WorldWideScience

Sample records for supersonic flowfield calculations

  1. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    Science.gov (United States)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  2. Calculations of magnetohydrodynamic swirl combustor flowfields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Beer, J.H.; Khan, H.; Lilley, D.G.

    1982-09-01

    The objectives of the paper were to theoretically calculate and experimentally verify the fluid mechanics in the second stage of a model MHD swirl combustor with special emphasis on avoidance of the boundary-layer separation as the flow turns in to the MHD disk generator; to find the most suitable seed injection point at the entrance to the second stage which will yield uniform seed concentration at the combustor exit prior to entry into the disk generator. The model combustor is a multiannular swirl burner that is placed at the exit of the first-stage swirl combustor, which in turn can be used to vary the turbulent shear that arises between the individual swirling concentric annuli. This design permits ultrahigh swirl in the second stage with swirl vanes (if any) to be placed outside the very high temperature regions of the combustor in the clean preheated air. The gas burns completely in the second-stage combustor and turns 90 deg into the disk generator along a trumpet-shaped exit module. In this synoptic results are presented of the fluid mechanics in the trumpet-shaped second-stage exit module, with water as the working fluid.

  3. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    Science.gov (United States)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  4. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  5. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  6. Navier-Stokes calculation of solid-propellant rocket motor internal flowfields

    Science.gov (United States)

    Hsieh, Kwang-Chung; Yang, Vigor; Tseng, Jesse I. S.

    1988-01-01

    A comprehensive numerical analysis has been carried out to study the detailed physical and chemical processes involved in the combustion of homogeneous propellant in a rocket motor. The formulation is based on the time-dependent full Navier-Stokes equations, with special attention devoted to the chemical reactions in both gas and condensed phases. The turbulence closure is achieved using both the Baldwin-Lomax algebraic model and a modified k-epsilon two-equation scheme with a low Reynolds number and near-wall treatment. The effects of variable thermodynamic and transport properties are also included. The system of governing equations are solved using a multi-stage Runge-Kutta shceme with the source terms treated implicitly. Preliminary results clearly demonstrate the presence of various combustion regimes in the vicinity of propellant surface. The effects of propellant combustion on the motor internal flowfields are investigated in detail.

  7. Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams

    Science.gov (United States)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1988-01-01

    A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.

  8. A Computer Program to Calculate the Supersonic Flow over a Solid Cone in Air or Water.

    Science.gov (United States)

    1984-06-01

    ix air or water. The rain objective is to calculate the ccne semi-vertei angle given prescribed initial ccndi- tions. The program is written in...tc the motion of the metal jet frcm an explczive shaped-charge fired underwater. A tiical result for supersonic flow over a ccne in water is as follcws...the ccne semi-vertex angle is calculated to be 7.23 degrees. Gene rally, pressures invclved in water flow are much larger than for air flow, and the

  9. Comparison of calculated and measured heat transfer coefficients for transonic and supersonic boundary-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Huerst, C.; Schulz, A.; Wittig, S. [Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen

    1995-04-01

    The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.

  10. The Calculation of Supersonic Flows with Strong Viscous-Inviscid Interaction Using the Parabolized Navier - Equations

    Science.gov (United States)

    Barnett, Mark

    This investigation is concerned with calculating strong viscous-inviscid interactions in two-dimensional laminar supersonic flows with and without separation. The equations solved are the so-called parabolized Navier-Stokes equations. The streamwise pressure gradient term is written as a combination of a forward and a backward difference to provide a path for upstream propogation of information. Global iteration is employed to repeatedly update the solution from an initial guess until convergence is achieved. Interacting boundary layer theory is discussed in order to provide some essential background information for the development of the present calculation technique. The numerical scheme used is an alternating direction explicit (ADE) procedure which is adapted from the Saul'yev method. This technique is chosen as an alternative to the more difficult to program multigrid strategy used by other investigators and the slower converging Gauss-Seidel method. Separated flows are computed using the ADE method. Only small or moderate separation bubbles are considered. This restriction permits simple approximations to the convective terms in reversed flow regions without introducing severe error since the reversed flow velocities are small. Results are presented for a number of geometries including compression ramps and humps on flat plates with separation. The present results are compared with those obtained by other investigators using the full Navier-Stokes equations and interacting boundary layer theory. Comparisons were found to be qualitatively good. The quantitative comparisons varied, however mesh refinement studies indicated that the parabolized Navier-Stokes solutions tended towards second-order accurate full Navier-Stokes solutions as well as interacting boundary layer solutions for which mesh refinement studies were also executed.

  11. Some numerical calculations by using linear classical sonic theories approached from sub- or supersonic speeds

    Science.gov (United States)

    Yamamoto, Y.; Ando, S.

    1987-01-01

    The unsteady aerodynamics of a two-dimensional wing at sonic speed are studied by using so-called classical sonic theories (linear), approached from supersonic flow (M=1+0) or subsonic flow (M=1-0). In the former approach, the exact expressions of lift and lift distribution are obtained in terms of Fresnel integrals, while in the latter approach an integral equation must be solved, the kernel function of which is obtained from the subsonic Possio's equation and has a root singularity. The discrete analysis is adopted on the basis of the semicircle method (SCM) and the weighting function for subsonic-flow-Gauss-quadrature, as well as modified characteristics obtained from both approaches agree quite well with each other. The results obtained by the present computations are compared with those of DLM-C (subsonic 2D code) developed by ANDO et al, and are found to give a reasonable outer boundary for subsonic unsteady aerodynamics.

  12. An assumed pdf approach for the calculation of supersonic mixing layers

    Science.gov (United States)

    Baurle, R. A.; Drummond, J. P.; Hassan, H. A.

    1992-01-01

    In an effort to predict the effect that turbulent mixing has on the extent of combustion, a one-equation turbulence model is added to an existing Navier-Stokes solver with finite-rate chemistry. To average the chemical-source terms appearing in the species-continuity equations, an assumed pdf approach is also used. This code was used to analyze the mixing and combustion caused by the mixing layer formed by supersonic coaxial H2-air streams. The chemistry model employed allows for the formation of H2O2 and HO2. Comparisons are made with recent measurements using laser Raman diagnostics. Comparisons include temperature and its rms, and concentrations of H2, O2, N2, H2O, and OH. In general, good agreement with experiment was noted.

  13. Computation of the tip vortex flowfield for advanced aircraft propellers

    Science.gov (United States)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  14. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  15. MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-07-01

    Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.

  16. Calculation of three-dimensional supersonic flow of a gas past a cube

    Science.gov (United States)

    Barausov, D. I.; Drobyshevskii, E. M.

    1991-09-01

    Flow of a nonviscous gas near the front face of a cube is investigated numerically using a second-order MacCormack scheme. Calculations are performed on a 40 x 32 x 32 grid using Godunov's finite difference scheme. The drag coefficient of a cube moving in air at Mach 20 is estimated at 1.7-1.8. The results of the study are relevant to the development of electrodynamic rail-gun launchers.

  17. Computer programs for calculating pressure distributions including vortex effects on supersonic monoplane or cruciform wing-body-tail combinations with round or elliptical bodies

    Science.gov (United States)

    Dillenius, M. F. E.; Nielsen, J. N.

    1979-01-01

    Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.

  18. A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F

    1953-01-01

    A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.

  19. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  20. Viscous flowfields induced by three-dimensional lift jets in ground effect

    Science.gov (United States)

    Bower, W. W.

    1982-01-01

    The turbulent flowfields associated with single and multiple jets impinging on a ground plane are relevant to the aerodynamics of VTOL aircraft in ground effect. These flowfields are computed using the Reynolds equations and a two-equation turbulence model to describe an isolated jet and two interacting jets with fountain formation. Coordinate transformations are employed to apply the boundary conditions for the governing equations in the far field, and a third-order-accurate upwind-difference scheme is used to discretize the resulting system. Flowfield properties calculated for these impinging-jet configurations are presented and compared with experimental data.

  1. Structure and intermolecular vibrations of 7-azaindole-water 2:1 complex in a supersonic jet expansion: Laser-induced fluorescence spectroscopy and quantum chemistry calculation

    Indian Academy of Sciences (India)

    Montu K Hazra; Moitrayee Mukherjee; V Ramanathan; Tapas Chakraborty

    2012-01-01

    Laser-induced fluorescence spectra of a 2:1 complex between 7-azaindole and water, known as `non-reactive dimer’ of the molecule, have been measured in a supersonic jet expansion. The dispersed fluorescence spectrum of the electronic origin band of the complex shows a very large number of low-frequency vibrational features corresponding to different intermolecular modes of the complex in the ground electronic state. Geometries of several possible isomeric structures of the complex and their vibrational frequencies at harmonic approximation were calculated by electronic structure theory method at MP2/6-31G∗∗ level. An excellent agreement is observed between the measured and calculated intermolecular vibrational mode frequencies for the energetically most favoured structure of the complex, where the water molecule is inserted within one of the two N$\\cdots$H-N hydrogen bonds of the 7AI dimer.

  2. Numerical Simulation and Visualization of a Flowfield by Interaction of Two Parallel Two-Dimensional Freejets

    OpenAIRE

    TESHIMA, Koji; NAKATSUJI, Hiroyuki

    1987-01-01

    Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...

  3. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  4. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  5. A nozzle boundary layer model including the subsonic sublayer usable for determining boundary layer effects on plume flowfields

    Science.gov (United States)

    Cooper, B. P., Jr.

    1979-01-01

    A model for the boundary layer at the exit plane of a rocket nozzle was developed which, unlike most previous models, includes the subsonic sublayer. The equations for the flow near the nozzle exit plane are presented and the method by which the subsonic sublayer transitions to supersonic flow in the plume is described. The resulting model describes the entire boundary layer and can be used to provide a startline for method-of-characteristics calculations of plume flowfields. The model was incorporated into a method of characteristics computer program and comparisons of computed results to experimental data show good agreement. The data used in the comparisons were obtained in tests in which mass fluxes from a 22.2-N (5 lbf) thrust engine were measured at angles off the nozzle centerline of up to 150 deg. Additional comparisons were made with data obtained during tests of a 0.89-N (0.2 lbr) monopropellant thruster and from the OH-64 space shuttle heating tests. The agreement with the data indicates that the model can be used for calculating plume backflow properties.

  6. Unified CFD Methods Via Flowfield-Dependent Variation Theory

    Science.gov (United States)

    Chung, T. J.; Schunk, Greg; Canabal, Francisco; Heard, Gary

    1999-01-01

    This paper addresses the flowfield-dependent variation (FDV) methods in which complex physical phenomena are taken into account in the final form of partial differential equations to be solved so that finite difference methods (FDM) or finite element methods (FEM) themselves will not dictate the physics, but rather are no more than simply the options how to discretize between adjacent nodal points or within an element. The variation parameters introduced in the formulation are calculated from the current flowfield based on changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkohler numbers between adjacent nodal points, which play many significant roles such as adjusting the governing equations (hyperbolic, parabolic, and/or e!liptic), resolving various physical phenomena, and controlling the accuracy and stability of the numerical solution. The theory is verified by a number of example problems addressing the physical implications of the variation parameters which resemble the flowfield itself, shock capturing mechanism, transitions and interactions between inviscid/viscous, compressibility/incompressibility, and laminar/turbulent flows.

  7. Finite element form of FDV for widely varying flowfields

    Science.gov (United States)

    Richardson, G. A.; Cassibry, J. T.; Chung, T. J.; Wu, S. T.

    2010-01-01

    We present the Flowfield Dependent Variation (FDV) method for physical applications that have widely varying spatial and temporal scales. Our motivation is to develop a versatile numerical method that is accurate and stable in simulations with complex geometries and with wide variations in space and time scales. The use of a finite element formulation adds capabilities such as flexible grid geometries and exact enforcement of Neumann boundary conditions. While finite element schemes are used extensively by researchers solving computational fluid dynamics in many engineering fields, their use in space physics, astrophysical fluids and laboratory magnetohydrodynamic simulations with shocks has been predominantly overlooked. The FDV method is unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in these regimes. The first part of this paper concentrates on the presentation of our numerical method formulation for Newtonian and relativistic hydrodynamics. In the second part we present several standard simulation examples that test the method's limitations and verify the FDV method. We show that our finite element formulation is stable and accurate for a range of both Mach numbers and Lorentz factors in one-dimensional test problems. We also present the converging/diverging nozzle which contains both incompressible and compressible flow in the flowfield over a range of subsonic and supersonic regions. We demonstrate the stability of our method and the accuracy by comparison with the results of other methods including the finite difference Total Variation Diminishing method. We explore the use of FDV for both non-relativistic and relativistic fluids (hydrodynamics) with strong shocks in order to establish the effectiveness in future applications of this method in astrophysical and laboratory plasma environments.

  8. Ice-induced unsteady flowfield effects on airfoil performance

    Science.gov (United States)

    Gurbacki, Holly Marie

    Numerical prediction of iced-airfoil performance prior to and at maximum lift is often inaccurate due to large-scale flow unsteadiness. New computational models are being developed to improve predictions of complex separated flowfields; however, experimental data are required to improve and validate these algorithms. The objective of this investigation was to examine the unsteady flow behavior and the time-dependent performance of an iced airfoil to determine the flowfield characteristics with the most influence on airfoil performance, especially near stall. A NACA 0012 airfoil with two-dimensional and three-dimensional leading-edge simulated glaze ice shapes was tested in a wind tunnel at Reynolds numbers 1.8 x 106 and 1.0 x 106. Time-dependent surface pressure measurements were used to calculate root-mean-square lift and quarter-chord pitching-moment coefficients. Surface and flowfield visualization and wake hot-wire data were acquired. Spectral, correlation and phase-angle analyses were performed. The most significant unsteady flowfield effect on the iced-airfoil performance was a low-frequency flow phenomenon on the order of 10 Hz that resulted in Strouhal numbers of 0.0048--0.0101. The low-frequency oscillation produced large-scale pressure fluctuations nears eparation at high angles of attack and elevated lift and moment fluctuations as low as alpha = 4°. The low-frequency motion of surface pressure coefficients convected downstream at velocities 4%--34% of the freestream value and in one case, upstream at 0.18Uinfinity. The iced-airfoil flowfield exhibited a separation bubble of varying thickness and fluctuating reattachment, characteristics similar to those associated with the low-frequency shear-layer flapping and bubble growth and decay of other separated and reattached flows. Vortex structures observed in the shear layer were presumed to be the cause of large-scale pressure fluctuations upstream of reattachment at small angles of attack. Pressure

  9. Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics

    Science.gov (United States)

    Garcia, S. M.; Chung, T. J.

    1997-01-01

    Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.

  10. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  11. Multiresolution analysis of density fluctuation in supersonic mixing layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.

  12. Time-resolved flowfield measurements in a turbine stage

    Science.gov (United States)

    Holt, J. L.

    1985-06-01

    Time-resolved flowfield measurements for a 0.5-meter diameter, high work transonic turbine have been completed in the MIT Turbine Blowdown Facility (TBF). Measurements were taken: to determine the blade-to-blade total temperature profile for comparison with predictions from the Euler turbine equation; to determine the effect of using time-averaged pressures to calculate turbine performance; and to provide a complete set of time-resolved turbine stage data. A preliminary objective (given a 6 kHz blade passing frequency) was to determine the frequency response characteristics of the instrumentation used to make the flowfield measurements. A shock tube was built for this purpose. Measurements were taken with high-frequency response instrumentation including a dual-hot-wire aspirating probe, a four-way angle probe, and two cobra head total pressure probes incorporating silicon diaphragm pressure transducers. The aspirating probe is found to have a natural frequency of 15.5 kHz in the test gas with a damping ratio of 0.36; the angle probe a characteristic frequency of 45 kHz with a settling time of 18 usec. Both results are satisfactory for application in the TBF. The measured total temperature profile shows a peak-to-peak variation of 65 C (20%) and a characteristic frequency twice that of the blade passing frequency.

  13. Efficiency and reliability enhancements in propulsion flowfield modeling

    Science.gov (United States)

    Buelow, Philip E. O.; Venkateswaran, Sankaran; Merkle, Charles L.

    1993-01-01

    The implementation of traditional CFD algorithms in practical propulsion related flowfields often leads to dramatic reductions in efficiency and/or robustness. The present research is directed at understanding the reasons for this deterioration and finding methods to circumvent it. Work to date has focussed on low Mach number regions, viscous dominated regions, and high grid aspect ratios. Time derivative preconditioning, improved definition of the local time stepping, and appropriate application of boundary conditions are employed to decrease the required time to obtain a solution, while maintaining accuracy. A number of cases having features typical of rocket engine flowfields are computed to demonstrate the improvement over conventional methods. These cases include laminar and turbulent high Reynolds number flat plate boundary layers, flow over a backward-facing step, a diffusion flame, and wall heat-flux calculations in a turbulent converging-diverging nozzle. Results from these cases show convergence that is virtually independent of the local Mach number and the grid aspect ratio, which translates to a convergence speed-up of up to several orders of magnitude over conventional algorithms. Current emphasis is in extending these results to three-dimensional flows with highly stretched grids.

  14. Modeling supersonic combustion using a fully-implicit numerical method

    Science.gov (United States)

    Maccormack, Robert W.; Wilson, Gregory J.

    1990-01-01

    A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.

  15. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    Science.gov (United States)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  16. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  17. SIMULATIONS OF FLOWFIELDS AROUND UNDERWATER APPENDED BODIES

    Institute of Scientific and Technical Information of China (English)

    Huang Zhen-yu; Cheng Hong-rong; Zhou Lian-di; Miao Guo-ping

    2003-01-01

    The numerical method which is based on flux difference splitting, LU decomposition, and implicit high-resolution third-order Essentially Non-Oscillatory (ENO) scheme was constructed for the efficient computation of steady state solution to three-dimensional incompressible Navier-Stokes equations in general coordinates. The flowfields over underwater axisymmetric bodies, full-appended axisymmetric bodies and axisymetric bodies with a ring-wing duct were simulated. The method is proved to be capable of predicting the circumferential-mean velocity distribution at model scale to the accuracy of around 3% of measured values, and of predicting some details of flow features, for example, the wake harmonics.

  18. Experimental study on the optical propagation effect of the flowfield surrounding the optical headcover in supersonic wind tunnel%光学头罩超声速绕流流场光学传输效应风洞试验研究

    Institute of Scientific and Technical Information of China (English)

    姚向红; 吴运刚; 陈勇; 谢伟明

    2013-01-01

    For measuring optical propagation effects of a head-cover's flow fields,a simulated test method is introduced in a continuous supersonic wind tunnel (Ma=3).With the analysis of vibration measurement and isolation,specialized test equipment is developed.Finally,optical propagation effects are measured both with Hartmann wavefront sensor and shearing interferometer.In the pilot study,with different combinations of the experimental apparatus,a large number of tests have been done,from which to study the effectiveness of the experimental apparatus and the repeatability of the data.And the data analysis focus on the PV and RMS of the probe beam.With the test result,we can conclude that the wind guiding deflector is able to reduce the interference of boundary layer generated by the wall of wind tunnels,and the experimental equipment and method we developed are quite qualified for optical propagation effects measurement in continuous wind tunnels.%在Ma=3连续超声速风洞中,开展了光学头罩绕流流场光学传输效应的风洞模拟试验方法研究,进行了现场振动测量与隔离,研制了专用试验装置,采用哈特曼传感器和剪切干涉仪两种手段进行了光学传输效应的试验测量.试验中,针对试验装置各部分的不同组合状态,进行了大量的测试,研究了试验装置有效性以及试验数据重复性,着重分析了探测光束的PV值与RMS值.结果表明:导流板可明显抑制风洞洞壁边界层干扰,试验装置与方法可行,对于连续式风洞中模型绕流流场光学传输效应测试有一定参考价值.

  19. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  20. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  1. Direct Measurement of Skin Friction in High Temperature and Impulsively Started Supersonic Flowfields

    Science.gov (United States)

    1996-06-01

    Since resistors are additive in series ( Tipler , 1976:792), the total resistance over the strain gauge circuit is Rc+Rt. For the ideal case, the strain...relation ( Tipler , 1976:425) pV = n9IT (B-162) where n represents the number of moles and 91 is the universal gas constant. Using as p the partial...Alternate Edition. Reading MA: Addison-Wesley Publishing Company, 1972. Tipler , Paul A. Physics. New York: Worth Publishers, 1976. Tokarcik-Polsky, Susan

  2. Flowfields around supersonic aerodynamic bodies under the action of asymmetric energy release

    Science.gov (United States)

    Azarova, O. A.; Knight, D.; Kolesnichenko, Yu. F.

    2013-06-01

    The interaction of an infinite microwave filament and a shock layer is analyzed numerically on the basis of the Euler system of equations. The filament is regarded as a heated rarefied channel (heat layer). Flow details for asymmetrical filament location are researched including the formation of a new position of the stagnation point and the dependence of the front drag force on the filament characteristics and location. The origin of a lift/pitch force in the case of zero angle of attack is discussed. This force is shown to be a function of the shift value from the symmetry axis of the heat layer and the degree of the gas rarefaction in it. The mechanism of the lift/pitch force origination is revealed. These phenomena are analyzed for blunt and pointed bodies at freestream Mach number 1.89 and a wide class of values of infinite filament characteristics: the rarefaction factor and the disposition relative to the body.

  3. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  4. A unified Navier-Stokes flowfield and performance analysis of liquid rocket engines

    Science.gov (United States)

    Wang, Ten-See; Chen, Yen-Sen

    1990-07-01

    To improve the current composite solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics model capable of calculating the nonreacting and reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, along with the flowfields of several other nozzles were investigated. The bell-shaped SSME nozzle was run at 100 percent power level at various flow conditions, the computed flow results and performance compared well with those of other standard codes and engine hot fire test data.

  5. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  6. Evaporation and burning of a spherical fuel droplet in a uniform convective flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.

    1992-01-01

    An analytical/numerical model is developed for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential-flow solution, while the internal flowfield of the droplet is represented by the classical Hill's spherical vortex. This allows a numerical solution for the external boundary layer, from which the droplet's effective drag coefficent, rate of mass loss, size, and the shape of the diffusion flame with infinitely fast chemical reaction kinetics are determined. Subsequently, the quasi-steady model with uniform liquid temperature is extended to examine the effects of the transient heating of the droplet interior. Time-dependent calculations are performed with updated droplet Reynolds numbers and updated surface temperatures. Comparisons of model predictions with experimental data are made. To examine the effects of finite-rate chemical reaction kinetics, a one-step formulation of the combustion mechanism is integrated into the gaseous boundary layer equations. Simplifying assumptions for the variation of gas properties commonly used in combustion calculations, are subjected to an examination as to their degree of accuracy. For this purpose, the droplet model is extended to account for the variation of gas properties with temperature and gas composition within the boundary layer. Comparisons are made between the predictions obtained from the different models developed in this study, as well as with existing experimental data.

  7. CFD analysis of the flow-field scale-up influence on the electrodes performance in a PEFC

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Barbera, O.; Gatto, I.; Giacoppo, G.; Urbani, F.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contessen. 5, 98126 S. Lucia, Messina (Italy)

    2005-12-01

    A computational fluid dynamic (CFD) analysis was used as a useful tool to obtain numerical relationships among similar flow-field designs having different active areas. Assuming that, at fixed current density, the porous layer velocity distribution calculated for the smallest size geometry was the optimal, a scale-up methodology has been proposed and implemented in software. It allows acquisition of the scaled-up flow-field by multiplying the reference cell parameters by suitable factors (scale factors). A calibration methodology has also been proposed by the introduction of a feedback factor evaluated by CFD analysis. A first application of this procedure has been carried out to scale-up a 5-125cm{sup 2} cell. (author)

  8. Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion wall

    Science.gov (United States)

    Liu, Chaoyang; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2016-12-01

    Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion plate are investigated using large eddy simulation (LES), where the expansion effects on the mixing are analyzed emphatically by comparing to the flat-plate counterpart. An adaptive central-upwind weighted essentially non-oscillatory (WENO) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and efficiency of the calculations. Progressive mesh refinement study is performed to assess the grid resolution and solution convergence. Statistic results obtained are compared to the experimental data and recently performed classical numerical simulation, which validates the reliability of the present LES codes. Firstly, the jet mixing mechanisms in the flowfield with expansion plate are revealed. It indicates that the large-scale vortices in the windward side of jet plume induced by Kelvin-Helmholtz (K-H) instability contribute to the mixing in the near-field, while the entrainment by the counter-rotating vortices and molecular diffusion dominate the mixing process in the far-field. Furthermore, the effects of wall expansion on the flow and mixing characteristics are discussed. The boundary layer across the expansion corner is relaminarized and the profiles of streamwise velocity are distinctly changed. Then the separation region ahead of jet plume is more close to the wall, and the breaking process of large-scale vortices in the windward side of jet plume starts earlier. However, the favorable pressure gradient generated by wall expansion reduces the mixing efficiency and brings a greater total pressure loss.

  9. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  10. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  11. Flowfield Analysis of Savonius-type Wind Turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.

  12. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  13. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I; Flujo supersonico de un plasma con ondas de choque, un metodo de montecarlo para plasmas de baja densidad, I.

    Energy Technology Data Exchange (ETDEWEB)

    Almenara, E.; Hidalgo, M.; Saviron, J. M.

    1980-07-01

    This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.

  14. Investigation of the flow-field of two parallel round jets impinging normal to a flat surface

    Science.gov (United States)

    Myers, Leighton M.

    The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2

  15. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  16. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  17. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  18. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    Science.gov (United States)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  19. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  20. Analysis of reacting flowfields in low-thrust rocket engines and plumes

    Science.gov (United States)

    Weiss, Jonathan Mitchell

    The mixing and combustion processes in small gaseous hydrogen-oxygen thrusters and plumes are studied by means of a computational model developed as a general purpose analytic procedure for solving low speed, reacting, internal flowfields. The model includes the full Navier-Stokes equations coupled with species diffusion equations for a hydrogen-oxygen reaction kinetics system as well as the option to use either the k-Epsilon or q-Omega low Reynolds number, two-equation turbulence models. Solution of the governing equations is accomplished by a finite-volume formulation with central-difference spatial discretizations and an explicit, four-stage, Runge Kutta time-integration procedure. The Runge-Kutta scheme appears to provide efficient convergence when applied to the calculation of turbulent, reacting flowfields in these small thrusters. Appropriate boundary conditions are developed to properly model propellant mass flowrates and regenerative wall cooling. The computational method is validated against measured engine performance parameters on a global level, as well as experimentally obtained exit plane and plume flowfield properties on a local level. The model does an excellent job of predicting the measured performance trends of an auxiliary thruster as a function of O/F ratio, although the performance levels are consistently underpredicted by approximately 4 percent. These differences arise because the extent to which the wall coolant layer and combustion gases mix and react is underpredicted. Predictions of velocity components, temperature and species number densities in the near-field plume regions of several low-thrust engines show reasonable agreement with experimental data obtained by two separate laser diagnostic techniques. Discrepancies between the predictions and measurements are primarily due to three-dimensional mixing processes which are not accounted for in the analysis. Both comparisons with experiment and the evident reason for errors in absolute

  1. Pylon Effects on a Scramjet Cavity Flameholder Flowfield

    Science.gov (United States)

    2008-09-01

    3.5 4.0 4.5 5.0 0 100 200 300 400 500 600 y ( c m ) Streamwise Velocity (m/s) CFD PIV PROBE ANALYTICAL SURF . PRESS. 49 IV. Computational Approach...combination of wind tunnel experimentation and steady-state computational fluid dynamics ( CFD ). Flowfield effects of the pylon-cavity were examined...approximately three times the mass exchange between the cavity and overlying flow. Both CFD and particle image velocimetry data showed strong upward flow

  2. Analysis of Cold Flowfield of Multi—Annular Opposed Jets

    Institute of Scientific and Technical Information of China (English)

    H.F.Zhao; G.C.Benelli

    1992-01-01

    The technique of the use of multi-annular opposed jets as different from using swirl and bluff body creates an excellent recirculation zone with desired size in a large space.The size of ecirculation,the magnitude of reverse velocity and turbulence intensity are much greater than those formed by bluff body.Factors affecting the flowfield include the velocity ration of the opposed jets to the primary air J.the diameter and construction of the opposed jet ring,secondary air velocity and configuration,and confined or unconfined flow condition and so on.This method is a promising way for flame stabilization in combustion technology.

  3. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  4. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  5. Numerical and Experimental Investigation of a Supersonic Flow Field around Solid Fuel on an Inclined Flat Plate

    Directory of Open Access Journals (Sweden)

    Uzu-Kuei Hsu

    2009-01-01

    Full Text Available This research adopts a shock tube 16 meters long and with a 9 cm bore to create a supersonic, high-temperature, and high-pressure flowfield to observe the gasification and ignition of HTPB solid fuel under different environments. Also, full-scale 3D numerical simulation is executed to enhance the comprehension of this complex phenomenon. The CFD (Computational Fluid Dynamics code is based on the control volume method and the pre-conditioning method for solving the Navier-Stokes equations to simulate the compressible and incompressible coupling problem. In the tests, a HTPB slab is placed in the windowed-test section. Various test conditions generate different supersonic Mach numbers and environmental temperatures. In addition, the incident angles of the HTPB slab were changed relative to the incoming shock wave. Results show that as the Mach number around the slab section exceeded 1.25, the flowfield temperature achieved 1100 K, which is higher than the HTPB gasification temperature (930 K ~ 1090 K. Then, gasification occurred and a short-period ignition could be observed. In particular, when the slab angle was 7∘, the phenomenon became more visible. This is due to the flow field temperature increase when the slab angle was at 7∘.

  6. Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    FANG Juan; HONG Yanji; LI Qian

    2012-01-01

    The interaction of laser-induced plasma and bow shock over a blunt body is inves- tigated numerically in an M∞ =6.5 supersonic flow. A ray-tracing method is used for simulating the process of laser focusing. The gas located at the focused zone is ionized and broken down and transformed into plasma. In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body. The parameters of flowfield and blunt body surface are changed due to the interaction. By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail, we can better under- stand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition. The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock, so the wave drag of the blunt body is reduced.

  7. Unsteady flowfield simulation of ducted prop-fan configurations

    Science.gov (United States)

    Janus, J. M.; Horstman, Howard Z.; Whitfield, David L.

    1992-01-01

    A technique for the simulation of unsteady flows in and around complex rotating machinery is presented. Additional domain decomposition mechanisms are introduced which extend the range of applicability of software developed for the time-accurate simulation of rotating machinery flowfields. The flow models uses the unsteady 3D Euler equations, discretized as a finite-volume method, utilizing a high-resolution approximate Riemann solver for cell interface flux definitions. Multiblock domain decomposition is used to partition the field radially, axially, as well as circumferentially into an ordered arrangement of blocks which exhibit varying degrees of similarity. A general high-order numerical scheme is applied to satisfy the geometric conservation law. Two configurations are presented - ducted single rotation prop-fan and a rotor-deswirl vane combination which form a single stage fan. Comparisons are made to other numerical solutions for these geometries and to available experimental data.

  8. EXPERIMENTAL STUDY OF FLOWFIELD STRUCTURE AROUND AN OGIVE-CYLINDER

    Institute of Scientific and Technical Information of China (English)

    Wang Gang

    2003-01-01

    The flowfield structure and their aerodynamiccharacteristics over an ogive cylinder were studied by means offlow visualization and surface pressure measurement in a watertunnel and a wind tunnel. The existence of multi asymmetricvortices over long slender bodies was experimentally con-firmed at large angles of attack and in the subcritical Reynoldsnumber range. The spatial 3 -D characteristics of the multivortices system were analyzed and a physical model was devel-oped. The topological structure of different patterns in crossflow plane was studied and the mechanism governing the for-mation of asymmetric vortices and multi-vortices was dis-cussed from the viewpoint of stability of the topological struc-ture. It was concluded that the maximum in the sectional sideforce distribution curve are not caused by the shedding ofhigher position vortex, but by the cross-over to the symmetricplane of the lower-position vortex.

  9. Fuel cell with interdigitated porous flow-field

    Science.gov (United States)

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  10. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  11. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  12. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  13. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  14. Development of a fast-response multi-hole probe for unsteady and turbulent flowfields

    Science.gov (United States)

    Johansen, Espen Sten

    The development of a fast-response aerodynamic probe calibration routine has been completed. This work includes the development of a theoretical probe and application and adaptation of potential flow theory to a fast-response 5-hole probe. Based on the theoretical probe, a procedure to determine the flow angles in flowfields with significant inertial effects was devised. It was further shown that this definition can be used to accurately predict the angles in flowfields with very high frequency oscillations (large inertial effects) over a wide range of flow incidence angles. The velocity magnitude was solved from the governing equation. This equation is a first-order, non-linear, ordinary differential equation, and a predictor-corrector method was formulated to calculate the velocity based on the measured port pressures. An experimental procedure to determine the steady and unsteady pressure coefficients was presented. The steady pressure coefficient is readily calculated from steady calibration data, but the determination of the unsteady coefficient requires a selective averaging procedure based on the rate-of-change parameter. A spherical probe with a fast-response pressure transducer was designed. The spherical probe was oscillated in water flow, and the coefficient determination procedure was experimentally verified. A facility was designed for the unsteady calibration of fast-response probes in air. This facility generates a repeatable velocity oscillation that is sinusoidal in nature with mean velocity up to Mach 0.5 and frequency up to 1.5 kHz. A fast-response 5-hole probe was developed that can resolve frequency content up to 20 kHz, and was used to verify the unsteady calibration routine. Several test cases were presented and excellent prediction capabilities were demonstrated. Acoustic pressure attenuation in the tubing systems for miniature multi-hole probes is discussed, and theoretical models are presented that determine the transfer function of such

  15. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    Science.gov (United States)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.

  16. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  17. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  18. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    CERN Document Server

    Thun, Daniel; Schmidt, Franziska; Kley, Wilhelm

    2016-01-01

    The supersonic motion of gravitating objects through a gaseous medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planets up to galaxies. Especially the dynamical friction, caused by the forming wake behind the object, plays an important role for the dynamics of the system. To calculate the dynamical friction, standard formulae, based on linear theory are often used. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem. We perform sequences of high resolution numerical studies of rigid bodies moving supersonically through a homogeneous medium, and calculate the total drag acting on the object, which is the sum of gravitational and hydro drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. From the final equilibrium state of the sim...

  19. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  20. A computational scheme usable for calculating the plume backflow region

    Science.gov (United States)

    Cooper, B. P., Jr.

    1978-01-01

    The effects of the nozzle wall boundary layer on the plume flowfield are neglected in the majority of computational schemes which exist for the calculation of rocket engine exhaust plume flowfields. This neglect, which is unimportant in many applications, becomes unacceptable for applications where a surface which can be adversely affected by plume impingement forces, heating, or contamination is located behind the nozzle exit plane in what is called the 'plume backflow region'. The flow in this region originates in, and is highly affected by, the nozzle wall boundary layer. The inclusion of the effects of the boundary layer in the calculations is required for an appropriate determination of the flowfield properties within this region. A description is presented of the results of modifications of a method-of-characteristics computer program. The modifications were made to include the effects of the nozzle wall boundary layer on the plume flowfield. A comparison of computed and experimental data indicates that the employed computer program may be a useful tool for calculating the entire plume flowfield for liquid propellant rocket engines.

  1. Effect of Homogeneous Condensation on the Interaction of Supersonic Moist Air Jets with Resonance Tube

    Directory of Open Access Journals (Sweden)

    M.M Ashraful.Alam

    2013-01-01

    Full Text Available The Hartmann tube, can use for flow-control, is a device which generates high intensity sound through the shock wave oscillations, are created by the interaction of the supersonic jet. In this study, two-phase flow simulations are carried out to characterize the effect of non-equilibrium condensation on the unsteady flowfield of the Hartmann resonance tube. This present numerical work provides a new insight on the flow dynamics and acoustics of the resonance tube – including the shock nature, the tube gas heating, and the effect of non-equilibrium condensation on the flow structure. A TVD numerical method is applied to the Reynolds and Favre-averaged Navier-Stokes equations, and droplet growth equation of liquid phase production. The simulations are performed over a range of nozzle pressure ratios. The numerically simulated flow structure of under-expanded supersonic jets is compared with experimental data. Moreover, the predicted frequency of end wall pressure fluctuations is compared with the experimental results.

  2. Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle

    Institute of Scientific and Technical Information of China (English)

    ToshiakiSetoguchi; ShenYu; 等

    1997-01-01

    When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.

  3. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  4. Decoding complex flow-field patterns in visual working memory.

    Science.gov (United States)

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  6. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  7. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  8. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    Science.gov (United States)

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  9. Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet

    Science.gov (United States)

    Panda, Pratikash P.; Busari, Oluwatobi; Lucht, Robert P.; Laster, Walter R.

    2017-02-01

    The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared

  10. Flowfield characterization of a piloted lean premixed injector by particle image velocimetry

    Science.gov (United States)

    Berdanier, Catherine G. P.

    Limiting atmospheric pollution, especially nitrous oxides, is an important endeavor for aviation technology companies. Technology-driving regulations from the International Civil Aviation Organization's (ICAO) Committee of Aviation Environmental Protection (CAEP) standards spur the combustion research and development community to find innovative engine technologies to decrease emissions in the coming years. As engine technologies are developed, testing is necessary to verify combustion models and expected flow patterns. Optical diagnostics provide a unique opportunity to visualize flowfields in complex practical combustor systems. For this thesis, Particle Image Velocimetry (PIV) was employed to characterize the flowfield in a piloted lean premixed injector under non-combusting conditions. Planes of PIV data were acquired at five spanwise locations and two streamwise locations, at two different pressure conditions in order to characterize the flowfields and structures throughout the optically accessible flowpath. Average velocity maps and time-resolved vector fields at these planes were analyzed for this thesis.

  11. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  12. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    Science.gov (United States)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  13. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  14. Flowfield characterisation in the wake of a low-velocity heated sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Olim, A.M. [Associacao para o Desenvolvimento da Aerodinamica Industrial (ADAI), Coimbra (Portugal); Riethmuller, M.L. [Von Karman Institute for Fluid Dynamics (VKI), St. Genese (Belgium); Gameiro da Silva, M.C. [Departamento de Engenharia Mecanica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra Polo II, Coimbra (Portugal)

    2002-06-01

    Heated sphere anemometers (HSA) are the most widely used instruments for low-velocity measurements in the heating, ventilation and air-conditioning industry. Experiments were conducted to characterise the flowfield around the spherically shaped sensor and upper probe assembly of a HSA. Particle image velocimetry was the main quantitative experimental technique. Measurements of the flowfield around a HSA probe and a 2:1 scaled-up model were performed in a uniform isothermal axisymmetrical jet air flow at Re around 350, based on sensor diameter, for different pitch angle incident flows. Additionally, extensive flow visualisation studies around scaled-up models of the HSA probe were performed. (orig.)

  15. Shuttle vertical fin flowfield by the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T.

    1985-01-01

    The flow properties in a model flowfield, simulating the shuttle vertical fin, determined using the Direct Simulation Monte Carlo method. The case analyzed corresponds to an orbit height of 225 km with the freestream velocity vector orthogonal to the fin surface. Contour plots of the flowfield distributions of density, temperature, velocity and flow angle are presented. The results also include mean molecular collision frequency (which reaches 1/60 sec near the surface), collision frequency density (approaches 7 x 10 to the 18/cu m sec at the surface) and the mean free path (19 m at the surface).

  16. Burning of a spherical fuel droplet in a uniform subsonic flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.; Karagozian, A.R.

    1989-01-01

    An analytical/numerical model is described for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential solution, while the internal flowfield of the droplet is represented by the classical Hill's spherical vortex. This allows numerical solution for the external boundary layer and diffusion flame characteristics to be made, from which the droplet's effective drag coefficient, rate of mass loss, size, and flame shape are determined. Comparison with experimental data indicate good agreement, and thus the potential for such simplified models in performing parametric studies.

  17. Burning of a spherical fuel droplet in a uniform subsonic flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.; Karagozian, A.R.

    1989-12-31

    An analytical/numerical model is described for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential solution, while the internal flowfield of the droplet is represented by the classical Hill`s spherical vortex. This allows numerical solution for the external boundary layer and diffusion flame characteristics to be made, from which the droplet`s effective drag coefficient, rate of mass loss, size, and flame shape are determined. Comparison with experimental data indicate good agreement, and thus the potential for such simplified models in performing parametric studies.

  18. Laser Velocimeter for Studies of Microgravity Combustion Flowfields

    Science.gov (United States)

    Varghese, Philip L.

    2003-01-01

    A velocimeter was developed based on modulated filtered Rayleigh scattering (MFRS). The MFRS velocimeter was successfully demonstrated by making one-component velocity measurements in a supersonic expansion using molecular Rayleigh scattering in a jet of N2. These measurements were made in a sweep mode where the Rayleigh scattered profile is cross-correlated with absorption in a static cell to determine velocity. To improve temporal resolution the frequency-locked mode of operation was developed, with an in-situ referencing scheme to compensate for signal fluctuations arising from density variations in the probe volume. Spectroscopic grade (i.e. continuously tunable, single-mode) laser sources with high power (greater than 100 mW) are not commercially available at the wavelength of interest (780 nm). We developed an all-solid-state system with a low power (approximately 10 mW) spectroscopic grade laser source in a Littrow cavity is amplified by a broad-area diode laser. We have demonstrated that the slaved output tracks the injected input but have not yet demonstrated power gain by the end of the grant period.

  19. A computer program for the calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    Science.gov (United States)

    Vadyak, J.; Hoffman, J. D.; Bishop, A. R.

    1978-01-01

    The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.

  20. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  1. Interferograms, schlieren, and shadowgraphs constructed from real- and ideal-gas, two- and three-dimensional computed flowfields

    Science.gov (United States)

    Yates, Leslie A.

    1993-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  2. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  3. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  4. 超-超引射器多目标优化设计%Multi-objective optimization of supersonic-supersonic ejector

    Institute of Scientific and Technical Information of China (English)

    陈钦; 陈吉明; 蔡光明; 任泽斌

    2012-01-01

    推导出了超-超引射器性能计算和优化设计模型,借助Pareto优胜、Pareto最优解和Pareto前端等概念,采用基于多目标进化/分解算法(MOEA/D)的多目标优化方法,计算得到超-超引射器多目标优化问题的Pareto前端,解决了超-超引射器多目标优化设计问题,并与常规参数分析方法进行了比较.结果表明:超超引射器性能影响参数相互关系复杂,增压比和引射系数作为引射器主要性能参数相互冲突,通过常规分析难以得到较清晰的设计准则,利用多目标优化设计方法可有效地辅助多属性决策和系统优化设计.%For supersonic-supersonic ejector, the design model and corresponding analysis were presented, and the relation of design parameters and the performance was partly revealed. The results revealed the confliction of two performance objectives and the complexity of the design problem. To clarify the entangled relation of design parameters and objectives and to afford facilities for the design process, the Pareto front(PF) concept was introduced and an MOEA/D algorithm was programmed to calculate the PFs of specific supersonic-supersonic ejector multi-objective optimization problems. The methodology adopted here proved to be effective and efficient for the supersonic-supersonic ejector design problem.

  5. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    Science.gov (United States)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  6. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    Science.gov (United States)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  7. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation

    Science.gov (United States)

    Rosenwaks, Salman; Barmashenko, Boris D.; Waichman, Karol

    2014-02-01

    The feasibility of operating diode pumped alkali lasers (DPALs) with supersonic expansion of the gaseous laser mixture, consisting of alkali atoms, He atoms and (frequently) hydrocarbon molecules, is explored. Taking into account fluid dynamics and kinetic processes, both semi-analytical and three-dimensional (3D) computational fluid dynamics (CFD) modeling of supersonic DPALs is reported. Using the semi-analytical model, the operation of supersonic DPALs is compared with that measured and modeled in subsonic lasers for both Cs and K. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. Using the 3D CFD model, the flow pattern and spatial distributions of the pump and laser intensities in the resonator are calculated for Cs DPALs. Comparison between the semi-analytical and 3D CFD models for Cs shows that the latter predicts much larger maximum achievable laser power than the former. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  8. Swept shock/boundary-layer interactions: Scaling laws, flowfield structure, and experimental methods

    Science.gov (United States)

    Settles, Gary S.

    1993-01-01

    A general review is given of several decades of research on the scaling laws and flowfield structures of swept shock wave/turbulent boundary layer interactions. Attention is further restricted to the experimental study and physical understanding of the steady-state aspects of these flows. The interaction produced by a sharp, upright fin mounted on a flat plate is taken as an archetype. An overall framework of quasiconical symmetry describing such interactions is first developed. Boundary-layer separation, the interaction footprint, Mach number scaling, and Reynolds number scaling are then considered, followed by a discussion of the quasiconical similarity of interactions produced by geometrically-dissimilar shock generators. The detailed structure of these interaction flowfields is next reviewed, and is illustrated by both qualitative visualizations and quantitative flow images in the quasiconical framework. Finally, the experimental techniques used to investigate such flows are reviewed, with emphasis on modern non-intrusive optical flow diagnostics.

  9. Mach 6 flowfield survey at the engine inlet of a research airplane

    Science.gov (United States)

    Johnson, C. B.; Lawing, P. L.

    1977-01-01

    A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.

  10. The effect of conical flowfields on the performance of waveriders at Mach 6

    Institute of Scientific and Technical Information of China (English)

    CUI Kai; YANG GuoWei

    2007-01-01

    The performance of 23 kinds of waveriders, derived from different conical flowfields, is analyzed by the numerical computation under the conditions of fight speed of Mach 6, attack angle of 0° and flight altitude of 30 km. These results indicate that the performance is influenced by the shapes and the width to height ratios (W/H ) of generating cones. The geometrical parameter and the lift coefficient are proportional to W/H, while the drag coefficient and the lift to drag ratio (L/D ) have extreme values. Considering the base drag and the computation errors, the waverider with the highest L/D is cut from the elliptical cone's flowfield (W/H = 1.5-1.618), and the configuration with the lowest drag can also be obtained at W/H = 1:1.5. Accordingly, good suggestions are proposed for practical design based on these computational results.

  11. Predictions and measurements of isothermal flowfields in axisymmetric combustor geometries. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Rhodes, D. L.; Lilley, D. G.

    1985-01-01

    Numerical predictions, flow visualization experiments and time-mean velocity measurements were obtained for six basic nonreacting flowfields (with inlet swirl vane angles of 0 (swirler removed), 45 and 70 degrees and sidewall expansion angles of 90 and 45 degrees) in an idealized axisymmetric combustor geometry. A flowfield prediction computer program was developed which solves appropriate finite difference equations including a conventional two equation k-epsilon eddy viscosity turbulence model. The wall functions employed were derived from previous swirling flow measurements, and the stairstep approximation was employed to represent the sloping wall at the inlet to the test chamber. Recirculation region boundaries have been sketched from the entire flow visualization photograph collection. Tufts, smoke, and neutrally buoyant helium filled soap bubbles were employed as flow tracers. A five hole pitot probe was utilized to measure the axial, radial, and swirl time mean velocity components.

  12. Marine propellers performance and flow-field prediction by a free-wake panel method

    Institute of Scientific and Technical Information of China (English)

    GRECO Luca; MUSCARI Roberto; TESTA Claudio; DI MASCI0 Andrea

    2014-01-01

    A Boundary Element Method (BEM) hydrodynamics combined with a flow-alignment technique to evaluate blades shed vorticity is presented and applied to a marine propeller in open water. Potentialities and drawbacks of this approach in capturing propeller performance, slipstream velocities, blade pressure distribution and pressure disturbance in the flow-field are highlighted by comparisons with available experiments and RANSE results. In particular, correlations between the shape of the convected vortex- sheet and the accuracy of BEM results are discussed throughout the paper. To this aim, the analysis of propeller thrust and torque is the starting point towards a detailed discussion on the capability of a 3-D free-wake BEM hydrodynamic approach to describe the local features of the flow-field behind the propeller disk, in view of applications to propulsive configurations where the shed wake plays a dominant role.

  13. Effects of nozzle-strut integrated design concepton on the subsonic turbine stage flowfield

    Science.gov (United States)

    Liu, Jun; Du, Qiang; Liu, Guang; Wang, Pei; Zhu, Junqiang

    2014-10-01

    In order to shorten aero-engine axial length, substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle, LP turbine is integrated with intermediate turbine duct (ITD). In the current paper, five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft, and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement. However, their bulky geometric size represents a more effective obstacle to flow from high pressure (HP) turbine rotor. These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD, and hence cause higher loss. Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades. According to the computational results, three main conclusions are finally obtained. Firstly, a noticeable low speed area is formed near the strut's leading edge, which is no doubt caused by the potential flow effects. Secondly, more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge. Such boundary layer migration is obvious, especially close to the shroud domain. Meanwhile, radial pressure gradient aggravates this phenomenon. Thirdly, velocity distribution along the strut's pressure side on nozzle's suction surface differs, which means loading variation of the nozzle. And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.

  14. Vortex development on slender missiles at supersonic speeds

    Science.gov (United States)

    Allen, J. M.; Dillenius, M. F. E.

    1979-01-01

    A theoretical and experimental effort has been made to develop a vortex-prediction capability on circular and noncircular missiles at supersonic speeds. Predicted vortex patterns are computed by two linear-theory computer codes. One calculates the strengths and initial locations of the vortices, and the other calculates their trajectories. A short color motion picture has been produced from the calculations to illustrate the predicted vortex patterns on a typical missile. Experimental vapor-screen photographs are presented to show the longitudinal development of the vortices on a fin-control missile. Comparisons are made between these data and the predicted vortices to assess the accuracy of the theory. The theory appears to be fairly accurate in predicting the number, locations, and relative strengths of individual vortices which develop over the missile, but cannot predict vortex sheets or diffuse vorticity whenever they occur.

  15. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  16. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  17. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  18. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  19. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  20. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Science.gov (United States)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  1. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  2. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  3. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  4. High-frequency supersonic heating of hydrogen for propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Jacques M.

    1963-03-15

    The possibility of increasing the specific impulse of hydrogen by supersonic heating is shown on the basis of thermodynamics. The application of high-frequency electric fields to heat the gas permits a control over the heating rates in the nozzle, and results in a reduction in energy losses to walls, electrodes, etc. The efficiencies of the various energy transfer processes are considered in some detail. A simple process of expansion and heating is presented. Results of calculations of heat transfer rates to the nozzle wall are given. A consistent set of electron densities and electric fields are also calculated and presented. Some qualitative results of experimental work previously carried out are included. It is concluded that the process should increase the specific impulse of hydrogen appreciably, in a reasonably efficient manner, and that further experimental work is indicated. (auth)

  5. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  6. Effects of Whistling on Temperature Separation in a Swirling Flow-Field : 1st Report : Experiments

    OpenAIRE

    鈴木, 允; 川橋, 正昭; 吉沢, 敦朋

    1985-01-01

    The total temperature separation of gas is produced by a swirling flow-field in a circular tube. This device is called the vortex-tube or the Ranque-Hilsch tube. When whistling is produced within the swirling flow in the vortex-tube, the tangential velocity distribution in the radial direction is deformed toward the forced vortex type in the whole region. This is caused by the acoustic streaming induced by the whistling. The whistling in the vortex-tube of a counter-flow type is produced by t...

  7. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  8. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  9. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  10. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  11. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Institute of Scientific and Technical Information of China (English)

    Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing

    2015-01-01

    The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  12. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Jin Di

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  13. Impact of Organic-Liquid Distribution and Flow-Field Heterogeneity on Reductions in Mass Flux

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, Erica L.; Carroll, Kenneth C.; Brusseau, Mark L.

    2010-06-07

    A series of flow-cell experiments was conducted to investigate the impact of organic-liquid distribution and flow-field heterogeneity on the relationship between source-zone mass removal and reductions in contaminant mass flux from the source zone. Changes in source-zone architecture were quantified using image analysis, allowing explicit examination of their impact on the mass-flux-reduction/mass-removal behavior. The results showed that there was minimal reduction in mass flux until a large fraction of mass was removed for systems wherein organic liquid was present solely as residual saturation in regions that were hydraulically accessible. Conversely, significant reductions in mass flux occurred with relatively minimal mass removal for systems wherein organic liquid was present at both residual and higher saturations. The latter systems exhibited multi-step mass-flux-reduction/mass-removal behavior, and characterization of the organic-liquid saturation distribution throughout flushing allowed identification of the cause of the nonideal behavior. The age of the source zone (time from initial emplacement to time of initial characterization) significantly influenced the observed mass-flux-reduction/mass-removal behavior. The results of this study illustrate the impact of both organic-liquid distribution and flow-field heterogeneity on mass-removal and mass-flux processes.

  14. Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements

    Science.gov (United States)

    Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.

    1994-11-01

    The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.

  15. 支板喷射超声速湍流燃烧的大涡模拟%Large Eddy Simulation of Supersonic Turbulent Combustion with a Strut Injector

    Institute of Scientific and Technical Information of China (English)

    汪洪波; 孙明波; 范周琴; 王振国; 梁剑寒

    2012-01-01

    In order to develop a feasible method for large eddy simulation of supersonic turbulent combustion, an assumed sub-grid PDF (Probability density Function) model was combined with large eddy simulation to close the sub-grid turbulence- combustion interaction. Then the model was used to simulate the supersonic combustion flowfield behind a strut injector. Sim- ulations were carried out for both nonreacting and reacting flows, where the calculations agreed well with the experiments, in- dicating the feasibility of the present methods and models. In the nonreacting flow, large scale vortices dominate the near-field mixing by rolling and stretching, and influence the far-field mixing via breaking up to smaller vortices. In the reacting flow, the recirculation region becomes larger due to the heat release. The hot products generated in the shear layers enter into the re- circulation region by entrainment of large vortices and convection at the end of the recirculation region. In the recirculation re- gion, the hot products interact with the fuel jets, heating them and forcing part of the fuel into the shear layers to mix and react with the air in the free stream. The LES mesh is not fine enough to resolve the interaction of turbulence and combustion in the thin reacting shear layers and around the boundaries of large reacting vortices, where the PDF model gives higher sub-grid fluctuations.%为了发展可行的超声速湍流燃烧大涡模拟方法,将设定型PDF(Probability Density Function)模型与LES(Large Eddy Simulation)相结合以封闭亚格子湍流-燃烧相互作用,并将模型用于支板喷射超声速湍流燃烧流场的数值模拟。分别对冷流及燃烧流场进行了模拟,计算结果与实验测量符合较好,表明了所采用方法及模型的可行性。冷流条件下,大尺度湍流涡通过卷吸、拉伸运动主导支板尾迹区的近场混合,并通过破碎过程影响远场混合。燃烧条件下,回流区尺度扩

  16. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  17. Fluid-structure interaction of panel in supersonic fluid passage

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; ZHANG Yun-feng; TIAN Xin

    2008-01-01

    Fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme.The passage is formed with two parallel panels,one is risid and the other is flexible.The interaction between fluid flows and flexible panel is numerically studied,mainly focused on the effect of dynamic pressure and distance between two parallel panels.Subcycling and spline interpolation based predict-correct scheme is utihzed to combine the vibration and fluid analysis and to stabilize long-term calculations to get accurate resuhs.It's demonstrated that the flutter characteristic of flexible panel is more complex with the increase of dynamic pressure and the decrease of distance between two parallel panels.Via analyzing the propagation and reflection of disturbance in passage,it's determined as a main cause of the variations.

  18. Dominance of Radiated Aerodynamic Noise on Boundary-Layer Transition in Supersonic-Hypersonic Wind Tunnels. Theory and Application

    Science.gov (United States)

    1978-03-01

    since the radiated pressure f luc tuat ions t ravel along inc l ine rays s im i la r to, but somewhat steeper than, Mach waves [see Refer- ence...Supersonic Wind Tunnels," AEDC-TN-61-153 (AD270596), January 1962. 311 A E D C-TR -77-107 157. Tucker, Maurice . "Approximate Calculation of

  19. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  20. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  1. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  2. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  3. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  4. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  5. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  6. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  7. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  8. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  9. Experimental and Numerical Investigation of High Speed High-Temperature Jet Interaction Flowfields

    Science.gov (United States)

    2011-03-10

    appearance of a "Karman-vortex-street"[Perry et al (1993)]. Yasuhiro and Isaac [Kamotani et al (1972)] used hot - wire anemometry to map the velocity...et al (1993)] studied the entrainment and mixing processes of a low-speed jet in a cross flow. The results from the flying hot - wire and flow...34Combined Laser Doppler Velocimetry and Cross- Wire Anemometry Analysis for Supersonic Turbulent Flow," AIAA Journal, Vol. 34, No. 11, November 1996, pp. 2269

  10. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    Science.gov (United States)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  11. Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance

    Science.gov (United States)

    Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei

    2016-12-01

    Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.

  12. An Experimental Study of the Flowfield on a Semispan Rectangular Wing with a Simulated Glaze Ice Accretion. Ph.D. Thesis, 1993 Final Report

    Science.gov (United States)

    Khodadoust, Abdollah

    1994-01-01

    Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of

  13. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  14. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  15. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  16. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  17. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  18. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  19. Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF

    Science.gov (United States)

    Baurle, R. A.; Hassan, H. A.

    1993-01-01

    Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.

  20. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    Science.gov (United States)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of

  1. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  2. PIV基准流场的评估分析%An analysis on the development of PIV benchmark flowfield test

    Institute of Scientific and Technical Information of China (English)

    程素斌; 翟树成; 张怀新

    2013-01-01

    The benchmark flowfield test of PIV is the general standard of the normal flowfield test technol-ogy and the validation of test data. This paper discusses the construction method of basic flowfield by ana-lyzing the measurement technology development for PIV flowfield and its basic measurement technique. The CFD method is applied to evaluate the HTA and ITTC models preliminarily, and the flowflied results around the banchmark model are given to compare with the SPIV test results provided by HTA. The scheme design and the uncertainty analysis of PIV benchmark test are discussed in further detail. The analysis results could provide the basis for construction of the model standard and test standard.%  PIV基准流场是规范PIV流场测试技术和校验流场测试数据的统一标准。文章通过分析PIV流场测试技术的发展及其基准流场技术的发展状况,对PIV基准流场建设方法进行初步研究。应用CFD方法初步评估了HTA及ITTC的建议模型,给出了基准模型周围流场结果,并与HTA提供的SPIV试验测试结果进行比较分析,对PIV基准流场的方案设计和不确定度分析进行了进一步思考。分析结果为模型标准与测试标准的建设提供了基础。

  3. Instrumentation for Performance, Blade Loads and Flowfield Measurement of Novel Hover-Capable Meso-Scale Aerial Platforms

    Science.gov (United States)

    2016-12-07

    the blade airloads/surface pressure distribution in the rotating frame and the unsteady flowfield. The test rigs will be designed to have the...SECURITY CLASSIFICATION OF: The objective of this instrumentation proposal is to develop a state-of-the-art micro- air -vehicle (MAV) test facility at...Texas A&M University. This will be capable of measuring not only the fixed-frame hub loads, but also the blade airloads/surface pressure distribution

  4. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  5. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  6. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  7. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  8. Development and application of theoretical models for Rotating Detonation Engine flowfields

    Science.gov (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  9. Structure and Chemistry of Atomic Clusters from Supersonic Beams.

    Science.gov (United States)

    Yang, Shi-He.

    A tandem time-of-flight (TOF) apparatus was designed to study the structure and chemistry of cold transition metal cluster ions from supersonic beams. By means of a photodissociation laser fluence dependence technique, binding energies of Nb_{rm x }^{+} (x = 2 - 20), Co_{rm x}^{+ } (x = 4 - 20) and etc. were found to generally increase with cluster size. The desorption energies of Nb_{rm x}N _2^{+} (x = 2 - 17) and Nb_{rm x} CO^{+} (x = 2 - 10) also increase with cluster size with some oscillations similar to the size dependent reactivities of these clusters. Photodetachment studies revealed that electron affinities of copper clusters increase with cluster size with a sharp even/odd alternation. Unlike other noble metals, Ag_{rm x}^ {-} clusters display two competing processes: photodissociation and photodetachment. Relative reactivities of cluster ions of Nb, Co, Ag, and etc. have been measured using a fast flow cluster reactor, displaying a similar function of cluster size to that of the neutrals. In addition, preliminary photoelectron experiments have been performed on Cu_{ rm x}^{-} and Nb _{rm x}^{-}. A magnetic Time-of-flight ultraviolet photoelectron spectrometer (MTOFUPS) has been developed to study electronic structures of cold metal and semiconductor cluster anions prepared in supersonic beams. Application of this spectrometer to carbon clusters with a F_2 laser (7.9 eV) allowed their electron affinities and UPS patterns to be measured,demonstrating a remarkable structural evolution of these clusters: Chains (C_2^{ -}-C_9^{-} ) - Rings (C_{10}^ {-}-C_{29}^ {-}) - Cages (C_{38 }^{-}-C_{84 }^{-}). In particular, the UPS of C_{60}^{-} is in excellent agreement with the CNDO/S calculation, providing a striking spectral evidence for the highly symmetric icosahedral soccer ball structure--Buckminsterfullerene. For comparison, the UPS of Si_ {rm x}^{-} and Ge_{rm x}^{ -} are presented. Unlike carbon clusters which prefer structures of low dimensionality, these

  10. Large Eddy Simulation of the Flow-Field around Road Vehicle Subjected to Pitching Motion

    Directory of Open Access Journals (Sweden)

    Z. Q. Gu

    2016-01-01

    Full Text Available In order to study the aerodynamic responses of a vehicle pitching around its front wheel axle, large eddy simulation (LES is used to investigate the flow-field around road vehicle. The numerical method is validated by 1/3-scale wind tunnel model on steady state. The LES results keep good agreement with the wind tunnel data. Furthermore, LES is applied to simulate the sinusoidal-pitching motion of vehicle body with frequency 10Hz. It can be found that the aerodynamic force coefficient and flow field changed periodically when the vehicle body takes periodically motion, whose results are completely different from the quasi-steady simulation results. When vehicle body suddenly changes direction, the hysteresis effects of the flow is clearly shown through investigating the transient flow field, aerodynamics force coefficient and pressure coefficient. The hysteresis effects of the transient flow field is also studied by vortices visualization technical, and the transient flow field from space and time is further understood.

  11. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  12. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  13. Investigation of Efficient Turbulence Model for Two-Dimensional Nozzle Designed for Supersonic Cruise Using STAR-CCM+

    Directory of Open Access Journals (Sweden)

    Karthik Mummidisetti

    2013-08-01

    Full Text Available In the present work, investigation of various turbulence models has been carried out for predicting the efficient turbulence model for a two-dimensional nozzle designed for a supersonic cruise nozzle. Initially, a computational domain was created for a two-dimensional nozzle for a supersonic cruise, then, with an appropriate mesh size, various turbulence models has been used for simulations. The main objective of the present work is to determine the efficient turbulence model for nozzle designs. As till date, commercial software’s are implementing many advanced technique, the test of turbulence model is very much needed for today’s research. The results obtained from the computational approach were compared with experimental approach which was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.8 to 1.2 by NASA Langley Research Centre, Virginia. These supersonic cruise nozzles have a wide range of applications in designing Fighter jets and supersonic cruise aircraft's. The present work was conducted by using the commercial Computational Fluid Dynamics Software, STAR-CCM+. Initially, Nozzle at a free stream Mach number 0.9 was designed and all the initial and boundary conditions were calculated. From the results obtained in the present investigation, we can conclude that there was an excellent correlation between the experimental and computational data for K-Epsilon turbulence model.

  14. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  15. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  16. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  17. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  18. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  19. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  20. Characteristics of Supersonic Closed Loop with Disk CCMHD Generator

    Science.gov (United States)

    Yamasaki, Hiroyuki; Murakami, Tomoyuki; Okuno, Yoshihiro

    Results of experimental study on performance of the supersonic closed loop with a disk MHD generator are described. The high temperature (> 1900K) argon circulation was carried out successfully during 2.4 hours. The heat gain and loss of argon was investigated, and a large heat loss was found at the diffuser and the exhausting duct although an energy efficiency of recuperator was high. The large heat loss was ascribed to water cooling at the diffuser and the exhausting duct. At the same time, the enhancement of heat transfer coefficient was suggested. The argon temperature and the heat loss calculated under an assumption of four times larger heat transfer coefficient have shown a good agreement with experimental ones. The pressure ratio inside the loop was discussed, and the result has indicated that the total pressure at the upstream of nozzle throat is decided by the total temperature and the mass flow. On the other hand, the total pressure at the downstream is determined by the total mass in the loop and the total pressure at the upstream. The first power generation was carried out, and a good correlation between the load resistance and the Hall voltage was observed. However, the power output remained very small.

  1. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Directory of Open Access Journals (Sweden)

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  2. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  3. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  4. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  5. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  6. Computational Comparison of the Interaction of a Lateral Jet on a Supersonic Generic Missile

    OpenAIRE

    Gnemmi, Patrick; Adeli, Reza; Longo, José Maria

    2008-01-01

    The paper deals with the comparison of computations made at DLR and ISL on the interaction between a lateral jet issuing from a generic missile body and the oncoming supersonic cross-flow. Steady-state numerical simulations are carried out by 3D, viscous, turbulent, Reynolds-Averaged Navier-Stokes Codes; at DLR, a hybrid mesh is used for the TAU calculation, whereas at ISL a hexahedral mesh is used for the CFX computation. Experimental data acquired in the DLR wind tunnel TMK in Cologne act a...

  7. CFD-Exergy analysis of the flow in a supersonic steam ejector

    Science.gov (United States)

    Boulenouar, M.; Ouadha, A.

    2015-01-01

    The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.

  8. Photodissociation of Isoxazole and Pyridine Studied Using Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur

    2016-06-01

    Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.

  9. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  10. Unsteady Flowfield Around Tandem Cylinders as Prototype for Component Interaction in Airframe Noise

    Science.gov (United States)

    Khorrami, Meldi R.; Choudhari, Meelan M.; Jenkins, Luther N.; McGinley, Catherine B.

    2005-01-01

    Synergistic application of experiments and numerical simulations is crucial to understanding the underlying physics of airframe noise sources. The current effort is aimed at characterizing the details of the flow interaction between two cylinders in a tandem configuration. This setup is viewed to be representative of several component-level flow interactions that occur when air flows over the main landing gear of large civil transports. Interactions of this type are likely to have a significant impact on the noise radiation associated with the aircraft undercarriage. The paper is focused on two-dimensional, time-accurate flow simulations for the tandem cylinder configuration. Results of the unsteady Reynolds Averaged Navier-Stokes (URANS) computations with a two-equation turbulence model, at a Reynolds number of 0.166 million and a Mach number of 0.166, are presented. The experimental measurements of the same flow field are discussed in a separate paper by Jenkins, Khorrami, Choudhari, and McGinley (2005). Two distinct flow regimes of interest, associated with short and intermediate separation distances between the two cylinders, are considered. Emphasis is placed on understanding both time averaged and unsteady flow features between the two cylinders and in the wake of the rear cylinder. Predicted mean flow quantities and vortex shedding frequencies show reasonable agreement with the measured data for both cylinder spacings. Computations for short separation distance indicate decay of flow unsteadiness with time, which is not unphysical; however, the predicted sensitivity of mean lift coefficient to small angles of attack explains the asymmetric flowfield observed during the experiments.

  11. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  12. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Science.gov (United States)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  13. Simulation of flow-field interior dust removal system at a transit point and the overall technology of dust removal

    Institute of Scientific and Technical Information of China (English)

    GE Shao-cheng; SHAO Liang-shan

    2008-01-01

    In order to make a reasonable dry-type dust removal plan of the coal transit spot in a coal washery, it is essential to install the dust removal fan and guide chute. By means of the numerical simulation, the pollution mechanism at a transit point and the flow-field interior dust removal system had been analyzed. The result shows that the dust pollution at transit spot is mainly cased by the joint effort of induced airflow and shock-wave. With the appropriate dust removal fan and the guide chute, will effectively eliminate the positive pressure by gave rise to by the impact of falling coal, also avoid the secondary pollution.

  14. Studies of aircraft differential maneuvering. Report 75-27: Calculating of differential-turning barrier surfaces. Report 75-26: A user's guide to the aircraft energy-turn and tandem-motion computer programs. Report 75-7: A user's guide to the aircraft energy-turn hodograph program. [numerical analysis of tactics and aircraft maneuvers of supersonic attack aircraft

    Science.gov (United States)

    Kelley, H. J.; Lefton, L.

    1976-01-01

    The numerical analysis of composite differential-turn trajectory pairs was studied for 'fast-evader' and 'neutral-evader' attitude dynamics idealization for attack aircraft. Transversality and generalized corner conditions are examined and the joining of trajectory segments discussed. A criterion is given for the screening of 'tandem-motion' trajectory segments. Main focus is upon the computation of barrier surfaces. Fortunately, from a computational viewpoint, the trajectory pairs defining these surfaces need not be calculated completely, the final subarc of multiple-subarc pairs not being required. Some calculations for pairs of example aircraft are presented. A computer program used to perform the calculations is included.

  15. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  16. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  17. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  18. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  19. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  20. Supersonic collisions between two gas streams

    CERN Document Server

    Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu

    1995-01-01

    A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...

  1. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  2. Supersonic Magnetic Flows in the Quiet Sun

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A

    2012-01-01

    In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.

  3. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  4. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  5. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    Science.gov (United States)

    Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise

    1993-01-01

    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better

  6. Effects of Varied Shear Correction on the Thermal Vibration of Functionally-Graded Material Shells in an Unsteady Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chih Chiang Hong

    2017-03-01

    Full Text Available A model is presented for functionally-graded material (FGM, thick, circular cylindrical shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT with varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated by using the generalized differential quadrature (GDQ method. The varied shear correction coefficients are usually functions of FGM total thickness, power law index, and environment temperature. Two parametric effects of the environmental temperature and FGM power law index on the thermal stress and center deflection are also presented. The novelty of the paper is that the maximum flutter value of the center deflection amplitude can be predicted and occurs at a high frequency of applied heat flux for a supersonic air flow.

  7. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  8. Molecular Dynamics Calculations

    Science.gov (United States)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  9. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  10. Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.

  11. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  12. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  13. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  14. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  15. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  16. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  17. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  18. Study of Interaction between Supersonic Flow and Rods Surrounded by Porous Cavity

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Kenji YAMAMOTO; Piotr DOERFFER; Kenyu OYAKAWA

    2006-01-01

    In this paper,some preliminary calculations and the experiments were performed to figure out the flow field,in which some rods were normally inserted into the main flow surrounded by a porous cavity.As a result,it is found that the starting shock wave severely interacts with the rods,the bow shock wave,its reflections,and the porous wall,which are numerically well predicted at some conditions.Moreover,inserting the rods makes the pressure on the upper wall in the porous region increase when the main flow in the porous region is completely supersonic.The calculations also suggest that three rods cause the widest suction area.

  19. Model predictions of latitude-dependent ozone depletion due to supersonic transport operations

    Science.gov (United States)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  20. Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nguyen Duy Vinh

    2016-10-01

    Full Text Available The flow-field design based on under-rib convection plays an important role in enhancing the performance of polymer electrolyte membrane fuel cells (PEMFCs because it ensures the uniform distribution of the reacting gas and the facilitation of water. This research focused on developing suitable configurations of the anode and cathode bipolar plates to enhance the fuel cell performance based on under-rib convection. The work here evaluated the effects of flow-field designs, including a serpentine flow field with sub channel and by pass and a conventional serpentine flow-field on single-cell performance. Both the experiment and computer simulation indicated that the serpentine flow field with sub channel and by pass (SFFSB configuration enables more effective utilization of the electrocatalysts since it improves reactant transformation rate from the channel to the catalyst layer, thereby dramatically improving the fuel cell performance. The simulation and experimental results indicated that the power densities are increased by up to 16.74% and 18.21%, respectively, when applying suitable flow-field configurations to the anode and cathode bipolar plates. The findings in this are the foundation for enhancing efficient PEMFCs based on flow field design.

  1. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  2. CFD simulations of a capillary force driven two-phase flow in the anode flow-field of passive-feed μdmfc

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2008-03-01

    Full Text Available The computational fluid dynamics (CFD) simulation results of a capillary-driven flow in a 100 µm serpentine flow-field are presented. A two-dimensional (2D) numerical model based on a conservative level set method (LSM) was developed and solved...

  3. Effect of Ablation on Heat Transfer & Performance of an Axisymmetric Supersonic Nozzle

    Science.gov (United States)

    Raza, M. A.

    The theoretical prediction of heat transfer effects in compressible turbulent flows is fundamentally complex phenomenon. Computational fluid dynamics (CFD) analysis is employed using Baldwin-Lomax turbulent model to simulate the effect of various nozzle geometry defects on the heat transfer state in supersonic nozzles. The study is done in terms of various heat transfer correlations and analogies by characteristic flow regimes numbers. Theses are calculated from modified Reynolds analogy for laminar flow over flat plate, the Dittus-Boelter correlation for fully developed turbulent flow, Sieder-Tate correlation for turbulent pipe flow with property variation and Bartz correlation for variable cross sections flow. In addition to these, modified Stanton correlation for high speed flows for pipe flow analogy is also used. The contribution of ablation on the formation of new nozzle contours at various regions is simulated using energy equation for charring ablators. The effect of heat transfer correlations on nozzle performance with various geometrical defects is also discussed. In addition to it, the supersonic flow behavior is also simulated in the nozzles in terms of pressure, temperature, Mach number and density distribution with ablated surfaces.

  4. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Science.gov (United States)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  5. LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo; Dvorkin, Cora [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-05-01

    We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses are believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.

  6. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  7. Numerical study of compression corner flowfield using Gao-Yong turbulence model%Numerical study of compression corner flowfield using Gao-Yong turbulence model

    Institute of Scientific and Technical Information of China (English)

    GAO Ge; ZHANG Chang-xian; YAN Wen-hui; WANG Yong

    2012-01-01

    A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion terms were calculated using the second-order AUSM(advection upstream splitting method) scheme and the second-order central difference scheme,respectively.The Runge-Kutta time marching method was employed to solve the governing equations for steady state solutions.Significant flow separation-region which indicates highly non-isotropic turbulence structure has been found in the present work due to intensity interaction under the 24° compression corner.Comparisons between the calculated results and experimental data have been carried out,including surface pressure distribution,boundary-layer static pressure profiles and mean velocity profiles.The numerical results agree well with the experimental values,which indicate Gao-Yong compressible turbulence model is suitable for the prediction of shock wave turbulent boundary layer interaction in two-dimensional compression corner flows.

  8. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    Science.gov (United States)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  9. Upgrade of PARC2D to include real gas effects. [computer program for flowfield surrounding aeroassist flight experiment

    Science.gov (United States)

    Saladino, Anthony; Praharaj, Sarat C.; Collins, Frank G.; Seaford, C. Mark

    1990-01-01

    This paper presents a description of the changes and additions to the perfect gas PARC2D code to include chemical equilibrium effects, resulting in a code called PARCEQ2D. The work developed out of a need to have the capability of more accurately representing the flowfield surrounding the aeroassist flight experiment (AFE) vehicle. Use is made of the partition function of statistical mechanics in the evaluation of the thermochemical properties. This approach will allow the PARC code to be extended to thermal nonequilibrium when this task is undertaken in the future. The transport properties follow from formulae from the kinetic theory of gases. Results are presented for a two-dimensional AFE that compare perfect gas and real gas solutions at flight conditions, showing vast differences between the two cases.

  10. Simulation of flow-field interior dust removal system at a transit point and the overall technology of dust removal

    Institute of Scientific and Technical Information of China (English)

    GE Shao-cheng; SHAO Liang-shan

    2008-01-01

    In order to make a reasonable dry-type dust removal plan of the coal transit spot in a coal washery,it is essential to install the dust removal fan and guide chute.Bymeans of the numerical simulation,the pollution mechanism at a transit point and the flow-field interior dust removal system had been analyzed.The result shows that the dustpollution at transit spot is mainly cased by the joint effort of induced airflow andshock-wave.With the appropriate dust removal fan and the guide chute,will effectively eliminate the positive pressure by gave rise to by the impact of falling coal,also avoid the secondary pollution.

  11. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  12. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  13. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  14. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...

  15. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  16. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  17. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  18. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  19. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  20. The calculation of high-temperature equilibrium and nonequilibrium specific heat data for N2, O2 and NO

    Science.gov (United States)

    Jaffe, Richard L.

    1987-01-01

    Specific heat data for high-temperature air species are needed to compute the temperature and enthalpy of gas mixtures in aerothermodynamics flowfield calculations. Accurate data are known only for temperatures under 6000 K, but are required for temperatures exceeding 25,000 K. In the present study, CP data are computed for N2, O2 and NO. The calculations are based on summations over all the vibration-rotation energy levels for all known bound electronic states. Estimates are made for the error introduced by the neglect of possible additional high-lying electronic states. In addition, a scheme for the partitioning of the internal energy into vibrational, rotational and electronic contributions is presented which consistently accounts for the nonseparable nature of the various energy modes. The multitemperature specific heat data are recommended for use in nonequilibrium flowfield models.

  1. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  2. Supersonic Turbulent Convection and the Origin of the Planets

    Science.gov (United States)

    Prentice, A. J. R.; Dyt, C. P.

    2000-10-01

    We report a new set of calculations which support the view that supersonic turbulent convection played a major role in the formation of the solar system. A flux-corrected transport scheme (Zalesak, J. Comp. Phys.} 31 335 1979) is used to numerically simulate thermal convection in a 2D ideal gas layer that is heated from below and is stratified gravitationally across many scale heights. The temperature T0 at the top boundary and the temperature gradient (∂ T/∂ z)1 at the lower boundary are kept constant during the computation. The initial atmosphere is superadiabatic with polytropic index m = 1, specific heats ratio γ = 1.4 and temperature contrast T1}/T{0 = 11. This layer mimics a section of the outer layer of the proto-solar cloud (Dyt & Prentice, MNRAS 296 56 1998). Because the Reynolds number of the real atmosphere is so large, motions whose scale is less than the computational grid size are represented with a Smagorinsky sub-grid scale turbulence approximation (Chan et al, Ap.J.} 263 935 1982). That is, a velocity-dependent turbulent viscosity ν t and thermal diffusivity κ t are chosen so that the high wavenumber kinetic energy spectrum follows Kolmogorov's -5/3 law. The flow soon evolves to a configuration consisting of a network of giant convective cells. At cell boundaries, the downflows are spatially concentrated and rapid. Turbulent pressures t range up to 3 times the local gas pressure pgas. The convection eliminates nearly all of the superadiabaticity in the lower 90% of the atmosphere. In the top 10%, ∂ T/∂ z increases sharply and a steep density inversion occurs, with ρ increasing by a factor of 3-4. This result gives new credibility to the modern Laplacian theory of solar system origin (Moon & Planets} 19 341 1978; ibid 73 237 1996; Phys. Lett. A} 213 253 1996). Even so, we need t ≈ 10 pgas if the proto-solar cloud is to shed discrete gas rings whose orbits match the mean planetary spacings and whose chemical condensates match the

  3. A finite difference method for predicting supersonic turbulent boundary layer flows with tangential slot injection

    Science.gov (United States)

    Miner, E. W.; Lewis, C. H.

    1972-01-01

    An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.

  4. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  5. Simulation of mixing and ignition of hydrogen in channels at supersonic speeds

    Science.gov (United States)

    Vankova, O. S.; Valger, S. A.; Goldfeld, M. A.; Zakharova, Yu. V.; Fedorova, N. N.

    2016-10-01

    The paper presents the results of mathematical modeling of mixing and ignition of hydrogen jets in supersonic flow. Calculations were carried out on the basis of the Favre-averaged Navier-Stokes equations supplemented with k - ω SST turbulence model and detailed chemical kinetics. The solution was carried out in three stages. At the first stage, the kinetic schemes were tested by comparison with the experimental data on ignition of the hydrogen round jet supplied co axially with the M=2 air jet into the still air. The second 2D task was to study the process of mixing and ignition of hydrogen jets fed at various angles into the M=3 air flow at the channel with a cavity. At the third stage, the 3D problem of hydrogen jets supplied normally to a primary M=4 flow in the channel with backward-facing steps was computed under the condition of the experiments made at the hot-shot facility.

  6. High-resolution electronic spectroscopy of the BODIPY chromophore in supersonic beam and superfluid helium droplets.

    Science.gov (United States)

    Stromeck-Faderl, Anja; Pentlehner, Dominik; Kensy, Uwe; Dick, Bernhard

    2011-07-11

    We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Short-range interactions within molecular complexes formed in supersonic beams: structural effects and chiral discrimination

    Science.gov (United States)

    Latini; Satta; Guidoni; Piccirillo; Speranza

    2000-03-17

    One- and two-color, mass-selected R2PI spectra of the S13-pentanol, were recorded after a supersonic molecular beam expansion. Spectral analysis, coupled with theoretical calculations, indicate that several hydrogen-bonded [R.solv] conformers are present in the beam. The R2PI excitation spectra of [R.solv] are characterized by significant shifts of their band origin relative to that of bare R. The extent and direction of these spectral shifts depend on the structure and configuration of solv and are attributed to different short-range interactions in the ground and excited [R.solv] complexes. Measurement of the binding energies of [R.solv] in their neutral and ionic states points to a subtle balance between attractive (electrostatic and dispersive) and repulsive (steric) forces, which control the spectral features of the complexes and allow enantiomeric discrimination of chiral solv molecules.

  8. Combining Experimental Data, Computational Fluid Dynamics, and Six-Degree of Freedom Simulation to Develop a Guidance Actuator for a Supersonic Projectile

    Science.gov (United States)

    2009-01-01

    To Develop A Guidance Actuator For A Supersonic Projectile 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d... MLM ) tomatch the theoretical tra- jectory to the experimentallymeasured trajectory. The MLM is an iterative procedure that adjusts the aerody- namic...flow conditions After completion of the range tests, two new sets of CFD calculations were completed under contract by Metacomp Technologies using the

  9. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User's manual

    Science.gov (United States)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.

  10. Statistical fluctuations in Monte Carlo calculations. [for solution of rarefied flow problems

    Science.gov (United States)

    Boyd, I. D.; Stark, J. P. W.

    1989-01-01

    The time counter and modified Nanbu simulation techniques are analyzed, with emphasis placed on the convergence of the calculations to a steady macroscopic state. Such variables as translational and rotational temperature, and flow velocity, sampled at several points in the flowfield, are considered. Both macroscopic averages and molecular distribution functions are analyzed. The calculation of inelastic collisions, in which transfer of energy between translational and internal energy modes is performed, is achieved through the use of the Larsen-Borgnakke phenomenological model. It is noted that, with reference to translational temperature, the time counter method shows less statistical scatter than that found with the modified Nanbu simulation technique.

  11. Three-dimensional hypersonic rarefied flow calculations using direct simulation Monte Carlo method

    Science.gov (United States)

    Celenligil, M. Cevdet; Moss, James N.

    1993-01-01

    A summary of three-dimensional simulations on the hypersonic rarefied flows in an effort to understand the highly nonequilibrium flows about space vehicles entering the Earth's atmosphere for a realistic estimation of the aerothermal loads is presented. Calculations are performed using the direct simulation Monte Carlo method with a five-species reacting gas model, which accounts for rotational and vibrational internal energies. Results are obtained for the external flows about various bodies in the transitional flow regime. For the cases considered, convective heating, flowfield structure and overall aerodynamic coefficients are presented and comparisons are made with the available experimental data. The agreement between the calculated and measured results are very good.

  12. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  13. Integrated parametric study of a hybrid-stabilized argon-water arc under subsonic, transonic and supersonic plasma flow regimes

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.

    2011-11-01

    This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.

  14. Supersonic flow past a flat lattice of cylindrical rods

    Science.gov (United States)

    Guvernyuk, S. V.; Maksimov, F. A.

    2016-06-01

    Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.

  15. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  16. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  17. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  18. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  19. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  20. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  1. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston

  2. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  3. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  4. Dynamical separation of spherical bodies in supersonic flow

    OpenAIRE

    Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf

    2012-01-01

    An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...

  5. Aeroelastic coupling in sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno

    2003-01-01

    In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.

  6. Study on the Characteristics of Supersonic Coanda Jet

    Institute of Scientific and Technical Information of China (English)

    ShigeruMatsuo; ShenYu; 等

    1998-01-01

    Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.

  7. Research on the mechanics of underwater supersonic gas jets

    Science.gov (United States)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  8. Technical and environmental challenges for the next generation supersonic transport

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)

    1994-12-31

    The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)

  9. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  10. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-03-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  11. Research on the mechanics of underwater supersonic gas jets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.

  12. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-09-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  13. Manufacturing of A micro probe using supersonic aided electrolysis process

    CERN Document Server

    Shyu, R F; Ho, Chi-Ting

    2008-01-01

    In this paper, a practical micromachining technology was applied for the fabrication of a micro probe using a complex nontraditional machining process. A series process was combined to machine tungsten carbide rods from original dimension. The original dimension of tungsten carbide rods was 3mm ; the rods were ground to a fixed-dimension of 50 micrometers using precision grinding machine in first step. And then, the rod could be machined to a middle-dimension of 20 micrometers by electrolysis. A final desired micro dimension can be achieved using supersonic aided electrolysis. High-aspect-ratio of micro tungsten carbide rod was easily obtained by this process. Surface roughness of the sample with supersonic aided agitation was compared with that with no agitation in electrolysis. The machined surface of the sample is very smooth due to ionized particles of anode could be removed by supersonic aided agitation during electrolysis. Deep micro holes can also be achieved by the machined high-aspect-rati tungsten c...

  14. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  15. Mixed exhaust flow supersonic jet engine and method

    Energy Technology Data Exchange (ETDEWEB)

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  16. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  17. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  18. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  19. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    Science.gov (United States)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  20. Experimental investigation of the structure of supersonic two-dimensional air microjets

    Science.gov (United States)

    Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey

    2016-10-01

    We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.

  1. An experimental study of the structure of supersonic flat underexpanded microjets

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.

    2015-05-01

    We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.

  2. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  3. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  4. Three-Dimensional Inviscid Flow About Supersonic Blunt Cones at Angle of Attack - III: Coupled Subsonic and Supersonic Programs for Inviscid Three-Dimensional Flow

    Energy Technology Data Exchange (ETDEWEB)

    Abbett, M. J.; Fort, R.

    1968-09-01

    The three-dimensional ideal gas flow in the shock layer of a blunted supersonic cone at an angle of attack is calculated using two asymptotic solutions. The first solution calculates the steady state flow in the subsonic nose region by obtaining a time-dependent solution of the hyperbolic equations using numerical techniques. Internal, nonboundary points are calculated using a Lax-Wendroff numerical type technique. Boundary points, shock and body surface, are computed using a time-dependent method of characteristics. When a steady state solution is reached the flow properties on a surface of constant {theta}, (where the Mach number is everywhere > 1) are used for initial data for the afterbody solution. The afterbody solution, using polar coordinates (r, {theta}, {phi}) assumes at r{sub 0} an arbitrary set of initial conditions provided by the nose region solution and computes the downstream flow as a function of {theta}, {phi}, and r until an asymptotic state independent of r develops. The interior mesh points are again calculated using a Lax- Wendroff type technique and the boundary points by a method of characteristics. This report covers the coupling of the time-dependent and radius (r) dependent solutions. Instructions are given for the operation of the resulting Fortran code. The type of input data required is detailed and sample output is provided. Output data is given in two sets of coordinates. One is wind orientated; the other set is given in body orientated coordinates; The analytical transformation from one coordinate system to the other is given.

  5. Detailed flowfield and surface properties for high Knudsen number planar jet impingement at an inclined flat plate

    Science.gov (United States)

    Cai, Chunpei; He, Xin

    2016-05-01

    This paper presents two sets of analytical exact solutions for collisionless gas flows from a planar exit, impinging at an inclined flat plate. These analytical results are obtained by using gaskinetic theories. The first set of solutions are for a diffuse reflective plate surface, and the other set of solutions are for a specular reflective plate surface. A virtual nozzle exit is adopted to aid analyzing the specular reflective plate scenario. New formulas for plate surface properties, including velocity slips, pressure, shear stress, and heat flux distributions, are provided. For both problems, the flowfield exact solutions are investigated as well. Numerical simulations with the direct simulation Monte Carlo method are performed to validate these new analytical results, and good agreement is obtained for flows with high Knudsen numbers. The results consider effects from many factors, such as the plate inclination angle, geometry ratios, and exit gas and plate properties (such as exit gas bulk density, gas speed ratio, and exit gas and plate temperatures). Compared with past work, these new solutions are more comprehensive and practical. The results also illustrate that if the plate is quite close to the nozzle exit, it is improper to adopt the traditional treatments of a point source and a simple cosine function.

  6. Combustion Rate of Solid Carbon in the Axisymmetric Stagnation Flowfield Established over a Sphere and/or a Flat Plate

    Directory of Open Access Journals (Sweden)

    Atsushi Makino

    2013-01-01

    Full Text Available Carbon combustion in the forward stagnation flowfield has been examined through experimental comparisons, by conducting aerothermochemical analyses, with the surface C-O2 and C-CO2 reactions and the gas-phase CO-O2 reaction taken into account. By virtue of the generalized species-enthalpy coupling functions, close coupling of those reactions has been elucidated. Explicit combustion-rate expressions by use of the transfer number in terms of the natural logarithmic term, just like that for droplet combustion, have further been obtained for the combustion response in the limiting situations. It has been confirmed that before the establishment of CO flame, the combustion rate can fairly be represented by the expression in the frozen mode, that after its establishment by the expression in the flame-attached or flame-detached modes, and that the critical condition derived by the asymptotics can fairly predict the surface temperature for its establishment. The formulation has further been extended to include the surface C-H2O and gas-phase H2-O2 reactions additionally, so as to evaluate the combustion rate in humid airflow. Since those expressions are explicit and have fair accuracy, they are anticipated to make various contributions not only for qualitative/quantitative studies, but also for various aerospace applications, including propulsion with high-energy-density fuels.

  7. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  8. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    Science.gov (United States)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  9. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    Science.gov (United States)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  10. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  11. Numerical investigation of scale effect of various injection diameters on interaction in cold kerosene-fueled supersonic flow

    Science.gov (United States)

    Zhu, Lin; Qi, Yin-Yin; Liu, Wei-Lai; Xu, Bao-Jian; Ge, Jia-Ru; Xuan, Xiang-Chun; Jen, Tien-Chien

    2016-12-01

    The incident shock wave generally has a strong effect on the transversal injection field in cold kerosene-fueled supersonic flow, possibly due to its affecting the interaction between incoming flow and fuel through various operation conditions. This study is to address scale effect of various injection diameters on the interaction between incident shock wave and transversal cavity injection in a cold kerosene-fueled scramjet combustor. The injection diameters are separately specified as from 0.5 to 1.5 mm in 0.5 mm increments when other performance parameters, including the injection angle, velocity and pressure drop are all constant. A combined three dimensional Couple Level Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model is used to characterize penetration height, span expansion area, angle of shock wave and sauter mean diameter (SMD) distribution of the kerosene droplets with/without considering evaporation. Our results show that the injection orifice surely has a great scale effect on the transversal injection field in cold kerosene-fueled supersonic flows. Our findings show that the penetration depth, span angle and span expansion area of the transverse cavity jet are increased with the injection diameter, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the combustor for the orifice diameter of 1.5 mm. The calculation predictions are compared against the reported experimental measurements and literatures with good qualitative agreement. The simulation results obtained in this study can provide the evidences for better understanding the underlying mechanism of kerosene atomization in cold supersonic flow and scramjet design improvement.

  12. The role of finite-difference methods in design and analysis for supersonic cruise

    Science.gov (United States)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  13. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  14. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    Science.gov (United States)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  15. 3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO

    Science.gov (United States)

    1956-01-01

    3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL

  16. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  17. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet – results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    L. Gulstad

    2007-05-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but

  18. Flying qualities design criteria applicable to supersonic cruise aircraft

    Science.gov (United States)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  19. Development of air to air ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2014-03-01

    Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.

  20. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    Science.gov (United States)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  1. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  2. Pulsed supersonic helium beams for plasma edge diagnosis

    Science.gov (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  3. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  4. Hot-wire accuracy in supersonic turbulence from comparisons with laser-induced fluorescence

    Science.gov (United States)

    Logan, Pamela; Bershader, Daniel; Mckenzie, Robert L.

    1988-01-01

    A hot-wire anemometer and a new, nonintrusive, laser-induced fluorescence (LIF) technique are used to survey a turbulent boundary layer in a supersonic channel flow at Mach no. 2.06. The purpose is to test the accuracy of using the hot wire to measure the fluctuation amplitudes of static temperature and density in a compressible turbulent flow by comparing the results with independent and direct LIF measurements. Several methods of hot-wire calibration and analysis are applied. With each method, the hot-wire response can be related primarily to fluctuations of mass flux and total temperature, from which fluctuations of static temperature and density are calculated. However, these calculations are shown to be valid only if the fluctuations in static pressure are negligible. The acquisition and the analysis of the hot-wire data are often simplified further by neglecting the effects of fluctuations in total temperature. Comparisons of the fluctuation amplitudes of temperature and density obtained by hot-wire and LIF measurements demonstrate that such assumptions might not always be warranted, even in apparently simple flows.

  5. Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid

    Institute of Scientific and Technical Information of China (English)

    LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu

    2011-01-01

    This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.

  6. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    Science.gov (United States)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  7. Computation of supersonic jet mixing noise for an axisymmetric convergent-divergent nozzle

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.

    1994-05-01

    The turbulent mixing noise of a supersonic jet is calculated for an axisymmetric convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy is adopted. The acoustics solution is based upon the methodology followed in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors (Ribner's assumption). Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The CFD solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  8. Noise reduction in supersonic jets by nozzle fluidic inserts

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Kuo, Ching-Wen

    2013-08-01

    Professor Philip Doak spent a very productive time as a consultant to the Lockheed-Georgia Company in the early 1970s. The focus of the overall research project was the prediction and reduction of noise from supersonic jets. Now, 40 years on, the present paper describes an innovative methodology and device for the reduction of supersonic jet noise. The goal is the development of a practical active noise reduction technique for low bypass ratio turbofan engines. This method introduces fluidic inserts installed in the divergent wall of a CD nozzle to replace hard-wall corrugation seals, which have been demonstrated to be effective by Seiner (2005) [1]. By altering the configuration and operating conditions of the fluidic inserts, active noise reduction for both mixing and shock noise has been obtained. Substantial noise reductions have been achieved for mixing noise in the maximum noise emission direction and in the forward arc for broadband shock-associated noise. To achieve these reductions (on the order of greater than 4 and 2 dB for the two main components respectively), practically achievable levels of injection mass flow rates have been used. The total injected mass flow rates are less than 4% of the core mass flow rate and the effective operating injection pressure ratio has been maintained at or below the same level as the nozzle pressure ratio of the core flow.

  9. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  10. Super-Sonic Turbulence in the Perseus Molecular Cloud

    CERN Document Server

    Padoan, P; Billawala, Y N; Juvela, M; Nordlund, A A; Padoan, Paolo; Bally, John; Billawala, Youssef; Juvela, Mika; Nordlund, AAke

    1999-01-01

    We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra, computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the three dimensional magneto-hydrodynamic (MHD) equations. The model cloud is a randomly forced super-Alfvenic and highly super-sonic turbulent isothermal flow. The purpose of the present work is to test if idealized turbulent flows, without self-gravity, stellar radiation, stellar outflows, or any other effect of star formation, are inconsistent or not with statistical properties of star forming molecular clouds. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. Statistical properties of molecular clouds like Perseus are appropriately described by random super-sonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single prot...

  11. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  12. a Continuous Supersonic Expansion Discharge Nozzle for Rotationally Cold Ions

    Science.gov (United States)

    Kauffman, Carrie A.; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    Molecular ions play an important role in chemistry and astronomy. In particular, molecular ions are key reaction intermediates, and in the interstellar medium, where temperatures and densities are low, they dominate the chemistry. Studying these ions spectroscopically in the laboratory poses a difficult challenge due to their reactivity. In our effort to study molecular ions, our research group is building SCRIBES (Sensitive Cooled Resolved Ion BEam Spectroscopy), which combines a cold ion source, mass spectrometry, and cavity ring-down spectroscopy. With this apparatus, we will be able to record rotationally-resolved gas-phase spectra, enabling interstellar searches for these species. The SCRIBES instrument requires a source of rotationally cold ions, and this has been accomplished by coupling a supersonic expansion with an electric discharge. Other groups (e.g. Thaddeus and McCarthy at Harvard, Salama et. al at NASA-Ames) have produced cold ions in a similar fashion, but always with a pulsed discharge source. Due to our need for a continuous ion source for SCRIBES, we have designed a continuous supersonic expansion discharge nozzle. We will discuss the various design factors considered during the construction of our continuous self-aligning cold ion source.

  13. Experiments on supersonic turbulent flow development in a square duct

    Science.gov (United States)

    Gessner, F. B.; Ferguson, S. D.; Lo, C. H.

    1986-01-01

    The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.

  14. Supersonic Line Broadening within Young and Massive Super Star Clusters

    CERN Document Server

    Tenorio-Tagle, G; Silich, S; Munoz-Tunon, C; Palous, J

    2009-01-01

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters are discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines are here shown to occur in clusters that undergo a bimodal hydrodynamic solution (Tenorio-Tagle et al. 2007), that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass vs the size of the cluster (Silich et al. 2004). The plethora of repressurizing shocks is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind, are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster...

  15. Observation of supersonic turbulent wakes by laser Fourier densitometry (LFD)

    Science.gov (United States)

    Gresillon, D.; Cabrit, B.; Bonnet, J. P.; Gemaux, G.

    Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent flow observations. It uses the collective scattering of coherent light, by optical index inhomogeneities. The principle of this method is described. It provides a signal proportional to the space Fourier transform amplitude of index distribution for a wavevector k defined by the optical arrangement. For a fluctuating flow, this amplitude is a function of time, and its frequency spectrum can be observed. The spectrum shape provides elementary parameters of the flow, such as: direction, modulus of mean velocity, and local temperature. It also provides means to distinguish different kinds of density fluctuations, such as convected inhomogeneities, or acoustic waves. The respective level of these different fluctuations types can be measured, as well as their power scale-law and absolute level. A compact optical bench has been set on a nozzle flow. The results of measurements performed in two supersonic wake configurations are presented, for Mach numbers of 1.6 and 4.2. These include density fluctuation spectra in supersonic flows, acoustic waves, variations with position, and comparison with hot wire anemometry.

  16. A compressible multiphase framework for simulating supersonic atomization

    Science.gov (United States)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  17. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  18. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  19. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    Science.gov (United States)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  20. Experimental and numerical investigation of an air to air supersonic ejector for propulsion of a small supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2015-01-01

    Full Text Available The article deals with experimental and numerical investigation of an air to air supersonic ejector with twelve primary nozzles. The ejector is supposed to be used for propulsion of a small experimental supersonic wind tunnel which is situated in laboratories of Technical University of Liberec. A novel arrangement with 12 primary nozzles is used. The nozzles are placed at the periphery of the mixing chamber. The secondary stream enters the ejector through the free centre of the mixing chamber and is sucked into the space between the primary nozzles. Moreover the declination of the primary nozzles towards to ejector axis is 8.2° and the shape of the mixing chamber and diffuser walls is given by normal cubic spline function, which was investigated in previous work. The declination of the primary nozzles is supposed to eliminate reversal flow in the centre of the mixing chamber. Experimental results for different numbers of simultaneously activated primary nozzles are carried out. Experimental results are compared to the numerical simulation made with the help of Ansys Fluent software.

  1. Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire

    Science.gov (United States)

    Smits, A. J.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.

  2. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore;

    2016-01-01

    The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....

  3. 基于嵌套网格技术和多种空间离散格式的旋翼流场数值模拟%Numerical Simulation of Rotor Flowfield Based on Overset Grids and Several Spatial Discretisation Schemes

    Institute of Scientific and Technical Information of China (English)

    赵明; 曹义华

    2011-01-01

    A numerical method based on solutions of 3-D Euler/N-S equations is used for calculating the rotor flowfield in hover. Jameson central scheme, Van Leer scheme and AUSM scheme are implemented for spatial discretisation, and Van Albada limiter is also applied. Simultaneously, overset grids are adopted. Hole-Map method is utilized to identify intergrid boundary points (IGBPs). Furthermore, aiming at identification issue of donor elements, Inverse-Map method is implemented. Finally, blade surface pressure distributions derived from numerical simulation are validated compared with the experimental data. Results show that all the schemes mentioned above can accurately simulate the rotor flowfield.%给出了三维Euler/N-S方程数值模拟悬停状态旋翼流场的方法和模型.在空间离散方法上分别采用Jameson中心差分格式、Van Leer矢通量分裂格式、AUSM格式3种方法,同时加入了Van Albada限制器,并应用了嵌套网格方法.文中采用Hole-Map方法来确定洞边界,采用Inverse-Map方法来搜寻贡献单元.最后给出了旋翼桨叶表面压力分布的计算结果,并与实验数据进行了对比,证明以上3种空间离散格式在旋翼流场计算中的准确性.

  4. An Analysis of Thrust Normalization of Ground Flowfield Pressures, Temperatures, and Velocities, for an AV-8B -408 Harrier During Hover

    Science.gov (United States)

    Naumowicz, Tim; Hange, Craig; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.

  5. Fast emplacement of extensive pahoehoe flow-fields: the case of the 1736 flows from Montaña de las Nueces, Lanzarote

    Science.gov (United States)

    Solana, M. C.; Kilburn, C. R. J.; Rodriguez Badiola, E.; Aparicio, A.

    2004-04-01

    The 1730-36 Timanfaya eruption on Lanzarote, in the Canary Islands, is the second largest historical effusion on record. During its final stages, in 1736, the eruption produced the Montaña de las Nueces flow-field, consisting of sheets of pahoehoe lava that, within 4 weeks, had covered 32 km 2 and reached a maximum length of almost 21 km. The tholeiitic lavas have pahoehoe surface features, but internal structures that are normally associated with massive aa flows, suggesting that their fronts advanced as single units rather than as a collection of budding pahoehoe tongues. Volume conservation and a simple model of crustal failure suggest that the main flows advanced at about 0.02 ms -1 over the prevailing slopes of ˜1°. The rates of advance are (1) consistent with emplacement near the transition from pahoehoe to aa, and (2) about an order of magnitude greater than would have been expected by analogy with Hawaiian pahoehoe flow-fields of similar dimensions. Surface texture and morphology, therefore, is an insufficient guide for constraining the rate and style of pahoehoe emplacement, and a flow's internal structure must be established before its characteristics are used to infer eruption conditions and potential hazard.

  6. Spatially-resolved current and impedance analysis of a stirred tank reactor and serpentine fuel cell flow-field at low relative humidity

    Science.gov (United States)

    Hogarth, Warren H. J.; Steiner, Johannes; Benziger, Jay B.; Hakenjos, Alex

    A 20 cm 2 segmented anode fuel cell is used to investigate the performance of a hydrogen-air fuel cell at 1 atm. with two different flow-fields using spatially-resolved current and impedance measurements. A self-draining stirred tank reactor (STR) fuel cell and a single-channel serpentine fuel cell are compared with humidified and dry feed conditions. The current density distribution, impedance distribution, heat distribution and water evolution are compared for the two different flow-fields. With inlet feed dew points of 30 °C, the STR fuel cell and serpentine system performed comparably with moderate current gradients. With drier feeds, however, the STR fuel cell exhibited superior overall performance in terms of a higher total current and lower current, impedance and temperature distribution gradients. The STR fuel cell design is superior to a single-channel serpentine design under dry conditions because its open channel design allows the feed gases to mix with the product water and auto-humidify the cell.

  7. Influence of Trailing-Edge Coolant Ejection on Supersonic Turbine Cascade Performance%尾缘冷气喷射对超声涡轮叶栅性能的影响

    Institute of Scientific and Technical Information of China (English)

    王彬; 黄康才

    2012-01-01

      采用试验与数值模拟相结合的方法,研究了某超声速涡轮导向叶栅尾缘冷气喷射对叶栅流场结构的影响。数值模拟时,使用环形叶栅模型近似模拟平面叶栅内的流动。研究结果表明:数值模拟结果与试验结果吻合较好;尾缘冷气喷射可减少主气流在尾缘停滞区的能量耗损,削弱叶栅尾缘处的内边缘激波,叶栅气动效率随冷气量的增加先增大后减小;尾缘冷气喷射对叶栅出口附近气流角的周向分布有影响,但对质量平均的叶栅出口气流角基本无影响。%  The influence of cooling jet from a supersonic turbine guide vane cascade trailing-edge on the cascade flow-field was investigated by using simulation results and test results. An annular cascade model was used to simulate the flow-field in the plane cascade approximately. The results show that the dissipation of the main stream energy in the trailing edge stagnation region and the strength of the shock wave located at the pressure side of the trailing edge can be reduced by the trailing-edge coolant jet. The aerodynamic efficiency of the cascade will increase firstly and then decrease while the coolant ejection mass ratio increases. The numerical simulation results are good agreement with test results. The circumferential distribution of flow angle located at cascade exit is influenced by trailing edge coolant ejection, while the outlet flow angle at cascade with averaged mass is not.

  8. Performance of Several High Order Numerical Methods for Supersonic Combustion

    Science.gov (United States)

    Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.

  9. Optical wavefront distortion due to supersonic flow fields

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiQiang; FU Song

    2009-01-01

    The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.

  10. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  11. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  12. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  13. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  14. Gas dynamics of a supersonic radial jet. Part II

    Science.gov (United States)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.

    2016-05-01

    The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.

  15. Supersonic flutter analysis of thin cracked functionally graded material plates

    CERN Document Server

    Natarajan, S; Bordas, S

    2012-01-01

    In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.

  16. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    CERN Document Server

    Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph

    2015-01-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...

  17. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  18. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  19. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    CERN Document Server

    Kritsuk, Alexei G; Collins, David; Padoan, Paolo; Norman, Michael L; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Mueller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D; Vogel, Christian; Xu, Hao

    2011-01-01

    We employ simulations of supersonic super-Alfv\\'enic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high...

  20. An analytical theory of heated duct flows in supersonic combustors

    Directory of Open Access Journals (Sweden)

    Chenxi Wu

    2014-01-01

    Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.

  1. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  2. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  3. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  4. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  5. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  6. Mapping the Interactions between Shocks and Mixing Layers in a 3-Stream Supersonic Jet

    Science.gov (United States)

    Lewalle, Jacques; Ruscher, Christopher; Kan, Pinqing; Tenney, Andrew; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Pressure is obtained from an LES calculation of the supersonic jet (Ma1 = 1 . 6) issuing from a rectangular nozzle in a low-subsonic co-flow; a tertiary flow, also rectangular with Ma3 = 1 insulates the primary jet from an aft-deck plate. The developing jet exhibits complex three-dimensional interactions between oblique shocks, multiple mixing layers and corner vortices, which collectively act as a skeleton for the flow. Our study is based on several plane sections through the pressure field, with short signals (0.1 s duration at 80 kHz sampling rate). Using wavelet-based band-pass filtering and cross-correlations, we map the directions of propagation of information among the various ``bones'' in the skeleton. In particular, we identify upstream propagation in some frequency bands, 3-dimensional interactions between the various shear layers, and several key bones from which the pressure signals, when taken as reference, provide dramatic phase-locking for parts of the skeleton. We acknowledge the support of AFRL through an SBIR grant.

  7. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    Science.gov (United States)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  8. Supersonic flow about cone eith ijection of gas through its surface described by power law

    Science.gov (United States)

    Antonov, A. M.; Zakrevskiy, V. A.

    1986-01-01

    The influence of intensive mass transfer on the supersonic flow of gas about a cone of finite length is investigated. The mathematical model describing the interaction of the primary flow and the transverse flow formed by injection is the boundary problem for a system of equations presented with boundary conditions on the cone and on the contact discontinuity. It is found that the contact surface is nonrectilinear when the injected gas is described by a power law and that the thickness of the layer coming in contact with the cone increases as the intensity of the injection becomes higher. The distribution of the pressure coefficient along a finite cone is calculated as a function of the parameter(s) associated with the injection flow rate, and the Mach number of the oncoming stream. It is found that the pressure coefficient drops off along the generatrix of a cone for all velocities of injection and oncoming stream when the injection is distributed. As the injection intensity increases, the pressure coefficient on the surface increases.

  9. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging.

    Science.gov (United States)

    Maïsetti, Olivier; Hug, François; Bouillard, Killian; Nordez, Antoine

    2012-04-01

    The passive elastic properties of a muscle-tendon complex are usually estimated from the relationship between the joint angle and the passive resistive torque, although the properties of the different structures crossing the joint cannot be easily assessed. This study aimed to determine the passive mechanical properties of the gastrocnemius medialis muscle (GM) using supersonic shear imaging (SSI) that allows the measurement of localized muscle shear modulus (μ). The SSI of the GM was taken for 7 subjects during passive ankle dorsiflexion at a range of knee positions performed on an isokinetic dynamometer. The relationship between normalized μ and the length of the gastrocnemius muscle-tendon units (GMTU) was very well fitted to an exponential model (0.944knee fully extended was calculated. The μ-length relationship was highly correlated with the force-length (0.964knee extended were similar to that reconstructed from all knee angles and displayed good intra-session reliability (for α, SEM: 9.7 m(-1); CV: 7.5%; ICC: 0.652; for l(0), SEM: 0.002 m; CV: 0.4%; ICC: 0.992). These findings indicate that SSI may provide an indirect estimation of passive muscle force, and highlight its clinical applicability to evaluate the passive properties of mono- and bi-articular muscles.

  10. Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions

    Science.gov (United States)

    Schoenenberger, Mark

    2013-01-01

    A technique for predicting supersonic pitch damping of blunt axisymmetric bodies from static CFD data is presented. The contributions to static pitching moment due to forebody and aftbody pressure distributions are broken out and considered separately. The one-dimension moment equation is cast to model the separate contributions from forebody and aftbody pressures with no traditional damping term included. The aftbody contribution to pitching moment is lagged by a phase angle of the natural oscillation period. This lag represents the time for aftbody wake structures to equilibrate while the body is oscillation. The characteristic equation of this formulation indicates that the lagged backshell moment adds a damping moment equivalent in form to a constant pitch damping term. CFD calculations of the backshell's contribution to the static pitching moment for a range of angles-of-attack is used to predict pitch damping coefficients. These predictions are compared with ballistic range data taken of the Mars Exploration Rover (MER) capsule and forced oscillation data of the Mars Viking capsule. The lag model appears to capture dynamic stability variation due to backshell geometry as well as Mach number.

  11. Solidification analysis of micro-scale metallic particles in the laser supersonic heating technique

    Science.gov (United States)

    Lin, Shih-Lung; Lin, Jehnming

    2004-04-01

    In this paper, the authors analysed the solidification phenomenon in the laser supersonic heating technique used for producing metallic particles. A mathematical model was established to predict the velocity, temperature and solidification situation of metallic particles leaving a spray nozzle. The numerical analysis method was used to simulate the flow field structure of shock waves and to proceed with related experiment. In the experiment, a pulsed Nd-YAG laser was used as the heat source on a carbon steel target within the nozzle, and carbon steel particles were ejected by high pressure air. The solidification problem of carbon steel particles with radii of 1-50 µm in the compressible flow field was calculated and compared with experimental results. The result shows that the shock wave flow fields are generated at different entrance pressures (3-7 bar), and there is no significant difference in the radii of carbon steel particles produced by a fixed laser energy; however, in the flow field without the shock wave effect, the cooling effect is less evident in the solidification process.

  12. Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow

    Science.gov (United States)

    Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano

    2016-06-01

    HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.

  13. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  14. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  15. Unsteady flow in a supersonic cascade with strong in-passage shocks

    Science.gov (United States)

    Goldstein, M. E.; Braun, W.; Adamczyk, J. J.

    1977-01-01

    Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.

  16. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  17. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  18. Numerical simulation of carbon dioxide removal from natural gas using supersonic nozzles

    Science.gov (United States)

    Sun, Wenjuan; Cao, Xuewen; Yang, Wen; Jin, Xuetang

    2017-03-01

    Supersonic separation is a technology potentially applicable to natural gas decarbonation process. Preliminary research on the performance of supersonic nozzle in the removal of carbon dioxide from natural gas is presented in this study. Computational Fluid Dynamics (CFD) technique is used to simulate the flow behavior inside the supersonic nozzle. The CFD model is validated successfully by comparing its results to the data borrowed from the literature. The results indicate that the liquefaction of carbon dioxide can be achieved in the properly designed nozzle. Shock wave occurs in the divergent section of the nozzle with the increase of the back pressure, destroying the liquefaction process. In the supersonic separator, the shock wave should be kept outside of the nozzle.

  19. Energy-Deposition to Reduce Skin Friction in Supersonic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  20. Experimental Investigation on Noise Suppression in Supersonic Jets from Convergent-Divergent Nozzles with Baffles

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki Miyazato; Yong-Hun Kweon; Toshiyuki Aoki; Mitsuharu Masuda; Kwon-Hee Lee; Heuy-Dong Kim; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level.

  1. Sting Supported Bell XS-2 in the 9 Inch Supersonic Tunnel

    Science.gov (United States)

    1947-01-01

    A sting supported model of the Bell XS-2 was tested in the 9 Inch Supersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 316.

  2. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  3. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  4. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    CERN Document Server

    Moser, A L

    2014-01-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex ...

  5. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature.

    Science.gov (United States)

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; a Beccara, Silvio; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; Alfè, Dario

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.

  6. Facile Formation of Acetic Sulfuric Anhydride in a Supersonic Jet: Characterization by Microwave Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Huff, Anna; Smith, CJ; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    Sulfur trioxide and acetic acid are shown to react under supersonic jet conditions to form acetic sulfuric anhydride, CH_{3}COOSO_{2}OH. Rotational spectra of the parent, ^{34}S, methyl ^{13}C, and fully deuterated isotopologues have been observed by chirped-pulse and conventional cavity microwave spectroscopy. A and E internal rotation states have been observed for each isotopologue studied and the methyl group internal rotation barriers have been determined (241.043(65) \\wn for the parent species). The reaction is analogous to that of our previous report on the reaction of sulfur trioxide and formic acid. DFT and CCSD calculations are also presented which indicate that the reaction proceeds via a π_{2} + π_{2} + σ_{2} cycloaddition reaction. These results support our previous conjecture that the reaction of SO_{3} with carboxylic acids is both facile and general. Possible implications for atmospheric aerosol formation are discussed.

  7. UV–UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Woon Yong; Ishiuchi, Shun-ichi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Çarçabal, Pierre [Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris Sud XI, Bâtiment 210, 91405 Orsay (France); Oba, Hikari [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Fujii, Masaaki, E-mail: mfujii@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2014-12-05

    Highlights: • Homophenylalanine was measured by laser desorption supersonic jet spectroscopy. • Ten conformers were found by UV–UV hole burning spectroscopy. • The observed conformers were assigned by the combination of UV and IR spectra. • Franck–Condon simulations were employed to assign the flexible molecule. - Abstract: Conformer selected electronic and vibrational spectra of homophenylalanine, phenylalanine analogue molecule, were measured by UV–UV hole burning and IR dip spectroscopy combined with laser desorption technique. 10 conformers were found by UV–UV hole burning spectroscopy and their structures were assigned by IR dip and UV absorption spectra with aid of quantum chemical calculations in both S{sub 0} and S{sub 1}. This study shows that the combination of simulated IR and UV spectra is powerful to assign flexible molecules.

  8. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  9. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    Science.gov (United States)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  10. Problems of interaction of a supersonic gas mixture with a wall solved by the projection method applied to the full Boltzmann equation

    CERN Document Server

    Raines, Alla

    2015-01-01

    Numerical solution of non-steady problems of supersonic inflow of a binary mixture of a rarefied gas on a normally posed wall with mirror and diffuse reflection laws is obtained on the basis of the kinetic Boltzmann equation for the model of hard sphere molecules. For calculation of collision integrals we apply the projection method, developed by Tcheremissine for a one-component gas and generalized by the author for a binary gas mixture in the case of cylindrical symmetry. We demonstrate a good qualitative agreement of our results with other authors for one-component gases.

  11. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  12. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  13. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  14. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at

  15. Flowfield structure and mixing performance of a cantilevered ramp injector%悬臂斜坡喷注器流场结构与混合特性

    Institute of Scientific and Technical Information of China (English)

    毕东恒; 罗世彬; 林志勇

    2015-01-01

    In order to investigate the precise flowfield structure and mixing⁃enhanced mechanism of H2/air mixture for the fore⁃body/inlet of shock⁃induced combustion ramjet( shcramjet) at high Mach number,numerical simulations were conducted to study the H2/air mixing enhancement and flowfield of the cantilevered ramp injector. An implicit finite volume method was used to solve the 3D compressible Navier⁃Stokes equations. Simulation results show that,in general,due to the effect of the ramp,physical phe⁃nomenon,like shock, expansion wave, and longitude vortices etc. are produced in the flowfield. Oblique shock occurs when the freestream meets the ramp. And the flow expands at the edge of the ramp. Longitude vortices appear along with pressure difference, which whirl the air in the movement downstream. So in this way the H2 and air mix better,but the ramp increases the total pressure losses.%为了探索高马赫数下激波诱燃冲压发动机前体/进气道燃料/空气混合的精细流场结构和混合增强机理,采用隐式方法,对悬臂斜坡喷注器进行了三维RANS仿真,得到了喷注器流场的精细结构。仿真结果表明,由于斜坡的作用,流场中产生了激波、膨胀波、流向旋涡等现象。气流经过斜坡时产生了斜激波,并在斜坡边缘处发生膨胀;斜坡侧壁附近在压差的作用下产生了流向旋涡,流向涡在向下游发展过程中卷吸空气,从而增强了混合,但斜坡的存在加大了流场的总压损失。

  16. Measurements of leading edge vortices in a supersonic stream

    Science.gov (United States)

    Milanovic, Ivana Milija

    An experimental investigation of the leading edge vortices from a 75° sweptback, sharp edge delta wing has been carried out in a Mach 2.49 stream. Five-hole conical probe traverses were conducted vertically and horizontally through the primary vortices at the trailing edge and at one half chord downstream station for 7° and 12° angles of attack. The main objective was to determine the Mach number and pressure distributions in the primary vortex and to present comparisons of flow properties at different survey stations. In response to the continued interest in efficient supersonic flight vehicles, particularly in the missile arena, the motivation for this research has been to provide the quantitative details of supersonic leading edge vortices, the understanding of which up to now has been largely based on flow visualizations and presumed similarity to low speed flows. As a prerequisite to the measurement campaign, the employed five-hole conical probe was numerically calibrated using a three-dimensional Thin Layer Navier-Stokes solver in order to circumvent the traditional experimental approach vastly demanding on resources. The pressure readings at the probe orifices were computed for a range of Mach numbers and pitch angles, and subsequently verified in wind tunnel tests. The calibration phase also demonstrated the profound influence of the probe bluntness on the nearby static pressure ports, its relevance to the ultimate modeling strategy and the resulting calibration charts. Flow diagnostics of the leading edge vortices included both qualitative flow visualizations, as well as quantitative measurements. Shadowgraphs provided information regarding the trajectory and relative size of the generated vortices while assuring that no probe-induced vortex breakdown occurred. Surface oil patterns revealed the general spanwise locations of leeward vortices, and confirmed topological similarity to their low speed counterparts. The probe measurements revealed substantial

  17. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Science.gov (United States)

    Kritsuk, Alexei G.; Nordlund, Åke; Collins, David; Padoan, Paolo; Norman, Michael L.; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Müller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D.; Vogel, Christian; Xu, Hao

    2011-08-01

    Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the

  18. Asymmetric flow-field flow fractionation-multidetection coupling for assessing colloidal copper in drain waters from a Bordeaux wine-growing area.

    Science.gov (United States)

    El Hadri, Hind; Lespes, Gaëtane; Chéry, Philippe; Potin-Gautier, Martine

    2014-02-01

    The objective of this study was to show that on-line asymmetric flow-field flow fractionation (AFFFF)-multidetection coupling is useful for studying environmental colloids in a qualitative and quantitative way. The utility of the technique was illustrated by assessing the colloidal fraction of the copper that was extracted from the soil, transferred to an aqueous phase and then transported by drain waters in a wine-growing area. To determine the size and composition of the colloids, AFFFF was coupled to UV, multi-angle light scattering and inductively coupled plasma mass spectrometry detectors. Colloidal copper represents between 20 and 60% of the total copper in the sub 450 nm of drain waters. Copper is mainly associated with organic-rich colloids with a size below 10 nm. It is also found in organo-mineral populations (as clay or (oxy)hydroxides), with sizes ranging between 10 and 450 nm.

  19. Effects of light intensity and pattern contrast on the ability of the land crab, Cardisoma guanhumi, to separate optic flow-field components.

    Science.gov (United States)

    Johnson, Aaron P; Barnes, W Jon P; Macauley, Martin W S

    2004-01-01

    Using a novel suite of computer-generated visual stimuli that mimicked components of optic flow, the visual responses of the tropical land crab, Cardisoma guanhumi, were investigated. We show that crabs are normally successful in distinguishing the rotational and translational components of the optic flow field, showing strong optokinetic responses to the former but not the latter. This ability was not dependent on the orientation of the crab, occurring both in "forwards-walking" and "sideways-walking" configurations. However, under conditions of low overall light intensity and/or low object/background contrast, the separation mechanism shows partial failure causing the crab to generate compensatory eye movements to translation, particularly in response to low-frequency (low-velocity) stimuli. Using this discovery, we then tested the ability of crabs to separate rotational and translational components in a combined rotation/translation flow field under different conditions. We demonstrate that, while crabs can successfully separate such a combined flow field under normal circumstances, showing compensatory eye movements only to the rotational component, they are unable to make this separation under conditions of low overall light intensity and low object/background contrast. Here, the responses to both flow-field components show summation when they are in phase, but, surprisingly, there is little reduction in the amplitude of responses to rotation when the translational component is in antiphase. Our results demonstrate that the crab's visual system finds separation of flow-field components a harder task than detection of movement, since the former shows partial failure at light intensities and/or object/background contrasts at which movement of the world around the crab is still generating high-gain optokinetic responses.

  20. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  1. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  2. The IMF as a function of supersonic turbulence

    CERN Document Server

    Motta, Clio Bertelli; Glover, Simon C O; Klessen, Ralf S; Pasquali, Anna

    2016-01-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise...

  3. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  4. Turbulence characteristics in a supersonic cascade wake flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1994-10-01

    The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.

  5. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  6. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  7. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  8. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.

  9. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    徐胜利; R.D.Archer; B.E.Milton; 岳朋涛

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj

  10. Damping insert materials for settling chambers of supersonic wind tunnels

    Science.gov (United States)

    Wu, Jie; Radespiel, Rolf

    2017-03-01

    This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.

  11. Studies of the unsteady supersonic base flows around three afterbodies

    Institute of Scientific and Technical Information of China (English)

    Zhixiang Xiao; Song Fu

    2009-01-01

    Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow patterns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5 BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.

  12. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  13. Field Ionization detection of supersonic helium atom beams

    Science.gov (United States)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  14. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  15. Supersonic Propagation of Heat Waves in Low Density Heavy Material

    Institute of Scientific and Technical Information of China (English)

    Jiang Shaoen; Zhang Wenhai; Yi Rongqing; Cui Yanli; Chen Jiusen; Xu Yan; Ding Yongkun; Lai Dongxian; Zheng Zhijian; Huang Yikiang; Li Jinghong; Sun Kexu; Hu Xin

    2005-01-01

    The propagation of a supersonic heat-wave through copper-doped foam with a density of 50 mg/cm3 was experimentally investigated. The wave is driven by 140 eV Holhraum radiations generated in a cylindrical gold cavity heated by a 2 k J, 1ns laser pulse (0.35 μm). The delayed breakout time of the radiation waves from the rear side of the foam is measured by a threechromatic streaked x-ray spectrometer (TCS) consisting of a set of three-imaging pinholes and an array of three transmission gratings coupled with an x-ray streak camera (XSC). With one shot,simultaneous measurements of the delays of the drive source and the radiation with two different energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. The radiation with an energy of 210 eV propagates at a lower velocity. The radiating heat wave propagates with a velocity that is larger than the sound speed. Using TGS, the transmitting spectrum was measured, and then lower limit of the optical depth which is more than 1, was obtained. The experimental data were in agreement with numerical simulations.

  16. Flight tests of a supersonic natural laminar flow airfoil

    Science.gov (United States)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  17. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  18. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  19. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.

  20. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  1. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  2. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu

    2009-01-01

    Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.

  3. Calculation of hypersonic shock structure using flux-split algorithms

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1991-01-01

    There exists an altitude regime in the atmosphere that is within the continuum domain, but wherein the conventional Navier-Stokes equations cease to be accurate. The altitude limits for this so called continuum transition regime depend on vehicle size and speed. Within this regime the thickness of the bow shock wave is no longer negligible when compared to the shock stand-off distance and the peak radiation intensity occurs within the shock wave structure itself. For this reason it is no longer valid to treat the shock wave as a discontinuous jump and it becomes necessary to compute through the shock wave itself. To accurately calculate hypersonic flowfields, the governing equations must be capable of yielding realistic profiles of flow variables throughout the structure of a hypersonic shock wave. The conventional form of the Navier-Stokes equations is restricted to flows with only small departures from translational equilibrium; it is for this reason they do not provide the capability to accurately predict hypersonic shock structure. Calculations in the continuum transition regime, therefore, require the use of governing equations other than Navier-Stokes. Several alternatives to Navier-Stokes are discussed; first for the case of a monatomic gas and then for the case of a diatomic gas where rotational energy must be included. Results are presented for normal shock calculations with argon and nitrogen.

  4. Sub-Doppler infrared spectroscopy and formation dynamics of triacetylene in a slit supersonic expansion.

    Science.gov (United States)

    Chang, Chih-Hsuan; Agarwal, Jay; Allen, Wesley D; Nesbitt, David J

    2016-02-21

    Infrared spectroscopy and formation dynamics of triacetylene are investigated in a slit jet supersonic discharge and probed with sub-Doppler resolution (≈60 MHz) on the fundamental antisymmetric CH stretch mode (ν5). The triacetylene is generated in the throat of the discharge by sequential attack of ethynyl radical with acetyelene and diacetylene: (i) HCCH → HCC + H, (ii) HCC + HCCH → HCCCCH + H, (iii) HCC + HCCCCH → HCCCCCCH + H, cooled rapidly in the slit expansion to 15 K, and probed by near shot-noise-limited absorption sensitivity with a tunable difference-frequency infrared laser. The combination of jet cooled temperatures (Trot = 15 K) and low spectral congestion permits (i) analysis of rotationally avoided crossings in the ν5 band ascribed to Coriolis interactions, as well as (ii) first detection of ν5 Π-Π hot band progressions built on the ν12 sym CC bend and definitively assigned via state-of-the-art ab initio vibration-rotation interaction parameters (αi), which make for interesting comparison with recent spectroscopic studies of Doney et al. [J. Mol. Spectrosc. 316, 54 (2015)]. The combined data provide direct evidence for significantly non-equilibrium populations in the CC bending manifold, dynamically consistent with a strongly bent radical intermediate and transition states for forming triacetylene product. The presence of intense triacetylene signals under cold, low density slit jet conditions provides support for (i) barrierless addition of HCC with HCCCCH and (ii) a high quantum yield for HCCCCCCH formation. Complete basis set calculations for energetics [CCSD(T)-f12/VnZ-f12, n = 2,3] and frequencies [CCSD(T)-f12/VdZ-f12] are presented for both radical intermediate and transition state species, predicting collision stabilization in the slit jet expansion to be competitive with unimolecular decomposition with increasing polyyne chain length.

  5. The fractal measurement of experimental images of supersonic turbulent mixing layer

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuXin; YI ShiHe; TIAN LiFeng; HE Lin; CHENG ZhongYu

    2008-01-01

    Flow Visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering (NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar, transitional and turbulent region, with which the fractal meas-urement can be implemented. Two methods of measuring fractal dimension wereintroduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region, the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region, the fractal dimension will not vary apparently for different flow structures, which em-bodies the self-similarity of supersonic turbulence.

  6. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    Science.gov (United States)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  7. The fractal measurement of experimental images of supersonic turbulent mixing layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering(NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar,transitional and turbulent region,with which the fractal measurement can be implemented. Two methods of measuring fractal dimension were introduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region,the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region,the fractal dimension will not vary apparently for different flow structures,which em-bodies the self-similarity of supersonic turbulence.

  8. An experimental study of aero-optical aberration and dithering of supersonic mixing layer via BOS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The optical performance of supersonic mixing layer is heavily deteriorated by the aero-optical aberration and dithering of coherent structures, but current measuring methods limit the spatiotemporal resolution in relevant studies. A high resolution whole-field aero-optical aberration and dithering measuring method based on the Background Orient Schlieren (BOS) technique was studied. The systematic structure, sensitivity and resolution of BOS are analyzed in this paper. The aero-optical aberration and dithering of streamwise structures in supersonic mixing layers were quantificationally studied with BOS. The aberration field of spanwise structures revealed the ribbon-like aberration structures, which heavily restrict the optical performance of a mixing layer. The quantifications of aero-optical aberration and dithering are very important in studying aero-optical performance of supersonic mixing layer.

  9. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  10. Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LI Feng; SUN Baigang

    2012-01-01

    Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.

  11. Navier—Stokes Computations of the Supersonic Ejector—Diffuser System with a Second Throat

    Institute of Scientific and Technical Information of China (English)

    Heuy-DongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.

  12. Flow Patterns and Thermal Drag in Supersonic Duct Flow with Heating

    Institute of Scientific and Technical Information of China (English)

    Zeng-YuanGuo; Zhi-HongLiu

    1994-01-01

    The supersonic duct flow with fixed back pressure to stagnation pressure ratio Pb/P0 under heating is investigated analytically.A “Flow Pattern Diagram” Which consists of six pattern zones is developed.By this diagram the actual flow state in supersonic duct flow system can be determined conveniently when Pb/Po and heating intensity are knows.It is impossible for flow with heavy heating to become supersonic,even though the pressure ratio is much smaller than the critical pressure ratio,Based on the analogy between viscous effect and heating effect a thermal drag factor has een defined.which can predict the flow property variation due to heating and the relaive importance of viscous effect and heating effect.

  13. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  14. Reverse Circulation Drilling Method Based on a Supersonic Nozzle for Dust Control

    Directory of Open Access Journals (Sweden)

    Dongyu Wu

    2016-12-01

    Full Text Available To reduce dust generated from drilling processes, a reverse circulation drilling method based on a supersonic nozzle is proposed. The suction performance is evaluated by the entrainment ratio. A series of preliminary laboratory experiments based on orthogonal experimental design were conducted to test the suction performance and reveal the main factors. Computational fluid dynamics (CFD were conducted to thoroughly understand the interaction mechanism of the flows. The Schlieren technique was further carried out to reveal the flow characteristic of the nozzle. The results show that the supersonic nozzle can significantly improve the reverse circulation effect. A high entrainment ratio up to 0.76 was achieved, which implied strong suction performance. The CFD results agreed well with experimental data with a maximum difference of 17%. This work presents the great potential for supersonic nozzles and reverse circulation in dust control, which is significant to protect the envrionment and people’s health.

  15. Numerical Simulation of the Supersonic Flows in the Second Throat Ejector —Diffuser Systems

    Institute of Scientific and Technical Information of China (English)

    HeuydongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.A fully implicity finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations and a standard k-ε turbulence model was used to close the governing equations,The flow field in the supersonic ejectordiffuser system was investigated by changing the ejector throat area ratio and the secondary mass flow ratio at a fixed operating pressure ratio of 10. A convergent-divergent nozzle with a design Mach number of 2.11 was selected to give the supersonic operation of the ejector -diffuser system.For the constant area mixing tube the secondary mass flow seemed not to singnificantly change the flow field in the ejector-diffuser systems.It was however,found that the flow in the ejector-diffuser systems having the second throat is strongly dependent on the secondary mass flow.

  16. The IMF as a function of supersonic turbulence

    Science.gov (United States)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-11-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star-forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particle hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star-forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  17. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    Science.gov (United States)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  18. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Science.gov (United States)

    Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor; Martens, Steve; Viars, Phil; Tersmette, Trevor; Lee, Jason; Simmons, Ron; Plybon, David; Alonso, Juan; Palacios, Francisco; Lukaczyk, Trent; Carrier, Gerald

    2015-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added

  19. Analyzing the structure of the optical path difference of the supersonic film cooling

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.

  20. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Science.gov (United States)

    Ieshkin, A.; Ermakov, Y.; Chernysh, V.; Ivanov, I.; Kryukov, I.; Alekseev, K.; Kargin, N.; Insepov, Z.

    2015-09-01

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  1. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  2. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-10-15

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.

  3. Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows

    Institute of Scientific and Technical Information of China (English)

    Kazuyasu Matsuo

    2003-01-01

    When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.

  4. Implicit LES for Supersonic Microramp Vortex Generator: New Discoveries and New Mechanisms

    OpenAIRE

    Qin Li; Chaoqun Liu

    2011-01-01

    This paper serves as a summary of our recent work on LES for supersonic MVG. An implicitly implemented large eddy simulation (ILES) by using the fifth-order WENO scheme is applied to study the flow around the microramp vortex generator (MVG) at Mach 2.5 and Re⁡θ=1440. A number of new discoveries on the flow around supersonic MVG have been made including spiral points, surface separation topology, source of the momentum deficit, inflection surface, Kelvin-Helmholtz instability, vortex ring ge...

  5. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  6. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Y. [Scobeltsyn Nuclear Physics Research Institute, Lomonosov State Moscow University, GSP-1, Leninskiye Gory, Moscow 119991 (Russian Federation); Chernysh, V.; Ivanov, I. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kryukov, I. [Institute for Problems in Mechanics, Russian Academy of Sciences, prosp. Vernadskogo, 101, Block 1, Moscow 119526 (Russian Federation); Alekseev, K.; Kargin, N. [National Research Nuclear University «MEPhI», Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Insepov, Z., E-mail: zinsepov@purdue.edu [Purdue University, 500 Central Drive, West Lafayette, IN (United States); Nazarbayev University Research and Innovation System, Kabanbay Batyr Avenue 53, Astana (Kazakhstan)

    2015-09-21

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  7. Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow.

    Science.gov (United States)

    Wan, W C; Malamud, G; Shimony, A; Di Stefano, C A; Trantham, M R; Klein, S R; Shvarts, D; Kuranz, C C; Drake, R P

    2015-10-02

    We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.

  8. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Science.gov (United States)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  9. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  10. Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a Flat Plate using a Hypersonic Wind Tunnel

    Science.gov (United States)

    2012-07-01

    The main part is made of PEEK but the insert is still DURATEC 750. The density of  of PEEK is 1480 3kg m and maximum service temperature for...short term testing is 300 degree. The thermal conductivity of PEEK c is 0.24 W m K and the specific heat capacity of PEEK is 31.8 10 J kg K . These...2005). Effect of the laser repetition rate on the drag reduction rate was studied in supersonic flow by Sasoh et al. (Sasoh, Sekiya et al.) and Kim et

  11. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    Science.gov (United States)

    Khavaran, A.; Krejsa, E. A.; Kim, C. M.

    1992-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  12. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    Science.gov (United States)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale

  13. 超音速靶机的总体设计与研究%Conceptual Design and Reserch of Supersonic Target Drone

    Institute of Scientific and Technical Information of China (English)

    刘靖; 刘志强

    2016-01-01

    According to the requirements of test and evaluation of weapon system, the general tech-nology requirements were put forward. The conceptual design of supersonic target drone on the aircraft design procedure was finished. The dynamic system, aerodynamic configuration and aerodynamic charac-teristics were designed in detail. The main flight performance was calculated. The foundation of engineer-ing implementation for the supersonic target drone has laid by the conceptual design.%根据武器系统试验需求,提出了超音速靶机的总体技术要求。按照飞行器设计的基本流程,完成了某型超音速靶机的总体设计,对该型靶机的动力系统、气动布局、气动特性等方面进行了详细设计,并对主要飞行性能进行了计算,为超音速靶机的工程实现打下了基础。

  14. Characterization of the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, A.-M.; Stephan, S.; Radespiel, R.

    2017-03-01

    The wake flow of a generic axisymmetric space-launcher model is investigated experimentally for flow cases with and without propulsive jet to gain insight into the wake-flow phenomena at a supersonic stage of the flight trajectory which is especially critical with respect to dynamic loads on the structure. Measurements are performed at Mach 2.9 and a Reynolds number Re D = 1.3 × 106 based on model diameter D. The nozzle exit velocity of the jet is at Mach 2.5, and the flow is moderately underexpanded ( p e/ p ∞ = 5.7). The flow topology is described based on velocity measurements in the wake by means of particle image velocimetry and schlieren visualizations. Mean and fluctuating mass-flux profiles are obtained from hot-wire measurements, and unsteady wall-pressure measurements on the main-body base are performed simultaneously. This way, the evolution of the wake flow and its spectral content can be observed along with the footprint of this highly dynamic flow on the launcher main-body base. For the case without propulsive jet, a large separated zone is forming downstream of the main body shoulder, and the flow is reattaching further downstream on the afterbody. The afterexpanding propulsive jet (air) causes a displacement of the shear layer away from the wall, preventing the reattachment of the flow. In the spectral analysis of the baseline case, a dominant frequency around St D = 0.25 is found in the pressure-fluctuation signal at the main-body base of the launcher. This frequency is related to the shedding of the separation bubble and is less pronounced in the presence of the propulsive jet. In the shear layer itself, the spectra obtained from the hot-wire signal have a more broadband low-frequency content, which also reflects the characteristic frequency of turbulent structures convected in the shear layer, a swinging motion ( St D = 0.6), as well as the radial flapping motion of the shear layer ( St D = 0.85), respectively. Moving downstream along the

  15. Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets

    Science.gov (United States)

    Heeb, Nicholas S.

    An experimental investigation into the effect of azimuthal variance of chevrons and fluidically enhanced chevrons applied to supersonic jets is presented. Flow field measurements of streamwise and cross-stream particle imaging velocimetry were employed to determine the causes of noise reduction, which was demonstrated through acoustic measurements. Results were obtained in the over- and under- expanded regimes, and at the design condition, though emphasis was placed on the overexpanded regime due to practical application. Surveys of chevron geometry, number, and arrangement were undertaken in an effort to reduce noise and/or incurred performance penalties. Penetration was found to be positively correlated with noise reduction in the overexpanded regime, and negatively correlated in underexpanded operation due to increased effective penetration and high frequency penalty, respectively. The effect of arrangement indicated the beveled configuration achieved optimal abatement in the ideally and underexpanded regimes due to superior BSAN reduction. The symmetric configuration achieved optimal overexpanded noise reduction due to LSS suppression from improved vortex persistence. Increases in chevron number generally improved reduction of all noise components for lower penetration configurations. Higher penetration configurations reached levels of saturation in the four chevron range, with the potential to introduce secondary shock structures and generate additional noise with higher number. Alternation of penetration generated limited benefit, with slight reduction of the high frequency penalty caused by increased shock spacing. The combination of alternating penetration with beveled and clustered configurations achieved comparable noise reduction to the standard counterparts. Analysis of the entire data set indicated initial improvements with projected area that saturated after a given level and either plateaued or degraded with additional increases. Optimal reductions

  16. Micro Ramps in Supersonic Turbulent Boundary Layers: An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of t

  17. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.

    Science.gov (United States)

    Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C

    2008-03-01

    The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.

  18. Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflows

    Science.gov (United States)

    2013-11-01

    269–275. 9. Stahl, B.; Edmunds , H.; Gulhan, A. Experimental Investigation of Hot and Cold Side Jet Interaction With a Supersonic Cross Flow...LICHTENBERG-SCANLAN G MALEJKO T RECCHIA C STOUT W TOLEDO J TRAVAILLE E VAZQUEZ C WILSON 4 PM CAS (PDF) M BURKE R KIEBLER

  19. Supersonic Virtual Valve Design for Numerical Simulation of a Large-Bore Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.-H.; Kirkpatrick, A.; Mitchell, C.

    2007-10-01

    In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations-including a moving piston and the kinetics of combustion and pollutant production quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated.

  20. EOIL power scaling in a 1-5 kW supersonic discharge-flow reactor

    Science.gov (United States)

    Davis, Steven J.; Lee, Seonkyung; Oakes, David B.; Haney, Julie; Magill, John C.; Paulsen, Dwane A.; Cataldi, Paul; Galbally-Kinney, Kristin L.; Vu, Danthu; Polex, Jan; Kessler, William J.; Rawlins, Wilson T.

    2008-02-01

    Scaling of EOIL systems to higher powers requires extension of electric discharge powers into the kW range and beyond with high efficiency and singlet oxygen yield. We have previously demonstrated a high-power microwave discharge approach capable of generating singlet oxygen yields of ~25% at ~50 torr pressure and 1 kW power. This paper describes the implementation of this method in a supersonic flow reactor designed for systematic investigations of the scaling of gain and lasing with power and flow conditions. The 2450 MHz microwave discharge, 1 to 5 kW, is confined near the flow axis by a swirl flow. The discharge effluent, containing active species including O II(a1Δ g, b1Σ g +), O( 3P), and O 3, passes through a 2-D flow duct equipped with a supersonic nozzle and cavity. I2 is injected upstream of the supersonic nozzle. The apparatus is water-cooled, and is modular to permit a variety of inlet, nozzle, and optical configurations. A comprehensive suite of optical emission and absorption diagnostics is used to monitor the absolute concentrations of O II(a), O II(b), O( 3P), O 3, I II, I(2P 3/2), I(2P 1/2), small-signal gain, and temperature in both the subsonic and supersonic flow streams. We discuss initial measurements of singlet oxygen and I* excitation kinetics at 1 kW power.

  1. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

    NARCIS (Netherlands)

    Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.

    2010-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f

  2. Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector

    Science.gov (United States)

    Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.

  3. Discussion of the target-missile control scheme with supersonic speed at minimum altitude

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An antiship missile with supersonic speed at minimum altitude is an effective weapon to break through a defense line. The former Soviet Union was a leader in this field since it had developed several kinds of antiship missiles which obtained supersonic speed at minimum altitudes. To counter this kind of missile,many countries have been developing corresponding antimissiles. For the purpose of verifing the antimissile missile's effectiveness in intercepting antiship missiles, a target-missile is needed. A target-missle is cheaper and can imitate the main characteristics of antiship missiles with supersonic speed at minimum altitude. In this paper, the control scheme of a target missile flying with supersonic speed at minimum altitude is studied. To counter the problem of hedgehopping over the sea, a control scheme utilizing a SINS + altimeter was proposed.In this scheme, both the quick response ability of altitude control and the anti-jamming problem were considered. A simulation experiment shows that when an integrated altitude control system is used, the anti-disturbance ability of the integrated altitude is good and the response speed of altitude control system can be dramatically improved.

  4. Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.

    2005-01-01

    Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d

  5. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever

    Science.gov (United States)

    Zhang, Dongdong; Tan, Jianguo; Lv, Liang

    2015-12-01

    The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.

  6. Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition

    NARCIS (Netherlands)

    Fraters, B.D.; Cavaliere, E; Mul, G.; Gavioli, L.

    2014-01-01

    In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO2 nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Ram

  7. Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2006-01-01

    This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.

  8. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    Science.gov (United States)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  9. The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer

    NARCIS (Netherlands)

    Sun, Z.; Schrijer, F.F.J.; Scarano, F.; Van Oudheusden, B.W.

    2012-01-01

    The three-dimensional instantaneous flow organization in the near wake of a micro-ramp interacting with a Mach 2.0 supersonic turbulent boundary layer is studied using tomographic particle image velocimetry. The mean flow reveals a wake with approximately circular cross section dominated by a pair o

  10. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  11. Numerical analysis of Chevron nozzle effects on performance of the supersonic ejector-diffuser system

    Science.gov (United States)

    Kong, Fanshi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2013-10-01

    The supersonic nozzle is the most important device of an ejector-diffuser system. The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated around the nozzle extent. In the present study, the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams, by means of longitudinal vortices generated between the Chevron lobes. Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data. The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream. A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector. It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance. The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.

  12. Ongoing Validation of Computational Fluid Dynamics for Supersonic Retro-Propulsion

    Science.gov (United States)

    Schauerhamer, Guy; Trumble, Kerry; Carlson, Jan-Renee; Edquist, Karl; Buning, Pieter; Sozer, Emre

    2011-01-01

    During the Entry, Decent, and Landing phase of planetary exploration, previous methods of deceleration do not scale with high mass spacecraft. Supersonic Retro-Propulsion(SRP)is a viable method to decelerate large spacecraft including those that will carry humans to Mars. Flow data at these conditions are difficult to obtain through flight or wind tunnel experiments

  13. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  14. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  15. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    Science.gov (United States)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  16. Experimental investigation on axial-flow turbine arrays in erodible and non-erodible channels: Performance, flow-field, and bathymetric interactions

    Science.gov (United States)

    Hill, Craig; Sotiropoulos, Fotis; Guala, Michele

    2014-11-01

    Natural channels ideal for hydrokinetic turbine installations present complex environments containing asymmetric flow, regions of high shear and turbulent eddies that impact turbine performance. To understand the impacts caused by variable topography, baseline conditions in a laboratory flume are compared to turbine performance, flow characteristics, and channel topography measurements from two additional experiments with small-scale and large-scale bathymetric features. Both aligned and staggered multi-turbine configurations were investigated. Small-scale axial-flow rotors attached to miniature DC motors provided measurements of turbine performance and response to i) complex topographic features and ii) flow features induced by upstream turbines. Discussion will focus on optimal streamwise and lateral spacing for axial-flow devices, turbine-topography interactions within arrays and inter-array flow-field measurements. Primary focus will center on results from turbines separated by a streamwise distance of 7dT. Additionally, results indicate possible control strategies for turbines installed in complex natural environments. This work was supported by NSF PFI Grant IIP-1318201, CAREER: Geophysical Flow Control (NSF).

  17. Local mechanisms for the separation of optic flow-field components in the land crab, Cardisoma guanhumi: a role for motion parallax?

    Science.gov (United States)

    Johnson, Aaron P; Barnes, W Jon P; Macauley, Martin W S

    2004-01-01

    Although a number of global mechanisms have been proposed over the years that explain how crabs might separate the rotational and translational components of their optic flow field, there has been no evidence to date that local mechanisms such as motion parallax are used in this separation. We describe here a study that takes advantage of a recently developed suite of computer-generated visual stimuli that creates a three-dimensional world surrounding the crab in which we can simulate translational and rotational optic flow. We show that, while motion parallax is not the only mechanism used in flow-field separation, it does play a role in the recognition of translational optic flow fields in that, under conditions of low overall light intensity and low contrast ratio when crabs find the distinction between rotation and translation harder, smaller eye movements occur in response to translation when motion parallax cues are present than when they are absent. Thus, motion parallax is one of many cues that crabs use to separate rotational and translational optic flow by showing compensatory eye movements to only the former.

  18. Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems

    Science.gov (United States)

    Chen, Gui-Qiang

    2017-08-01

    When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.

  19. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  20. Massively parallel computational fluid dynamics calculations for aerodynamics and aerothermodynamics applications

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.L.; Hassan, B.

    1998-09-01

    Massively parallel computers have enabled the analyst to solve complicated flow fields (turbulent, chemically reacting) that were previously intractable. Calculations are presented using a massively parallel CFD code called SACCARA (Sandia Advanced Code for Compressible Aerothermodynamics Research and Analysis) currently under development at Sandia National Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic flowfield utilizing three different distributed parallel computers to assess the parallel efficiency of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA code will be presented for cases using 1, 150, 100 and 500 processors. Computations were also made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset grid capability and couple SACCARA with other mechanics codes in a massively parallel environment are discussed.

  1. Enceladus' Supersonic Gas Jets' Role in Diurnal Variability of Particle Flux

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry W.; Portyankina, Ganna; Hendrix, Amanda; Colwell, Joshua E.; Aye, Klaus-Michael

    2016-10-01

    Introduction: The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 6 occultations of stars by Enceladus' plume from 2005 to 2011 [1]. Supersonic gas jets were detected, imbedded in the overall expulsion of gas at escape velocity along the tiger stripe fissures that cross Enceladus' south pole [2]. The gas flux can be calculated [1], and is observed to vary just 15% in over 6 years, representing a steady output of ~200 kg/sec. In contrast, the brightness of the particle jets, a proxy for the amount of particles expelled, varies 3x with orbital longitude [3], implicating tidal stresses. This is not necessarily inconsistent with the steady gas flux, which had not been measured at apokrone until now.2016 epsilon Orionis Occultation: In order to investigate whether gas flow increases dramatically at apokrone an occultation observation was inserted into the Cassini tour on March 11, 2016 on orbit 233. Enceladus was at a mean anomaly of 208 at the time of the occultation. Using the same methodology as previously employed the column density has been determined to be 1.5 x 1016 cm-2, giving a gas flux of 250 kg/sec. This value is 20% higher than the average 210 kg/sec, but only 15% higher than the occultations at a mean anomaly of 236; i.e. higher than the others but not by a factor of 2 or 3. The overall expulsion of gas from the south pole of Enceladus thus does not seem to change dramatically with orbital position.Jets: The line of sight to the star pierced the Baghdad I gas jet. The jet data, in contrast to the integrated plume, look significantly different in this dataset. The column density of the jet is higher than observed in previous occultations. The collimation of the jet is more pronounced and from that we derive a mach number of 8-9, compared to a previous value for this jet of 6. We conclude that the higher velocity and increased quantity of gas in the jet close to apokrone indicate that the jets are the primary contributors to the increased

  2. Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-06-28

    The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8), ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.

  3. Flow field analysis of aircraft configurations using a numerical solution to the three-dimensional unified supersonic/hypersonic small disturbance equations, part 1

    Science.gov (United States)

    Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.

    1972-01-01

    The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.

  4. Dynamic response of shock waves in transonic diffuser and supersonic inlet - An analysis with the Navier-Stokes equations and adaptive grid

    Science.gov (United States)

    Liu, N.-S.; Shamroth, S. J.; Mcdonald, H.

    1984-01-01

    An existing method which solves the multi-dimensional ensemble-averaged compressible time-dependent Navier-Stokes equations in conjunction with mixing length turbulence model and shock capturing technique has been extended to include the shock-tracking adaptive grid systems. The numerical scheme for solving the governing equations is based on a linearized block implicit approach. The effects of grid-motion and grid-distribution on the calculated flow solutions have been studied in relative detail and this is carried out in the context of physically steady, shocked flows computed with non-stationary grids. Subsequently, the unsteady dynamics of the flows occurring in a supercritically operated transonic diffuser and a mixed compression supersonic inlet have been investigated with the adaptive grid systems by solving the Navier-Stokes equations.

  5. Fast, high temperature and thermolabile GC--MS in supersonic molecular beams

    Science.gov (United States)

    Dagan, Shai; Amirav, Aviv

    1994-05-01

    This work describes and evaluates the coupling of a fast gas chromatograph (GC) based on a short column and high carrier gas flow rate to a supersonic molecular beam mass spectrometer (MS). A 50 cm long megabore column serves for fast GC separation and connects the injector to the supersonic nozzle source. Sampling is achieved with a conventional syringe based splitless sample injection. The injector contains no septum and is open to the atmosphere. The linear velocity of the carrier gas is controlled by a by-pass (make-up) gas flow introduced after the column and prior to the supersonic nozzle. The supersonic expansion serves as a jet separator and the skimmed supersonic molecular beam (SMB) is highly enriched with the heavier organic molecules. The supersonic molecular beam constituents are ionized either by electron impact (EI) or hyperthermal surface ionization (HSI) and mass analyzed. A 1 s fast GC--MS of four aromatic molecules in methanol is demonstrated and some fundamental aspects of fast GC--MS with time limit constraints are outlined. The flow control (programming) of the speed of analysis is shown and the analysis of thermolabile and relatively non-volatile molecules is demonstrated and discussed. The tail-free, fast GC--MS of several mixtures is shown and peak tailing of caffeine is compared with that of conventional GC--MS. The improvement of the peak shapes with the SMB--MS is analyzed with the respect to the elimination of thermal vacuum chamber background. The extrapolated minimum detected amount was about 400 ag of anthracence-d10, with an elution time which was shorter than 2s. Repetitive injections could be performed within less than 10 s. The fast GC--MS in SMB seems to be ideal for fast target compound analysis even in real world, complex mixtures. The few seconds GC--MS separation and quantification of lead (as tetraethyllead) in gasoline, caffeine in coffee, and codeine in a drug is demonstrated. Controlled HSI selectivity is demonstrated in

  6. ANALYTICAL SYNTHESIS OF THE METHOD OF TARGETING A SUPERSONIC UNMANNED AERIAL VECHICLE BASED ON MULTI-DIMENSIONAL NONLINEAR DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    V. E. Markevich

    2017-01-01

    Full Text Available A method of analytical synthesis of an optimal controller for the terminal control task of supersonic unmanned aerial vehicles based on synergetic approach to the design of control systems for nonlinear multidimensional dynamic objects is considered.The article provides analytical expressions describing the algorithm for control the velocity vector position of a supersonic UAV, the simulation results and the comparative analysis of the proposed control algorithm with the modified method of proportional navigation.

  7. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  8. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  9. Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui

    2012-01-01

    The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.

  10. A flow control study of a supersonic mixing layer via NPLS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS,and the transient fine structures were identifiable in NPLS images,which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer,delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer,advancing mixing layer transition. 3D structures of the mixing layer were visualized,and the H-type Λ vortexes were found with 3D tapes control.

  11. Optimization on a Network-based Parallel Computer System for Supersonic Laminar Wing Design

    Science.gov (United States)

    Garcia, Joseph A.; Cheung, Samson; Holst, Terry L. (Technical Monitor)

    1995-01-01

    A set of Computational Fluid Dynamics (CFD) routines and flow transition prediction tools are integrated into a network based parallel numerical optimization routine. Through this optimization routine, the design of a 2-D airfoil and an infinitely swept wing will be studied in order to advance the design cycle capability of supersonic laminar flow wings. The goal of advancing supersonic laminar flow wing design is achieved by wisely choosing the design variables used in the optimization routine. The design variables are represented by the theory of Fourier series and potential theory. These theories, combined with the parallel CFD flow routines and flow transition prediction tools, provide a design space for a global optimal point to be searched. Finally, the parallel optimization routine enables gradient evaluations to be performed in a fast and parallel fashion.

  12. Minimally Intrusive and Nonintrusive Supersonic Injectors for LANTR and RBCC/Scramjet Propulsion Systems

    Science.gov (United States)

    Buggele, Alvin E.; Gallagher, John R.

    2002-10-01

    A family of supersonic injectors for use on spaceplanes, rockets and missiles and the like is disclosed and claimed. Each injector maintains a specific constant (uniform) Mach number along its length when used while being minimally intrusive at significantly higher injectant pressure than combuster freestream total pressure. Each injector is substantially non-intrusive when it is not being used. The injectors may be used individually or in a group. Different orientations of the injectors in a group promotes greater penetration and mixing of fuel or oxidizer into a supersonic combustor. The injectors can be made from single piece of Aluminum, investment cast metal, or ceramic or they can be made from starboard and port blocks strapped together to accurately control the throat area. Each injector includes an elongated body having an opening which in cross section is an hour glass (venturi shaped) and the opening diverges in width and depth from the bow section to the stem section of the opening.

  13. The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow

    Science.gov (United States)

    Fernando, E. M.; Donovan, J. F.; Smits, A. J.

    1987-01-01

    The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.

  14. Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Schmidt, W; Barthol, P; Gandorfer, A; Domingo, V; Knoelker, M

    2010-01-01

    Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersonic events occur at a rate of $1.3\\times10^{-5}$ occurrences per second per arcsec$^{2}$.

  15. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  16. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  17. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  18. Computing supersonic non-premixed turbulent combustion by an SMLD flamelet progress variable model

    CERN Document Server

    Coclite, A; Gurtner, M; De Palma, P; Haidnd, O J; Pascazio, G

    2015-01-01

    This paper describes the numerical simulation of the NASA Langley Research Center supersonic H2 -Air combustion chamber performed using two approaches to model the presumed probability density function (PDF) in the flamelet progress variable (FPV) framework. The first one is a standard FPV model, built presuming the functional shape of the PDFs of the mixture fraction, Z, and of the progress parameter, {\\Lambda}. In order to enhance the prediction capabilities of such a model in high-speed reacting flows, a second approach is proposed employing the statistically most likely distribution (SMLD) techcnique to presume the joint PDF of Z and {\\Lambda}, without any assumption about their behaviour. The standard and FPV-SMLD models have been developed using the low Mach number assumption. In both cases, the temperature is evaluated by solving the total-energy conservation equation, providing a more suitable approach for the simulation of supersonic combustion. By comparison with experimental data, the proposed SMLD...

  19. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  20. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  1. The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas

    CERN Document Server

    Molina, F Z; Federrath, C; Klessen, R S

    2012-01-01

    It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....

  2. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

    Science.gov (United States)

    Lee, Jong-Gun; Cha, You-Hong; Kim, Do-Yeon; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Woo-Young; Park, Jieun; Lee, Dongyun; James, Scott C.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-08-01

    Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature's effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

  3. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    Science.gov (United States)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  4. Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets

    Science.gov (United States)

    Berry, M. G.; Magstadt, A. S.; Glauser, M. N.

    2017-02-01

    In this paper, we present an experimental investigation of a supersonic rectangular nozzle with aft deck used for three-stream engines. The jet utilizes a single expansion ramp nozzle (SERN) configuration along with multiple streams, operating at a bulk flow Mj,1 = 1.6 and bypass stream Mj,3 = 1.0. This idealized representation consists of two canonical flows: a supersonic convergent-divergent (CD) jet and a sonic wall jet. Time-resolved schlieren experiments were performed up to 100 kHz. Proper orthogonal decomposition (POD), as suggested by Lumley for structure identification in turbulent flows, is applied to the schlieren images and the spatial eigenfunctions and time-dependent coefficients are related to the flow structures. This research seeks to lay a foundation for fundamental testing of multi-stream SERNs and the identification of the flow physics that dominate these modern military nozzles.

  5. Initiation of Explosives From the Bow Shock of a Supersonic Penetrator

    Science.gov (United States)

    Ferm, Eric

    2009-06-01

    An analytic and computational study of supersonic penetration of an explosive is presented. The goal is the development of an initiation criterion relating projectile diameter and threshold projectile velocity determined by fundamental material and explosive parameters. The basis of the initiation criterion is an examination of the steady flow structure around a supersonic penetrator in the unreacted materials, yielding the states along the bow shock and the size and sonic character of the flow structure. The state is used to determine the time scale of the reacting explosive using initiation experiment results (Pop Plot). The size of the subsonic region is compared to the failure diameter to examine the viability of the initiation. The results are compared with experimental initiation criterion.

  6. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    Science.gov (United States)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  7. Bibliography of Supersonic Cruise Research (SCR) program from 1977 to mid-1980

    Science.gov (United States)

    Hoffman, S.

    1980-01-01

    The supersonic cruise research (SCR) program, initiated in July 1972, includes system studies and the following disciplines: propulsion, stratospheric emission impact, structures and materials, aerodynamic performance, and stability and control. In a coordinated effort to provide a sound basis for any future consideration that may be given by the United States to the development of an acceptable commercial supersonic transport, integration of the technical disciplines was undertaken, analytical tools were developed, and wind tunnel, flight, and laboratory investigations were conducted. The present bibliography covers the time period from 1977 to mid-1980. It is arranged according to system studies and the above five SCR disciplines. There are 306 NASA reports and 135 articles, meeting papers, and company reports cited.

  8. Dynamics of the flowfield generated by the interaction of twin inclined jets of variable temperatures with an oncoming crossflow

    Science.gov (United States)

    Radhouane, A.; Mahjoub Saïd, N.; Mhiri, H.; Bournot, H.; Le Palec, G.

    2014-02-01

    The present paper examines the common configuration of "twin inclined jets in crossflow" that is widely present in several industrial and academic, small and large-scale applications. It is particularly found in aerodynamic and engineering applications like VTOL aircrafts, the combustion mixing process and other chemical chambers. It can also be found in some domestic applications like chimney stacks or water discharge piping systems in rivers and seas. The twin jets considered in this work are elliptic as inclined with a 60° angle and arranged inline with the oncoming crossflow according to a jet spacing of three diameters. They are examined experimentally in a wind tunnel. The corresponding data is tracked by means of the particle image velocimetry technique in order to obtain the different instantaneous and mean dynamic features (different velocity components, vortices, etc.). The same case is numerically reproduced by the resolution of the Navier-Stokes equations by means of the finite volume method together with the Reynolds stress model second order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzles is also adopted. The comparison of the measured and calculated data gave a satisfying agreement. Further assumptions are adopted later in order to improve the examined configuration: a non-reactive fume is injected within the discharged jets and the jets' temperature is varied with reference to a constant mainstream temperature. Our aim is to evaluate precisely the impact of this temperature difference on the flow field, particularly on the dynamics of the jets in a crossflow. This parameter, namely the temperature difference, proved mainly to accelerate the discharged jet plumes in the direction of the main flow, which enhanced the mixing, particularly in the longitudinal direction. The mixing in the other directions was also increased due to the weaker density of the jets, which enabled them to progress relatively

  9. A Study on the Estimation of Aeroheating upon the Warhead Nose at Supersonic Speed

    Institute of Scientific and Technical Information of China (English)

    LI Fu-song; TANG Li-tie; XU Min; MA Xu-hui

    2006-01-01

    An expression for estimating the aeroheating on a warhead nose at different supersonic speeds is proposed by incorporating CFD (computational fluid dynamics) and the least-square method. Compared with the traditional estimation formula, the expression is more accurate, convenient and can be used in the optimized design of warheads. The error from the result obtained in the test of a ball cartridge flight is less than 3 %. It satisfies the engineering requirements.

  10. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  11. Aerodynamic analysis of a supersonic cascade vibrating in a complex mode

    Science.gov (United States)

    Caruthers, J. E.; Riffel, R. E.

    1980-01-01

    An analysis is presented which has been used to predict the unsteady aerodynamic behavior of a finite supersonic cascade of airfoils forced in harmonic oscillation with airfoil-to-airfoil variations in amplitude. Theoretical predictions are compared with some recent experimental results at a reduced frequency representative of actual fan or compressor flutter cases. The similarity of the experimental situation in the finite cascade to the flutter of a severely mistuned rotor is noted.

  12. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  13. High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods

    Science.gov (United States)

    2016-08-24

    decades, however methods of measurably controlling -reducing jet noise in an efficient and robust manner remain evasive. Previous research has shown...2016 1-May-2013 30-Apr-2016 High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods The views...and Control using Advanced Actuation Methods Report Title Understanding and controlling jet noise has been the focus of analytical, computational and

  14. Improved method of analyzing hot-wire measurements in supersonic turbulence

    Science.gov (United States)

    Logan, Pamela

    1989-01-01

    The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.

  15. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    Science.gov (United States)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical

  16. Effect of sidewall configurations on aerodynamic performance of supersonic air-intake

    OpenAIRE

    Watanabe, Yasushi; Murakami, Akira; Fujiwara, Hitoshi; 渡辺 安; 村上 哲; 藤原 仁志

    2004-01-01

    The effects of sidewall configurations on the aerodynamic performance of two dimensional external compression supersonic air-intakes were investigated experimentally and numerically. The aerodynamic performance for various yaw angles and ramp angles was obtained by wind tunnel tests performed in the Mach number range of 1.5 to 2.0. It was found that the major advantage of an air-intake with a larger sidewall configuration is its wider stable range in subcritical operation. On the other hand, ...

  17. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    Science.gov (United States)

    2014-08-18

    constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D

  18. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  19. Axis retrieval of a supersonic source in a reverberant space using time reversal

    Science.gov (United States)

    Mahenc, Guillaume; Éric Bavu; Hamery, Pascal; Hengy, Sébastien; Melon, Manuel

    2017-08-01

    Localizing the axis of the Mach cone created by the supersonic displacement of a bullet in a reverberant environment is a challenging task, not only because of the high velocity of the moving source, but also because of the multiple wave reflections off of the walls. Although time reversal (TR) techniques allow static acoustic source localization in a reverberant space, they have not been explored yet on non stationary waves caused by supersonic displacements in urban canyons. The acoustic wave produced by a supersonic projectile has a conical wavefront and a N-shaped acoustic pressure signature. In this paper, this acoustic wave is reproduced using a line array of point-like sources (simulations) and loudspeakers (experiments). During the propagation of this conical wave in an urban canyon, the resulting pressure signals are measured using a time reversal array flush mounted into the ground. These acoustic signals allow to automatically retrieve with a high accuracy the location of the Mach cone axis using time reversal techniques. This inverse problem is solved using the maximization of a fourth-order statistical criterion of the backpropagated pressures. This criterion allows to estimate the intersections between the Mach cone axis and several vertical planes in the urban canyon. These estimations are then fitted to a 3D trajectory with a robust three dimensional interpolation technique based on the Random Sample Consensus (RANSAC) algorithm. This method allows to automatically retrieve the axis of the supersonic source with an angular accuracy of less than 0.5° and a misdistance of 0.5 cm for both numerical simulations and experimental measurements.

  20. A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations

    Science.gov (United States)

    Zhang, Xiaohan; Acharya, Amit; Walkington, Noel J.; Bielak, Jacobo

    2015-11-01

    We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.