philippinensis was studied. Addition of methyl eugenol concentration up to 0.5 ml per liter diet revealed no significant difference base on different quality control parameters used in the study. Results of mating tests showed high number of mated pairs were collected on flies fed with methyl eugenol both on the larvae and adult stage as compared with the untreated flies. Although no significant difference was observed between the larval and adult methyl eugenol-fed flies, the number of mated pairs slightly increased in the former than the latter in all mating tests conducted. (Author)

  2. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  3. Locomotor problems of supersonic aviation and astronautics.

    Science.gov (United States)

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  4. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  5. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Evolution, Fruit Flies and Gerontology Evolutionary Biology Helps Unravel the Mysteries of Ageing. Amitabh Joshi. General Article Volume 1 Issue 11 November 1996 pp 51-63 ...

  6. Integrated management of fruit flies

    International Nuclear Information System (INIS)

    1983-01-01

    This film introduces species of fruit-flies and their reproduction cycle and suggests various methods for controlling insect pests (insect traps, treatment of infested fruits, chemical, legal, and biological control -sterile male technique

  7. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    definition of ageing?), and that the word ageing (or senescence) has a fairly precise .... Populations that evolved increased longevity and egg production late in life, as a .... life-span exceeding 120 days whereas flies from control populations ...

  8. Evaluation of robustness of fly ash stabilized sewage sludge (FSS) as liner - Durability, percolation and drainage water quality; Bedoemning av laangtidsegenskaper hos taetskikt bestaaende av flygaskastabiliserat avloppsslam, FSA - Bestaendighet, taethet och ytutlakning

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Laendell, Maerta; Haakansson, Karsten

    2012-02-15

    This project shows that fly ash stabilized sewage sludge (FSS) is watertight and resistant as liner in landfills. The presented results can lead to that more landfills will use FSS as liner, and landfills already using FSS together with geomembrane, can leave out the latter without risking contamination of the drainage water collected by the closure construction

  9. Commercial Supersonics Technology Project - Status of Airport Noise

    Science.gov (United States)

    Bridges, James

    2016-01-01

    The Commercial Supersonic Technology Project has been developing databases, computational tools, and system models to prepare for a level 1 milestone, the Low Noise Propulsion Tech Challenge, to be delivered Sept 2016. Steps taken to prepare for the final validation test are given, including system analysis, code validation, and risk reduction testing.

  10. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  11. Commercial supersonic flight; the past and the future

    NARCIS (Netherlands)

    Van Moorselaar, M.

    2013-01-01

    Contemporary world is all about going faster than ever before. Various communication technologies allow us to interact and trade almost instantly with the entire world. Computers are faster than ever before. One thing, however, has slowed down, the speed at which we travel. Supersonic travel is no

  12. Conservation of power of the supersonic acoustic intensity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2014-01-01

    The supersonic intensity is a quantity that represents the net acoustic output that a source couples into the medium; it can be regarded as a spatially low-pass filtered version of the active intensity. This spatial filtering can lead to significant error due to spatial truncation. In this paper,...

  13. Supersonic laser spray of aluminium alloy on a ceramic substrate

    International Nuclear Information System (INIS)

    Riveiro, A.; Lusquinos, F.; Comesana, R.; Quintero, F.; Pou, J.

    2007-01-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry

  14. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  15. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  16. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  17. New methods for analyzing transport phenomena in supersonic ejectors

    International Nuclear Information System (INIS)

    Lamberts, Olivier; Chatelain, Philippe; Bartosiewicz, Yann

    2017-01-01

    Highlights: • Simulation of a supersonic ejector with the open source software for CFD OpenFOAM. • Validation of the numerical tool based on flow structures obtained by schlieren. • Application of the momentum and energy tube analysis tools to a supersonic ejector. • Extension of this framework to exergy to construct exergy transport tubes. • Quantification of local transfers and losses of exergy within the ejector. - Abstract: This work aims at providing novel insights into the quantification and the location of the transfers and the irreversibilities within supersonic ejectors, and their connection with the entrainment. In this study, we propose two different and complementary approaches. First of all, recent analysis tools based on momentum and energy tubes (Meyers and Meneveau (2013)) are extended to the present compressible flow context and applied to the mean-flow structure of turbulent flow within the ejector. Furthermore, the transport equation for the mean-flow total exergy is derived and exergy transport tubes are proposed as a tool for the investigation of transport phenomena within supersonic ejectors. In addition to this topological approach, an analysis based on classical stream tubes is performed in order to quantitatively investigate transfers between the primary and the secondary streams all along the ejector. Finally, the present work identifies the location of exergy losses and their origins. Throughout this analysis, new local and cumulative parameters related to transfers and irreversibilities are introduced. The proposed methodology sheds light on the complex phenomena at play and may serve as a basis for the analysis of transport phenomena within supersonic ejectors. For the ejector under consideration, although global transfers are more important in on-design conditions, it is shown that the net gain in exergy of the secondary stream is maximum for a value of the back pressure that is close to the critical back pressure, as

  18. Histamine formation in flying fish contaminated with Staphylococcus xylosus

    Directory of Open Access Journals (Sweden)

    Hsien-Feng Kung

    2016-06-01

    Full Text Available Abstract Histamine is the main causative agent of scombroid poisoning. However, unlike scombroid fish, histamine poisoning due to consumption of flying fish has never been reported. In this study, the white muscle of flying fish had high levels of free histidine at approximately 423.9 mg/100 g, and was inoculated with Staphylococcus xylosus Q2 isolated from dried flying fish at 5.0 log CFU/g and stored at −20 to 35°C to investigate histamine-related quality. The histamine contents quickly increased to higher than 50 mg/100 g in samples stored at 25 and 35°C within 12 h as well as stored at 15°C within 48 h. However, bacterial growth and histamine formation were controlled by cold storage of the samples at 4°C or below. Once the frozen flying fish samples stored at −20°C for 2 months were thawed and stored at 25°C after 24 h, histamine started to accumulate rapidly (>50 mg/100 g of fish. Therefore, flying fish muscle was a good substrate for histamine formation by bacterial histidine decarboxylation at elevated temperatures (>15°C when it is contaminated with S. xylosus. In conclusion, since the improperly contaminated flying fish muscle with S. xylosus could lead to production of hazardous levels of histamine over time when stored at temperatures >15°C, the flying fish should be stored below 4 °C or below to control proliferation of S. xylosus, and TVBN and histamine production.

  19. XMM flying beautifully

    Science.gov (United States)

    1999-12-01

    The early orbit phase came to an end on 16 December after XMM had been manoeuvred to its final orbit. This required four firings of its thrusters, on successive passages at apogee, in order to increase XMM's velocity, thus elongating its orbit and raising the perigee from 826 km to 7,365 km. One burn was then made to fine tune the apogee to around 114,000km. The spacecraft, being tracked by ground stations in Perth, Kourou and Villafranca, is now circling the Earth in this highly elliptical orbit once every 48 hours. The XMM flight operations staff have found themselves controlling a spacecraft that responds exceptionally well. During these first orbits, the satellite has been oriented several times with razor-sharp precision. On board systems have responded without incident to several thousand instructions sent by controllers. "XMM is flying so beautifully" says Dietmar Heger, XMM Spacecraft Operations Manager. "The satellite is behaving better in space than all our pre-launch simulations and we have been able to adjust our shifts to this more relaxed situation". On his return from French Guiana, Robert Lainé, XMM Project Manager immediately visited the Darmstadt Mission Control Centre, at ESOC. "The perfect behaviour of XMM at this early stage reflects the constructive cooperation of European industrial companies and top scientists. Spacecraft operations are in the hands of professionals who will endeavour to fulfill the expectations of the astronomers and astrophysicists of the world. I am very happy that ESA could provide them with such a wonderful precision tool". During the early orbit phase, controllers have activated part of XMM's science payload. The three EPIC X-ray cameras have been switched on and vented. On 17 December the telescope doors were opened allowing the spacecraft's golden X-ray Multi Mirror modules to see the sky. The Optical Monitor telescope door was opened on 18 December. During this last weekend, XMM's Radiation Monitor which records

  20. Tsetse flies and their control.

    Science.gov (United States)

    Rogers, D J; Hendrickx, G; Slingenbergh, J H

    1994-12-01

    The authors use a quantitative modelling framework to describe and explore the features of the biology of tsetse flies (Glossina spp.) which are important in determining the rate of transmission of the African trypanosomiases between hosts. Examples are presented of the contribution of previous research on tsetse to quantified epidemiological and epizootiological understanding, and areas of current ignorance are identified for future study. Spatial and temporal variations in risk are important (but rarely-studied) determinants of the impact of trypanosomiasis on humans, domestic animals and agricultural activities. Recent grid-based sampling surveys to Togo provide valuable data sets on tsetse, cattle and trypanosomiasis throughout the country. A combination of ground-based meterological and remotely-sensed satellite data, within linear discriminant analytical models, enables description of the observed distributions of the five species of tsetse occurring in Togo, with accuracies of between 72% (Glossina palpalis and G. tachinoides) and 98% (G. fusca). Abundance classes of the two most widespread species, G. palpalis and G. tachinoides, are described with accuracies of between 47% and 83%. This is especially remarkable given the relatively small differences between the average values of the predictor variables in areas of differing fly abundance. Similar analyses could be used to predict the occurrence and abundance of flies in other areas, which have not been surveyed to date, in order to plan tsetse control campaigns or explore development options. Finally, some recent tsetse control campaigns are briefly reviewed. The shift of emphasis from fly eradication to fly control is associated with a devolution of responsibility for control activities from central government to local areas, communities or even individuals. The future role of central governments will remain crucial, however, in determining the areas in which different control options are practised, in

  1. Guidance for packing, shipping, holding and release of sterile flies in area-wide fruit fly control programmes

    International Nuclear Information System (INIS)

    Enkerlin, W.

    2007-01-01

    This guidance represents the recommendations, reached by consensus of an international group of experts, on the standard procedures for the packing, shipping, holding and release of mass reared and sterilized tephritid flies that are to be used in area-wide programmes that include the Sterile Insect Technique (SIT). The majority of the procedures were initially designed specifically for the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (or Medfly), but they are applicable, with minor modifications, for other tephritid species such as those in the genera Anastrepha, Bactrocera and Dacus. The guidance is designed to be a working document that can be subject to periodic updates due to technological developments and research contributions. Future editions will endeavour to include more specific recommendations for other species of fruit flies as the relevant data become available. The procedures described in this guidance will help ensure that released sterile fruit flies will be of optimal quality and that the resulting field density of these flies will be as closely aligned to the individual programme needs. It is hoped that this guidance will help to quickly identify and correct problems in programme effectiveness, resulting from less than optimal emergence and release conditions

  2. Flying Training Capacity Model: Initial Results

    National Research Council Canada - National Science Library

    Lynch, Susan

    2005-01-01

    OBJECTIVE: (1) Determine the flying training capacity for 6 bases: * Sheppard AFB * Randolph AFB * Moody AFB * Columbus AFB * Laughlin AFB * Vance AFB * (2) Develop versatile flying training capacity simulation model for AETC...

  3. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  4. Cosmic ray acceleration in sources of the supersonic turbulence

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1981-01-01

    The mechanism of particle acceleration by the supersonic turbulence is studied. The supersonic turbulence is defined as an ensemble of large- and small-scale plasma motions, in which along with the ranges of smooth parameter variation there are randomly distributed shock wave fronts. Particle interaction with the large-scale turbulence is described by the transfer equation which is true at any relation between the Larmor radius and the transport length. The large-scale turbulence can accelerate particles only due to compressibility effects of the medium. The basic theoretical results concerning turbulence properties in compressed media are presented. Concrete physical conditions and the possibility of acceleration of cosmic rays in the interplanetary space, in the vicinity of suppergiant stars of the O and B class with a great loss of mass and strong stellar winds, in supernova remnants, in the interstellar medium and some extragalactic radio sources are considered [ru

  5. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  6. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  7. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  8. Kr-PLIF for scalar imaging in supersonic flows.

    Science.gov (United States)

    Narayanaswamy, V; Burns, R; Clemens, N T

    2011-11-01

    Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

  9. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  10. Development and Testing of a New Family of Supersonic Decelerators

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.

    2013-01-01

    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.

  11. Tests of a thermal acoustic shield with a supersonic jet

    Science.gov (United States)

    Pickup, N.; Mangiarotty, R. A.; Okeefe, J. V.

    1981-10-01

    Fuel economy is a key element in the design of a future supersonic transport (SST). Variable cycle engines are being developed to provide the most economic combination of characteristics for a range of cruise speeds extending from subsonic speeds for overland flights to the supersonic cruise speeds. For one of these engines, the VCE-702, some form of noise suppression is needed for takeoff/sideline thrusts. The considered investigation is primarily concerned with scale model static tests of one particular concept for achieving that reduction, the thermal acoustic shield (TAS), which could also benefit other candidate SST engines. Other noise suppression devices being considered for SST application are the coannular nozzle, an internally ventilated nozzle, and mechanical suppressors. A test description is provided, taking into account the model configurations, the instrumentation, the test jet conditions, and aspects of screech noise control. Attention is given to shield thickness effects, a spectrum analysis, suppression and performance loss, and installed performance.

  12. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    Science.gov (United States)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  13. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available Contours in the CSIR Supersonic Wind Tunnel B Vallabha,b and BW Skewsa Received 17 February 2017, in revised form 23 June 2017 and accepted 25 June 2017 R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 32-41 http... with the Sivells’ nozzle design method and the method of characteristics technique to design the nozzle profiles for the full supersonic Mach number range 𝟏𝟏 ≀ 𝑎𝑎 ≀ 𝟒𝟒.5 of the facility. Automatic computation was used for the profile...

  14. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  15. Ommatidia of blow fly, house fly, and flesh fly: implication of their vision efficiency.

    Science.gov (United States)

    Sukontason, Kabkaew L; Chaiwong, Tarinee; Piangjai, Somsak; Upakut, Sorawit; Moophayak, Kittikhun; Sukontason, Kom

    2008-06-01

    This work aims to elucidate the number of ommatidia or facets (the outwardly visible units of each ommatidium) for compound eyes in blow flies [Chrysomya megacephala (F.), Chrysomya rufifacies (Macquart), Chrysomya nigripes (Aubertin), Lucilia cuprina (Wiedemann)], house flies (Musca domestica L.), and flesh flies (Liosarcophaga dux Thomson) by manual counts of the corneal spreads. The head of the fly in each species was soaked in 20% potassium hydroxide solution at room temperature for 7 days, and the clear compound eye was dissected into six small parts, each of which was placed onto a slide and flattened using a coverslip. Images of each part were obtained using a microscope connected to a computer. The printed images of each part were magnified, and the total number of ommatidia per eye was manually counted. For males, the mean number of ommatidia was statistically different among all flies examined: L. dux (6,032) > C. rufifacies (5,356) > C. nigripes (4,798) > C. megacephala (4,376) > L. cuprina (3,665) > M. domestica (3,484). Likewise, the mean number of facets in females was statistically different: L. dux (6,086) > C. megacephala (5,641) > C. rufifacies (5,208) > C. nigripes (4,774) > L. cuprina (3,608) > M. domestica (3433). Scanning electron microscopy analysis of adult flies revealed the sexual dimorphism in the compound eye. Male C. megacephala had large ommatidia in the upper two thirds part and small ommatidia in the lower one third part, whereas only small ommatidia were detected in females. Dense postulate appearance was detected in the external surface of the corneal lens of the ommatidia of C. megacephala, C. rufifacies, and C. nigripes, while a mix of dense postulate appearance and variable groove array length was detected in L. cuprina and M. domestica. The probable functions of ommatidia are discussed with reference to other literature.

  16. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  17. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  18. Advanced nuclear turbojet powerplant characteristics summary for supersonic aircraft

    International Nuclear Information System (INIS)

    Larson, John W.

    1959-01-01

    The estimated powerplant characteristics of an advanced nuclear powerplant intended for use in a nuclear supersonic manned airplane is contained in this report. This nuclear powerplant consists of a 575 MW, high temperature, lithium-cooled, solid fuel element-type reactor coupled to six turbojet engines especially designed for a supersonic nuclear airplane. The lithium coolant passes from the reactor at 2000F directly to the engine radiators without the use of an intermediate heat exchanger. The engines are fitted with burners enabling the thrust produced by the nuclear powerplant to be augmented by the use of chemical fuel for the take-off, transonic acceleration and landing portions of the flight. The powerplant components have been selected for a maximum thrust-to-weight ratio at Mach 3 and 55,000 feet altitude on nuclear heat only operation compromised for net thrust produced with chemical fuel augmentation during the transonic portion of flight. The power plant data presented, therefore, are primarily applicable to an all supersonic mission on nuclear heat alone. The powerplant data presented in this report are an extension of data contained in PWAC-243, 'NJ-14 All-Nuclear Supersonic Bomber Powerplant Characteristics Summary, March 11, 1958', to a higher reactor power. In addition, the engine compressor pressure ratio has been increased to improve transonic thrust characteristics. Weight data are tabulated for the 575 MW powerplant. The engine envelope based on preliminary radiator size estimates is illustrated. A liquid metal system flow schematic and piping data are included. Shield information including reactor shield outline, assumptions, weights, and direct dose pattern at 50 feet is also included. Estimated performance on nuclear heat only operation and nuclear heat plus burning is presented for an envelope of flight conditions.

  19. Supersonic plasma jet interaction with gases and plasmas

    Czech Academy of Sciences Publication Activity Database

    Nicolai, P.; Stenz, C.; Tikhonchuk, V.; Ribeyre, X.; Kasperczuk, A.; Pisarczyk, T.; Juha, Libor; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Kálal, M.; Klír, D.; Kravárik, J.; Kubeš, P.; Pisarczyk, P.

    2009-01-01

    Roč. 322, 1-4 (2009), 11-17 ISSN 0004-640X R&D Projects: GA MŠk(CZ) LC528; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : supersonic plasma jet * laser experiment * shock Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.404, year: 2009

  20. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  1. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  2. To Fly in the Sky.

    Science.gov (United States)

    Brodie, Carolyn S.

    1995-01-01

    Suggests activities for students that focus on airplanes, famous pilots, and travel. Provides a list of suggested titles with the following topics: history of flight and airplanes; airplanes and flying information; paper and model airplanes; Charles Lindbergh; Amelia Earhart; the Wright Brothers; videos; and picture books. (AEF)

  3. Genetic control of fruit flies

    International Nuclear Information System (INIS)

    Walder, J.M.M.

    1987-01-01

    The sterile-insect technique for control of fruit-flies is studied. A brief historic of the technique is presented, as well as a short description of the methodology. Other aspects are discussed: causes of sterility in insects and the principles of insect population suppression by sterile-insect technique. (M.A.C.)

  4. The Spider and the Fly

    Science.gov (United States)

    Mellinger, Keith E.; Viglione, Raymond

    2012-01-01

    The Spider and the Fly puzzle, originally attributed to the great puzzler Henry Ernest Dudeney, and now over 100 years old, asks for the shortest path between two points on a particular square prism. We explore a generalization, find that the original solution only holds in certain cases, and suggest how this discovery might be used in the…

  5. Quality

    International Nuclear Information System (INIS)

    Burnett, N.; Jeffries, J.; Mach, J.; Robson, M.; Pajot, D.; Harrigan, J.; Lebsack, T.; Mullen, D.; Rat, F.; Theys, P.

    1993-01-01

    What is quality? How do you achieve it? How do you keep it once you have got it. The answer for industry at large is the three-step hierarchy of quality control, quality assurance and Total quality Management. An overview is given of the history of quality movement, illustrated with examples from Schlumberger operations, as well as the oil industry's approach to quality. An introduction of the Schlumberger's quality-associated ClientLink program is presented. 15 figs., 4 ills., 16 refs

  6. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  7. Heat, mass and force flows in supersonic shockwave interaction

    Science.gov (United States)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  8. A model for supersonic and hypersonic impactors for nanoparticles

    International Nuclear Information System (INIS)

    Abouali, Omid; Ahmadi, Goodarz

    2005-01-01

    In this study the performance of supersonic and hypersonic impactors for collection efficiency of nanoparticles (in the size range of 2-100 nm) under various operating conditions is analyzed. Axisymmetric forms of the compressible Navier-Stokes and energy equations are solved and the airflow and thermal condition in the impactor are evaluated. A Lagrangian particle trajectory analysis procedure is used and the deposition rates of different size particles under various operating conditions are studied. For dilute particle concentrations, the assumption of one-way interaction is used and the effect of particles on gas flow field is ignored. The importance of drag, lift and Brownian forces on particle motions in supersonic impactors is discussed. Sensitivity of the simulation results to the use of different assumptions for the Cunningham correction coefficient is studied. It is shown that accurate evaluation of the gas mean free path and the Cunningham correction factor is important for accurate simulation of nano-particle transport and deposition in supersonic/hypersonic impactors. The computer simulation results are compared favorably with the available experimental data

  9. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  10. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  11. Monitoring Resistance to Spinosad in the Melon Fly (Bactrocera cucurbitae in Hawaii and Taiwan

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    2012-01-01

    Full Text Available Spinosad is a natural insecticide with desirable qualities, and it is widely used as an alternative to organophosphates for control of pests such as the melon fly, Bactrocera cucurbitae (Coquillett. To monitor the potential for development of resistance, information about the current levels of tolerance to spinosad in melon fly populations were established in this study. Spinosad tolerance bioassays were conducted using both topical applications and feeding methods on flies from field populations with extensive exposure to spinosad as well as from collections with little or no prior exposure. Increased levels of resistance were observed in flies from the field populations. Also, higher dosages were generally required to achieve specific levels of mortality using topical applications compared to the feeding method, but these levels were all lower than those used for many organophosphate-based food lures. Our information is important for maintaining effective programs for melon fly management using spinosad.

  12. Monitoring Resistance to Spinosad in the Melon Fly (Bactrocera cucurbitae) in Hawaii and Taiwan

    Science.gov (United States)

    Hsu, Ju-Chun; Haymer, David S.; Chou, Ming-Yi; Feng, Hai-Tung; Chen, Hsaio-Han; Huang, Yu-Bing; Mau, Ronald F. L.

    2012-01-01

    Spinosad is a natural insecticide with desirable qualities, and it is widely used as an alternative to organophosphates for control of pests such as the melon fly, Bactrocera cucurbitae (Coquillett). To monitor the potential for development of resistance, information about the current levels of tolerance to spinosad in melon fly populations were established in this study. Spinosad tolerance bioassays were conducted using both topical applications and feeding methods on flies from field populations with extensive exposure to spinosad as well as from collections with little or no prior exposure. Increased levels of resistance were observed in flies from the field populations. Also, higher dosages were generally required to achieve specific levels of mortality using topical applications compared to the feeding method, but these levels were all lower than those used for many organophosphate-based food lures. Our information is important for maintaining effective programs for melon fly management using spinosad. PMID:22629193

  13. Louse flies on birds of Baja California

    OpenAIRE

    Tella, José Luis; Rodríguez-Estrella, Ricardo; Blanco, Guillermo

    2000-01-01

    Louse flies were collected from 401 birds of 32 species captured in autumn of 1996 in Baja California Sur (México). Only one louse fly species (Microlynchia pusilla) was found. It occurred in four of the 164 common ground doves (Columbina passerina) collected. This is a new a host species for this louse fly.

  14. Flies and Campylobacter infection of broiler flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Bang, Dang Duong

    2004-01-01

    A total of 8.2% of flies caught outside a broiler house in Denmark had the potential to transmit Campylobacter jejuni to chickens, and hundreds of flies per day passed through the ventilation system into the broiler house. Our study suggests that flies may be an important source of Campylobacter ...... infection of broiler flocks in summer....

  15. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  16. FliO Regulation of FliP in the Formation of the Salmonella enterica Flagellum

    OpenAIRE

    Barker, Clive S.; Meshcheryakova, Irina V.; Kostyukova, Alla S.; Samatey, Fadel A.

    2010-01-01

    The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extrageni...

  17. Sterile insect technique for the management of the oriental fruit fly in Guimaras iasland

    International Nuclear Information System (INIS)

    Golez, H.; Manoto, E.

    1996-01-01

    Mango is an important fruit crop in the country as shown by increasing demand for the fruit both in local and domestic markets. In particular, the island of Guimaras is now being developed as the mango province of the country since the soil and climate are highly suitable for its growth and development. Today, there are more than 250,000 trees grown in the island and the local government plans to plant more than 1 million trees by the year 2000. The production of quality fruits is however, hampered by the presence of fruit flies. A new strategy in fruit fly control is the sterile insect technique which will be implemented in the island of Guimaras. SIT involves mass rearing, sterilization and release of sterile fruit flies in target areas to stop native flies from reproducing. Preparatory phase of the project include campaigns launched to inform growers, government officials and private sectors on the objectives and mechanics of SIT through press releases, workshops and meetings. Basic ecological studies which involved determination of host fruits, degree of fruit infestation, population dynamics and fruit fly dispersal are presented. Estimates of fruit fly population showed that more insects were present in natural vegetation as compared to mix plantation and low population was recorded in pure orchards. Preliminary results of male annihilation technique using a bait consisting of methyl eugenol and malathion placed in fiber boards also revealed that male populations were reduced to low levels, provided that wide area approach is considered. Otherwise, reinfestation of limited areas by flies will occur. Continuous monitoring of flies in the whole island is now being undertaken. Sterile insect technique was demonstrated in the small islet of Naoay, south west of the main island of Guimaras. Results of several releases showed that no unmarked flies were captured from monitoring traps, indicating that sterile flies suppressed the population of wild flies in the area

  18. Trapping guidelines for area-wide fruit fly programmes

    International Nuclear Information System (INIS)

    2003-11-01

    Different traps and lures have been developed and used over decades to survey fruit fly populations. The first attractant for male fruit flies was methyl eugenol (ME) (for Bactrocera zonata, Howlett, 1912) followed by kerosene for Mediterranean fruit fly, Ceratitis capitata, (medfly), Severin and Severin, 1913. In 1956, Angelica seed oil was used to trap medfly (Steiner et al, 1957). Beroza et al. (1961) discovered trimedlure (TML) to be effective for the same purpose. Beroza and Green, 1963, demonstrated cuelure to be an effective attractant for Bactrocera cucurbitae. Food baits based on protein solutions, fermenting sugar solutions, fruit juices, and vinegar have been used since 1918 for the capture of females of several species. The McPhail trap was the first device to be used with protein baits (McPhail, 1929). Steiner traps were developed in 1957 (Steiner et al., 1957) and Jackson traps in 1971 for TML (Harris et al., 1971). These traps are currently used in various countries for fruit fly surveys in support of control activities and eradication campaigns. The combination of a McPhail trap with a protein attractant, Jackson trap with TML, and the Steiner trap with ME or cuelure (CUE), has remained unchanged for several decades. Global trends in increasing food quality, revenue sources, and fruit and vegetable trade, has resulted in an increased worldwide movement of fruit fly species and requires refinement of survey systems. After years of validating trapping technology through coordinated research programmes (CRP's) and extensive technical assistance to member countries, the Joint Division FAO/IAEA proposes the use of proven technologies in improving trap sensitivity in area-wide fruit fly control programmes (IAEA 1996 and IAEA 1998). These proven technologies include the use of synthetic food lures such as female attractants that can be used for several species of Anastrepha, Bactrocera and Ceratitis. Other citations of information on these developments are

  19. Trapping guidelines for area-wide fruit fly programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    Different traps and lures have been developed and used over decades to survey fruit fly populations. The first attractant for male fruit flies was methyl eugenol (ME) (for Bactrocera zonata, Howlett, 1912) followed by kerosene for Mediterranean fruit fly, Ceratitis capitata, (medfly), Severin and Severin, 1913. In 1956, Angelica seed oil was used to trap medfly (Steiner et al, 1957). Beroza et al. (1961) discovered trimedlure (TML) to be effective for the same purpose. Beroza and Green, 1963, demonstrated cuelure to be an effective attractant for Bactrocera cucurbitae. Food baits based on protein solutions, fermenting sugar solutions, fruit juices, and vinegar have been used since 1918 for the capture of females of several species. The McPhail trap was the first device to be used with protein baits (McPhail, 1929). Steiner traps were developed in 1957 (Steiner et al., 1957) and Jackson traps in 1971 for TML (Harris et al., 1971). These traps are currently used in various countries for fruit fly surveys in support of control activities and eradication campaigns. The combination of a McPhail trap with a protein attractant, Jackson trap with TML, and the Steiner trap with ME or cuelure (CUE), has remained unchanged for several decades. Global trends in increasing food quality, revenue sources, and fruit and vegetable trade, has resulted in an increased worldwide movement of fruit fly species and requires refinement of survey systems. After years of validating trapping technology through coordinated research programmes (CRP's) and extensive technical assistance to member countries, the Joint Division FAO/IAEA proposes the use of proven technologies in improving trap sensitivity in area-wide fruit fly control programmes (IAEA 1996 and IAEA 1998). These proven technologies include the use of synthetic food lures such as female attractants that can be used for several species of Anastrepha, Bactrocera and Ceratitis. Other citations of information on these developments are

  20. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  1. Jet arrays in supersonic crossflow — An experimental study

    Science.gov (United States)

    Ali, Mohd Yousuf; Alvi, Farrukh

    2015-12-01

    Jet injection into a supersonic crossflow is a classical fluid dynamics problem with many engineering applications. Several experimental and numerical studies have been taken up to analyze the interaction of a single jet with the incoming crossflow. However, there is a dearth of the literature on the interaction of multiple jets with one another and with the crossflow. Jets in a supersonic crossflow are known to produce a three-dimensional bow-shock structure due to the blockage of the flow. Multiple jets in a streamwise linear array interact with both one another and the incoming supersonic flow. In this paper, a parametric study is carried out to analyze the effect of microjet (sub-mm diameter) injection in a Mach 1.5 supersonic crossflow using flow visualization and velocity field measurements. The variation of the microjet orifice diameter and spacing within an array is used to study the three-dimensional nature of the flow field around the jets. The strength of the microjet-generated shock, scaling of the shock wave angle with the momentum coefficient, averaged streamwise, spanwise, and cross-stream velocity fields, and microjet array trajectories are detailed in the paper. It was found that shock angles of the microjet-generated shocks scale with the momentum coefficient for the three actuator configurations tested. As the microjets issue in the crossflow, a pair of longitudinal counter-rotating vortices (CVPs) are formed. The vortex pairs remain coherent for arrays with larger spanwise spacing between the micro-orifices and exhibit significant three-dimensionality similar to that of a single jet in crossflow. As the spacing between the jets is reduced, the CVPs merge resulting in a more two-dimensional flow field. The bow shock resulting from microjet injection also becomes nearly two-dimensional as the spacing between the micro-orifices is reduced. Trajectory estimations yield that microjets in an array have similar penetration as single jets. A notional

  2. FliO Regulation of FliP in the Formation of the Salmonella enterica Flagellum

    Science.gov (United States)

    Barker, Clive S.; Meshcheryakova, Irina V.; Kostyukova, Alla S.; Samatey, Fadel A.

    2010-01-01

    The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO43–125 or FliO1–95 was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO43–125, should contain beta-structure and alpha-helices. FliO43–125-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners. PMID:20941389

  3. FliO regulation of FliP in the formation of the Salmonella enterica flagellum.

    Directory of Open Access Journals (Sweden)

    Clive S Barker

    2010-09-01

    Full Text Available The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO₄₃-₁₂₅ or FliO₁-₉₅ was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO₄₃-₁₂₅, should contain beta-structure and alpha-helices. FliO₄₃-₁₂₅-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners.

  4. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  5. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    International Nuclear Information System (INIS)

    Schmid, Karl

    2009-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10 19 W/cm 2 propagates through the plasma with an electron density of 2 x 10 19 cm -3 and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 μm to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The electron accelerator

  6. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  7. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    Science.gov (United States)

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  8. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  9. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  10. Numerical simulation of stage separation of a multi-stage flying object with brake jets

    International Nuclear Information System (INIS)

    Mirzaei, M.; Shadaram, A.; Nia, B.N.

    2005-01-01

    In this paper, separation maneuver of a two-stage supersonic flying object is numerically simulated and the influences of supersonic brake jets on separation process are discussed. The finite volume approach is used for solution of unsteady three-dimensional full Navier-Stokes equations on a moving boundary domain. In this simulation, air has considered as a calorically perfect gas and since the flow field is turbulent, two equations κ-ε model has been adopted for turbulence modeling. Shocks, expansions and their reflections have major role on flow pattern between two stages during the separation process and the maneuver is dominantly affected by the main flow and braking jets. The separation process has an unsteady nature and the separation of stages at high Mach numbers induces some aerodynamic problems that may lead to fail the next stage flight. The purpose of this research is to compute the aerodynamic loads on separated stage and, consequently, the relative distance of body components with a good accuracy. The simulation of moving boundary problem is based on moving grid strategy using remeshing method. To validate the simulation, some of the results are compared with experimental data. (author)

  11. New challenges during fly ash marketing. Coupled product as a sustainable building material; Neue Herausforderungen bei der Flugaschevermarktung. Koppelprodukt als nachhaltiger Baustoff

    Energy Technology Data Exchange (ETDEWEB)

    Hugot, Andreas [Evonik Power Minerals GmbH, Dinslaken (Germany)

    2009-07-01

    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig./GL)

  12. Automated Surveillance of Fruit Flies

    Science.gov (United States)

    Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros

    2017-01-01

    Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346

  13. Automated Surveillance of Fruit Flies

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2017-01-01

    Full Text Available Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study.

  14. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    Science.gov (United States)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  15. Studies of Phlebotomine Sand Flies.

    Science.gov (United States)

    1981-05-01

    al estudio de los Phlebotomus (Diptera: Psichodidae). Phlebotomus del grupo anthophorus en Guatemala. Rev. Colegio Mdd. Guatemala 22:187-193...studied in detail. A review of the North American Phiebotominae is in progress. Unclassie SECRIT CLASSFICTIO O TH PGE~ en om nteed 4[ AD_____ STUDIES OF...Diptera, Psychodidae) in Belize, Central America. Bull . Ent. Res. 65:595-599. Young, D.G. 1979. A review of the bloodsucking psychodid flies of Colombia

  16. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  17. SCC with high volume of fly ash content

    Directory of Open Access Journals (Sweden)

    Bakhrakh Anton

    2017-01-01

    Full Text Available Self-compacting concrete is a very perspective building material. It provides great benefits during the construction of heavily reinforced buildings. SCC has outstanding properties such as high flowability, dense structure and high strength due to specific quality of aggregates, fillers, their proportion in mix, use of polycarboxylate-based superplasticizers. Main disadvantages of SCC are high price and the difficulty of obtaining a proper mix. Use of fillers, such as fly ash type F, is a way to make SCC cheaper by replacing part of cement. Fly ash also provides some technological and operating advantages. In this paper the influence of high volume (60% from cement fly ash type F on the properties of concrete mixture and hardened concrete is investigated. The result of the work shows the possibility of reduction the cost of SCC using ordinary fillers and high amount of fly ash. The investigated SCC has low speed of hardening (7-day compressive strength at the range of 41.8 MPa and high volume of entrained air content (3.5%.

  18. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  19. Standard Operating Procedures for Preparing and Handling Sterile Male Tsetse flies for Release

    International Nuclear Information System (INIS)

    Argiles-Herrero, Rafa; Leak, Stephen G.A.

    2016-01-01

    The purpose of this SOP is to describe the procedures involved in preparing tsetse flies reared in a breeding facility for release in the field for the sterile insect technique (SIT) as a component of Area-Wide Insect pest Management (AW-IPM). Following the procedures which are outlined will help to ensure that the released sterile male tsetse flies are of optimal quality.

  20. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  1. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  2. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  3. Fan Noise for a Concept Commercial Supersonic Transport

    Science.gov (United States)

    Stephens, David

    2017-01-01

    NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.

  4. CFD investigations on supersonic ejectors for refrigeration applications

    International Nuclear Information System (INIS)

    Bartosiewicz, Y.; Aidoun, Z.; Mercadier, Y.

    2004-01-01

    This paper presents numerical results of a supersonic ejector for refrigeration applications. One of the interesting features is that the current model is based on the NIST properties for the R142b refrigerant: to the authors knowledge, it is the first paper dealing with a local CFD model which takes into account shock-boundary layer interactions in a real refrigerant. The numerical results put demonstrate the crucial role of the secondary nozzle for the mixing rate performance. In addition, these results point out the need of an extensive validation of the turbulence model, especially in the modeling of the off-design mode. (author)

  5. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2014-04-21

    Mechanisms AGARD - CP -131, 1974, pp. 13.1-13.12. [23] Goldstein, M.E., "On identifying the true sources of aerodynamic sound," Journal of Fluid Mechanics Vol...either constant or begins to decay. For the resampled data (1/8 inch microphones resampled at 100 kHz), the change in 7( 73 ) follows the originally...supersonic jet and their acoustic radiation," Journal of Fluid Mechanics, Vol. 69, No.l, 1975, pp. 73 95. [5] Tain, C. K. W., "Mach wave radiation from high

  6. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  7. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  8. Australian fly-in, fly-out operations: Impacts on communities, safety, workers and their families.

    Science.gov (United States)

    Langdon, Rebecca R; Biggs, Herbert C; Rowland, Bevan

    2016-10-17

    Australia's mineral, resource and infrastructure sectors continues to expand as operations in rural and remote locations increasingly rely on fly-in, fly-out or drive-in, drive-out workforces in order to become economically competitive. The issues in effectively managing these workforces are becoming more apparent with reported high amounts of turnover and concerns for safety and performance. The issues presented include a range of physical, mental, psychosocial, safety and community challenges. This review aims to consolidate a range of research conducted to communicate potential challenges for industry in relation to a wide variety of issues when engaging and using FIFO/DIDO workforces which includes compressed working schedule design (work schedules), working hours, fatigue, safety performance, employee wellbeing, turnover, psychosocial relationships and community concerns. A comprehensive literature review was performed using EBSCOhost, PubMed and google scholar, with a focus on FIFO or DIDO workforces engaged within the resources sector. Search terms were kept broad in order to capture all national and international research conducted and included: "fly-in, fly-out" "FIFO" "DIDO" "drive-in, drive-out" "mining". There was no date restriction included in the search. Many of the studies were focused on sleep quality, fatigue and the influence of lowered safety performance while at work, presenting an increased risk for health and safety. These issues may be exacerbated for the FIFO workforce when linked to additional research surrounding the extended periods of absence from families influencing workers personal relationships, psychological wellbeing, job satisfaction and the reported high amounts of turnover within the industry. Taken together, this presents a unique implication for the management and continued use of FIFO workforces when considering balancing safety and performance with economic viability of production and operations. The issues of long working

  9. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  10. Sensitizing pigment in the fly

    International Nuclear Information System (INIS)

    Vogt, K.; Kirschfeld, K.

    1983-01-01

    The sensitizing pigment hypothesis for the high UV sensitivity in fly photoreceptors (R1-6) is further substantiated by measurements of the polarisation sensitivity in the UV. The quantum yield of the energy transfer from sensitizing pigment to rhodopsin was estimated by electrophysiological measurements of the UV sensitivity and the rhabdomeric absorptance (at 490 nm) in individual receptor cells. The transfer efficiency is >=0.75 in receptors with an absorptance in the rhabdomeres of 0.55-0.95. This result suggests that the sensitizing pigment is bound in some way to the rhodopsin. A ratio of two molecules of sensitizing pigment per one rhodopsin is proposed. (orig.)

  11. Studies in Phlebotomine Sand Flies.

    Science.gov (United States)

    1982-06-30

    Reporte de dos casos de [a ology of a sand fly, P/mlebolomu’,s diabolicuw Hall. in forma anergica difusa. Der matol. Rev. Mex. southwestern -Texas...Contribuiin al estudio de los Phmle- CDC, Veterinary Public Health Notes. USDHEW. bwmwnn de Costa Rica (Diptera, Psychodidae). Tesis. CDC. October. pp. 6- 7...janeiron R. j. 195 pp. the Unrited States (D1)pre ra: Psscfirdidae). j. Ortiz, 1. 1965a. Contribuci~in a! estudio tie los flebor- Partrsirtrl. 30:274-275

  12. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  13. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  14. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  15. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  16. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Science.gov (United States)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  17. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    International Nuclear Information System (INIS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable

  18. Jet Noise Modeling for Supersonic Business Jet Application

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  19. Supersonic impinging jet noise reduction using a hybrid control technique

    Science.gov (United States)

    Wiley, Alex; Kumar, Rajan

    2015-07-01

    Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.

  20. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  1. Garden hose separation of gaseous isotopes. Part II. Supersonic accelerations

    International Nuclear Information System (INIS)

    Wang, C.G.; Davis, A.G.M.

    1979-01-01

    A mechanical process for separating gaseous mixtures according to their respective molecular weights, by a variation of the time-of-flight process, is proposed. The separative apparatus consists of several sets of nozzle-deflector combinations surrounded by a stationary collector housed in an evacuated chamber. From a rotating supersonic nozzle, a contiguous plurality of successive groups of molecules is ejected to form a continuous stream of the mixture. The molecules of each group of molecules are allowed to accelerate for a predetermined period of time following their supersonic expansion, thereby allowing each group of molecules to form a generally spherical configuration, the outer radius of which will be enriched in molecules of lighter mass, relative to lesser radii. A deflector means co-rotating with the nozzle is used to deflect molecules that have been allowed to move for the predetermined period of time in accordance with their expansion velocities, from at least one desired portion of the stream, and a stationary collector means is disposed to receive the deflected molecules. The estimated separative work produced from such a unit is about the same or better than that of a modern giant diffuser of similar dimensions. However, with an essentially empty chamber, the unit capital cost as well as the energy required is competitive with any of the well-known methods, mechanical or otherwise

  2. The electron beam diagnostic of the clustered supersonic nitrogen jets

    Science.gov (United States)

    Avtaeva, S. V.; Yakovleva, T. S.; Kalyada, V. V.; Zarvin, A. E.

    2017-11-01

    Axial and radial distributions of the rotational temperature and density of N2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters dcr of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P0 of 0.1-0.6 MPa. A rotational temperature Tr , equaling a gas temperature Tg owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, Tr at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion Tr drops up to 15-20K at distance of (100-200) dcr . The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P0 leads to elevating Tg in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagena’s parameter show presence of large clusters (M≥200) at P0 = 0.4-0.6 MPa.

  3. Steady supersonic rotation in the Maryland Centrifugal Experiment

    International Nuclear Information System (INIS)

    Ellis, R.F.; Messer, S.; Case, A.; DeSilva, A.; Elton, R.; Ghosh, J.; Griem, H.; Gupta, D.; Hassam, A.; Lunsford, R.; McLaren, R.; Rodgers, J.; Teodorescu, C.

    2005-01-01

    The Maryland Centrifugal Experiment (MCX) studies enhanced confinement and stability produced by sheared supersonic rotation about a linear confining magnetic field. MCX has a mirror geometry of 2.5 m length, mirror ratio 2-20, maximum mirror field 1.9T, maximum midplane field 0.33T. Biasing of an inner electrode relative to the outer wall produces a radial electric field which drives azimuthal rotation. MCX has achieved high density (n>10 20 m -3 ) fully ionized plasmas rotating supersonically with velocities of ∼100 km/sec for times exceeding 8 ms under a wide range of conditions. Ion temperatures are 30 eV and confinement times ∼100 microseconds. Sonic Mach numbers are 1-2 and Alfven Mach numbers somewhat less than 0.5 for standard discharges. Plasmas remain grossly stable, or steady, for many milliseconds, much longer than MHD instability timescales for MCX, though significant magnetic fluctuations are clearly seen on magnetic probes. Recently MCX has demonstrated an enhanced mode of operation with sonic Mach numbers greater than 3, confinement times of several hundred microseconds and Alfven Mach numbers near one. (author)

  4. Supersonic liquid jets: Their generation and shock wave characteristics

    Science.gov (United States)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  5. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  6. A protocol for storage and long-distance shipment of Mediterranean fruit fly (Diptera: Tephritidae) eggs. 1. Effect of temperature, embryo age , and storage time on survival and quality

    International Nuclear Information System (INIS)

    Caceres, C.; Wornoayporn, V.; Islam, S.M.; Ahmad, S.; Ramirez, E.

    2007-01-01

    The operational use of Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann), genetic sexing strains in Sterile Insect Technique applications can be maximized by developing methods for effective shipment of eggs. This would enable a central production facility to maintain the relevant mother stocks and large colonies to supply eggs to satellite centers that would mass produce only males for irradiation and release. In order to achieve this, the survival of medfly embryos of different ages was assessed after storage at 5, 10, 15, 20, and 25 deg. C in water for different periods of time. Survival was affected by all 3 variables, i.e., embryo age, water temperature, and length of storage. Storage of embryos at any temperature for 120 h resulted in almost no survival. Controlling the age of the embryo at the time of the temperature treatment is crucial for the success of this procedure. Embryos collected between 0 to 12 h after oviposition and pre-incubated at 25 deg. C for 12 h provide a suitable 72 h window for shipment when maintained between 10 to 15 deg. C. Under these conditions, no significant reductions in survival during all the developmental stages were observed. (author) [es

  7. Susceptibility of low-chill blueberry cultivars to oriental fruit fly, mediterranean fruit fly, and melon fly (Diptera: Tephritidae)

    Science.gov (United States)

    Forced infestation studies were conducted to determine if fruits of southern highbush blueberries (Vaccinium corymbosum L. hybrids) are hosts for three invasive tephritid fruit flies. Fruits of 17 blueberry cultivars were exposed to gravid female flies of Bactrocera dorsalis (Hendel) (oriental frui...

  8. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  9. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  10. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  11. Low back pain and low level flying

    NARCIS (Netherlands)

    J.C.F.M. Aghina

    1989-01-01

    textabstractLow level flying is a very good tactical possibility to carry out a mission unseen by a hostile radarsystem. Nowadays, Western Europe in general and the Federal Republic of Germany in particular, decreased . the permissions to low level flying in assigned regions. That's why the

  12. Seasonal fluctuations of phlebotomines sand fly populations ...

    African Journals Online (AJOL)

    An entomological survey of phlebotomine sand flies was conducted in the Moulay Yacoub province, central Morocco. An anthropic niche (Ouled Aid) and a wild niche (Zliligh) were selected. Sand flies were collected twice a month between April 2011 and March 2012, using sticky traps and CDC light traps. 3675 specimens ...

  13. Fruit Flies Help Human Sleep Research

    Science.gov (United States)

    ... like us, without enough sleep, flies feel the effects of sleep deprivation. Cirelli has shown that they are a good model for researching human sleep. She has found fruit fly genes that seem to have a powerful effect on sleep. In time, her research could lead ...

  14. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  15. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  16. Production and characterization of supersonic carbon cluster beams

    International Nuclear Information System (INIS)

    Rohlfing, E.A.; Cox, D.M.; Kaldor, A.

    1984-01-01

    Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time-of-flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters C/sub n/ for n = 1--190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for C/sub n/, 1 + /sub n/ signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K 2 C/sub 2n/ is produced

  17. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  18. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  19. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  20. Supersonic Love waves in strong piezoelectrics of symmetry mm2

    International Nuclear Information System (INIS)

    Darinskii, A. N.; Weihnacht, M.

    2001-01-01

    A study has been made of the Love wave propagation on piezoelectric substrates of symmetry mm2. It has been shown that under certain conditions the velocity of the Love wave exceeds that of shear horizontal (SH) bulk waves in the substrate. This occurs when the slowness curve of SH bulk waves in the substrate either has a concavity or is convex with nearly zero curvature. For such 'supersonic' Love waves to appear, it is also required that the substrate as well as the layer be specially oriented and that their material constants fulfill a number of inequalities. Numerical computations have been carried out for a number of structures. The results of numerical computations have been compared with approximate analytical estimations. [copyright] 2001 American Institute of Physics

  1. Pitot-probe displacement in a supersonic turbulent boundary layer

    Science.gov (United States)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  2. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  3. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  4. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    K. Svensson

    2016-05-01

    Full Text Available The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  5. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  6. An efficient unstructured WENO method for supersonic reactive flows

    Science.gov (United States)

    Zhao, Wen-Geng; Zheng, Hong-Wei; Liu, Feng-Jun; Shi, Xiao-Tian; Gao, Jun; Hu, Ning; Lv, Meng; Chen, Si-Cong; Zhao, Hong-Da

    2018-03-01

    An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.

  7. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  8. MANUAL. Fly ash in civil engineering, Gravel roads; HANDBOK. Flygaska i mark- och vaegbyggnad, Grusvaegar

    Energy Technology Data Exchange (ETDEWEB)

    Munde, Hanna; Svedberg, Bo; Macsik, Josef; Maijala, Aino; Lahtinen, Pentti; Ekdahl, Peter; Neren, Jens [Vattenfall AB, Stockholm (Sweden). Vaerme Norden

    2006-01-15

    Fly ash based on biofuels or coal has been used as construction material for a long time in roads and other civil engineering applications. Some example, where it has been used in roadbase and subbase of gravel roads, are in the counties of Uppsala, Soedermanland, Vaestmanland and in Finland. The use of fly ash has contributed to good function for example as bearing capacity, thaw and frost capacity and good durability. This has also reduced costs for maintenance. The objective of this project was to develop a manual to provide a base for contemporary use of fly ash in road constructions. In the manual experience from studies, field tests and regulations has been compiled. The manual handles fly ash as base for products to be used in base and subbase in gravel roads. Future user of the guidelines are mainly consultant engineers and contractors. However the aim of the manual is to also support road administrators, environmental authorities and industry. The project has been carried out parallel to another ongoing national project titled 'Guidelines, Use of alternative materials in civil engineering'. The objective of that project is to establish a base for handling of alternative materials in Sweden. Fly ash in gravel roads are mainly used in two typical applications, one without any additive in a single layer and one with fly ash mixed with gravel. The use of flyash provides functional properties such as increased stiffness, stability and enhanced frost and thaw capacity for the road construction in total. Furthermore the products based on fly ash will have low permeability and good frost and thaw durability. These properties are for example related to fly ash quality, design and construction and are in general expected to be better than for traditional constructions using, for example, sand or gravel. The properties can be enhanced further by using binders such as cement and Merit. Fly ash should always be used above the ground water table with

  9. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  10. Plasma-enhanced mixing and flameholding in supersonic flow.

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B

    2015-08-13

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Supersonic flows past an obstacle in Yukawa liquids

    Science.gov (United States)

    Charan, Harish; Ganesh, Rajaraman

    2018-04-01

    Shock formation, when a supersonic flow passes a stationary obstacle, is ubiquitous in nature. Considering particles mediating via a Yukawa-type interaction as a prototype for a strongly coupled complex plasma, characterized by coupling strength (Γ, ratio of the average potential to kinetic energy per particle) and screening parameter (κ, ratio of the mean inter-particle distance to the shielding length), we address the fundamental problem of supersonic fluid flow U0, past a stationary obstacle immersed in this strongly coupled system. We here report the results on the bow shocks formed in Yukawa liquids when the liquid flows at speeds larger than the speed of sound in the system. Depending on the values of Mach number MC L=U/0 CL , where CL is the longitudinal speed of sound in the system, the bow shocks are found to be either traveling or localized. We find that for the transonic flows (0.8 ≲ MC L≲ 1.2), the bow shocks travel in the upstream direction opposite to the incoming fluid. The phase velocity of the traveling bow shocks is found to be a non-monotonous function of κ, varying as ∝1 /k1.11 at a fixed value of Γ, and is found to be independent of Γ at a fixed value of κ. It is observed that for the flow values with MC L>1.5 , the shock waves do not travel in the upstream direction but instead form a stationary arc like structure around the obstacle. For the fluid flows with 1 ≲ MC L≲ 2.6 , secondary bow shocks are seen to emerge behind the stationary obstacle which travel in the downstream direction, and the phase velocity of these secondary bow shocks is found to be equal to that of the primary bow shocks.

  12. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  13. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  14. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  15. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  16. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  17. A Comparison of Prominent LES Combustion Models for Nonpremixed Supersonic Combustion

    Data.gov (United States)

    National Aeronautics and Space Administration — The capability of accurately simulating supersonic combustion is a vital topic for designing and advancing hypersonic air-breathing vehicles. As a consequence, there...

  18. Pulsed molecular beams: A lower limit on pulse duration for fully developed supersonic expansions

    International Nuclear Information System (INIS)

    Saenger, K.L.

    1981-01-01

    We derive an expression for Δt/sub min/, the mimimum pulse duration (''valve open time'') required if a pulsed nozzle is to produce a supersonic beam comparably ''cold'' to that obtained from a continuous source

  19. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  20. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  1. 76 FR 43804 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Science.gov (United States)

    2011-07-22

    ... dorsalis), peach fruit fly (Anastrepha zonata), and sapote fruit fly (Anastrepha serpentina) in the... obliqua, Anastrepha serpentina, and Anastrepha striata (Diptera: Tephritidae) in Mexico. J. Econ. Entomol...

  2. The analysis of the flying wing in morphing concept

    Directory of Open Access Journals (Sweden)

    Ionică CÎRCIU

    2013-06-01

    Full Text Available The combination between the flying wing morphing concept and the use of modern command and control system offers exponential advantages having a leverage effect in the economy and research. The flying wing architecture has the advantage of low cost against efficiency, the morphing of this concept defining the new characteristic frontiers and aerodynamic performances which derive immediately. On designing an unmanned aerial vehicle for a various range of missions, its lifting surface needs to display optimal geometrical features, so that the UAV may maintain the induced drag and the moment coefficient at reasonable levels. The command and control of the lifting surfaces in morphing concept offer characteristics and in-flight performances at a superior level. The limits of the system depend on the reliability of the execution elements and the grade of accuracy for the control laws which are implemented in the calculation module. The paper aims at presenting an analysis regarding the robotic air systems of flying wing type through the aerodynamic analysis and with the help of specific software instruments. The performances and flight qualities depend directly on the geometry of the lifting surface of the aerial vehicle.

  3. Supersonic particle in a low damped complex plasma under microgravity conditions

    Science.gov (United States)

    Zaehringer, E.; Zhdanov, S.; Schwabe, M.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I.; Thomas, H. M.

    2018-01-01

    We discuss the diagnostics of a complex plasma cloud recorded in experiments performed in the framework of the Ekoplasma project. A supersonic extra particle is used as a probe of the cloud dynamics. A fine-structured Mach cone behind the supersonic particle is observed. We investigate the spatial and temporal development of the Mach cone with a computer based measurement to determine the speed of sound of the particle cloud. Also time and position dependent characteristics of the velocity field are recorded.

  4. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  5. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  6. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  7. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  9. Experimental and Numerical Characterization of a Pulsed Supersonic Uniform Flow for Kinetics and Spectroscopy

    Science.gov (United States)

    Suas-David, Nicolas; Thawoos, Shameemah; Broderick, Bernadette M.; Suits, Arthur

    2017-06-01

    The current CPUF (Chirped Pulse Uniform Flow) and the new UF-CRDS (Uniform Flow Cavity Ring-Down Spectroscopy) setups relie mostly on the production of a good quality supersonic uniform flow. A supersonic uniform flow is produced by expanding a gas through a Laval nozzle - similar to the nozzles used in aeronautics - linked to a vacuum chamber. The expansion is characterized by an isentropic core where constant very low kinetic temperature (down to 20K) and constant density are observed. The relatively large diameter of the isentropic core associated with homogeneous thermodynamic conditions makes it a relevant tool for low temperature spectroscopy. On the other hand, the length along the axis of the flow of this core (could be longer than 50cm) allows kinetic studies which is one of the main interest of this setup (CRESU technique. The formation of a uniform flow requires an extreme accuracy in the design of the shape of the nozzle for a set of defined temperature/density. The design is based on a Matlab program which retrieves the shape of the isentropic core according to the method of characteristics prior to calculate the thickness of the boundary layer. Two different approaches are used to test the viability of a new nozzle derived from the program. First, a computational fluid dynamic software (OpenFOAM) models the distribution of the thermodynamic properties of the expansion. Then, fabricated nozzles using 3-D printing are tested based on Pitot measurements and spectroscopic analyses. I will present comparisons of simulation and measured performance for a range of nozzles. We will see how the high level of accuracy of numerical simulations provides a deeper knowledge of the experimental conditions. J. M. Oldham, C. Abeysekera, J. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. Barrat Park, R. W. Filed and A. G. Suits, J. Chem. Phys. 141, 154202, (2014). I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith

  10. Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow

    Science.gov (United States)

    Tucker, P. Kevin

    1993-01-01

    The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.

  11. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  12. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  13. The use of coal fines fly ash for the improvement of soils in hydrophobic grounds

    International Nuclear Information System (INIS)

    Janssen-Mommen, J.P.M.; Bestebroer, S.I.

    1992-01-01

    New NO x reducing combustion techniques result in a different physical and morphological quality of fly ash, which makes the use of fly ash less attractive for the building and road construction industries. Attention is paid to the possibility of using low-NO x fly ash for the improvement of the properties of hydrophobic agricultural land. Such an application also depends on the environmental impacts of the leaching of elements to the ground water and the accumulation of hazardous compounds in crops. A literature study of hydrophobic grounds was carried out. Also attention is paid to the legal aspects. No juridical constraints could be found in the Dutch legislation concerning the use of fly ash from coal powder, although it seems that the use of such fly ash is not in agreement with the tenor of possibly to be applied legislation. However, a small-scale investigation was carried out to gain insight into the environmental impacts. The uptake in lettuce and the leaching of the elements As, B, Mo and Se was studied by means of lysimeters. Hydrophobic soils with 5%, 10% and 15% coal fines fly ash were used. Also an experiment with the use of coal gasification slags was performed

  14. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  15. Potential use of the sterile insect technique against the South American fruit fly

    International Nuclear Information System (INIS)

    Ortiz, G.

    1999-01-01

    The Latin American countries have a strong interest in increasing fruit production and quality to facilitate commercialization within and outside the region. Various fruit fly control programmes in South America and their objectives and benefits are described here. Specific priorities to improve fruit fly control and eradication technologies include strengthening of quarantine, development of pre- and post-phytosanitary measures, and harmonization of the most effective and advanced technical procedures/methodologies to control fruit flies. A subregional strategy to control fruit flies in South America would promote technical co-operation among the South American countries and strengthen the activities of less advanced fruit fly programmes. Effective use can be made of local/regional infrastructure, expertise, sterile fly production and human/technical resources. In Argentina, advanced technology related to the use of medfly genetic sexing strains for SIT programmes has been successfully introduced. Joint efforts between technicians and scientists would contribute to developing new technology to control important pests in South America. (author)

  16. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  17. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2 in 2050, with an uncertainty between 9 and 29 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2. A reduced supersonic cruise

  18. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet ─ results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    I.S.A. Isaksen

    2007-10-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to

  19. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  20. Special Aspects of Dynamic Properties of Combination Jet Effectors for Flying Vehicle Control

    Directory of Open Access Journals (Sweden)

    Val. V. Zelencov

    2015-01-01

    Full Text Available The paper considers an experimental study of special aspects of disturbed flow region dynamics that is formed when an injected high-pressure gas jet interacts with a supersonic crossflow of gas nearby a surface of a nozzle or a plate. The study objective was to determine a difference of the pressure distribution in the region and its sizes under dynamic action from stationary flow characteristics.The experiment involved measuring pressure distribution on the surface of a nozzle or a plate along with high-speed filming of the flow.The study has revealed that the difference in size of the disturbed flow region and the flow distribution is observed only in transition segments: under injected jet stagnation pressure increase or decrease. The region is formed with a time lag close to zero under pulsation frequencies used. The disturbed flow region size and boundary shape and pressure distribution in constant pressure segment are independent of jet pulsation.It was determined that the dynamic properties (i.e. time of formation of disturbed flow region depend of induced force and crossflow properties.Disturbed flow region size behavior in time domain can be represented by an aperiodic element with a time constant significantly smaller than that of the gas-feed circuit.The results gained make it possible to state that in assessing dynamic properties of combination jet effectors it is sufficient to take into account gas generator and gas-feed circuit which response is significantly slower than that of the disturbed flow region.The recommendations based on the study results can be used for supersonic and hypersonic flying vehicle design.

  1. Proximate and biochemical characterization of burrito (Bachydeuterus auritus) and flying gurnard (Dactylopterus volitans).

    Science.gov (United States)

    Abbey, Lawrence D; Glover-Amengor, Mary; Atikpo, Margaret Ottah; Howell, Nazlin K

    2017-05-01

    With limited protein resources and depleting commercial fish species there is the need to improve utilization of some of the lesser known species which are underutilized, for example, big eye grunt (burrito), Bachydeuterus auritus, and the flying gurnard ( Dactylopterus volitans ), (other names Cephalocanthus volitans (local) Pampansre ). This study was to characterize some of the proximate and biochemical properties of burrito and the flying gurnard so as to evaluate their potential for use in human nutrition and other value-added products. Proximate and chemical analysis were determined by the methods of AOAC. Fatty acid profiles were determined following the method of Saaed and Howell (1999). Amino acid profiles for the species were determined according to Bidlingmeyer et al. (1987). The protein content of both the water soluble and salt soluble protein extracts of the fish species were determined by the Bradford Protein Assay method (Bradford 1976). Rancidity of the fish species was assessed by thiobarbituric acid reactive substances (TBARS) and Peroxide value (PV) as described by Saeed and Howell (1999). Burrito contained 18% protein, whereas the flying gurnard contained 22.3%. Calcium content was 296 mg/100 g for burrito and 185 mg/100 g for flying gurnard, whereas iron content was 4.1 mg/100 g and 1.0 mg/100 g for burrito and the flying gurnard, respectively. Palmitic acid (C16) was 27% and 14.3% for the flying gurnard and burrito, respectively. C17: 1ω8 was 3% in the flying gurnard and 0.2% in burrito. Oleic (C18:1ω9) was 17% in the flying gurnard and 6% in burrito. C20:4ω6 was 1.6% in the flying gurnard and 3% in burrito. Docosahexaenoic acid (C22:6ω3) was 4.9% in the flying gurnard and 4.0% in burrito. Both burrito and the flying gurnard are of high nutritional quality as they had a high protein content, good general amino acid profile and abundance of polyunsaturated fatty acids.

  2. Web Services Integration on the Fly

    National Research Council Canada - National Science Library

    Leong, Hoe W

    2008-01-01

    .... Given data, software agents and supporting software infrastructure, web services integration on the fly means that human coding is not required to integrate web services into a Web Service Architecture...

  3. Schlieren photography on freely flying hawkmoth.

    Science.gov (United States)

    Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan

    2018-05-01

    The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).

  4. Snowballing and flying under the radar

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Hjortsø, Carsten Nico Portefée

    2013-01-01

    management and venture development paths. More specifically, flying under radar in terms of operating under lower institutional requirements, and slowly accumulating resources (snowballing) are major leveraging strategies. We integrate our results into a hypothesized framework for resource management in East...

  5. The fly's eye camera system

    Science.gov (United States)

    Mészáros, L.; Pál, A.; Csépány, G.; Jaskó, A.; Vida, K.; Oláh, K.; Mezö, G.

    2014-12-01

    We introduce the Fly's Eye Camera System, an all-sky monitoring device intended to perform time domain astronomy. This camera system design will provide complementary data sets for other synoptic sky surveys such as LSST or Pan-STARRS. The effective field of view is obtained by 19 cameras arranged in a spherical mosaic form. These individual cameras of the device stand on a hexapod mount that is fully capable of achieving sidereal tracking for the subsequent exposures. This platform has many advantages. First of all it requires only one type of moving component and does not include unique parts. Hence this design not only eliminates problems implied by unique elements, but the redundancy of the hexapod allows smooth operations even if one or two of the legs are stuck. In addition, it can calibrate itself by observed stars independently from both the geographical location (including northen and southern hemisphere) and the polar alignment of the full mount. All mechanical elements and electronics are designed within the confines of our institute Konkoly Observatory. Currently, our instrument is in testing phase with an operating hexapod and reduced number of cameras.

  6. Fruit flies and intellectual disability.

    Science.gov (United States)

    Bolduc, François V; Tully, Tim

    2009-01-01

    Mental retardation--known more commonly nowadays as intellectual disability--is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.

  7. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  8. OPTIMUM PROGRAMMABLE CONTROL OF UNMANNED FLYING VEHICLE

    Directory of Open Access Journals (Sweden)

    A. А. Lobaty

    2012-01-01

    Full Text Available The paper considers an analytical synthesis problem pertaining to programmable control of an unmanned flying vehicle while steering it to the fixed space point. The problem has been solved while applying a maximum principle which takes into account a final control purpose and its integral expenses. The paper presents an optimum law of controlling overload variation of a flying vehicle that has been obtained analytically

  9. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  10. Attracting the attention of a fly

    OpenAIRE

    Sareen, Preeti; Wolf, Reinhard; Heisenberg, Martin

    2011-01-01

    Organisms with complex visual systems rarely respond to just the sum of all visual stimuli impinging on their eyes. Often, they restrict their responses to stimuli in a temporarily selected region of the visual field (selective visual attention). Here, we investigate visual attention in the fly Drosophila during tethered flight at a torque meter. Flies can actively shift their attention; however, their attention can be guided to a certain location by external cues. Using visual cues, we can d...

  11. Suppressing Tsetse Flies to Improve Lives

    International Nuclear Information System (INIS)

    Potterton, Louise; Pavlicek, Petr; Parker, Andrew

    2013-01-01

    In 2009, the government-run Southern Tsetse Eradication Project (STEP) in Ethiopia, with the support of the IAEA, started to carry out intensive activities to suppress the fly population using insecticides. The fly population is now down by 90%. The benefits of tsetse suppression can be seen all over the region. Diary produce is now widely available at markets and healthy animals can be seen everywhere in farming and transport

  12. Feeding and rearing behaviour in tsetse flies

    International Nuclear Information System (INIS)

    Otieno, L.H.; Youdeowei, Y.

    1980-01-01

    Batwing membrane was used to study salivation and feeding behaviour of tsetse flies. Probing and salivation were observed to be stimulated by tarsal contact with the membrane. Salivation and feeding responses varied from day to day with characteristic alternating high and low responses. The feeding process was invariably accompanied by a resting period. Attempts to rear G. morsitans artificially through the use of batwing membrane showed that the flies needed an initial adjustment period to in vitro maintenance. (author)

  13. The Mexican Fruit Fly Eradication Programme

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, Jesus; Santiago M, Guillermo; Hernandez M, Porfirio [Comision Nacional de Sanidad Agropecuaria (Mexico)

    2000-07-01

    The goal of the Mexican Fruit Fly Eradication Programme is to control, suppress or eradicate from Mexico four species of fruit flies of economic and quarantine importance (Anastrepha ludens Loew, A. obliqua Macquart, A. serpentina Wied. and A. striata Schiner). These pests cause damage amounting to US$710 million per year. In addition to this cost, there are other expenses from pest control actions and the loss of international markets, because fruit importing countries have established stringent quarantine measures to restrict the entry of these pests. For purposes of the programme's implementation, Mexico was divided into three working zones, defined by agro-ecological characteristics, the number of fruit fly species present and the size of fruit growing regions. In addition, a cost:benefit analysis was carried out which indicated that the rate of return, in a 12-year time frame, might be as much as 33:1 in Northern Mexico, and 17:1 in the rest of the country, for an area over 100,000 hectares. Eradication technology involves: 1) surveys of pest populations by trapping and host fruit harvesting to monitor the presence and density of fruit flies, 2) reduction of pest populations applying cultural practices and using selective bait sprays, 3) mass release of sterile flies and augmentative release of parasitoids to eliminate populations and, 4) enforcement of quarantine measures to protect fruit fly free areas.

  14. The Mexican Fruit Fly Eradication Programme

    International Nuclear Information System (INIS)

    Reyes F, Jesus; Santiago M, Guillermo; Hernandez M, Porfirio

    2000-01-01

    The goal of the Mexican Fruit Fly Eradication Programme is to control, suppress or eradicate from Mexico four species of fruit flies of economic and quarantine importance (Anastrepha ludens Loew, A. obliqua Macquart, A. serpentina Wied. and A. striata Schiner). These pests cause damage amounting to US$710 million per year. In addition to this cost, there are other expenses from pest control actions and the loss of international markets, because fruit importing countries have established stringent quarantine measures to restrict the entry of these pests. For purposes of the programme's implementation, Mexico was divided into three working zones, defined by agro-ecological characteristics, the number of fruit fly species present and the size of fruit growing regions. In addition, a cost:benefit analysis was carried out which indicated that the rate of return, in a 12-year time frame, might be as much as 33:1 in Northern Mexico, and 17:1 in the rest of the country, for an area over 100,000 hectares. Eradication technology involves: 1) surveys of pest populations by trapping and host fruit harvesting to monitor the presence and density of fruit flies, 2) reduction of pest populations applying cultural practices and using selective bait sprays, 3) mass release of sterile flies and augmentative release of parasitoids to eliminate populations and, 4) enforcement of quarantine measures to protect fruit fly free areas

  15. Eradicating tsetse flies: Senegal nears first victory

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2015-01-01

    After a four-year eradication programme including nuclear techniques, the Niayes region of Senegal is now almost free of the tsetse fly, which used to decimate livestock. “I have not seen a single tsetse fly for a year now,” said cattle farmer Oumar Sow. “This is in contrast to earlier, when they increased in numbers, especially during the cold season. The flies were really a nuisance to our animals and we had to carefully select the time for milking. Now, there is no problem with that.” The tsetse fly is a bloodsucking insect that kills more than three million livestock in sub-Saharan Africa every year, costing the agriculture industry more than US $4 billion annually. The tsetse fly transmits parasites that cause a wasting disease called nagana in cattle. In some parts of Africa the fly also causes over 75 000 cases of human ‘sleeping sickness’, which affects the central nervous system, and causes disorientation, personality changes, slurred speech, seizures, difficulty walking and talking, and ultimately death.

  16. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera indica L.)

    Science.gov (United States)

    Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia

    2016-01-01

    Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107

  17. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  18. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    Science.gov (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  19. Spectroscopic validation of the supersonic plasma jet model

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Sember, V.; Gravelle, D.V.; Boulos, M.I.

    2002-01-01

    Optical emission spectroscopy is applied to validate numerical simulations of supersonic plasma flow generated by induction torch with a convergent-divergent nozzle. The plasmas exhausting from the discharge tube with the pressure 0.4-1.4 atm. through two nozzle configurations (the outlet Mach number equals 1.5 and 3) into low-pressure (1.8 kPa) chamber are compared. Both modelling and experiments show that the effect of the nozzle geometry on physical properties of plasma jet is significant. The profiles of electron number density obtained from modeling and spectroscopy agree well and show the deviations from local thermodynamic equilibrium. Analysis of intercoupling between different sorts of nonequilibrium processes is performed. The results reveal that the ion recombination is more essential in the nozzle with the higher outlet number than in the nozzle with the lower outlet number. It is demonstrated that in the jets the axial electron temperature is quite low (3000-8000 K). For spectroscopic data interpretation we propose a method based on the definition of two excitation temperatures. We suppose that in mildly under expanded argon jets with frozen ion recombination the electron temperature can be defined by the electronic transitions from level 5p (the energy E=14.5 eV) to level 4p (E=13.116 eV). The obtained results are useful for the optimization of plasma reactors for plasma chemistry and plasma processing applications. (author)

  20. The surface roughness effect on the performance of supersonic ejectors

    Science.gov (United States)

    Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.

    2017-07-01

    The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.

  1. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan; Sanghi, Sanjeev

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  2. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  3. Role of coherent structures in supersonic impinging jetsa)

    Science.gov (United States)

    Kumar, Rajan; Wiley, Alex; Venkatakrishnan, L.; Alvi, Farrukh

    2013-07-01

    This paper describes the results of a study examining the flow field and acoustic characteristics of a Mach 1.5 ideally expanded supersonic jet impinging on a flat surface and its control using steady microjets. Emphasis is placed on two conditions of nozzle to plate distances (h/d), of which one corresponds to where the microjet based active flow control is very effective in reducing flow unsteadiness and near-field acoustics and the other has minimal effectiveness. Measurements include unsteady pressures, nearfield acoustics using microphone and particle image velocimetry. The nearfield noise and unsteady pressure spectra at both h/d show discrete high amplitude impinging tones, which in one case (h/d = 4) are significantly reduced with control but in the other case (h/d = 4.5) remain unaffected. The particle image velocimetry measurements, both time-averaged and phase-averaged, were used to better understand the basic characteristics of the impinging jet flow field especially the role of coherent vortical structures in the noise generation and control. The results show that the flow field corresponding to the case of least control effectiveness comprise well defined, coherent, and symmetrical vortical structures and may require higher levels of microjet pressure supply for noise suppression when compared to the flow field more responsive to control (h/d = 4) which shows less organized, competing (symmetrical and helical) instabilities.

  4. Trend of supersonic aircraft engine. Choonsokukiyo engine no doko

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the R and D trend of supersonic aircraft engine in Europe, USA and Japan. Taking the high speed flight resistance into consideration, the engine must be characterized by its high exhaust gas speed and high specific thrust (ratio of thrust to the airflow rate) to secure strong thrust by a low airflow rate. Therefore, the turbojet is appropriate. However to reduce the fuel consumption during the cruising flight, the turbofan is normally used with a low by-pass ratio of 0.2 to 0.9. The thrust-to-weight ratio (thrust per unit weight) of low by-pass ratio turbofan engine equipped with afterburner is 7 to 8 in case of stronger thrust than 70kN. Its target value of development is 10. The specific thrust which is a performance parameter of engine exceeds 120s for the fighter engine and is about 30s for the passenger plane engine. The turbine inlet temperature is 2073K at the stage of element research. The overall pressure ratio ranges from 25 to 30. The reheating turbofan engine experimentally built for the research in Japan is 34kN in thrust and 7 in thrust-to-weight ratio. 8 refs., 9 figs.

  5. A new Lagrangian method for real gases at supersonic speed

    Science.gov (United States)

    Loh, C. Y.; Liou, Meng-Sing

    1992-01-01

    With the renewed interest in high speed flights, the real gas effect is of theoretical as well as practical importance. In the past decade, upwind splittings or Godunov-type Riemann solutions have received tremendous attention and as a result significant progress has been made both in the ideal and non-ideal gas. In this paper, we propose a new approach that is formulated using the Lagrangian description, for the calculation of supersonic/hypersonic real gas inviscid flows. This new formulation avoids the grid generation step which is automatically obtained as the solution procedure marches in the 'time-like' direction. As a result, no remapping is required and the accuracy is faithfully maintained in the Lagrangian level. In this paper, we give numerical results for a variety of real gas problems consisting of essential elements in high speed flows, such as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations for flows in a generic inlet and nozzle are presented.

  6. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  7. Diagnosis for the interaction of supersonic molecular beam with plasma

    International Nuclear Information System (INIS)

    Yao Lianghua; Feng Beibing; Feng Zhen; Luo Junlin; Dong Jiafu; Yan Longwen; Hong Wenyu

    2001-01-01

    Supersonic Molecular Beam Injection (SMBI) is a new fuelling method for Tokamaks and has recently been improved to enhance the flux of the beam and to make a survey of the cluster effect within the beam. There are a series of new phenomena, which implicate the interaction of the beam (including clusters) with the toroidal plasma of HL-1M Tokamak. The H α signals from the edge show a regular variation around the torus. Around the injection port, the edge H α signals are positive rectangular wave, which is consistent with that of the injection beam pulses. The edge electron temperature, measured with movable Langmuir probes, decreases by an order of magnitude and the density increases by an order of magnitude. H α emission at the beam injection port, measured with CCD camera at an angle of 13.4 degrees to the SMBI line, shows many separate peaks within the contour plot. These peaks may show the strong emission produced by the interaction of the hydrogen clusters with the plasma. Hydrogen clusters may be produced in the beam according to the empirical scaling (Hagena) law of clustering onset, Γ* = kd 0.85 P 0 /T 0 2.29 , here d is the nozzle diameter in μm, P 0 the stagnation pressure in mbar, T 0 the source temperature in K, and k is a constant related to the gas species. If Γ* > 100, clusters will be formed. In present experiment Γ* is about 127

  8. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  9. Shear layer characteristics of supersonic free and impinging jets

    Science.gov (United States)

    Davis, T. B.; Kumar, R.

    2015-09-01

    The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

  10. Study on the characteristics of the supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Shibayama, Shunsuke

    2014-01-01

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  11. The manipulation of an unstarting supersonic flow by plasma actuator

    International Nuclear Information System (INIS)

    Im, S; Cappelli, M A; Do, H

    2012-01-01

    The manipulation of an unstarting supersonic flow is demonstrated using a dielectric barrier discharge (DBD). Experiments are carried out in a Mach 4.7 model inlet flow. Flow features, such as boundary layers and shockwaves at low freestream static pressure (1 kPa) and temperature (60 K) are visualized with Rayleigh scattering from condensed CO 2 particles. Flow unstart, initiated by mass injection, is studied for three model inlet flow configurations, distinguished by the initial conditions (untripped or tripped, plasma actuated or not) of the boundary layers. Unstart in the presence of thick, tripped boundary layers is characterized by the formation of an oblique unstart shock just upstream of a separating and propagating boundary layer. The presence of plasma actuation of this tripped boundary layer seems to arrest the boundary layer separation and leads to the formation of a quasi-stationary pseudo-shock, delaying unstart. The flow generated with DBD actuation is more characteristic of what is seen when unstart is generated in a model flow in which thin boundary layers grow naturally. Planar laser Rayleigh scattering visualizations suggest that the DBD actuation thins the tripped boundary layer over the exposed electrode region.

  12. Flight tests of a supersonic natural laminar flow airfoil

    International Nuclear Information System (INIS)

    Frederick, M A; Banks, D W; Garzon, G A; Matisheck, J R

    2015-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings. (paper)

  13. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  14. Supersonics/Airport Noise Plan: An Evolutionary Roadmap

    Science.gov (United States)

    Bridges, James

    2011-01-01

    This presentation discusses the Plan for the Airport Noise Tech Challenge Area of the Supersonics Project. It is given in the context of strategic planning exercises being done in other Projects to show the strategic aspects of the Airport Noise plan rather than detailed task lists. The essence of this strategic view is the decomposition of the research plan by Concept and by Tools. Tools (computational, experimental) is the description of the plan that resources (such as researchers) most readily identify with, while Concepts (here noise reduction technologies or aircraft configurations) is the aspects that project management and outside reviewers most appreciate as deliverables and milestones. By carefully cross-linking these so that Concepts are addressed sequentially (roughly one after another) by researchers developing/applying their Tools simultaneously (in parallel with one another), the researchers can deliver milestones at a reasonable pace while doing the longer-term development that most Tools in the aeroacoustics science require. An example of this simultaneous application of tools was given for the Concept of High Aspect Ratio Nozzles. The presentation concluded with a few ideas on how this strategic view could be applied to the Subsonic Fixed Wing Project's Quiet Aircraft Tech Challenge Area as it works through its current roadmapping exercise.

  15. Robust optimization of supersonic ORC nozzle guide vanes

    Science.gov (United States)

    Bufi, Elio A.; Cinnella, Paola

    2017-03-01

    An efficient Robust Optimization (RO) strategy is developed for the design of 2D supersonic Organic Rankine Cycle turbine expanders. The dense gas effects are not-negligible for this application and they are taken into account describing the thermodynamics by means of the Peng-Robinson-Stryjek-Vera equation of state. The design methodology combines an Uncertainty Quantification (UQ) loop based on a Bayesian kriging model of the system response to the uncertain parameters, used to approximate statistics (mean and variance) of the uncertain system output, a CFD solver, and a multi-objective non-dominated sorting algorithm (NSGA), also based on a Kriging surrogate of the multi-objective fitness function, along with an adaptive infill strategy for surrogate enrichment at each generation of the NSGA. The objective functions are the average and variance of the isentropic efficiency. The blade shape is parametrized by means of a Free Form Deformation (FFD) approach. The robust optimal blades are compared to the baseline design (based on the Method of Characteristics) and to a blade obtained by means of a deterministic CFD-based optimization.

  16. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  17. Optimization of radiation dose within the frame work of the SIT med fly tunisian suppression program

    International Nuclear Information System (INIS)

    Lachiheb, Abdallah

    2008-01-01

    The technique of the sterile insect confirmed its effectiveness in the fight against Ce ratite in Tunisia. The principal components of the success of this technique it is the choice of a suitable degree of irradiation. Indeed, this last exploits a dominating role the quality and the reproductive potential of the males intended to release it. The objective of this work was to determine the necessary degree of ionization to produce flies with a development, an emergence and an aptitude for the flight perfect, as well as a competitiveness, a latency time and a tolerable time of coupling and finally a rate of blossoming and an enough low F1 generation to be able to cause damage with the various types of fruits. A first stage consists in the determination of the rate of blossoming of the eggs which result from a coupling between fertile females and males irradiated with different amounts of ionization, a test which revealed a perfect sterilization for the flies irradiated with an amount of 145 Gy, a second test which to aim at the analysis of the F1 generation and which to confirm the results of the first test. But the analyses of quality of these flies irradiated in question, revealed the bad quality of this amount supposed best to be seen the low values recorded compared to the rate of emergence of the flies and their aptitude for the flight thereafter of an analysis of the competitiveness of the various amounts of irradiation, this test revealed the capacity of the irradiated flies with 80 Gy and 90 Gy to form the greatest number of couples that the witness not irradiated and the other irradiated flies sets with coupling and latency times rather tolerable and close to the average. (Author)

  18. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X

    2005-01-01

    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  19. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. An overview of quarantine for fruit flies

    International Nuclear Information System (INIS)

    Frampton, E.R.

    2000-01-01

    What is meant by 'quarantine for fruit flies'? The Collins dictionary describes 'quarantine' as a period of isolation or detention, especially of persons or animals arriving from abroad, to prevent the spread of disease. In providing an overview of quarantine for fruit flies, a broader definition needs to be applied, that is, the combination of activities required to maintain the fruit fly status of a particular geographical area - perhaps better referred to as a 'quarantine system'. Familiarity with New Zealand's quarantine system for fruit flies (Diptera: Tephritidae) provides a useful basis for subsequent comparison with other countries' systems where some fruit fly species may be present. But, why have 'quarantine for fruit flies'? The multivoltine life history of many species. combined with a relatively long-lived adult stage and highly fecund females, results in a high potential for rapid population increase (Bateman 1979, Fletcher 1987). These factors and the close association of fruit flies with harvested fruit or vegetables explain the high quarantine profile of these insects. However, there is no international requirement for a country to have a quarantine system and unless there are natural quarantine barriers (e.g., mountain range, oceans, deserts) that can be utilised, effective quarantine by an individual country may be an impossible task. The implementation of a successful quarantine system is very expensive and therefore, it would be expected that any benefits attained outweigh the costs (Ivess 1998). Ivess (1998) listed the following benefits from the implementation of an effective quarantine system: minimising production costs (including post harvest treatments), maintaining competitive advantages for market access due to the ongoing freedom from particular pests of quarantine significance, an environment free from many pests harmful to plant health, the maintenance of ecosystems

  1. To develop a flying fish egg inspection system by a digital imaging base system

    Science.gov (United States)

    Chen, Chun-Jen; Jywe, Wenyuh; Hsieh, Tung-Hsien; Chen, Chien Hung

    2015-07-01

    This paper develops an automatic optical inspection system for flying fish egg quality inspection. The automatic optical inspection system consists of a 2-axes stage, a digital camera, a lens, a LED light source, a vacuum generator, a tube and a tray. This system can automatically find the particle on the flying egg tray and used stage to driver the tube onto the particle. Then use straw and vacuum generator to pick up the particle. The system pick rate is about 30 particles per minute.

  2. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  3. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  4. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  5. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  6. Blood Collection from Local Abattoirs for Mass Production of Tsetse Flies to be used in the Sterile Insect Technique

    Energy Technology Data Exchange (ETDEWEB)

    Byamungu, M B; Kiimbisa, B; Matembo, S; Mashenga, G [Tsetse and Trypanosomiasis Research Institute, P.O. Box 1026, Tanga (Tanzania, United Republic of)

    2012-07-15

    The mass production of tsetse flies (Glossina spp.) for the sterile insect technique (SIT) requires a supply of quality blood. For some years already cattle blood has been used as food for laboratory reared flies. The blood is collected from an abattoir using standard procedures. The collection procedures, handling and storage require aseptic conditions to avoid contamination of the blood, which could be fatal to the flies. Fly mortality caused by low quality blood endangers the success of mass rearing. To rear healthy flies with good survival and production the blood should be of good quality - free of contamination and with a packed cell volume (PCV) above 25%. The present work involved the seasonal collection of blood from abattoirs in the United Republic of Tanzania (Tanga, Arusha, Dodoma, Dar-es-salaam). Dodoma was identified as having the best conditions for blood collection. To assess the quality of the blood as a diet for tsetse, blood was screened for the presence of bacteria, and the pathogens were identified. Protocols were developed for blood quality assurance. (author)

  7. Effect of symbiotic bacteria added to the middle of the Mediterranean fruit fly larvae on the performance of sterile males

    International Nuclear Information System (INIS)

    Toukebri, Achraf; Kefi, Amal

    2009-01-01

    The program of the fight against the Mediterranean fly of fruits ''SIT'' becomes increasingly efficient when one control his various factors well mainly the performances of the sterile males within the unit. In this present work, we adopted a method of breeding which could improve quality of the sterile males intended for releasing. This method consists in introducing certain beneficial bacteria (Pseudomonas, Citrobacter and Klebsiella) into the milieu of breeding according to different combinations. The effect of these bacteria was analyzed by carrying out various tests of quality control to determin the parameters of quality (Productivity, weight, Emergence, flying aptitude) and the parameters of reproduction (latency time, Duration of coupling and competitiveness). According to the results obtained, we could observe changes on the level of the parameters of quality. The addition of Pseudomonas alone in the milieu of breeding significantly decreased the quality of the produced flies while the addition of this same bacteria in partnership with Citrobacter and Klebsiella showed a beneficial effect on their host. This is observed through the remarkable improvement of the competitiveness of the fly. Thus we can conclude that the presence of the bacteria alone or in synergy enormously affects the fitness flies and consequently their sexual competitiveness. (Author)

  8. Regional approach to the management of fruit flies in the Pacific Island countries and territories

    International Nuclear Information System (INIS)

    Allwood, Allan

    2000-01-01

    Of the 4,500 species of fruit flies (family Tephritidae) world-wide, over 350 species occur in the Pacific region. Of these, at least 25 species are regarded as being of major economic importance to fruit and vegetable production and to international trade within the region. Recognition of the economic importance of fruit flies to horticultural production and trade increased markedly in the 1980s due to the imposition of restrictions on the use of ethylene dibromide (EDB) fumigation by trading partners. This treatment was the mainstay of quarantine treatments for fresh fruits and vegetables susceptible to fruit fly infestations and destined for markets in Australia, New Zealand, USA, Japan and Canada. Small, but economically significant, markets for fresh fruits and vegetables in the Pacific rim countries disappeared because alternative quarantine treatments for EDB fumigation were not available. Countries, such as Cook Islands, Fiji, Tonga and Samoa, looked for modern technologies to overcome these constraints to export. As well as quarantine treatment technologies, procedures new to the Pacific Island countries, such as quality assurance systems and quarantine pathways, had to be included into the production and marketing chains. Quarantine surveillance, particularly for exotic fruit flies, became a prerequisite for trade in fresh fruits and vegetables. The emphasis on fruit flies also regionally increased because of the increasing number of incursions of exotic fruit flies into the region over the past 10-12 years. Outbreaks of exotic fruit flies in the Solomon Islands (1984-85), Nauru (1984-85), Northern Australia (1995 and 1998), New Zealand (1996), French Polynesia (1995-96), and Palau (1995-96) demonstrated the vulnerability of the Pacific Island countries and territories (PICTs) to these incursions. To address the increased threat of introduction of exotic fruit flies through increased tourism and regional travellers, a regional approach to the management

  9. Hamburg's Family Literacy project (FLY) in the context of international trends and recent evaluation findings

    Science.gov (United States)

    Rabkin, Gabriele; Geffers, Stefanie; Hanemann, Ulrike; Heckt, Meike; Pietsch, Marcus

    2018-05-01

    The authors of this article begin with an introduction to the holistic concept of family literacy and learning and its implementation in various international contexts, paying special attention to the key role played by the notions of lifelong learning and intergenerational learning. The international trends and experiences they outline inspired and underpinned the concept of a prize-winning Family Literacy project called FLY, which was piloted in 2004 in Hamburg, Germany. FLY aims to build bridges between preschools, schools and families by actively involving parents and other family members in children's literacy education. Its three main pillars are: (1) parents' participation in their children's classes; (2) special sessions for parents (without their children); and (3) joint out-of-school activities for teachers, parents and children. These three pillars help families from migrant backgrounds, in particular, to develop a better understanding of German schools and to play a more active role in school life. To illustrate how the FLY concept is integrated into everyday school life, the authors showcase one participating Hamburg school before presenting their own recent study on the impact of FLY in a group of Hamburg primary schools with several years of FLY experience. The results of the evaluation clearly indicate that the project's main objectives have been achieved: (1) parents of children in FLY schools feel more involved in their children's learning and are offered more opportunities to take part in school activities; (2) the quality of teaching in these schools has improved, with instruction developing a more skills-based focus due to markedly better classroom management und a more supportive learning environment; and (3) children in FLY schools are more likely to have opportunities to accumulate experience in out-of-school contexts and to be exposed to environments that stimulate and enhance their literacy skills in a tangible way.

  10. Characterization of coal fly ash components by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yanez, Armando; Nicolas, Gines

    2009-01-01

    The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO...) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis 'on tape' was performed in order to establish the experimental conditions for the future 'online analysis'.

  11. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  12. Social attraction mediated by fruit flies' microbiome.

    Science.gov (United States)

    Venu, Isvarya; Durisko, Zachary; Xu, Jianping; Dukas, Reuven

    2014-04-15

    Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.

  13. Reconstructing the behavior of walking fruit flies

    Science.gov (United States)

    Berman, Gordon; Bialek, William; Shaevitz, Joshua

    2010-03-01

    Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.

  14. Investigation of gliding flight by flying fish

    Science.gov (United States)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  15. Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadmium (II)

    International Nuclear Information System (INIS)

    Bayat, Belgin

    2002-01-01

    The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20±2 deg. C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2 h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55±2 mg/l for Cr(VI) and 6±0.2 mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey

  16. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  17. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  18. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  19. Manufacturing of a micro-tungsten carbide electrode using a supersonic-aided electrolysis process

    International Nuclear Information System (INIS)

    Weng, Feng-Tsai; Ho, Chi-Ting

    2008-01-01

    In this study, a novel micromachining technology for fabricating micro parts was described. The original diameter of a tungsten carbide rod was 3 mm, and it was first processed to a rod with a diameter of 50 µm by a precision-grinding process. It could then be machined to the desired diameter by a supersonic-aided electrolysis process. A high-aspect ratio of the micro-tungsten carbide rod was easily obtained by this process. The surface roughness of the sample that was processed by electrolysis with supersonic-aided agitation was compared with that of the sample obtained without agitation. The machined surface of the sample was smooth, and the reason may be that ionized particles in the anode could be removed by supersonic-aided agitation during the electrolysis process. A microelectrode with a tip of approximately 1 µm could be obtained by this process. (technical note)

  20. Features of the laminar-turbulent transition in supersonic axisymmetric microjets

    Science.gov (United States)

    Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.

    2016-10-01

    In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.

  1. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  2. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  3. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    Science.gov (United States)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  4. Entomopathogenic Fungi in Flies Associated with Pastured Cattle in Denmark

    DEFF Research Database (Denmark)

    Steenberg, Tove; Jespersen, Jørgen B.; Jensen, Karl-Martin Vagn

    2001-01-01

    Cattle flies, including Musca autumnalis, Haematobia irritans, and Hydrotaea irritans, are pests of pastured cattle. A 2-year study of the natural occurrence of entomopathogenic fungi in adult cattle flies and other flies associated with pastures showed that the four species included in the Entom......Cattle flies, including Musca autumnalis, Haematobia irritans, and Hydrotaea irritans, are pests of pastured cattle. A 2-year study of the natural occurrence of entomopathogenic fungi in adult cattle flies and other flies associated with pastures showed that the four species included...

  5. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  6. Discriminating fever behavior in house flies.

    Directory of Open Access Journals (Sweden)

    Robert D Anderson

    Full Text Available Fever has generally been shown to benefit infected hosts. However, fever temperatures also carry costs. While endotherms are able to limit fever costs physiologically, the means by which behavioral thermoregulators constrain these costs are less understood. Here we investigated the behavioral fever response of house flies (Musca domestica L. challenged with different doses of the fungal entomopathogen, Beauveria bassiana. Infected flies invoked a behavioral fever selecting the hottest temperature early in the day and then moving to cooler temperatures as the day progressed. In addition, flies infected with a higher dose of fungus exhibited more intense fever responses. These variable patterns of fever are consistent with the observation that higher fever temperatures had greater impact on fungal growth. The results demonstrate the capacity of insects to modulate the degree and duration of the fever response depending on the severity of the pathogen challenge and in so doing, balance the costs and benefits of fever.

  7. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    Science.gov (United States)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  8. Ionizing radiation quarantine treatments against tephritid fruit flies: a review

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, G. J. [USDA-ARS, Weslaco, TX (United States)

    1999-06-15

    Fruit flies of the family Tephritidae are considered the most important insect pest risk carried by exported fruits worldwide. Fruits suspected of harboring fruit fly eggs and larvae must be treated to control virtually 100% of any tephritids present. Irradiation is unique among quarantine treatments in that it is the only treatment used which does not cause acute mortality; instead, insects are prevented from maturing or are sterilized. Tephritids have been the most studied group of quarantined pests as far as irradiation; minimum absorbed doses confirmed with large-scale testing to provide control to the probit 9 level (99.9968%) have ranged from 50 to 250 Gy. Considerable work has been done with the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), one of the most important quarantined pests worldwide, and doses suggested to provide quarantine security have varied widely. The fact that insects are still alive for some time after irradiation has been one of the major obstacles to its use. Irradiation may be the most widely applicable quarantine treatment from the standpoint of fruit quality. However, some important fruits shipped across quarantine barriers (mangoes, Mangifera indica L., and citrus) may suffer from doses as low as 150 Gy when applied on a commercial scale where much of the fruit load may receive 300 Gy. Fortunately, some of the important tephritids attacking these fruits, such as Anastrepha spp., can be controlled with lower doses. Mainland USA has begun to use irradiation as a quarantine treatment for some fruits imported from Hawaii since April 1995 and remains the only country using irradiation as a quarantine treatment, although on a very limited basis. Irradiation offers some additional risk abatement advantages over other quarantine treatments. © 1999 Published by Elsevier Science B.V. All rights reserved. (author)

  9. Ionizing radiation quarantine treatments against tephritid fruit flies: a review

    International Nuclear Information System (INIS)

    Hallman, G.J.

    1999-01-01

    Fruit flies of the family Tephritidae are considered the most important insect pest risk carried by exported fruits worldwide. Fruits suspected of harboring fruit fly eggs and larvae must be treated to control virtually 100% of any tephritids present. Irradiation is unique among quarantine treatments in that it is the only treatment used which does not cause acute mortality; instead, insects are prevented from maturing or are sterilized. Tephritids have been the most studied group of quarantined pests as far as irradiation; minimum absorbed doses confirmed with large-scale testing to provide control to the probit 9 level (99.9968%) have ranged from 50 to 250 Gy. Considerable work has been done with the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), one of the most important quarantined pests worldwide, and doses suggested to provide quarantine security have varied widely. The fact that insects are still alive for some time after irradiation has been one of the major obstacles to its use. Irradiation may be the most widely applicable quarantine treatment from the standpoint of fruit quality. However, some important fruits shipped across quarantine barriers (mangoes, Mangifera indica L., and citrus) may suffer from doses as low as 150 Gy when applied on a commercial scale where much of the fruit load may receive 300 Gy. Fortunately, some of the important tephritids attacking these fruits, such as Anastrepha spp., can be controlled with lower doses. Mainland USA has begun to use irradiation as a quarantine treatment for some fruits imported from Hawaii since April 1995 and remains the only country using irradiation as a quarantine treatment, although on a very limited basis. Irradiation offers some additional risk abatement advantages over other quarantine treatments. © 1999 Published by Elsevier Science B.V. All rights reserved. (author)

  10. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  11. The eradication of the Mexico killing fly; L'eradication de la mouche tueuse du Mexique

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P

    2009-06-15

    In Mexico an industrial facility produces millions of sterile flies. These flies are then released in the wild to eliminate the 'Cochliomyia hominivorax' flu species whose larvae generate large sanitary and economical damage. The flies are made sterile through gamma irradiation at the cocoon stage. Containers filled with 40.000 cocoons are exposed to Cs{sup 137} gamma radiation doses of 55 Gy, the irradiation session lasts 2 minutes and a half. After the cocoons undergo strict quality control they are deposited in natural places. The irradiation generates cell damages in semen and ovaries while preserving the capacity of copulating and the lifetime of the flies. (A.C.)

  12. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  13. Radiation sterilization facility for melon fly

    International Nuclear Information System (INIS)

    Danno, A.

    1985-01-01

    The melon fly (Dacus cucurbitae Coquillett) has been observed in Amami Island since l975. Kagoshima Prefecture has had a melon fly eradication project underway since 1979. A mass-fearing facility and a radiation sterilization facility were constructed in Naze in March of l98l. In the early stages of the project, sterile insects were produced at the rate of 4 x l0/sup 6/ pupae/week. In the later stages, the activity of the project was enlarged by tenfold. The conditions for design of the radiation sterilization facility, which has been developed with a central control system for automated irradiation, are examined from an engineering standpoint

  14. A Flying Wire System in the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Buxton, W.; Mahler, G.; Marusic, A.; Roser, T.; Smith, G.; Syphers, M.; Williams, N.; Witkover, R.

    1999-01-01

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less dependent on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system

  15. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    International Nuclear Information System (INIS)

    Narevicius, E; Parthey, C G; Libson, A; Narevicius, J; Chavez, I; Even, U; Raizen, M G

    2007-01-01

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 ± 7.7 to 403 ± 16 m s -1 in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules

  16. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  17. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  18. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    Science.gov (United States)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  19. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  20. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  1. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Science.gov (United States)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  2. Compilation and Review of Supersonic Business Jet Studies from 1963 through 1995

    Science.gov (United States)

    Maglieri, Domenic J.

    2011-01-01

    This document provides a compilation of all known supersonic business jet studies/activities conducted from 1963 through 1995 by university, industry and the NASA. First, an overview is provided which chronologically displays all known supersonic business jet studies/activities conducted by universities, industry, and the NASA along with the key features of the study vehicles relative to configuration, planform, operation parameters, and the source of study. This is followed by a brief description of each study along with some comments on the study. Mention will be made as to whether the studies addressed cost, market needs, and the environmental issues of airport-community noise, sonic boom, and ozone.

  3. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  4. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  5. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  6. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    Science.gov (United States)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    treatment. Peroxidase, phenol oxidase, and catalase activities were not affected by these treatments. Acid phosphatase activity decreased, whereas alkaline phosphatase activity increased due to biochar and fly ash treatment. Microbial biomass carbon increased significantly (P effective in amelioration of soil quality parameters and improving crop yield.

  7. Blow flies as urban wildlife sensors.

    Science.gov (United States)

    Hoffmann, Constanze; Merkel, Kevin; Sachse, Andreas; Rodríguez, Pablo; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2018-05-01

    Wildlife detection in urban areas is very challenging. Conventional monitoring techniques such as direct observation are faced with the limitation that urban wildlife is extremely elusive. It was recently shown that invertebrate-derived DNA (iDNA) can be used to assess wildlife diversity in tropical rainforests. Flies, which are ubiquitous and very abundant in most cities, may also be used to detect wildlife in urban areas. In urban ecosystems, however, overwhelming quantities of domestic mammal DNA could completely mask the presence of wild mammal DNA. To test whether urban wild mammals can be detected using fly iDNA, we performed DNA metabarcoding of pools of flies captured in Berlin, Germany, using three combinations of blocking primers. Our results show that domestic animal sequences are, as expected, very dominant in urban environments. Nevertheless, wild mammal sequences can often be retrieved, although they usually only represent a minor fraction of the sequence reads. Fly iDNA metabarcoding is therefore a viable approach for quick scans of urban wildlife diversity. Interestingly, our study also shows that blocking primers can interact with each other in ways that affect the outcome of metabarcoding. We conclude that the use of complex combinations of blocking primers, although potentially powerful, should be carefully planned when designing experiments. © 2018 John Wiley & Sons Ltd.

  8. FLY ASH: AN ALTERNATIVE TO POWDERED ACTIVATED ...

    African Journals Online (AJOL)

    Preferred Customer

    The peaks observed at 1546 and 1511 cm−1 correspond to CO3. 2- group. Symmetric .... The values of RL reported in Table 5 obtained were less than one, indicating that the adsorption of eosin dye ... This work. Coal fly ash. Crystal Violet.

  9. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  10. Letting Your Students "Fly" in the Classroom.

    Science.gov (United States)

    Adams, Thomas

    1997-01-01

    Students investigate the concept of motion by making simple paper airplanes and flying them in the classroom. Students are introduced to conversion factors to calculate various speeds. Additional activities include rounding decimal numbers, estimating, finding averages, making bar graphs, and solving problems. Offers ideas for extension such as…

  11. A Coincidental Sound Track for "Time Flies"

    Science.gov (United States)

    Cardany, Audrey Berger

    2014-01-01

    Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…

  12. FLY ASH RECYCLE IN DRY SCRUBBING

    Science.gov (United States)

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  13. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Unknown

    to attempt making zeolite from fly ash (Höller and Wir- sching 1985; Henmi ... thermal treatment method to synthesize low silica NaX- type zeolite from .... catalytic applications. Mixture of ... amount of Fe2O3 and the oxides of Mg, Ca, P, Ti etc. The chemical ..... This work is partly supported by the Ministry of Human. Resource ...

  14. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc.

  15. Unidentified Flying Objects, A Selected Bibliography.

    Science.gov (United States)

    Rodgers, Kay, Comp.

    This bibliography, intended for the general reader, provides selective coverage of the unidentified flying object (UFO) literature that has appeared since 1969. The coverage is limited to English language works, but does include translations and materials published abroad. Other bibliographies are listed, as are books, congressional and other…

  16. Lyssavirus in Indian Flying Foxes, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Panduka S; Marston, Denise A; Ellis, Richard J; Wise, Emma L; Karawita, Anjana C; Breed, Andrew C; McElhinney, Lorraine M; Johnson, Nicholas; Banyard, Ashley C; Fooks, Anthony R

    2016-08-01

    A novel lyssavirus was isolated from brains of Indian flying foxes (Pteropus medius) in Sri Lanka. Phylogenetic analysis of complete virus genome sequences, and geographic location and host species, provides strong evidence that this virus is a putative new lyssavirus species, designated as Gannoruwa bat lyssavirus.

  17. On Optical Crosstalk between Fly Rhabdomeres

    NARCIS (Netherlands)

    Wijngaard, W.; Stavenga, D.G.

    1975-01-01

    In a fly retinula light may be transferred among the rhabdomeres. It is estimated that the light from a point source imaged on the axis of a rhabdomere may eventually be transferred completely to a neighbouring rhabdomere. However, the effect on the sensitivity of this latter rhabdomere will remain

  18. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  19. Upshot of Elevated Temperature on Performance Facet of Fly Ash ...

    African Journals Online (AJOL)

    This study investigates the effects of elevated temperature variation on the compressive strength of Fly Ash/Ordinary Portland Cement (OPC) Laterized concrete ... and 10% Fly ash content at 2500C. This is an indication that the strength of Fly ash/OPC Laterized concrete is generally sufficient for use at elevated temperature ...

  20. Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes

    Science.gov (United States)

    Leishmaniasis is an insect-borne disease caused by several protozoan species in the genus Leishmania, which are vectored by sand fly species in the genera Phlebotomus or Lutzomyia, depending on the sand fly species geographic range. Sand fly bites and leishmaniasis significantly impacted U.S. milita...

  1. Helicopter Flying Qualities Characteristics-CH-46E. Volume 4.

    Science.gov (United States)

    1983-10-03

    In UC in., WP.. o"N 05% w 0 ILw60V U.UNt’- =0 GAO 4 NCw-I W%?qWee -I.al OMMM aZ1. Z1 I- -- 4 >m Enl MwCe 0 0 40-1 m60’ Now"’%6 MMMM 60 41 .0 T in g n...1- %-r U. LL 4N WWN= ILL w e40 U.ww =I imn kn = %. E ’a 4C4 M N CD 0%r %r NN N % C C 0..6. * W x Xi W N X.&ON a0.. JinI ON ..1.-AV".-4 ww0-. M’ W...I="Iv K~~ I I1II . 4 ..a.a~a gao ma Qi co 0MMO =4Mp~~ &Ww Wa. 0P ~w ":m II mme Od a - amaac c44 c44 0 1% CY an-$ U.s .. r (M " ty U**@@**~ ~ ~ a

  2. Vestibular schwannoma and fitness to fly.

    Science.gov (United States)

    Pons, Yoann; Raynal, Marc; Hunkemöller, Iris; Lepage, Pierre; Kossowski, Michel

    2010-10-01

    When a pilot is referred for vestibular schwannoma (VS), his or her fitness to fly may be questioned. The objective of this retrospective study was to describe a series of VS cases in a pilot population and to discuss their fitness to fly options. Between September 2002 and March 2010, the ENT/Head and Neck Surgery Department of the National Pilot Expertise Center conducted nearly 120,000 expert consultations for 40,000 pilots. We examined the files of 10 pilots who were referred to our 2 national experts for VS. At the time of the expert consultation, hypoacusis was present in nine cases (four with total deafness), tinnitus in one case, and vertigo in nine cases. In our series, only 2 of the 10 pilots experienced a negative impact on their fitness to fly. Decisions on fitness to fly were based on several factors: minimally disturbed audition, i.e., less than a 35-dB hearing loss with a good speech discrimination score; good balance, i.e., no reported difficulties; no spontaneous nystagmus recorded on videonystagmography (VNG); no postural deviation; and a normal head-shaking test. The delay and the VS's evolution between diagnosis and expert consultation are important because the selection of a treatment to control VS is critical in minimizing the possible associated complications. When a pilot is referred for VS, his or her fitness to fly is determined by the size of the tumor, balance, auditory status, and the follow-up results of these findings. The complications that may arise from VS treatments must also be considered.

  3. Effects of eucalyptol on house fly (Diptera: Muscidae and blow fly (Diptera: Calliphoridae

    Directory of Open Access Journals (Sweden)

    Sukontason Kabkaew L.

    2004-01-01

    Full Text Available The effects of eucalyptol were evaluated against the house fly, Musca domestica L., and blow fly, Chrysomya megacephala (F.. The bioassay of adults, using topical application, indicated that M. domestica males were more susceptible than females, with the LD50 being 118 and 177 mg/fly, respectively. A higher LD50 of C. megacephala was obtained; 197 mg/fly for males and 221 mg/fly for females. Living flies of both species yielded a shorter life span after being treated with eucalyptol. The bioassay of larvae, using the dipping method on the third instar, showed that M. domestica was more susceptible than C. megacephala, with their LC50 being 101 and 642 mg/ml, respectively. The emergence of adults, which had been treated with eucalyptol in larvae, decreased only in M. domestica. Having the volatile property, fumigation or impregnated paper test of eucalyptol or the efficacy of repellence or attractiveness merits further investigations to enhance bio-insecticidal efficacy.

  4. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustion

    Science.gov (United States)

    Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.

    1992-01-01

    The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.

  5. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  6. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  7. Dissymmetry effects on the laser spectroscopy of supersonically expanded rare gas/chiral arene heteroclusters.

    Science.gov (United States)

    Filippi, Antonello; Giardini, Anna; Marcantoni, Enrico; Paladini, Alessandra; Piccirillo, Susanna; Renzi, Gabriele; Rondino, Flaminia; Roselli, Graziella; Satta, Mauro; Speranza, Maurizio

    2007-04-14

    The R2PI-TOF spectra of supersonically expanded rare gas/chiral arene heteroclusters have been rationalized in terms of the distortion of the pi-electron density reflecting the different dipole and quadrupole momenta induced in the rare gas atoms by interaction with the opposite pi-faces of the chiral arene itself.

  8. Micro Ramps in Supersonic Turbulent Boundary Layers : An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of

  9. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  10. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  11. Description of a laser vaporization source and a supersonic cluster beam apparatus

    International Nuclear Information System (INIS)

    Doverstaal, M.; Lindgren, B.; Sassenberg, U.; Yu, H.

    1993-11-01

    Laser vaporization of an appropriate target and recent developments in molecular beam technology have now made it possible to produce supersonic cluster beams of virtually any element in the periodic table. This paper describes the design and principles of a cluster source combined with a time of flight mass spectrometer built for reaction experiments and spectroscopic investigations at Stockholm University

  12. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  13. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  14. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  15. Effect of four commercial fungal formulations on mortality and sporulation of house flies (Musca domestica) and stable flies (Stomoxys calcitrans)

    Science.gov (United States)

    House flies (Musca domestica L.) and stable flies (Stomoxys calcitrans (L.)) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several s...

  16. Mate choice in fruit flies is rational and adaptive.

    Science.gov (United States)

    Arbuthnott, Devin; Fedina, Tatyana Y; Pletcher, Scott D; Promislow, Daniel E L

    2017-01-17

    According to rational choice theory, beneficial preferences should lead individuals to sort available options into linear, transitive hierarchies, although the extent to which non-human animals behave rationally is unclear. Here we demonstrate that mate choice in the fruit fly Drosophila melanogaster results in the linear sorting of a set of diverse isogenic female lines, unambiguously demonstrating the hallmark of rational behaviour, transitivity. These rational choices are associated with direct benefits, enabling males to maximize offspring production. Furthermore, we demonstrate that female behaviours and cues act redundantly in mate detection and assessment, as rational mate choice largely persists when visual or chemical sensory modalities are impaired, but not when both are impaired. Transitivity in mate choice demonstrates that the quality of potential mates varies significantly among genotypes, and that males and females behave in such a way as to facilitate adaptive mate choice.

  17. Resource recovery from coal fly ash waste: an overview study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.; Matsuda, M.; Miyake, M. [Okayama University, Okayama (Japan). Graduate School of Environmental Science

    2008-02-15

    Coal fly ash (CFA) is a useful byproduct of the combustion of coal. It is composed primarily of almost perfectly spherical aluminosilicate glass particles. This spherical characteristic and other characteristics of CFA should be exploited, rather than simply using CFA as inert filler for construction. Unfortunately, the presence of carbon residues and high levels of heavy metals has so far limited the uses of CFA. Forced leaching methods have been used to improve the technical and environmentally friendly qualities of CFA, but these processes do not seem to be economically viable. Actually, CFA is a major source of Si and Al for the synthesis of industrial minerals. Potential novel uses of CFA, e.g., for the synthesis of ceramic materials, ceramic membrane filters, zeolites, and geopolymers, are reviewed in this article with the intention of exploring new areas that will

  18. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  19. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  20. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  1. Analysis list: FLI1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available FLI1 Blood,Bone,Muscle + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/targe...t/FLI1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/FLI1.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/hg19/target/FLI1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/FLI1.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/FLI1.Bone.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/FLI1.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Bl

  2. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate.

    Science.gov (United States)

    Sajó, Ráchel; Liliom, Károly; Muskotál, Adél; Klein, Agnes; Závodszky, Péter; Vonderviszt, Ferenc; Dobó, József

    2014-11-01

    Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  4. Utah Fly's Eye detector

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, R.M.; Cady, R.; Cassiday, G.L.; Cooper, R.; Elbert, J.W.; Gerhardy, P.R.; Ko, S.; Loh, E.C.; Salamon, M.; Steck, D.; Sokolsky, P.

    1985-10-15

    We report the details of the design, operation and performance of the University of Utah Fly's Eye detector which was built to record the passage of ultra-high energy cosmic rays through the atmosphere via atmospheric fluorescence. Emphasized in the presentation are (1) light production by charged particles in the atmosphere, (2) kinematics of an EAS as seen by the Fly's Eye, (3) signal to noise considerations and its impact on detector design, (4) details of detector hardware and software, (5) detector calibration, (6) techniques employed in measurement of shower longitudinal development profiles and primary particle energy, and (7) assessment of detector performance by a comparison of Monte Carlo and real data distributions. (orig.).

  5. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  6. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  7. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  8. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  10. Taxonomy Icon Data: fruit fly [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fruit fly Drosophila melanogaster Arthropoda Drosophila_melanogaster_L.png Drosophila_mela...nogaster_NL.png Drosophila_melanogaster_S.png Drosophila_melanogaster_NS.png http://biosciencedbc.jp/...taxonomy_icon/icon.cgi?i=Drosophila+melanogaster&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophila+mela...nogaster&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophila+mela...nogaster&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophila+melanogaster&t=NS ...

  11. Volunteer Flying Organizations: Law Enforcements Untapped Resource

    Science.gov (United States)

    2016-12-01

    World War II, women in the United States turned manpower into woman power as housewives across the nation took manufacturing jobs building bombers...delineates responsibilities for the entire volunteer organization. Safety -first Flying Culture CHP CHP’s first- class safety program uses the most...civilian pilots to augment law enforcement based aviation operations. This thesis uses recommendations of the Public Safety Aviation Accreditation

  12. Vision in Flies: Measuring the Attention Span.

    Science.gov (United States)

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s.

  13. Vision in Flies: Measuring the Attention Span.

    Directory of Open Access Journals (Sweden)

    Sebastian Koenig

    Full Text Available A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA. The animal is said to have a focus of attention (FoA which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s.

  14. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.

    Science.gov (United States)

    Haslbeck, Andreas; Hoermann, Hans-Juergen

    2016-06-01

    The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.

  15. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  16. Investigation of the Impact of an External Magnetic Field on a Supersonic Plasma Flow Through and MGD Channel

    National Research Council Canada - National Science Library

    Bobashev, S. V; Mende, N. P; Sakharov, V. A; Van Wie, D. M

    2003-01-01

    .... Generally, the separation leads to harmful consequences such as an increase of the body drag, a decrease of the wing lift, unsteady loads, and at high supersonic velocities causes emergence of narrow...

  17. Estimation of resource savings due to fly ash utilization in road construction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Subodh; Patil, C.B. [Centre for Energy Studies, Indian Institute of Technology, New Delhi 110016 (India)

    2006-08-15

    A methodology for estimation of natural resource savings due to fly ash utilization in road construction in India is presented. Analytical expressions for the savings of various resources namely soil, stone aggregate, stone chips, sand and cement in the embankment, granular sub-base (GSB), water bound macadam (WBM) and pavement quality concrete (PQC) layers of fly ash based road formation with flexible and rigid pavements of a given geometry have been developed. The quantity of fly ash utilized in these layers of different pavements has also been quantified. In the present study, the maximum amount of resource savings is found in GSB followed by WBM and other layers of pavement. The soil quantity saved increases asymptotically with the rise in the embankment height. The results of financial analysis based on Indian fly ash based road construction cost data indicate that the savings in construction cost decrease with the lead and the investment on this alternative is found to be financially attractive only for a lead less than 60 and 90km for flexible and rigid pavements, respectively. (author)

  18. Fourth international conference on fly ash, silica fume, slag, and natural pozzolans in concrete: Supplemental proceedings

    International Nuclear Information System (INIS)

    Berry, E.E.; Hemmings, R.T.; Zhang, M.H.; Malhotra, V.M.

    1992-03-01

    This report consists of four papers presented at a special session on high volume fly ash (HVFA) concrete. These four papers summarize an EPRI research project currently in progress that is investigating HVFA concretes. This objective of this research is to commercialize the HVFA concrete technology through: (1) an extensive measurement of basic engineering and durability properties; (2) an examination of the binder microstructure and cementation hydration reactions; and (3) technology transfer to industry and the construction community. Overall the data from the project that are summarized in these papers, show that commercial quality structural grade concrete (up to 50 MPa compressive strength at 90 days) can be made from a wide range of fly ashes and cements available throughout the USA. It has been shown in this project that fly ash is a reactive participant with the Portland cement in the cementing process, and also serves as a microaggregate in a multiphase composite binder formed during curing. The properties of the binder were found to significantly influence strength development, elastic modulus, and the stress-strain behavior of HVFA concrete. Overall, the data presented show that regardless of the type of fly ash (from the nine US ashes evaluated) and the two cements used, that air-entrained HVFA concrete exhibits excellent durability in all respects except under application of deicing salts where some surface scaling has been observed in the laboratory

  19. Improved attractants for enhancing tsetse fly suppression

    International Nuclear Information System (INIS)

    2003-09-01

    At the initiation of this co-ordinated research project (CRP), the available visually attractant devices and odours for entomological monitoring and for suppression of tsetse fly populations were not equally effective against all economically important tsetse fly species. For species like G. austeni, G. brevipalpis, G. swynnertoni and some species of the PALPALIS-group of tsetse flies no sufficiently effective combinations of visual or odour attractants were available for efficient suppression and standardized monitoring as part of an operational integrated intervention campaign against the tsetse and trypanosomosis (T and T) problem. The Co-ordinated Research Project on Improved Attractants for Enhancing the Efficiency of Tsetse Fly Suppression Operations and Barrier Systems used in Tsetse Control/Eradication Campaigns involved (a) the identification, synthesis and provision of candidate kairomones, their analogues and of dispensers; (b) laboratory screening of synthesised candidate kairomones through electrophysiological studies and wind tunnel experiments; (c) field tests of candidate kairomones alone or as part of odour blends, in combination with available and or new trap designs; and (d) analysis of hydrocarbons that influence tsetse sexual behaviour. The CRP accomplished several main objectives, namely: - The screening of new structurally related compounds, including specific stereoisomers, of known tsetse attractants resulted in the identification of several new candidate odour attractants with promising potential. - An efficient two-step synthetic method was developed for the pilot plant scale production of 3-n-propyphenol, synergistic tsetse kairomone component. - Electrophysiological experiments complemented with wind tunnel studies provided an efficient basis for the laboratory screening of candidate attractants prior to the initiation of laborious field tests. - New traps were identified and modifications of existing traps were tested for some species

  20. House Fly (Musca domestica L. Attraction to Insect Honeydew.

    Directory of Open Access Journals (Sweden)

    Kim Y Hung

    Full Text Available House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the

  1. House Fly (Musca domestica L.) Attraction to Insect Honeydew

    Science.gov (United States)

    Hung, Kim Y.; Michailides, Themis J.; Millar, Jocelyn G.; Wayadande, Astri; Gerry, Alec C.

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house

  2. House Fly (Musca domestica L.) Attraction to Insect Honeydew.

    Science.gov (United States)

    Hung, Kim Y; Michailides, Themis J; Millar, Jocelyn G; Wayadande, Astri; Gerry, Alec C

    2015-01-01

    House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house

  3. Behaviour and chemical ecology of Bactrocera flies

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    Many species of tephritid fruit flies have gained global status as pests of economic importance in fruit and vegetable cultivation. Bactrocera species are no exception. Males of most Bactrocera species are known to be attracted to either methyl eugenol (ME) or cuelure (CL)/raspberry ketone (RK) (Fletcher 1987, Metcalf 1987 and 1990). At the turn of the century, male fruit flies of both B. diversa (Coquillett) (formerly Dacus diversus) and B. zonata (Saunders) (formerly Dacus zonatus) were first observed to have a strong attraction to citronella oil (Howlett 1912). The chemical responsible for the attraction was discovered to be ME (Howlett 1915). Since that discovery, ME has been used successfully in monitoring and male annihilation programmes (Steiner et al. 1965), in estimating native population density and survival rates (Tan 1985, Tan and Jaal 1986, Tan and Serit 1994), and movements between ecosystems (Tan and Serit 1988). The unique characteristic of male Bactrocera flies is that not only are they strongly attracted to certain male attractants but they compulsively feed on them. This phenomenon was not fully understood (Fletcher 1987, Metcalf 1990, Metcalf and Metcalf 1992) until early this decade. Certain male attractants play a very important role in the behaviour and chemical ecology of Bactrocera flies, and aid in the understanding of the intricate interrelationships between plants, fruit flies and their predators (Tan 1993). Every organism actively or passively secretes chemicals which act as a characteristic 'body odour'. This 'body odour' affects behaviour of individuals, both intraspecies and interspecies, within a community and it is here referred to as ecomone (ecohormone) under a large group of semiochemicals (behaviour modifying chemicals). To understand the different roles of chemicals acting as a medium in communication between individuals and affecting behaviour of a receptive organism, a brief classification of semiochemicals is essential

  4. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  5. The influence of sex and fly species on the development of trypanosomes in tsetse flies.

    Directory of Open Access Journals (Sweden)

    Lori Peacock

    Full Text Available Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG, proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works

  6. Synthesis and characterization of zeolite from coal fly ash

    Science.gov (United States)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  7. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  8. A review and development of correlations for base pressure and base heating in supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

  9. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    Science.gov (United States)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  10. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  11. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  12. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    Science.gov (United States)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  13. Preliminary study of optimum ductburning turbofan engine cycle design parameters for supersonic cruising

    Science.gov (United States)

    Fishbach, L. H.

    1978-01-01

    The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.

  14. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    Science.gov (United States)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  15. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  16. Reduction of the suction pressure of a liquid ring vacuum pump with a supersonic gas ejector

    Directory of Open Access Journals (Sweden)

    Olšiak Róbert

    2018-01-01

    Full Text Available A supersonic gas ejector in conjunction with a liquid ring vacuum pump is used for creating and maintaining vacuum in a chamber for technological purposes. In this paper the authors submit an overview about the problematics of suction pressure reduction with a supersonic gas ejector used as a pre-stage of a liquid ring vacuum pump. This system has also the function of a cavitation protection due to the higher pressure present at the suction throat of the vacuum pump. A part of this paper is devoted to the governing equations used at the definition of the flow through an ejector. The experimental studies are then carried out in or own laboratory for verification purposes.

  17. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  18. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    Science.gov (United States)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  19. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  20. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr