WorldWideScience

Sample records for supersonic axisymmetric minimum

  1. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  2. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  3. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  4. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan; Sanghi, Sanjeev

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  5. Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows

    International Nuclear Information System (INIS)

    Ahmadikia, H.; Shirani, E.

    2001-05-01

    The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)

  6. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  7. Computation of compressible quasi-axisymmetric slender vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.

  8. Experimental study on axisymmetric air intake for the supersonic transport; choonsokukiyo jikutaishogata air intake no jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [Institute of the Space and Astronautical Science,Tokyo (Japan); Takagi, I. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kojima, T.; Kobayashi, H. [The University of Tokyo, Tokyo (Japan)

    1998-12-05

    Mixed-compression type axisymmetric air intakes for ATREX engine have been tested in the supersonic wind tunnel from Mach 0.5 to 4 since 1993. The throat area of the intake can be variable with a translating center spike to accomplish starting and off-design operation since the ATREX intake must work well over the wide flight Mach number up to 6. Here are presented effects of the intake design Mach number, the air bleed from a center spike and/or a cowl around the throat, an angle of attack and blunt nose of the spike on the intake performance characteristics, that is total pressure recovery and mass capture ratio. It is found that bleeding from the center spike and the cowl influences mainly on total pressure recovery and mass capture ratio respectively. The advantage of rounding properly off the spike nose is confirmed. Small center spike cone angle and/or blunt nose is sensitive to the angle of attack. (author)

  9. Features of the laminar-turbulent transition in supersonic axisymmetric microjets

    Science.gov (United States)

    Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.

    2016-10-01

    In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.

  10. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  11. A computational study of the supersonic coherent jet

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Kim, Heuy Dong

    2003-01-01

    In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets

  12. Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

  13. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  14. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  15. A systematic study of supersonic jet noise.

    Science.gov (United States)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  16. A model for supersonic and hypersonic impactors for nanoparticles

    International Nuclear Information System (INIS)

    Abouali, Omid; Ahmadi, Goodarz

    2005-01-01

    In this study the performance of supersonic and hypersonic impactors for collection efficiency of nanoparticles (in the size range of 2-100 nm) under various operating conditions is analyzed. Axisymmetric forms of the compressible Navier-Stokes and energy equations are solved and the airflow and thermal condition in the impactor are evaluated. A Lagrangian particle trajectory analysis procedure is used and the deposition rates of different size particles under various operating conditions are studied. For dilute particle concentrations, the assumption of one-way interaction is used and the effect of particles on gas flow field is ignored. The importance of drag, lift and Brownian forces on particle motions in supersonic impactors is discussed. Sensitivity of the simulation results to the use of different assumptions for the Cunningham correction coefficient is studied. It is shown that accurate evaluation of the gas mean free path and the Cunningham correction factor is important for accurate simulation of nano-particle transport and deposition in supersonic/hypersonic impactors. The computer simulation results are compared favorably with the available experimental data

  17. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    Science.gov (United States)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  18. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  19. CAN-DO, CFD-based Aerodynamic Nozzle Design and Optimization program for supersonic/hypersonic wind tunnels

    Science.gov (United States)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.

    1992-01-01

    A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.

  20. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  1. A review and development of correlations for base pressure and base heating in supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

  2. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  3. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  4. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  5. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  6. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  7. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  8. Numerical simulation of supersonic over/under expanded jets using adaptive grid

    International Nuclear Information System (INIS)

    Talebi, S.; Shirani, E.

    2001-05-01

    Numerical simulation of supersonic under and over expanded jet was simulated. In order to achieve the solution efficiently and with high resolution, adaptive grid is used. The axisymmetric compressible, time dependent Navier-Stokes equations in body fitted curvilinear coordinate were solved numerically. The equations were discretized by using control volume, and the Van Leer flux splitting approach. The equations were solved implicitly. The obtained computer code was used to simulate four different cases of moderate and strong under and over expanded jet flows. The results show that with the adaptation of the grid, the various features of this complicated flow can be observed. It was shown that the adaptation method is very efficient and has the ability to make fine grids near the high gradient regions. (author)

  9. Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow

    Science.gov (United States)

    Tucker, P. Kevin

    1993-01-01

    The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.

  10. A second-generation supersonic transport

    Science.gov (United States)

    Humphrey, W.; Grayson, G.; Gump, J.; Hutko, G.; Kubicko, R.; Obrien, J.; Orndorff, R.; Oscher, R.; Polster, M.; Ulrich, C.

    1989-01-01

    Ever since the advent of commercial flight vehicles, one goal of designers has been to develop aircraft that can fly faster and carry more passengers than before. After the development of practical supersonic military aircraft, this desire was naturally manifested in a search for a practical supersonic commercial aircraft. The first and, to date, only supersonic civil transport is the Concorde, manufactured by a consortium of British and French aerospace companies. Unfortunately, due to a number of factors, including low passenger capacity and limited range, the Concorde has not been an economic success. It is for this reason that there is considerable interest in developing a design for a supersonic civil transport that addresses some of the inadequacies of the Concorde. For the design of such an aircraft to be feasible in the near term, certain guidelines must be established at the outset. Based upon the experience with the Concorde, whose 100-passenger capacity is not large enough for profitable operation, a minimum capacity of 250 passengers is desired. Second, to date, because of the limited range of the Concorde, supersonic commercial flight has been restricted to trans-Atlantic routes. In order to broaden the potential market, any new design must have the capability of trans-Pacific flight. A summary of the potential markets involved is presented. Also, because of both the cost and complexity involved with actively cooling an entire aircraft, an additional design constraint is that the aircraft as a whole be passively cooled. One additional design constraint is somewhat less quantitative in nature but of great importance nonetheless. Any time a new design is attempted, the tendency is to assume great strides in technology that serve as the basis for actual realization of the design. While it is not always possible to avoid this dependence on 'enabling technology,' since this design is desired for the near term, it is prudent, wherever possible, to rely on

  11. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  12. RAXBOD- INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES

    Science.gov (United States)

    Keller, J. D.

    1994-01-01

    The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output

  13. Effect of surface potential and intrinsic magnetic field on resistance of a body in a supersonic flow of rarefied partially ionized gas

    International Nuclear Information System (INIS)

    Shuvalov, V.A.

    1986-01-01

    The character of flow over a body, structure of the perturbed zone, and flow resistance in a supersonic flow of rarefied partially ionized gas are determined by the intrinsic magnetic field and surface potential of the body. There have been practically no experimental studies of the effect of intrinsic magnetic field on flow of a rarefied plasma. Studies of the effect of surface potential have been limited to the case R/λd 10 2 (where R is the characteristic dimension of the body and λd is the Debye radius). At the same time R/λd > 10 2 , the regime of flow over a large body, is of the greatest practical interest. The present study will consider the effect of potential and intrinsic magnetic field on resistance of a large (R/λd > 10 2 ) axisymmetric body (disk, sphere) in a supersonic flow of rarefield partially ionized gas

  14. Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects

    International Nuclear Information System (INIS)

    Kumar, Virendra; Singhal, Gaurav; Subbarao, P.M.V.

    2013-01-01

    The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value

  15. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  16. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  17. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  18. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    Science.gov (United States)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  19. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  20. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  1. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin [DAEWOO E and C, Institute of Construction Technology, 60 Songjook-dong, Jangan-gu, Suwon, Kyonggi 440-210 (Korea, Republic of)]. E-mail: jsj@dwconst.co.kr; Chung, Chul-Hun [Department of Civil and Environmental Engineering, Dankook University, San 8, Hannam-dong, Youngsan-gu, Seoul 140-714 (Korea, Republic of)

    2005-12-15

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results.

  2. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Chung, Chul-Hun

    2005-01-01

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results

  3. Critical effects of downstream boundary conditions on vortex breakdown

    Science.gov (United States)

    Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.

  4. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  5. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  6. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  7. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  8. Axisymmetric MHD stability of sharp-boundary Tokamaks

    International Nuclear Information System (INIS)

    Rebhan, E.; Salat, A.

    1976-09-01

    For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de

  9. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  10. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  11. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  12. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  13. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Jet

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2010-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan has been completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 ft. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a three dimensional (3-D) code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  14. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Aircraft

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2009-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan was completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 feet. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a 3-D code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  15. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows

    Science.gov (United States)

    Zhang, Rui-rui; Huang, Wei; Yan, Li; Li, Lang-quan; Li, Shi-bin; Moradi, R.

    2018-05-01

    To design a kind of aerospace vehicle, the drag and heat flux reduction are the most important factors. In the current study, the counterflowing jet, one of the effective drag and heat flux reduction concepts, is investigated numerically by the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes equations coupled with the SST k-ω turbulence model. An axisymmetric numerical simulation mode of the counterflowing jet on the supersonic vehicle nose-tip is established, and the numerical method employed is validated by the experimental schlieren images and experimental data in the open literature. A pulsed counterflowing jet scheme is proposed, and it uses a sinusoidal function to control the total and static pressures of the counterflowing jet. The obtained results show that the long penetration mode does not exist in the whole turnaround, even in a relatively small range of the jet total and static pressures, and this is different from the phenomenon obtained under the steady condition in the open literature. At the same time, it is observed that the variation of the physical parameters, such as the Stanton number induced by the pulsed jet, has an obvious periodicity and hysteresis phenomenon.

  16. Magnetohydrodynamic helical structures in nominally axisymmetric low-shear tokamak plasmas

    International Nuclear Information System (INIS)

    Graves, J P; Brunetti, D; Cooper, W A; Reimerdes, H; Halpern, F; Pochelon, A; Sauter, O; Chapman, I T

    2013-01-01

    The primary goal of hybrid scenarios in tokamaks is to enable high performance operation with large plasma currents whilst avoiding MHD instabilities. However, if a local minimum in the safety factor is allowed to approach unity, the energy required to overcome stabilizing magnetic field line bending is very small, and as a consequence, large MHD structures can be created, with typically dominant m = n = 1 helical component. If there is no exact q = 1 rational surface the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and non-linear ideal MHD stability calculations which evaluate the departure from an axisymmetric plasma state, and also equilibrium calculations using a 3D equilibrium code. While these approaches agree favourably for simulations of ITER relevant hybrid regimes in this paper, the relevance of the ideal MHD model itself is tested through empirical examination of helical states in MAST and TCV. While long lived modes in MAST do not have island structures, some of the continuous mode oscillations exhibited in high elongation experiments in TCV indicate that resistivity may play a role in further weakening the ability of the tokamak core to remain axisymmetric. The simulations and experiments consistently highlight the need to control the safety factor in hybrid scenarios planned for future fusion grade tokamaks such as ITER. (paper)

  17. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  18. A new periodic imperfect quasi axisymmetric shell element

    International Nuclear Information System (INIS)

    Combescure, A.; Garuti, G.

    1983-08-01

    The object of this paper is to give the formulation and the validation of a ''quasi axisymmetric'' shell element: the main idea is to develop the theory of an imperfect quasi axisymmetric shell element. The imperfection is a variation of the circumferential radius of curvature rsub(theta). The equations are obtained by transporting the equilibrium equations from the actual geometry onto the theoretical axisymmetric (rsub(theta)=r 0 geometry. It is shown that the main hypothesis convenient to perform simply this transformation is that the membrane strains associated with that variation of geometry are less than 1% (that is always the case if you suppose that the imperfect structure is obtained from the perfect one by an inextensional displacement field). The formulation of the element is given in the general case. The rigidity matrices, are given in the particular case in which the imperfection has a component on a single Fourier harmonic. The comparison of theoretical and computed, 3D and quasi axisymmetric, solution or a very simple case shows the influence of the number of the Fourier harmonics chosen on the response of the structure. The influence of the initial imperfections on the natural frequency are studied with element and compared with 3D calculations. Comparison of 3D, quasi axisymmetric, and analytical buckling loads are given and explained. This element gives a very efficient tool for the calculation of thin shells of revolution (which are always imperfect) and especially unables easy parametric study of the variation of the buckling load and eigen frequencies with the amplitude and shapes of non axisymmetric imperfections

  19. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  20. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  1. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  2. Advanced supersonic propulsion study, phase 3

    Science.gov (United States)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  3. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  4. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  5. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  6. Store Separations From a Supersonic Cone

    National Research Council Canada - National Science Library

    Simko, Richard J

    2006-01-01

    ... analyses of supersonic store separations. Also included in this research is a study of supersonic base pressure profiles, near-wake velocity profiles, wind tunnel shock interactions and force/moment studies on a conical store and parent vehicle...

  7. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  8. A fundamental study of the supersonic microjet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, M. S.; Kim, H. S.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  9. A fundamental study of the supersonic microjet

    International Nuclear Information System (INIS)

    Jeong, M. S.; Kim, H. S.; Kim, H. D.

    2001-01-01

    Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under-and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results; two microjets are discussed in terms of total pressure, jet decay and supersonic core length

  10. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  11. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    Science.gov (United States)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  12. Flowfield Behavior of Supersonic Impinging Jets

    Science.gov (United States)

    Iyer, K. G.; Alvi, F. S.

    1998-11-01

    A detailed study is being conducted which examines the behavior of normally impinging, supersonic jets, issuing from axisymmetric a Mach 1.5 C-D and a sonic nozzle. Our goal is to understand the physics of this flowfield (commonly observed in STOVL aircraft) and its influence on the acoustic and aerodynamic loading on the ground plane and the airframe. The airframe is simulated by a circular disc ('lift' plate) with an annular hole from which the jet is issued. Tests are carried out for a wide range of pressure ratios and the ground plane distance is varied from 1.5 to 60 nozzle diameters. Flowfield measurements include Particle Image Velocimetry (PIV) and schlieren/shadowgraph visualization. Surface measurements on the ground and lift plates include mean and unsteady surface pressure distributions and the surface streamline visualization. Near-field acoustic measurements using a microphone are also obtained. For certain cases, the PIV measurements -- first of their kind, to our knowledge -- clearly show the presence of large-scale coherent turbulent structures which, upon jet impingement, propagate into the resulting wall jet. These structures are believed to generate very high unsteady pressure loads on the ground plane thus leading to ground erosion. They are also suspected to be the source of acoustic waves which lead to a feedback loop causing violent oscillations of the primary jet and can result in increased acoustic loading and subsequent damage to the aircraft. As a result of this detailed study over a wide parametric space, we hope to gain a much better understanding of the physical mechanisms governing this complex flow.

  13. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  15. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    Science.gov (United States)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  16. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  17. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  18. Radiating axisymmetric metric

    International Nuclear Information System (INIS)

    Patel, M.D.

    1978-01-01

    The Einstein's field equations for an enveloping radiating zone surrounding rotating axisymmetric collapsing source are studied. The solution has singularity along the axis of rotation. It is proved that on null hyper surface u = 0, the solution of the field equation for the radiating zone match with solution of axially symmetric vacuum field equations obtained by the author. Landau Lifshitz complex is used to obtain conserved total mass. (author)

  19. Relativistic equations for axisymmetric gravitational collapse with escaping neutrinos

    International Nuclear Information System (INIS)

    Patel, M.D.

    1979-01-01

    Einstein's field equations for the dynamics of a self-gravitating axially symmetric source of a perfect fluid, presented by Chandrasekhar and Friedman (1964), are modified to allow emission of neutrinos. The boundary conditions at the outer surface of the radiating axisymmetric source are obtained by matching to an exterior solution of an axisymmetric rotating, radiating core. (auth.)

  20. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  1. A variational principle for the axisymmetric stability of rotating relativistic stars

    International Nuclear Information System (INIS)

    Prabhu, Kartik; Wald, Robert M; Schiffrin, Joshua S

    2016-01-01

    It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar–Friedman–Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh–Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes. (paper)

  2. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  3. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  4. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  5. Experimental investigation about the effect of non-axisymmetric wake impact on a low speed axial compressor

    Science.gov (United States)

    Liu, Jianyong; Lu, Yajun; Li, Zhiping

    2010-05-01

    Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.

  6. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    International Nuclear Information System (INIS)

    Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.

    2008-01-01

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  7. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  8. Potential formation in axisymmetrized tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Ichimura, M.; Inutake, M.

    1985-01-01

    The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)

  9. Status of the variable diameter centerbody inlet program

    Science.gov (United States)

    Saunders, John D.; Linne, A. A.

    1992-01-01

    The Variable Diameter Centerbody (VDC) inlet is an ongoing research program at LeRC. The VDC inlet is a mixed compression, axisymmetric inlet that has potential application on the next generation supersonic transport. This inlet was identified as one of the most promising axisymmetric concepts for supersonic cruise aircraft during the SCAR program in the late 1970's. Some of its features include high recovery, low bleed, good angle-of-attack tolerance, and excellent engine airflow matching. These features were demonstrated at LeRC in the past by the design and testing of fixed hardware models. A current test program in the LeRC 10' x 10' Supersonic Wind Tunnel (SWT) will attempt to duplicate these features on model hardware that actually incorporates a flight-like variable diameter centerbody mechanism.

  10. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  11. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  12. An evaluation of supersonic STOVL technology

    Science.gov (United States)

    Kidwell, G. H., Jr.; Lampkin, B. A.

    1983-01-01

    The purpose of this paper is to document the status of supersonic STOVL aircraft technology. The major focus is the presentation of summaries of pertinent aspects of supersonic STOVL technology, such as justification for STOVL aircraft, current designs and their recognized areas of uncertainty, recent research programs, current activities, plans, etc. The remainder of the paper is an evaluation of the performance differential between a current supersonic STOVL design and three production (or near production) fighters, one of them the AV-8B. The results indicate that there is not a large range difference between a STOL aircraft and a STOVL aircraft, and that other aspects of performance, such as field performance or combat maneuverability, may more than make up for this decrement.

  13. Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-01-01

    We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)

  14. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  15. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei

    2017-04-01

    Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.

  16. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  17. The Trojan. [supersonic transport

    Science.gov (United States)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  18. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  19. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  20. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  1. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  2. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  3. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  4. 75 FR 8427 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2010-02-24

    ... entitled, ``State of the Art of Supersonics Aircraft Technology--What has progressed in science since 1973... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Civil Supersonic Aircraft Panel Discussion AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation...

  5. Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow

    International Nuclear Information System (INIS)

    Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.

    1988-01-01

    Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed

  6. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  7. Axisymmetric vibrations of thin shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)

  8. Options for axisymmetric operation of MFTF-B

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Devoto, R.S.; Thomassen, K.I.

    1986-01-01

    The flexibility of MFTF-B for axisymmetric experiments has been investigated. Interhcanging the axicell coils and increasing their separation results in an axisymmetric plug cell with 12:1 and 6:1 inner and outer mirror ratios, respectively. For axisymmetric operation, the sloshing-ion neutral beams, ECRH gyrotrons, and the pumping system would be moved to the axicell. Stabilization by E-rings could be explored in this configuration. With the addition of octopole magnets, off-axis multipole stabilization could also be tested. Operating points for octopole and E-ring-stabilized configurations with properties similar to those of the quadrupole MFTF-B, namely T/sub ic/ = 10 - 15 keV and n/sub c/ approx. = 3 x 10 13 cm -3 , have been obtained. Because of the negligible radial transport of central-cell ions, the required neutral-beam power in the central cell has been dramatically reduced. In addition, because MHD stabilization is achieved by off-axis hot electrons in both cases, much lower barrier beta is possible, which aids in reducing the barrier ECRH power. Total ECRH power in the end cell is projected to be approx. =1 MW. Possible operating points for both octopole and E-ring configurations are described along with the stability considerations involved

  9. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    International Nuclear Information System (INIS)

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  10. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  11. Edge Plasma Response to Non-Axisymmetric Fields in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M.; Lao, L. L.; Buttery, R. J.; Evans, T. E.; Snyder, P. B.; Wade, M.R., E-mail: ferraro@fusion.gat.com [General Atomics, San Diego (United States); Moyer, R. A.; Orlov, D. M. [University of California San Diego, La Jolla (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, Livermore (United States)

    2012-09-15

    Full text: The application of non-axisymmetric fields is found to have significant effects on the transport and stability of H-mode tokamak plasmas. These effects include dramatic changes in rotation and particle transport, and may lead to the partial or complete suppression of edge-localized modes (ELMs) under some circumstances. The physical mechanism underlying these effects is presently not well understood, in large part because the response of the plasma to non- axisymmetric fields is significant and complex. Here, recent advances in modeling the plasma response to non-axisymmetric fields are discussed. Calculations using a resistive two-fluid model in diverted toroidal geometry confirm the special role of the perpendicular electron velocity in suppressing the formation of islands in the plasma. The possibility that islands form near the top of the pedestal, where the zero-crossing of the perpendicular electron velocity may coincide with a mode-rational surface, is explored, and the implications for ELM suppression are discussed. Modeling results are compared with empirical data. It is shown that numerical modeling is successful in reproducing some experimentally observed effects of applied non-axisymmetric fields on the edge temperature and density profiles. The numerical model self-consistently includes the plasma, separatrix, and scrape-off layer. Rotation and diamagnetic effects are also included self-consistently. Solutions are calculated using the M3D-C1 extended-MHD code. (and others)

  12. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  13. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  14. Minimal inductance for axisymmetric transmission lines with radially dependent anode-cathode gap

    Directory of Open Access Journals (Sweden)

    Eduardo M. Waisman

    2009-09-01

    Full Text Available We extend the variational calculus technique for inductance minimization of constant gap axisymmetric transmission lines (TL, introduced by Hurricane [J. Appl. Phys. 95, 4503 (2004JAPIAU0021-897910.1063/1.1687986], to the case in which the anode-cathode gap is a linear function of the midgap radius. The full analytic optimal midgap solution curve z(r yielding minimum inductance is obtained in terms of a single parameter ρ_{0}, determined numerically by imposing that z(r goes through prescribed end points. The radius of curvature ρ(r of the optimal curve is obtained everywhere the function is defined, even outside of the end point range, and it is shown that a convenient choice is ρ_{0}=ρ(0. The value of the transmission line inductance is calculated by 1D numerical quadrature. A simple numerical technique is introduced for TL with nonlinear radial gap dependence.

  15. Study of Pressure Oscillations in Supersonic Parachute

    Science.gov (United States)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  16. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  17. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  18. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... awareness of the continuing technological advancements in supersonic aircraft technology aimed at reducing... Wednesday, April 21, 2010, as part of the joint meeting of the 159th Acoustical Society of America and NOISE... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA...

  19. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  20. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  1. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  2. Computational study of axisymmetric modes in noncircular cross section tokamaks

    International Nuclear Information System (INIS)

    Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.

    1976-09-01

    A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth

  3. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet ─ results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    I.S.A. Isaksen

    2007-10-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to

  4. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2 in 2050, with an uncertainty between 9 and 29 mWmargin-left: -1.3em; margin-right: .5em; vertical-align: -15%; font-size: .7em; color: #000;">m2. A reduced supersonic cruise

  5. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  6. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  7. Axisymmetric magnetohydrodynamic equilibria in local polar coordinates

    International Nuclear Information System (INIS)

    Clemente, R.A.

    1982-01-01

    The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion

  8. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  9. Supersonic cruise vehicle research/business jet

    Science.gov (United States)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  10. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  11. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  12. Microfluidic step-emulsification in axisymmetric geometry.

    Science.gov (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  13. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  14. Axisymmetric solution with charge in general relativity

    International Nuclear Information System (INIS)

    Arutyunyan, G.G.; Papoyan, V.V.

    1989-01-01

    The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs

  15. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    International Nuclear Information System (INIS)

    Nezami, M; Gholami, B

    2016-01-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge–Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared. (paper)

  16. Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Seoul 151-742 (Korea, Republic of); Brizard, A. J. [Department of Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States); Hahm, T. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-12-15

    Compact formulas for bounce and transit orbit averaging of the fluctuation-amplitude eikonal factor in axisymmetric tokamak geometry, which is frequently encountered in bounce-gyrokinetic description of microturbulence, are given in terms of the Jacobi elliptic functions and elliptic integrals. These formulas are readily applicable to the calculation of the neoclassical susceptibility in the framework of modern bounce-gyrokinetic theory. In the long-wavelength limit for axisymmetric electrostatic perturbations, we recover the expression for the Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)] accurately.

  17. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  18. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  19. Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave

    International Nuclear Information System (INIS)

    Shooshtari, S.H. Rajaee; Shahsavand, A.

    2017-01-01

    Natural gases provide around a quarter of energy consumptions around the globe. Supersonic separators (3S) play multifaceted role in natural gas industry processing, especially for water and hydrocarbon dew point corrections. These states of the art devices have minimum energy requirement and favorable process economy compared to conventional facilities. Their relatively large pressure drops may limit their application in some situations. To maximize the energy recovery of the dew point correction facility, the pressure loss across the 3S unit should be minimized. The optimal structure of 3s unit (including shock wave location and diffuser angle) is selected using simultaneous combination of normal shock occurrence and condensation in the presence of nucleation and growth processes. The condense-free gas enters the non-isentropic normal shock wave. The simulation results indicate that the normal shock location, pressure recovery coefficient and onset position strongly vary up to a certain diffuser angle (β = 8°) with the maximum pressure recovery of 0.88 which leads to minimum potential energy loss. Computational fluid dynamic simulations show that separation of boundary layer does not happen for the computed optimal value of β and it is essentially constant when the inlet gas temperatures and pressures vary over a relatively broad range. - Highlights: • Supersonic separators have found numerous applications in oil and gas industries. • Maximum pressure recovery is crucial for such units to maximize energy efficiency. • Simultaneous condensation and shock wave occurrence are studied for the first time. • Diverging nozzle angle of 8° can provide maximum pressure recovery of 0.88. • The optimal diffuser angle remains constant over a broad range of inlet conditions.

  20. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  1. Analysis of axisymmetric shells subjected to asymmetric loads using field consistent shear flexible curved element

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)

    1989-02-01

    A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.

  2. System design overview of JAXA small supersonic experimental airplane (NEXST-1)

    OpenAIRE

    Takami, Hikaru; 高見 光

    2007-01-01

    The system of JAXA small supersonic experimental airplane (NEXST-1: National EXperimental Supersonic Transport-1) has been briefly explained. Some design problems that the designers have encountered have also been briefly explained.

  3. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  4. Effect of compressibility on the global stability of axisymmetric wake flows

    OpenAIRE

    Meliga , Philippe; Sipp , D.; Chomaz , Jean-Marc

    2010-01-01

    International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence s...

  5. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  6. Supersonic laser spray of aluminium alloy on a ceramic substrate

    International Nuclear Information System (INIS)

    Riveiro, A.; Lusquinos, F.; Comesana, R.; Quintero, F.; Pou, J.

    2007-01-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry

  7. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  8. Numerical simulation of gap effect in supersonic flows

    Directory of Open Access Journals (Sweden)

    Song Mo

    2014-01-01

    Full Text Available The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.

  9. Growing quasi-modes in dynamics of supersonic collapse

    International Nuclear Information System (INIS)

    Malkin, V.M.; Khudik, V.N.

    1989-01-01

    The hypothesis of globally stable self-similar regimes existence for supersonic Langmuir collapse plays a significant role in the attempts to construct a theory of strong Langmuir turbulence. A possibility for destruction of the stable against infinitely small perturbations self-similar regime of supersonic collapse by growing quasi-modes is demonstrated via the numerical solution of Cauchi problem for Zakharov equations. The quantitative criterion for the destruction of self-similar regimes is formulated. 9 refs.; 5 figs

  10. Gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Amirav, Aviv; Gordin, Alexander; Poliak, Marina; Fialkov, Alexander B

    2008-02-01

    Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation. (c) 2008 John Wiley & Sons, Ltd.

  11. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  12. Trends in Supersonic Separator design development

    Directory of Open Access Journals (Sweden)

    Altam Rami Ali

    2017-01-01

    Full Text Available Supersonic separator is a new technology with applications in hydrocarbon dew pointing and gas dehydration which can be used to condensate and separate water and heavy hydrocarbons from natural gas. Many researchers have studied the design, performance and efficiency, economic viability, and industrial applications of these separators. The purpose of this paper is to succinctly review recent progress in the design and application of supersonic separators and their limitations. This review has found that while several aspects of this study are well studied, considerable gaps within the published literature still exists in the areas such as turndown flexibility which is a critical requirement to cater for variation of mass flow and since almost all the available designs have a fixed geometry and therefore cannot be considered suitable for variable mass flow rate, which is a common situation in actual site. Hence, the focus needs to be more on designing a flexible geometry that can maintain a high separation efficiency regardless of inlet conditions and mass flow variations. This review is focusing only on the design and application of the supersonic separators without going through the experimental facilities, industrial platform, pilot plants as well as theoretical, analytical, and numerical modelling.

  13. Axisymmetric instability in a noncircular tokamak

    International Nuclear Information System (INIS)

    Lipschultz, B.

    1979-10-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes - the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria

  14. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  15. On the axisymmetric Lewis metric

    International Nuclear Information System (INIS)

    Gariel, J.; Marcilhacy, G.

    2001-03-01

    We obtain the general solution of the axisymmetric stationary vacuum spacetime of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that the solution is related to an arbitrary harmonic function. Formally, these solutions are the same as for the corresponding cylindrically symmetric case, and can be classified in a similar way. Furthermore, the interpretation, in the cylindrically symmetric system, of the field equations as decribing the motion of a classical particle in a central force field is still valid. (author)

  16. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  17. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  18. Integrable motion of a vortex dipole in an axisymmetric flow

    International Nuclear Information System (INIS)

    Sutyrin, G.G.; Perrot, X.; Carton, X.

    2008-01-01

    The evolution of a self-propelling vortex dipole, embedded in an external nondivergent flow with constant potential vorticity, is studied in an equivalent-barotropic model commonly used in geophysical, astrophysical and plasma studies. In addition to the conservation of the Hamiltonian for an arbitrary point vortex dipole, it is found that the angular momentum is also conserved when the external flow is axisymmetric. This reduces the original four degrees of freedom to only two, so that the solution is expressed in quadratures. In particular, the scattering of antisymmetric dipoles approaching from the infinity is analyzed in the presence of an axisymmetric oceanic flow typical for the vicinity of isolated seamounts

  19. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  20. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  1. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  2. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  3. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  4. Active control of supersonic impingement tones using steady and pulsed microjets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.J.; Anaswamy, A.M. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Lou, H. [Department of Mechanical Engineering, FAMU - FSU, College of Engineering, Tallahassee, FL (United States); Alvi, F.S.

    2006-12-15

    In recent years, it has been demonstrated that direct microjet injection into the shear layer of the main jet disrupts the feedback loop inherent in high speed impinging jet flows, thereby significantly reducing the adverse effects. The amount of noise reduced by microjet actuation is known to be dependent on nozzle operating conditions. In this paper, two active control strategies using microjets are suggested to maintain a uniform, reliable, and optimal reduction of these tones over the entire range of operating conditions. In the first method, a quasi-closed loop control strategy is proposed using steady microjet injection and the proper orthogonal decomposition (POD) algorithm. The most energetic spatial mode of the unsteady pressure along the nozzle diameter is captured using the POD, which in turn is used to determine the distribution of microjet intensity along the nozzle exit. Preliminary experimental results from a STOVL supersonic jet facility at Mach 1.5 show that the quasi-closed loop control strategy, in some cases, provides an additional 8-10 dB reduction compared to axisymmetric injection at the desired operating conditions. The second method consists of a pulsed microjet injection, motivated by the need to further improve the noise suppression. It was observed that the pulsed microjet was able to bring about the same noise reduction as steady injection using approximately 40% of the corresponding mass flow rate of the steady microjet case. Moreover, as the duty cycle increased, the performance of pulsed injection was further enhanced and was observed to completely eliminate the impinging tones at all operating conditions. (orig.)

  5. Axisymmetric instability in a noncircular tokamak: experiment and theory

    International Nuclear Information System (INIS)

    Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.

    1979-09-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10 3 poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements

  6. Characterization of supersonic radiation diffusion waves

    International Nuclear Information System (INIS)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark

    2015-01-01

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. - Highlights: • The supersonic, diffusion of x-rays through sub-solid density materials is studied. • The data are more diffusive and of higher velocity than any prior work. • Scaled 1D analytic diffusion models reproduce the heat front evolution. • Refined radiation transport approximations are tested in numerical simulations. • Simulations match the data if material properties are adjusted within uncertainties

  7. Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet

    Science.gov (United States)

    Magstadt, Andrew S.

    Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal

  8. Supersonic expansion of argon into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Habets, A H.M.

    1977-01-21

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements.

  9. Supersonic expansion of argon into vacuum

    International Nuclear Information System (INIS)

    Habets, A.H.M.

    1977-01-01

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements

  10. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  11. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  12. Feedback stabilization of axisymmetric modes in tokamaks

    International Nuclear Information System (INIS)

    Jardin, S.C.; Larrabee, D.A.

    1982-01-01

    Noncircular tokamak plasmas can be unstable to ideal MHD axisymmetric instabilities. Passive conductors with finite resistivity will at best slow down these instabilities to the resistive (L/R) time of the conductors. An active feedback system far from the plasma which responds on this resistive time can stabilize the system provided its mutual inductance with the passive coils is small enough

  13. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.

    1977-03-01

    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  14. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  15. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  16. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  17. ASCOT-1, Thermohydraulics of Axisymmetric PWR Core with Homogeneous Flow During LOCA

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: ASCOT-1 is used to analyze the thermo-hydraulic behaviour in a PWR core during a loss-of-coolant accident. 2 - Method of solution: The core is assumed to be axisymmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of fuel in the annular regions into which the core is divided, the heat conduction equations are solved by an explicit method with averaged flow conditions. 3 - Restrictions on the complexity of the problem: Axisymmetric two-dimensional homogeneous flows

  18. Axisymmetrical separator for separating particulate matter from a fluid carrying medium

    Science.gov (United States)

    Linhardt, Hans D.

    1984-09-04

    A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.

  19. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  20. Experimental studies on an axisymmetric divertor in DIVA(JFT-2a)

    International Nuclear Information System (INIS)

    Yamamoto, Shin

    1979-03-01

    DIVA(JFT-2a) is the first tokamak with an axisymmetric divertor in the world. Objectives of the experiments were i) Plasma production and confinement in a tokamak with a separatrix magnetic surface, and ii) divertor effects on radiation loss and plasma confinement. The results so far are as follows: i) The equilibrium with a separatrix magnetic surface is stable during the discharge. ii) There is an ergodic region near the separatrix magnetic surface due to non-axisymmetric magnetic perturbations. iii) The divertor reduces radiation loss and increases energy confinement time. iv) The divertor does not affect the transport process in the main plasma. (author)

  1. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  2. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  3. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  4. Heat, mass and force flows in supersonic shockwave interaction

    Science.gov (United States)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  5. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  6. Influence of Axisymmetrically Deformed Explosions in Type II Supernovae on the Reproduction of the Solar System Abundances

    Science.gov (United States)

    Nagataki, Shigehiro

    1999-01-01

    We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.

  7. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  8. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  9. Experimental and numerical research on cavitating flows around axisymmetric bodies

    International Nuclear Information System (INIS)

    Haipeng, Wei; Song, Fu; Qin, Wu; Biao, Huang; Guoyu, Wang

    2014-01-01

    We investigated the cavitating flows around different axisymmetric bodies based on experiments and numerical simulation. In the numerical simulation, the multiphase Reynolds averaged Navier Stokes equations (RANS) were solved via the commercial computational fluid dynamics code CFX. The modified k-wSST turbulence model was used along with the transport equation-based cavitation model. In the experiments, a high-speed video technique was used to observe the unsteady cavitating flow patterns, and the dynamic force measurement system was used to measure the hydrodynamics of the axisymmetric bodies under different cavitation conditions. Results are shown for the hemisphere bodies, conical bodies and blunt bodies. Reasonable agreements were obtained between the computational and experimental results. The results show that for the hemispherical body, the cavity consists of quasi-steady transparent region and unsteady foggy water-vapor mixture region, which contains small-scale vortices and is dominated by bubble clusters, causing irregular disturbances at the cavity interfaces. The curvature at the front of the conical body is larger, resulting in that the flow separates at the shoulder of the axisymmetric body. The cavity stretches downstream and reaches to a fixed cavity length and shape. For blunt bodies, the incipient cavitation number is larger than that for the hemispherical body. A large cloud cavity is formed at the shoulder of the blunt body in the cores of vortices in high shear separation regions and the re-entrant jet does not significantly interact with the cavity interface when it moves upstream. As to the dynamic characteristics of unsteady cavitating flows around the axisymmetric bodies, the pulsation frequency for the hemispherical body is larger than that for the blunt body. For the hemispherical body, the pulsation is mainly caused by the high-frequency, small-scale shedding at the rear end of the cavity, while for the blunt body, the main factor for

  10. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  11. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer.

  12. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo

    2014-01-01

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer

  13. Axisymmetric free convection boundary-layer flow past slender bodies

    NARCIS (Netherlands)

    Kuiken, H.K.

    1968-01-01

    Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal

  14. Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations

    OpenAIRE

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2014-01-01

    International audience; Aims. Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generat...

  15. Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries

    International Nuclear Information System (INIS)

    Voinov, O.V.

    2004-01-01

    The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru

  16. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  17. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2004-11-26

    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  18. Decay of passive scalar fluctuations in axisymmetric turbulence

    Science.gov (United States)

    Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio

    2016-11-01

    Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.

  19. Static axisymmetric discs and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, A.; Gregory, R.; Stewart, J.M.

    1987-09-08

    Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.

  20. Jet arrays in supersonic crossflow — An experimental study

    Science.gov (United States)

    Ali, Mohd Yousuf; Alvi, Farrukh

    2015-12-01

    Jet injection into a supersonic crossflow is a classical fluid dynamics problem with many engineering applications. Several experimental and numerical studies have been taken up to analyze the interaction of a single jet with the incoming crossflow. However, there is a dearth of the literature on the interaction of multiple jets with one another and with the crossflow. Jets in a supersonic crossflow are known to produce a three-dimensional bow-shock structure due to the blockage of the flow. Multiple jets in a streamwise linear array interact with both one another and the incoming supersonic flow. In this paper, a parametric study is carried out to analyze the effect of microjet (sub-mm diameter) injection in a Mach 1.5 supersonic crossflow using flow visualization and velocity field measurements. The variation of the microjet orifice diameter and spacing within an array is used to study the three-dimensional nature of the flow field around the jets. The strength of the microjet-generated shock, scaling of the shock wave angle with the momentum coefficient, averaged streamwise, spanwise, and cross-stream velocity fields, and microjet array trajectories are detailed in the paper. It was found that shock angles of the microjet-generated shocks scale with the momentum coefficient for the three actuator configurations tested. As the microjets issue in the crossflow, a pair of longitudinal counter-rotating vortices (CVPs) are formed. The vortex pairs remain coherent for arrays with larger spanwise spacing between the micro-orifices and exhibit significant three-dimensionality similar to that of a single jet in crossflow. As the spacing between the jets is reduced, the CVPs merge resulting in a more two-dimensional flow field. The bow shock resulting from microjet injection also becomes nearly two-dimensional as the spacing between the micro-orifices is reduced. Trajectory estimations yield that microjets in an array have similar penetration as single jets. A notional

  1. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  2. New methods for analyzing transport phenomena in supersonic ejectors

    International Nuclear Information System (INIS)

    Lamberts, Olivier; Chatelain, Philippe; Bartosiewicz, Yann

    2017-01-01

    Highlights: • Simulation of a supersonic ejector with the open source software for CFD OpenFOAM. • Validation of the numerical tool based on flow structures obtained by schlieren. • Application of the momentum and energy tube analysis tools to a supersonic ejector. • Extension of this framework to exergy to construct exergy transport tubes. • Quantification of local transfers and losses of exergy within the ejector. - Abstract: This work aims at providing novel insights into the quantification and the location of the transfers and the irreversibilities within supersonic ejectors, and their connection with the entrainment. In this study, we propose two different and complementary approaches. First of all, recent analysis tools based on momentum and energy tubes (Meyers and Meneveau (2013)) are extended to the present compressible flow context and applied to the mean-flow structure of turbulent flow within the ejector. Furthermore, the transport equation for the mean-flow total exergy is derived and exergy transport tubes are proposed as a tool for the investigation of transport phenomena within supersonic ejectors. In addition to this topological approach, an analysis based on classical stream tubes is performed in order to quantitatively investigate transfers between the primary and the secondary streams all along the ejector. Finally, the present work identifies the location of exergy losses and their origins. Throughout this analysis, new local and cumulative parameters related to transfers and irreversibilities are introduced. The proposed methodology sheds light on the complex phenomena at play and may serve as a basis for the analysis of transport phenomena within supersonic ejectors. For the ejector under consideration, although global transfers are more important in on-design conditions, it is shown that the net gain in exergy of the secondary stream is maximum for a value of the back pressure that is close to the critical back pressure, as

  3. CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan)

    2015-09-20

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.

  4. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  5. Multitude scaling laws in axisymmetric turbulent wake

    Science.gov (United States)

    Layek, G. C.; Sunita

    2018-03-01

    We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.

  6. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  7. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  8. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    Science.gov (United States)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  9. Ideal magnetohydrodynamic stability of axisymmetric mirrors

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.

    1982-01-01

    The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases

  10. Reversed straining in axisymmetric compression test

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria

    2005-01-01

    A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....

  11. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...

  12. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  13. Advanced supersonic technology and its implications for the future

    Science.gov (United States)

    Driver, C.

    1979-01-01

    A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.

  14. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  15. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  16. Numerical description of cavitation on axisymmetric bodies

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.

    1988-01-01

    This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.

  17. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    Science.gov (United States)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  18. The shape of an axisymmetric bubble in uniform motion

    Indian Academy of Sciences (India)

    Axisymmetric bubble shapes; non-linear free boundary problems; surface singularity methods in potential flows. PACS Nos 47.55.Dz; 47.11.+j; 47.15.Hg. 1. .... should be fast and reasonably accurate, (c) the iterative procedure for determining .... curve while K2 is the other associated principal curvature; K2 can be deduced.

  19. Modelling axisymmetric cod-ends made of different mesh types

    DEFF Research Database (Denmark)

    Priour, D.; Herrmann, Bent; O'Neill, F.G.

    2009-01-01

    the selectivity process has become more important. This paper presents a model of the deformation of an axisymmetric cod-end. The twine tension and the catch pressure acting on the knots of each mesh along the cod-end profile are calculated, and a Newton-Raphson scheme is used to estimate the equilibrium position...

  20. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    Science.gov (United States)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  1. Elastoplastic buckling of quasi axisymmetric shells of revolution

    International Nuclear Information System (INIS)

    Combescure, A.

    1987-01-01

    This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)

  2. An axisymmetric gravitational collapse code

    Energy Technology Data Exchange (ETDEWEB)

    Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-05-07

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.

  3. An axisymmetric gravitational collapse code

    International Nuclear Information System (INIS)

    Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans

    2003-01-01

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations

  4. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  5. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  6. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  7. Fast axisymmetric stability calculations using variational techniques

    International Nuclear Information System (INIS)

    Haney, S.W., Pearlstein, L.D.; Bulmer, R.H.

    1991-01-01

    A procedure for treating the axisymmetric (n = 0) stability of diverted plasmas in the presence of arbitrary, but toroidally symmetric, structures and active feedback circuits has been developed and implemented as a module in the TEQ free-boundary equilibrium code. This procedure is based on a variational solution of the ideal MHD normal mode equations. Inertia is ordered small but provides a constraint to allow the calculation of the poloidal and toroidal components of the plasma displacement. Feedback based on flux loop measurements is handled by introducing an adjoint system into the variational principle. Approximately 200 trial functions for the radial component of the plasma displacement and 200 magnetic surfaces are employed to obtain highly accurate estimates of the passive growth rate and the non-rigid eigenfunction. Nevertheless, the method is extremely fast: typically 10-20 sec of Cray 2 CPU time are required to analyze a realistic tokamak configuration. This speed, along with the direct coupling to the MHD equilibrium solver, allows interactive investigations of tokamak axisymmetric stability. Benchmarks with TSC and GATO are presented along with parameter scans for ITER and BPX. The results emphasize the importance of considering non-rigid mode effects which for ITER, yield higher nominal growth rates (non-rigid: 45 Hz, rigid: 25 Hz) and atypical internal inductance dependence (smaller l i more unstable)

  8. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  9. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  10. Vortical motion in the head of an axisymmetric gravity current

    NARCIS (Netherlands)

    Patterson, M.D.; Simpson, J.E.; Dalziel, S.B.; Heijst, van G.J.F.

    2006-01-01

    A series of experiments that examine the initial development of an axisymmetric gravity current have been carried out. The experiments highlight the growth of a ring vortex that dominates the dynamics of the gravity current's early time propagation. In particular, the experiments show three distinct

  11. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  12. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  13. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  14. Analysis of axisymmetric and non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2010-01-01

    Full Text Available artefacts. An elaborate discussion of these artefacts is given by Yenwong-Fai, (Yenwong-Fai, 2008). These artefacts could be simply detected and eliminated from the dispersion plots by program tools.Our algorithm, as it has been implemented, does.... Arthur G. Every and our student Alfred S. Yenwong-Fai participating in the investigation of the non-axisymmetric case of the piezoelectric cylinder vibrations (Shatalov, et al. 2009). I also want to thank Mr. Yuri M. Shatalov who investigated...

  15. Excitation of nonaxisymmetric perturbations by the axisymmetric explosive magnetorotational instability in Keplerian discs

    Science.gov (United States)

    Shtemler, Yu.; Mond, M.; Liverts, E.

    2018-02-01

    The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.

  16. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)

    2015-06-15

    A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

  17. Supersonic particle in a low damped complex plasma under microgravity conditions

    Science.gov (United States)

    Zaehringer, E.; Zhdanov, S.; Schwabe, M.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I.; Thomas, H. M.

    2018-01-01

    We discuss the diagnostics of a complex plasma cloud recorded in experiments performed in the framework of the Ekoplasma project. A supersonic extra particle is used as a probe of the cloud dynamics. A fine-structured Mach cone behind the supersonic particle is observed. We investigate the spatial and temporal development of the Mach cone with a computer based measurement to determine the speed of sound of the particle cloud. Also time and position dependent characteristics of the velocity field are recorded.

  18. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  19. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  20. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....

  1. Advanced nuclear turbojet powerplant characteristics summary for supersonic aircraft

    International Nuclear Information System (INIS)

    Larson, John W.

    1959-01-01

    The estimated powerplant characteristics of an advanced nuclear powerplant intended for use in a nuclear supersonic manned airplane is contained in this report. This nuclear powerplant consists of a 575 MW, high temperature, lithium-cooled, solid fuel element-type reactor coupled to six turbojet engines especially designed for a supersonic nuclear airplane. The lithium coolant passes from the reactor at 2000F directly to the engine radiators without the use of an intermediate heat exchanger. The engines are fitted with burners enabling the thrust produced by the nuclear powerplant to be augmented by the use of chemical fuel for the take-off, transonic acceleration and landing portions of the flight. The powerplant components have been selected for a maximum thrust-to-weight ratio at Mach 3 and 55,000 feet altitude on nuclear heat only operation compromised for net thrust produced with chemical fuel augmentation during the transonic portion of flight. The power plant data presented, therefore, are primarily applicable to an all supersonic mission on nuclear heat alone. The powerplant data presented in this report are an extension of data contained in PWAC-243, 'NJ-14 All-Nuclear Supersonic Bomber Powerplant Characteristics Summary, March 11, 1958', to a higher reactor power. In addition, the engine compressor pressure ratio has been increased to improve transonic thrust characteristics. Weight data are tabulated for the 575 MW powerplant. The engine envelope based on preliminary radiator size estimates is illustrated. A liquid metal system flow schematic and piping data are included. Shield information including reactor shield outline, assumptions, weights, and direct dose pattern at 50 feet is also included. Estimated performance on nuclear heat only operation and nuclear heat plus burning is presented for an envelope of flight conditions.

  2. Base flow and exhaust plume interaction. Part 1 : Experimental study

    NARCIS (Netherlands)

    Schoones, M.M.J.; Bannink, W.J.

    1998-01-01

    An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using

  3. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  4. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  5. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  6. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    Science.gov (United States)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  7. Calculation of rf fields in axisymmetric cavities

    International Nuclear Information System (INIS)

    Iwashita, Y.

    1985-01-01

    A new code, PISCES, has been developed for calculating a complete set of rf electromagnetic modes in an axisymmetric cavity. The finite-element method is used with up to third-order shape functions. Although two components are enough to express these modes, three components are used as unknown variables to take advantage of the symmetry of the element matrix. The unknowns are taken to be either the electric field components or the magnetic field components. The zero-divergence condition will be satisfied by the shape function within each element

  8. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  9. FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM

    Directory of Open Access Journals (Sweden)

    V.A. Sawant

    2017-11-01

    Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor

  10. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  11. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  12. Kr-PLIF for scalar imaging in supersonic flows.

    Science.gov (United States)

    Narayanaswamy, V; Burns, R; Clemens, N T

    2011-11-01

    Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

  13. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  14. Axisymmetric MHD equilibrium solver with bicubic Hermite elements

    International Nuclear Information System (INIS)

    Luetjens, H.; Bondeson, A.; Roy, A.

    1990-05-01

    A numerical code solving axisymmetric magnetohydrodynamic equilibria with rectangular bicubic Hermite elements has been developed. Two test cases are used for checking the convergence rate of the solution. The mapping of the equilibrium quantities into flux coordinates for magnetohydrodynamic stability calculation is performed by a method which preserves the convergence properties of the cubic Hermite elements. Convergence studies show the behaviour of the stability results when the equilibrium mesh is varied. (author) 13 refs., 3 tabs

  15. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  16. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  17. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  18. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  19. Determination of averaged axisymmetric flow surfaces according to results obtained by numerical simulation of flow in turbomachinery

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.

    2012-01-01

    Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia

  20. Application of the Least Squares Method in Axisymmetric Biharmonic Problems

    Directory of Open Access Journals (Sweden)

    Vasyl Chekurin

    2016-01-01

    Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.

  1. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  2. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle

    2012-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.

  3. Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak

    International Nuclear Information System (INIS)

    Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.

    1980-08-01

    A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively

  4. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David O.

    2015-01-01

    Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.

  5. Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2003-01-01

    A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present

  6. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  7. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  8. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available Contours in the CSIR Supersonic Wind Tunnel B Vallabha,b and BW Skewsa Received 17 February 2017, in revised form 23 June 2017 and accepted 25 June 2017 R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 32-41 http... with the Sivells’ nozzle design method and the method of characteristics technique to design the nozzle profiles for the full supersonic Mach number range 𝟏𝟏 ≀ 𝑎𝑎 ≀ 𝟒𝟒.5 of the facility. Automatic computation was used for the profile...

  9. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  10. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Science.gov (United States)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  11. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    International Nuclear Information System (INIS)

    Narevicius, E; Parthey, C G; Libson, A; Narevicius, J; Chavez, I; Even, U; Raizen, M G

    2007-01-01

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 ± 7.7 to 403 ± 16 m s -1 in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules

  12. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.

    Science.gov (United States)

    Peng, Jifeng; Alben, Silas

    2012-03-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.

  13. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer

    International Nuclear Information System (INIS)

    Peng Jifeng; Alben, Silas

    2012-01-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)

  14. On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)

  15. SIGMARZ, Stress Analysis of Axisymmetric or Plane Structures

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: Classic stress analysis program for axisymmetric or plane geometric structures. 2 - Method of solution: The finite element method is used. Input are the finite element nodes, the imposed displacements, the applied forces at the nodes and the volumetric distributed forces. The linear equation system is solved by the Cholesky method. 3 - Restrictions on the complexity of the problem: Maximum number of nodes: 800; Maximum number of elements: 1300; Maximum number of displacements: 300; Maximum band width: 72

  16. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  17. Commercial supersonic flight; the past and the future

    NARCIS (Netherlands)

    Van Moorselaar, M.

    2013-01-01

    Contemporary world is all about going faster than ever before. Various communication technologies allow us to interact and trade almost instantly with the entire world. Computers are faster than ever before. One thing, however, has slowed down, the speed at which we travel. Supersonic travel is no

  18. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  19. Manufacturing of a micro-tungsten carbide electrode using a supersonic-aided electrolysis process

    International Nuclear Information System (INIS)

    Weng, Feng-Tsai; Ho, Chi-Ting

    2008-01-01

    In this study, a novel micromachining technology for fabricating micro parts was described. The original diameter of a tungsten carbide rod was 3 mm, and it was first processed to a rod with a diameter of 50 µm by a precision-grinding process. It could then be machined to the desired diameter by a supersonic-aided electrolysis process. A high-aspect ratio of the micro-tungsten carbide rod was easily obtained by this process. The surface roughness of the sample that was processed by electrolysis with supersonic-aided agitation was compared with that of the sample obtained without agitation. The machined surface of the sample was smooth, and the reason may be that ionized particles in the anode could be removed by supersonic-aided agitation during the electrolysis process. A microelectrode with a tip of approximately 1 µm could be obtained by this process. (technical note)

  20. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  1. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  2. A Compact Quasi-axisymmetric Stellarator Reactor

    International Nuclear Information System (INIS)

    Ku, L.P.

    2003-01-01

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils

  3. Conservation of power of the supersonic acoustic intensity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2014-01-01

    The supersonic intensity is a quantity that represents the net acoustic output that a source couples into the medium; it can be regarded as a spatially low-pass filtered version of the active intensity. This spatial filtering can lead to significant error due to spatial truncation. In this paper,...

  4. Stress analysis in a non axisymmetric loaded reactor pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel

    1995-01-01

    In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)

  5. Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl

    Science.gov (United States)

    Ewing, D.; Pollard, A.

    1996-11-01

    It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.

  6. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  7. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  8. Axisymmetric tandem mirror stabilized by a magnetic limiter

    International Nuclear Information System (INIS)

    Kesner, J.; Post, R.S.; Lane, B.

    1985-06-01

    In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror

  9. Flow in axisymmetric expansion in a catalytic converter

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Meyer, Knud Erik

    The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... Velocimetry (PIV) is a unique method that resolve the entire cross flow. This type of flow is expected to have a fluctuating ‘jet’-like structure from the smaller inlet pipe into the larger converter. The fluctuations of the jet are difficult, if not impossible, to capture with standard time averaged models...

  10. Development and Testing of a New Family of Supersonic Decelerators

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.

    2013-01-01

    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.

  11. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  12. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  13. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)

  14. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)

  15. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    Science.gov (United States)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  16. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  17. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.

  18. Characterization of a medium-sized washer-gun for an axisymmetric mirror

    Science.gov (United States)

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  19. An Opportunity for Hydrogen Fueled Supersonic Airliners

    Directory of Open Access Journals (Sweden)

    Alex Forbes

    2011-02-01

    Full Text Available This paper takes a new look at the prospects for developing supersonic civil airliners, considering global demographics, climate change issues, fuel prices and technological advances. Dramatic changes have occurred in the demographics, economics, and market intensity of the Eastern Hemisphere since the 1990s. Carbon reduction imperatives provide a major incentive to invest in developing hydrogen-fueled airliners. The “point-to-point” air route architecture has proved viable with long range mid-size airliners. With a cruise Mach number of 1.4, a large number of destinations become viable for overland supersonic flight. A conceptual design process is used to estimate cost per seat mile for a range of hydrocarbon and hydrogen fuel costs. An argument based on the ideal shape for minimal wave drag, estimates the drag penalty from using hydrogen. Viable aircraft geometries are shown to exist, that match the theoretical ideal shape, showing that the drag estimate is achievable. Conservative design arguments and market estimates suggest that hydrogen-fueled airliners can achieve seat-mile costs low enough to open a large worldwide market and justify a viable fleet size.

  20. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  1. Commercial Supersonics Technology Project - Status of Airport Noise

    Science.gov (United States)

    Bridges, James

    2016-01-01

    The Commercial Supersonic Technology Project has been developing databases, computational tools, and system models to prepare for a level 1 milestone, the Low Noise Propulsion Tech Challenge, to be delivered Sept 2016. Steps taken to prepare for the final validation test are given, including system analysis, code validation, and risk reduction testing.

  2. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  3. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  4. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  5. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  6. Cosmic ray acceleration in sources of the supersonic turbulence

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1981-01-01

    The mechanism of particle acceleration by the supersonic turbulence is studied. The supersonic turbulence is defined as an ensemble of large- and small-scale plasma motions, in which along with the ranges of smooth parameter variation there are randomly distributed shock wave fronts. Particle interaction with the large-scale turbulence is described by the transfer equation which is true at any relation between the Larmor radius and the transport length. The large-scale turbulence can accelerate particles only due to compressibility effects of the medium. The basic theoretical results concerning turbulence properties in compressed media are presented. Concrete physical conditions and the possibility of acceleration of cosmic rays in the interplanetary space, in the vicinity of suppergiant stars of the O and B class with a great loss of mass and strong stellar winds, in supernova remnants, in the interstellar medium and some extragalactic radio sources are considered [ru

  7. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  8. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  9. Nonconforming axisymmetric elements for the analysis of containment structures

    International Nuclear Information System (INIS)

    Choi, C.K.; Kim, S.Y.

    1989-01-01

    In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

  10. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    Science.gov (United States)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  11. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  12. Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation

    OpenAIRE

    Berloff, Natalia G.; Roberts, Paul H.

    2004-01-01

    The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbations, whereas the solitary waves on the lower branch and all two-dimensional solitary waves are linea...

  13. Jet Noise Modeling for Supersonic Business Jet Application

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  14. Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. II. Penrose processes, circular orbits, and differential mass formulae

    International Nuclear Information System (INIS)

    Will, C.M.

    1975-01-01

    We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived

  15. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  16. On solution of Maxwell's equations in axisymmetric domains with edges. Part I: Theoretical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges by means of partial Fourier analysis. We consider the decomposition of the classical and regularized time-harmonic three-dimensional Maxwell's equations into variational equations in the plane meridian domain of the axisymmetric domain and define suitable weighted Sobolev spaces for their treatment. The trace properties of these spaces on the rotational axis and some properties of the solutions are proved, which are important for further numerical treatment, e.g. by the finite-element method. Particularly, a priori estimates of the solutions of the reduced system are given and the asymptotic behavior of these solutions near reentrant corners of the meridian domain is explicitly described by suitable singular functions. (author)

  17. ASSESSMENT OF BACTERIAL BIOSURFACTANT PRODUCTION THROUGH AXISYMMETRICAL DROP SHAPE-ANALYSIS BY PROFILE

    NARCIS (Netherlands)

    VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to

  18. An axisymmetric PFEM formulation for bottle forming simulation

    Science.gov (United States)

    Ryzhakov, Pavel B.

    2017-01-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  19. Identification of multiple modes of axisymmetric or circularly repetitive structures

    International Nuclear Information System (INIS)

    Kopff, P.

    1983-01-01

    The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)

  20. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  1. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  2. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  3. NASA's Pursuit of Low-Noise Propulsion for Low-Boom Commercial Supersonic Vehicles

    Science.gov (United States)

    Bridges, James; Brown, Clifford A.; Seidel, Jonathan A.

    2018-01-01

    Since 2006, when the Fundamental Aeronautics Program was instituted within NASA's Aeronautics Mission Directorate, there has been a Project looking at the technical barriers to commercial supersonic flight. Among the barriers is the noise produced by aircraft during landing and takeoff. Over the years that followed, research was carried out at NASA aeronautics research centers, often in collaboration with academia and industry, addressing the problem. In 2013, a high-level milestone was established, described as a Technical Challenge, with the objective of demonstrating the feasibility of a low-boom supersonic airliner that could meet current airport noise regulations. The Technical Challenge was formally called "Low Noise Propulsion for Low Boom Aircraft", and was completed in late 2016. This paper reports the technical findings from this Technical Challenge, reaching back almost 10 years to review the technologies and tools that were developed along the way. It also discusses the final aircraft configuration and propulsion systems required for a supersonic civilian aircraft to meet noise regulations using the technologies available today. Finally, the paper documents the model-scale tests that validated the acoustic performance of the study aircraft.

  4. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    Science.gov (United States)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  5. A Comparison of Prominent LES Combustion Models for Nonpremixed Supersonic Combustion

    Data.gov (United States)

    National Aeronautics and Space Administration — The capability of accurately simulating supersonic combustion is a vital topic for designing and advancing hypersonic air-breathing vehicles. As a consequence, there...

  6. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  7. Preserving spherical symmetry in axisymmetric coordinates for diffusion problems

    International Nuclear Information System (INIS)

    Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.

    2013-01-01

    Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)

  8. WKB theory for high-n modes in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Dewar, R.L.; Chance, M.S.; Glasser, A.H.; Greene, J.M.; Frieman, E.A.

    1979-09-01

    It is demonstrated that the low-frequency, k/sub parallel//k/sub perpendicular/ approx. = 0 normal modes of an axisymmetric plasma, at large but finite toroidal mode number n, can be obtained by solving a novel WKB problem involving an infinite number of branches. Formulae for the frequencies of periodic normal modes are derived. The analysis is performed in the context of an ideal MHD model, and comparison is made with numerical ballooning mode results

  9. Compilation and Review of Supersonic Business Jet Studies from 1963 through 1995

    Science.gov (United States)

    Maglieri, Domenic J.

    2011-01-01

    This document provides a compilation of all known supersonic business jet studies/activities conducted from 1963 through 1995 by university, industry and the NASA. First, an overview is provided which chronologically displays all known supersonic business jet studies/activities conducted by universities, industry, and the NASA along with the key features of the study vehicles relative to configuration, planform, operation parameters, and the source of study. This is followed by a brief description of each study along with some comments on the study. Mention will be made as to whether the studies addressed cost, market needs, and the environmental issues of airport-community noise, sonic boom, and ozone.

  10. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  11. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  12. Advanced supersonic propulsion study, phase 4

    Science.gov (United States)

    Howlett, R. A.

    1977-01-01

    Installation characteristics for a Variable Stream Control Engine (VSCE) were studied for three advanced supersonic airplane designs. Sensitivity of the VSCE concept to change in technology projections was evaluated in terms of impact on overall installed performance. Based on these sensitivity results, critical technology requirements were reviewed, resulting in the reaffirmation of the following requirements: low-noise nozzle system; a high performance, low emissions duct burner and main burner; hot section technology; variable geometry components; and propulsion integration features, including an integrated electronic control system.

  13. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  14. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  15. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  16. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    Science.gov (United States)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  17. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  18. Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method

    Science.gov (United States)

    Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.

    2016-01-01

    The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.

  19. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  20. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along

  1. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  2. Material density measurements from dynamic flash x-ray radiographs using axisymmetric tomography

    International Nuclear Information System (INIS)

    Fugelso, E.

    1981-03-01

    The axisymmetric version of the tomographic x-ray reconstruction procedures has been utilized to determine the material density for the impact of a cylinder on a steel plate. Derivations of the reconstruction algorithms relating x-ray radiographic intensities to the material densities are presented. Effects of noise, point spread functions, and motion blur are minimized

  3. SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.

    1967-01-01

    1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100

  4. Axisymmetric modeling of ultrashort-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2011-10-01

    Full Text Available The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser heating. An axisymmetric heat soureceewith Gaussian temporeal and spatial distributions has been taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  5. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    Science.gov (United States)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  6. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  7. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  8. Supersonic plasma jet interaction with gases and plasmas

    Czech Academy of Sciences Publication Activity Database

    Nicolai, P.; Stenz, C.; Tikhonchuk, V.; Ribeyre, X.; Kasperczuk, A.; Pisarczyk, T.; Juha, Libor; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Kálal, M.; Klír, D.; Kravárik, J.; Kubeš, P.; Pisarczyk, P.

    2009-01-01

    Roč. 322, 1-4 (2009), 11-17 ISSN 0004-640X R&D Projects: GA MŠk(CZ) LC528; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : supersonic plasma jet * laser experiment * shock Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.404, year: 2009

  9. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  10. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  11. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  12. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets

    Science.gov (United States)

    Choi, Seongim

    Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.

  13. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  14. High-fidelity large eddy simulation for supersonic jet noise prediction

    Science.gov (United States)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the

  15. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  16. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    Science.gov (United States)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  17. Steady supersonic rotation in the Maryland Centrifugal Experiment

    International Nuclear Information System (INIS)

    Ellis, R.F.; Messer, S.; Case, A.; DeSilva, A.; Elton, R.; Ghosh, J.; Griem, H.; Gupta, D.; Hassam, A.; Lunsford, R.; McLaren, R.; Rodgers, J.; Teodorescu, C.

    2005-01-01

    The Maryland Centrifugal Experiment (MCX) studies enhanced confinement and stability produced by sheared supersonic rotation about a linear confining magnetic field. MCX has a mirror geometry of 2.5 m length, mirror ratio 2-20, maximum mirror field 1.9T, maximum midplane field 0.33T. Biasing of an inner electrode relative to the outer wall produces a radial electric field which drives azimuthal rotation. MCX has achieved high density (n>10 20 m -3 ) fully ionized plasmas rotating supersonically with velocities of ∼100 km/sec for times exceeding 8 ms under a wide range of conditions. Ion temperatures are 30 eV and confinement times ∼100 microseconds. Sonic Mach numbers are 1-2 and Alfven Mach numbers somewhat less than 0.5 for standard discharges. Plasmas remain grossly stable, or steady, for many milliseconds, much longer than MHD instability timescales for MCX, though significant magnetic fluctuations are clearly seen on magnetic probes. Recently MCX has demonstrated an enhanced mode of operation with sonic Mach numbers greater than 3, confinement times of several hundred microseconds and Alfven Mach numbers near one. (author)

  18. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  19. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  20. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2016-01-01

    Full Text Available An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex – in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD and the sound pressure level (SPL were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600–18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  1. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  2. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X

    2005-01-01

    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  3. Effects of the shear layer growth rate on the supersonic jet noise

    Science.gov (United States)

    Ozawa, Yuta; Nonomura, Taku; Oyama, Akira; Mamori, Hiroya; Fukushima, Naoya; Yamamoto, Makoto

    2017-11-01

    Strong acoustic waves emitted from rocket plume might damage to rocket payloads because their payloads consist of fragile structure. Therefore, understanding and prediction of acoustic wave generation are of importance not only in science, but also in engineering. The present study makes experiments of a supersonic jet flow at the Mach number of 2.0 and investigates a relationship between growth rate of a shear layer and noise generation of the supersonic jet. We conducted particle image velocimetry (PIV) and acoustic measurements for three different shaped nozzles. These nozzles were employed to control the condition of a shear layer of the supersonic jet flow. We applied single-pixel ensemble correlation method (Westerweel et al., 2004) for the PIV images to obtain high-resolution averaged velocity profiles. This correlation method enabled us to obtain detailed data of the shear layer. For all cases, acoustic measurements clearly shows the noise source position at the end of a potential core of the jet. In the case where laminar to turbulent transition occurred in the shear layer, the sound pressure level increased by 4 dB at the maximum. This research is partially supported by Presto, JST (JPMJPR1678) and KAKENHI (25709009 and 17H03473).

  4. Utilization of axisymmetrical models in the description of the fluctuating temperature field and in the calculation of turbulent thermal diffusivity

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1981-01-01

    The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt

  5. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  6. The computation of multiple MHD equilibria in axisymmetric and straight geometry

    International Nuclear Information System (INIS)

    Thomas, C.Ll.

    1979-01-01

    The details of the numerical methods used in codes for computing MHD equilibria in discrete conductor configurations are described with both code users and code writers in mind. Results produced by the codes have been successfully verified against analytic results and independent computations. The axisymmetric code has proved to be a valuable diagnostic aid for the TOSCA experiment. The user images of the codes are described in the appendices. (author)

  7. An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

    Science.gov (United States)

    2012-08-01

    of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in

  8. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  9. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    Science.gov (United States)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  10. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  11. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Science.gov (United States)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  12. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    International Nuclear Information System (INIS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable

  13. Supersonic liquid jets: Their generation and shock wave characteristics

    Science.gov (United States)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  14. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    Science.gov (United States)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  15. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon

    2013-01-01

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models

  16. On the impact of a concave nosed axisymmetric body on a free surface

    NARCIS (Netherlands)

    Mathai, Varghese; Govardhan, R.N.; Arakeri, V.H.

    2015-01-01

    We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a

  17. Nonlinear stability of supersonic jets

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  18. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    Science.gov (United States)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  19. Tests of a thermal acoustic shield with a supersonic jet

    Science.gov (United States)

    Pickup, N.; Mangiarotty, R. A.; Okeefe, J. V.

    1981-10-01

    Fuel economy is a key element in the design of a future supersonic transport (SST). Variable cycle engines are being developed to provide the most economic combination of characteristics for a range of cruise speeds extending from subsonic speeds for overland flights to the supersonic cruise speeds. For one of these engines, the VCE-702, some form of noise suppression is needed for takeoff/sideline thrusts. The considered investigation is primarily concerned with scale model static tests of one particular concept for achieving that reduction, the thermal acoustic shield (TAS), which could also benefit other candidate SST engines. Other noise suppression devices being considered for SST application are the coannular nozzle, an internally ventilated nozzle, and mechanical suppressors. A test description is provided, taking into account the model configurations, the instrumentation, the test jet conditions, and aspects of screech noise control. Attention is given to shield thickness effects, a spectrum analysis, suppression and performance loss, and installed performance.

  20. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    Science.gov (United States)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  1. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  2. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    Science.gov (United States)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  3. Whether diffusion in axisymmetric confinement systems is intrinsically ambipolar

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.

    1997-01-01

    The problem of diffusion ambipolarity in axisymmetric magnetic systems is analyzed. The question is discussed of whether diffusion is intrinsically ambipolar (and if so, then in which particular cases) or the ambipolarity constraint is an additional independent condition, which does not follow from the equations of motion and, hence, contains new information. It is shown that the second assertion is correct: strictly speaking, diffusion can never be intrinsically ambipolar, and, in the presence of several different mechanisms causing electron and ion losses across the magnetic field, only the total fluxes, but not the partial ones, should satisfy the ambipolarity constraint. (UK)

  4. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt

  5. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  6. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  7. Axisymmetric Tornado Simulations with a Semi-Slip Boundary

    Directory of Open Access Journals (Sweden)

    Brian H. Fiedler

    2017-12-01

    Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.

  8. On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell

    Directory of Open Access Journals (Sweden)

    Rong Xiao

    2014-01-01

    Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.

  9. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  10. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    Science.gov (United States)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  11. IPCS implications for future supersonic transport aircraft

    Science.gov (United States)

    Billig, L. O.; Kniat, J.; Schmidt, R. D.

    1976-01-01

    The Integrated Propulsion Control System (IPCS) demonstrates control of an entire supersonic propulsion module - inlet, engine afterburner, and nozzle - with an HDC 601 digital computer. The program encompasses the design, build, qualification, and flight testing of control modes, software, and hardware. The flight test vehicle is an F-111E airplane. The L.H. inlet and engine will be operated under control of a digital computer mounted in the weapons bay. A general description and the current status of the IPCS program are given.

  12. A pulser-sustainer carbon monoxide electric-discharge supersonic laser

    Science.gov (United States)

    Monson, D. J.; Srinivasan, G.

    1977-01-01

    Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.

  13. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  14. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  15. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    Science.gov (United States)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  16. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  17. Supersonic cluster beams: a powerful method for the deposition of nanostructured thin films with tailored properties

    International Nuclear Information System (INIS)

    Milani, P.

    2002-01-01

    By using a pulsed micro-plasma cluster source and by exploiting aero-dynamical effects typical of supersonic beams it is possible to obtain very high deposition rates with a control on neutral cluster mass distribution, allowing the deposition of thin films with controlled nanostructure. Due to high deposition rates, high lateral resolution, low temperature processing supersonic cluster beams can also be used for the micro and nano-patterning of cluster-assembled films when little or no post-growth manipulation or assembly is required. For example the nano and meso-structure of films obtained by carbon cluster beam deposition can be controlled by selecting in the beam the elemental building blocks, moreover functional properties such as field emission can be controlled and tailored. The use of supersonic cluster beams opens also new perspectives for the production of nano-structured films with novel physico-chemical and topological properties such as nano-structured carbon matrices containing carbide and transition metal particles. (Author)

  18. Stellar dynamics around a massive black hole - III. Resonant relaxation of razor-thin axisymmetric discs

    Science.gov (United States)

    Sridhar, S.; Touma, Jihad R.

    2017-02-01

    We study the resonant relaxation (RR) of an axisymmetric, low-mass (or Keplerian) stellar disc orbiting a more massive black hole (MBH). Our recent work on the general kinetic theory of RR is simplified in the standard manner by the neglect of 'gravitational polarization' and applied to a razor-thin axisymmetric disc. The wake of a stellar orbit is expressed in terms of the angular momenta exchanged with other orbits, and used to derive a kinetic equation for RR under the combined actions of self-gravity, 1 PN and 1.5 PN general relativistic effects of the MBH and an arbitrary external axisymmetric potential. This is a Fokker-Planck equation for the stellar distribution function (DF), wherein the diffusion coefficients are given self-consistently in terms of contributions from apsidal resonances between pairs of stellar orbits. The physical kinetics is studied for the two main cases of interest. (1) 'Lossless' discs in which the MBH is not a sink of stars, and disc mass, angular momentum and energy are conserved: we prove that general H-functions can increase or decrease during RR, but the Boltzmann entropy is (essentially) unique in being a non-decreasing function of time. Therefore, secular thermal equilibria are maximum entropy states, with DFs of the Boltzmann form; the two-ring correlation function at equilibrium is computed. (2) Discs that lose stars to the MBH through an 'empty loss cone': we derive expressions for the MBH feeding rates of mass, angular momentum and energy in terms of the diffusive fluxes at the loss-cone boundaries.

  19. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.

  20. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  1. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  2. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  3. The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells

    Directory of Open Access Journals (Sweden)

    Yunying Zhou

    2015-02-01

    Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.

  4. Results from flamelet and non-flamelet models for supersonic combustion

    Science.gov (United States)

    Ladeinde, Foluso; Li, Wenhai

    2017-11-01

    Air-breathing propulsion systems (scramjets) have been identified as a viable alternative to rocket engines for improved efficiency. A scramjet engine, which operates at flight Mach numbers around 7 or above, is characterized by the existence of supersonic flow conditions in the combustor. In a dual-mode scramjet, this phenomenon is possible because of the relatively low value of the equivalence ratio and high stagnation temperature, which, together, inhibits thermal choking downstream of transverse injectors. The flamelet method has been our choice for turbulence-combustion interaction modeling and we have extended the basic approach in several dimensions, with a focus on the way the pressure and progress variable are modeled. Improved results have been obtained. We have also examined non-flamelet models, including laminar chemistry (QL), eddy dissipation concept (EDC), and partially-stirred reactor (PaSR). The pressure/progress variable-corrected simulations give better results compared with the original model, with reaction rates that are lower than those from EDC and PaSR. In general, QL tends to over-predict the reaction rate for the supersonic combustion problems investigated in our work.

  5. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  6. Preliminary study of optimum ductburning turbofan engine cycle design parameters for supersonic cruising

    Science.gov (United States)

    Fishbach, L. H.

    1978-01-01

    The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.

  7. Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2003-01-01

    A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)

  8. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  9. Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion

    Science.gov (United States)

    Muggleton, J. M.; Rustighi, E.; Gao, Y.

    2016-09-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.

  10. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  11. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    Science.gov (United States)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  12. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr

  13. Analysis of stresses in filament-wound spherical pressure vessels produced by the delta-axisymmetric pattern

    International Nuclear Information System (INIS)

    Knight, C.E. Jr.

    1975-01-01

    Spherical pressure vessels may be produced by filament winding the composite material with a delta-axisymmetric pattern. This particular pattern yields a composite with high fiber density and efficient and reproducible structures. The pattern is readily defined mathematically and, thus, eases the analysis problem. (U.S.)

  14. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method

  15. NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1986-04-01

    A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained

  16. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    Science.gov (United States)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  17. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-05-01

    We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.

  18. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... for the LDPE and the PS melts. Further more, the pressure losses are characterised with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic rime of the now is Hencky strain rate dependent....

  19. Axial turbomachine modelling with a 1D axisymmetric approach

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis

    2007-01-01

    This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results

  20. Fan Noise for a Concept Commercial Supersonic Transport

    Science.gov (United States)

    Stephens, David

    2017-01-01

    NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.

  1. Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow

    International Nuclear Information System (INIS)

    Baransky, Y.A.

    1987-01-01

    The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)

  2. Pulsed, supersonic fuel jets-A review of their characteristics and potential for fuel injection

    International Nuclear Information System (INIS)

    Milton, B.E.; Pianthong, K.

    2005-01-01

    High pressure fuel injection has provided considerable benefits for diesel engines, substantially reducing smoke levels while increasing efficiency. Current maximum pressures provide jets that are at less than the sonic velocity of the compressed air in the cylinders at injection. It has been postulated that a further increase into the supersonic range may benefit the combustion process due to increased aerodynamic atomization and the presence of jet bow shock waves that provide higher temperatures around the fuel. Pulsed, supersonic injection may also be beneficial for scramjet engines. The current program is examining pulsed, supersonic jets from a fundamental viewpoint both experimentally and numerically. Shock wave structures have been viewed for jets ranging from 600 to 2400 m/s, velocity attenuation and penetration distance measured, different nozzle designs examined and autoignition experiments carried out. Inside the nozzle, numerical simulation using the Autodyne code has been used to support an analytic approach while in the spray, the FLUENT code has been used. While benefits have not yet been defined, it appears that some earlier claims regarding autoignition at atmospheric conditions were optimistic but that increased evaporation and mixing are probable. The higher jet velocities are likely to mean that wall interactions are increased and hence matching such injectors to engine size and airflow patterns will be important

  3. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  4. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  5. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs

    International Nuclear Information System (INIS)

    Song, Zhi-Guang; Li, Feng-Ming

    2011-01-01

    The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved

  6. Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1998-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... are comparable for the LDPE and the PS melts. Furthermore, the pressure losses are characterized with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic time of the flow is Hencky strain rate dependent....

  7. Non-Newtonian fluid flow in an axisymmetric channel with porous wall

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2013-12-01

    Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.

  8. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  9. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  10. Multispecies transport theory for axisymmetric rotating plasmas

    International Nuclear Information System (INIS)

    Tessarotto, M.; White, R.B.

    1992-01-01

    A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to ''explicit'' velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer's inductive terms

  11. Axisymmetric plasma equilibria in a Kerr metric

    Science.gov (United States)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  12. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part I. Analysis of boundary layers and vertical circulation

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Keita, E-mail: iga@aori.u-tokyo.ac.jp [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan)

    2017-12-15

    Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments. (paper)

  13. Micro Ramps in Supersonic Turbulent Boundary Layers : An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of

  14. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  15. Supersonic impinging jet noise reduction using a hybrid control technique

    Science.gov (United States)

    Wiley, Alex; Kumar, Rajan

    2015-07-01

    Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.

  16. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  17. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  18. Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers

    DEFF Research Database (Denmark)

    Brøns, Morten; Voigt, Lars Peter Køllgaard; Sørensen, Jens Nørkær

    1998-01-01

    Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values...

  19. Interpolation of magnetic surface functions for an axi-symmetric plasma

    International Nuclear Information System (INIS)

    Yamaguchi, Taiki; Maeyama, Mitsuaki

    2000-01-01

    Informations of the magnetic surface functions of magnetically confined plasma are indispensable for equilibrium, stability and transport analyses. In this paper, in order to identify a realistic surface functions and compare those with ones which are introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for an axi-symmetric plasma from experimentally measured data. To confirm our code, we used the date which were analyzed from known functions given as a measured data. As a result, we have developed a code which can derive surface functions I and P. Effects of measurement error on those functions are also examined. (author)

  20. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  1. Controlled Wake of a Moving Axisymmetric Bluff Body

    Science.gov (United States)

    Lee, E.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.

  2. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    Science.gov (United States)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  3. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    International Nuclear Information System (INIS)

    Strait, E. J.; Park, J. K.; Marmar, E. S.; Ahn, J. W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-01-01

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10 -4 of the main axisymmetric field, such ''3D'' fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data

  4. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  5. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  6. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    Science.gov (United States)

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  7. Effect of outer stagnation pressure on jet structure in supersonic coaxial jet

    International Nuclear Information System (INIS)

    Kim, Myoung Jong; Woo, Sang Woo; Lee, Byeong Eun; Kwon, Soon Bum

    2001-01-01

    The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with 40 .deg. C converging angle with the variation of outer nozzle stagnation pressure are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressure of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream

  8. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  9. Particle collector scoops for improved exhaust in ''axisymmetric'' devices

    International Nuclear Information System (INIS)

    Conn, R.W.; Wolf, G.H.

    1987-11-01

    Application of particle collector scoops in front of the pumping ducts of axisymmetric divertor/magnetic limiter configurations is proposed. These scoops should enclose a significant fraction of the recycling particles. The resulting increase in natural particle pressure in front of the pumping ducts leads to an improved exhaust efficiency. This can permit an extension of the operational margin for density control. Alternatively, aiming at a prescribed exhaust flow in reactor-type devices such as INTOR, the pumping ducts could be reduced in aperture, leaving valuable space for other components. The lay-out of the proposed scheme depends on the heat load on the leading edge in front of the scoop and on the deflector in front of the pumping ducts. 14 refs., 5 figs

  10. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  11. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  12. Analysis of non-linear aeroelastic response of a supersonic thick fin with plunging, pinching and flapping free-plays

    Science.gov (United States)

    Firouz-Abadi, R. D.; Alavi, S. M.; Salarieh, H.

    2013-07-01

    The flutter of a 3-D rigid fin with double-wedge section and free-play in flapping, plunging and pitching degrees-of-freedom operating in supersonic and hypersonic flight speed regimes have been considered. Aerodynamic model is obtained by local usage of the piston theory behind the shock and expansion analysis, and structural model is obtained based on Lagrange equation of motion. Such model presents fast, accurate algorithm for studying the aeroelastic behavior of the thick supersonic fin in time domain. Dynamic behavior of the fin is considered over large number of parameters that characterize the aeroelastic system. Results show that the free-play in the pitching, plunging and flapping degrees-of-freedom has significant effects on the oscillation exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by some parameters, such as the Mach number, thickness, angle of attack, hinge position and sweep angle.

  13. Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering—Application to circular footing and deep tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2018-04-01

    Full Text Available Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC. This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%

  14. ON THE ORIGIN OF FANAROFF-RILEY CLASSIFICATION OF RADIO GALAXIES: DECELERATION OF SUPERSONIC RADIO LOBES

    International Nuclear Information System (INIS)

    Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi

    2009-01-01

    We argue that the origin of 'FRI/FRII dichotomy' - the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class II (FRII) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram) - can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram pressure equilibrium between the hot spots and the ambient medium with the relation between 'the hot spot radius' and 'the linear size of radio sources' obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power L j to the number density of the ambient matter at the core radius of the host galaxy n-bar a . It is also found that the maximal ratio of (L j ,n-bar a ) exists and its value resides in (L j ,n-bar a ) max ∼10 44-47 er s -1 cm 3 , taking into account considerable uncertainties. This suggests that the maximal value (L j ,n-bar a ) max separates between FRIs and FRIIs.

  15. Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers

    DEFF Research Database (Denmark)

    Brøns, Morten; Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær

    1999-01-01

    Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values of the ratio...

  16. Numerical simulation of feedback stabilization of axisymmetric modes in tokamaks using driven halo currents

    International Nuclear Information System (INIS)

    Jardin, S.C.; Schmidt, J.A.

    1998-01-01

    The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)

  17. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    Science.gov (United States)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  18. Numerical Investigation of Transitional and Turbulent Axisymmetric Wakes at Supersonic Speeds

    Science.gov (United States)

    1998-01-21

    numerical simu- lations, absolute and global instabilities were found for a two-dimensional bluff body with a blunt base by [ Hannemann & Oertel (1989...geometry", Center for Turbu- lence Research Manuscript 143. [ Hannemann & Oertel (1989)] Hannemann , K. & Oertel, H., Jr., 1989, "Numerical Simulation

  19. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  20. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Vertical Wire Feeding with Axisymmetric Multi-Laser Source

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2017-02-01

    Full Text Available Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool has exhibited great advantages over LAM (laser additive manufacturing with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions.

  1. Aeroacoustic power generated by a compact axisymmetric cavity: Prediction of self-sustained osciallation and influence of depth

    NARCIS (Netherlands)

    Nakiboglu, G.; Manders, H.B.M.; Hirschberg, Abraham

    2012-01-01

    Aeroacoustic power generation due to a self-sustained oscillation by an axisymmetric compact cavity exposed to a low-Mach-number grazing flow is studied both experimentally and numerically. The feedback effect is produced by the velocity fluctuations resulting from a coupling with acoustic standing

  2. Formation of atomic clusters through the laser ablation of refractory materials in a supersonic molecular beam source

    International Nuclear Information System (INIS)

    Haufler, R.E.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    Concepts which guide the design of atomic cluster supersonic beam sources have been developed. These ideas are founded on the knowledge of laser ablation dynamics and are structured in order to take advantage of certain features of the ablation event. Some of the drawbacks of previous cluster source designs become apparent when the sequence of events following laser ablation are clarified. Key features of the new cluster source design include control of the cluster size distribution, uniform performance with a variety of solid materials and elements, high beam intensity, and significant removal of internal energy during the supersonic expansion

  3. Secular instability of axisymmetric rotating stars to gravitational radiation reaction

    International Nuclear Information System (INIS)

    Managan, R.A.

    1985-01-01

    A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation

  4. Development of Compact Quasi-Axisymmetric Stellarator Reactor Configurations

    International Nuclear Information System (INIS)

    Ku, L.P.; Zarnstorff, M.; White, R.B.; Cooper, W.A.; Sanchez, R.; Neilson, H.; Schmidt, J.A.

    2003-01-01

    We have started to examine the reactor potential of quasi-axisymmetric (QA) stellarators with an integrated approach that includes systems evaluation, engineering considerations, and plasma and coil optimizations. In this paper, we summarize the progress made so far in developing QA configurations with reduced alpha losses while retaining good MHD stability properties. The minimization of alpha losses is achieved by directly targeting the collisionless orbits to prolong the average resident times. Configurations with an overall energy loss rate of ∼10% or less, including collisional contributions, have been found. To allow remotely maintaining coils and machine components in a reactor environment, there is a desire to simplify to the extent possible the coil design. To this end, finding a configuration that is optimized not only for the alpha confinement and MHD stability but also for the good coil and reactor performance, remains to be a challenging task

  5. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form

  6. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  7. Pulsed molecular beams: A lower limit on pulse duration for fully developed supersonic expansions

    International Nuclear Information System (INIS)

    Saenger, K.L.

    1981-01-01

    We derive an expression for Δt/sub min/, the mimimum pulse duration (''valve open time'') required if a pulsed nozzle is to produce a supersonic beam comparably ''cold'' to that obtained from a continuous source

  8. Seismic response analysis of reactor containment structures - axisymmetric model with modified ground motion

    International Nuclear Information System (INIS)

    Saha, S.; Dasgupta, A.; Basu, P.C.

    1993-01-01

    Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)

  9. Computational method for an axisymmetric laser beam scattered by a body of revolution

    International Nuclear Information System (INIS)

    Combis, P.; Robiche, J.

    2005-01-01

    An original hybrid computational method to solve the 2-D problem of the scattering of an axisymmetric laser beam by an arbitrary-shaped inhomogeneous body of revolution is presented. This method relies on a domain decomposition of the scattering zone into concentric spherical radially homogeneous sub-domains and on an expansion of the angular dependence of the fields on the Legendre polynomials. Numerical results for the fields obtained for various scatterers geometries are presented and analyzed. (authors)

  10. Non-axisymmetric flexural vibrations of free-edge circular silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, A.V., E-mail: dmitriev@hbar.phys.msu.ru; Gritsenko, D.S.; Mitrofanov, V.P., E-mail: mitr@hbar.phys.msu.ru

    2014-02-07

    Non-axisymmetric flexural vibrations of circular silicon (111) wafers are investigated. The modes with azimuthal index 2⩽k⩽30 are electrostatically excited and monitored by a capacitive sensor. The splitting of the mode frequencies associated with imperfection of the wafer is observed. The measured loss factors for the modes with 6≲k≲26 are close to those calculated according to the thermoelastic damping theory, while clamping losses likely dominate for k≲6, and surface losses at the level of inverse Q-factor Q{sup −1}≈4×10{sup −6} prevail for the modes with large k. The modes demonstrate nonlinear behavior of mainly geometrical origin at large amplitudes.

  11. Impedance calculations of non-axisymmetric transitions using the optical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Stupakov, G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zagorodnov, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-02-15

    In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that---in analogy to geometric optics for light---we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found. (orig.)

  12. Impedance Calculations of Non-Axisymmetric Transitions Using the Optical Approximation

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Stupakov, G.; Zagorodov, I.

    2007-01-01

    In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that--in analogy to geometric optics for light--we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found

  13. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  14. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  15. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    OpenAIRE

    Li, Xiaofan; Nie, Qing

    2009-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...

  16. Analysis and control of supersonic vortex breakdown flows

    Science.gov (United States)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  17. How axi-symmetric is the inner HI disc of the Milky Way?

    Directory of Open Access Journals (Sweden)

    Marasco A.

    2012-02-01

    Full Text Available We modelled the distribution and the kinematics of HI in the inner Milky Way (R < R☉ at latitude b = 0∘ assuming axi-symmetry. We fitted the line profiles of the LAB 21-cm survey using an iterative approach based on the tangent-point method. The resulting model reproduces the H I data remarkably well, with significant differences arising only for R ≲ 2 kpc. This suggests that, despite the presence of a barred potential, the neutral gas in the inner Milky Way is distributed in a fairly axi-symmetric disc.

  18. Discontinuities in an axisymmetric generalized thermoelastic problem

    Directory of Open Access Journals (Sweden)

    Moncef Aouadi

    2005-06-01

    Full Text Available This paper deals with discontinuities analysis in the temperature, displacement, and stress fields of a thick plate whose lower and upper surfaces are traction-free and subjected to a given axisymmetric temperature distribution. The analysis is carried out under three thermoelastic theories. Potential functions together with Laplace and Hankel transform techniques are used to derive the solution in the transformed domain. Exact expressions for the magnitude of discontinuities are computed by using an exact method developed by Boley (1962. It is found that there exist two coupled waves, one of which is elastic and the other is thermal, both propagating with finite speeds with exponential attenuation, and a third which is called shear wave, propagating with constant speed but with no exponential attenuation. The Hankel transforms are inverted analytically. The inversion of the Laplace transforms is carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical results are presented graphically along with a comparison of the three theories of thermoelasticity.

  19. Angular momentum transport by tidal acoustic wave

    International Nuclear Information System (INIS)

    Sakurai, T.

    1976-01-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)

  20. Angular momentum transport by tidal acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-05-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.

  1. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  2. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  3. Design for LTE EOS and opacity experiments using supersonic radiation waves

    Science.gov (United States)

    Tierney, T. E.; Peterson, R. R.; Tierney, H. E.

    2007-11-01

    Opacity and EOS at 100-200 eV are important physical parameters in ICF experiments. We describe an experiment design that uses the supersonic propagation of hohlraum radiation in foams to isochorically heat samples. Laser and Z-pinch experiments frequently use 150 to 220-eV quasi-blackbody emission from hohlraums to drive physics experiments. A foam target encapsulated in a gold-wall cylinder is placed next to the hohlraum. The low density and opacity foam captures some hohlraum emission and generates a supersonically-propagating radiation wave. The material heated by the wave is cooler towards the high-albedo gold wall. Modeling and past measurements show that core regions of the foam have small thermal gradients. We place a small, thin sample (e.g., Al, Si, or Fe) in the thermally-uniform region. X-ray emission of tracers and the sample as well as quasi-continuum x-ray absorption will be measured using time-resolved x-ray spectroscopy. The foam's EOS can be measured to ±5% by blast waves with a well characterized drive. This experiment could use the OMEGA, Z-Beamlet, and/or ZR facilities to explore temperature-dependent conditions.

  4. Reduction of the suction pressure of a liquid ring vacuum pump with a supersonic gas ejector

    Directory of Open Access Journals (Sweden)

    Olšiak Róbert

    2018-01-01

    Full Text Available A supersonic gas ejector in conjunction with a liquid ring vacuum pump is used for creating and maintaining vacuum in a chamber for technological purposes. In this paper the authors submit an overview about the problematics of suction pressure reduction with a supersonic gas ejector used as a pre-stage of a liquid ring vacuum pump. This system has also the function of a cavitation protection due to the higher pressure present at the suction throat of the vacuum pump. A part of this paper is devoted to the governing equations used at the definition of the flow through an ejector. The experimental studies are then carried out in or own laboratory for verification purposes.

  5. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2014-04-21

    Mechanisms AGARD - CP -131, 1974, pp. 13.1-13.12. [23] Goldstein, M.E., "On identifying the true sources of aerodynamic sound," Journal of Fluid Mechanics Vol...either constant or begins to decay. For the resampled data (1/8 inch microphones resampled at 100 kHz), the change in 7( 73 ) follows the originally...supersonic jet and their acoustic radiation," Journal of Fluid Mechanics, Vol. 69, No.l, 1975, pp. 73 95. [5] Tain, C. K. W., "Mach wave radiation from high

  6. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations

    Science.gov (United States)

    Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.

    2018-04-01

    We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.

  7. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  8. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  9. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

  10. Field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.

    2006-01-01

    It was developed a physical model, which allowed calculating a field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket. For space launching site Baikonur it is shown that the nearest horizontal distance from launching site of rocket up to which arrive infrasound waves, produced by supersonic flight of a rocket, is 56 km. Amplitude of acoustic impulse decreases in 5 times on distance of 600 km. Duration of acoustic impulse increases from 1.5 to 3 s on the same distance. Values of acoustic field parameters on the earth surface, practically, do not depend from season of launching of rocket. (author)

  11. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  12. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  13. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  14. Axisymmetric Plasma Equilibria in General Relativity

    Science.gov (United States)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  15. Generation of new solutions of the stationary axisymmetric Einstein equations by a double complex function method

    International Nuclear Information System (INIS)

    Zhong, Z.

    1985-01-01

    A new approach to the solution of certain differential equations, the double complex function method, is developed, combining ordinary complex numbers and hyperbolic complex numbers. This method is applied to the theory of stationary axisymmetric Einstein equations in general relativity. A family of exact double solutions, double transformation groups, and n-soliton double solutions are obtained

  16. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    Science.gov (United States)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear

  17. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  18. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David O.

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  19. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David Owen

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  20. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    International Nuclear Information System (INIS)

    Rinne, Oliver

    2010-01-01

    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.