WorldWideScience

Sample records for supersonic aerodynamic window

  1. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  2. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston

  3. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  4. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  5. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  6. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    Science.gov (United States)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  7. Effect of sidewall configurations on aerodynamic performance of supersonic air-intake

    OpenAIRE

    Watanabe, Yasushi; Murakami, Akira; Fujiwara, Hitoshi; 渡辺 安; 村上 哲; 藤原 仁志

    2004-01-01

    The effects of sidewall configurations on the aerodynamic performance of two dimensional external compression supersonic air-intakes were investigated experimentally and numerically. The aerodynamic performance for various yaw angles and ramp angles was obtained by wind tunnel tests performed in the Mach number range of 1.5 to 2.0. It was found that the major advantage of an air-intake with a larger sidewall configuration is its wider stable range in subcritical operation. On the other hand, ...

  8. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    Science.gov (United States)

    Brock, Joseph; Stern, Eric; Wilder, Michael

    2017-01-01

    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  9. Aerodynamic analysis of a supersonic cascade vibrating in a complex mode

    Science.gov (United States)

    Caruthers, J. E.; Riffel, R. E.

    1980-01-01

    An analysis is presented which has been used to predict the unsteady aerodynamic behavior of a finite supersonic cascade of airfoils forced in harmonic oscillation with airfoil-to-airfoil variations in amplitude. Theoretical predictions are compared with some recent experimental results at a reduced frequency representative of actual fan or compressor flutter cases. The similarity of the experimental situation in the finite cascade to the flutter of a severely mistuned rotor is noted.

  10. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  11. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    Science.gov (United States)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  12. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  13. Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow

    Science.gov (United States)

    Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano

    2016-06-01

    HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.

  14. Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams

    Science.gov (United States)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1988-01-01

    A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.

  15. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    Science.gov (United States)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  16. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  17. Investigation of estimating accuracy for aerodynamic characteristics of a scaled supersonic experimental airplane using IMU data based on flight simulation

    OpenAIRE

    1999-01-01

    This paper describes a pre-flight estimation method for aerodynamic characteristics and investigates the accuracy of the estimated aerodynamic characteristics of the scaled supersonic experimental airplane, using IMU (Inertial Measurement Unit) data obtained in a flight simulation. The results demonstrate that the required accuracy is not achieved and that the main sources of error are in the estimation of dynamic pressure, misalignment between the body axis and IMU chassis axis, and IMU disc...

  18. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    Science.gov (United States)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  19. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  20. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    Science.gov (United States)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  1. Numerical study of aerodynamic characteristics of FSW aircraft with dierent wing positions under supersonic condition

    Institute of Scientific and Technical Information of China (English)

    Lei Juanmian; Zhao Shuai; Wang Suozhu

    2016-01-01

    This paper investigates the influence of forward-swept wing (FSW) positions on the aero-dynamic characteristics of aircraft under supersonic condition (Ma=1.5). The numerical method based on Reynolds-averaged Navier–Stokes (RANS) equations, Spalart–Allmaras (S–A) turbu-lence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerody-namic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pres-sure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.

  2. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    Science.gov (United States)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  3. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    Science.gov (United States)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  4. Abort System Using Supersonic Aerodynamic Interaction for Capsule-Type Space Transportation System

    Science.gov (United States)

    小澤, 啓伺; 北村, 圭一; 花井, 勝祥; 三好, 理也; 森, 浩一; 中村, 佳朗

    The space transportation system using capsule/rocket configurations such as Apollo and Soyuz are simple compared with Space Shuttle, and have several merits from the viewpoint of reliability. The capsule/rocket system will take over the Space Shuttle, after it retires in 2010. As the Space Shuttle accidents had been caused by several factors, e.g., aerodynamic interaction of shock waves ahead of its wing, advanced abort systems such as LAS (Launch Abort System) are required for the capsule/rocket system. In the present study, as a baseline configuration, a combination of a cone and a cylinder is employed as a CEV (Crew Exploration Vehicle), which consists of a capsule (LAV: Launch Abort Vehicle) and a rocket (SM: Service Module). By changing the relative position of the two components as well as the profile area of the rocket, their effects on the capsule/rocket aerodynamic interaction and characteristics (drag and pitching moment) are experimentally and numerically investigated at a supersonic speed (M∞ = 3.0). It is found from the results that the clearance have little effects on the flow field for the case of the baseline configuration. The capsule always showed a positive drag (CD = 0.34), which means that thrust is required to overcome the drag. Otherwise the capsule will recontact the rocket. However in the case where the rocket contact area is 2.2 times as large as the capsule profile, more favorable effects were obtained. Especially in the case of a certain clearance (h/D = 0.40), the drag coefficient of the capsule is CD = -0.35, which means that the capsule suffers a thrust force from the aerodynamic interaction. Under this condition, if capsule has a pitch angle with 5 degrees instantaneously, then pitching moment coefficient becomes CMp = -0.41 therefore capsule stabilize. However, in the case of a very small clearance (h/D ∝ 0.00), the flow becomes unsteady involving pulsating shock wave, leading to a potentially risky separation of the capsule.

  5. Supersonic longitudinal aerodynamic characteristics of two space shuttle orbiter configurations. [conducted in the Langley Unitary Plan wind tunnel

    Science.gov (United States)

    Ellison, J. C.

    1977-01-01

    An investigation was conducted to determine the supersonic longitudinal aerodynamic characteristics of 0.015 scale models of the Rockwell International 089B and 139B space shuttle orbiter configurations and the 139B orbiter with a modifier forebody. The models each had a 45 deg swept delta wing that was blended into the body with an 81 deg swept fillet to form a double delta planform. The vertical tail had a split rudder deflected 27.5 deg on each side to form a speed brake. Tests were conducted at Mach numbers of 2.5, 3.9, and 4.6 at a Reynolds number, based on the body length of the 089B model, of 4,150,000. Angles of attack varied from -4 deg to 44 deg at 0 deg sideslip.

  6. Effects of Nozzle Geometry and Intermittent Injection of Aerodynamic Tab on Supersonic Jet Noise

    Science.gov (United States)

    Araki, Mikiya; Sano, Takayuki; Fukuda, Masayuki; Kojima, Takayuki; Taguchi, Hideyuki; Shiga, Seiichi; Obokata, Tomio

    Effects of the nozzle geometry and intermittent injection of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is planned. A 1/100-scaled model of the rectangular plug nozzle is manufactured, and the noise reduction performance of aerodynamic tabs, which is small air jet injection from the nozzle wall, was investigated. Compressed air is injected through the rectangular plug nozzle into the atmosphere at the nozzle pressure ratio of 2.7, which corresponds to the take-off condition of the vehicle. Aerodynamic tabs were installed at the sidewall ends, and 4 kinds of round nozzles and 2 kinds of wedge nozzles were applied. Using a high-frequency solenoid valve, intermittent gas injection is also applied. It is shown that, by use of wedge nozzles, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL (Overall sound pressure level), decreases by 29% when compared with round nozzles. It is also shown that, by use of intermittent injection, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL, decreases by about 40% when compared with steady injection. By combination of wedge nozzles and intermittent injection, the aerodynamic tab mass flow rate significantly decreases by 57% when compared with the conventional strategy.

  7. Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air Vehicles

    Science.gov (United States)

    2015-05-18

    surface would take the form of a three dimensional surface similar to those in undergraduate courses in multivariable calculus . Sensitivity Analysis...York, 2012, pp.844-850. [9] J. J. Bertin and R. M. Cummings, “Newtonian Flow Model,” Aerodynamics for Engineers, 6th ed., Pearson Education, Saddle

  8. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Science.gov (United States)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  9. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  10. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    Science.gov (United States)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  11. Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations

    Science.gov (United States)

    Carlson, H. W.; Walkley, K. B.

    1984-01-01

    This paper describes methodology and an associated computer program for the design of wing lifting surfaces with attainable thrust taken into consideration. The approach is based on the determination of an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. Special leading-edge surfaces are selected to provide distributed leading-edge thrust forces which compensate for any failure to achieve the full theoretical leading-edge thrust, and a second series of general candidate surfaces is selected to minimize drag subject to constraints on the lift coefficient and, if desired, on the pitching moment coefficient. A primary purpose of the design approach is the introduction of attainable leading-edge thrust considerations so that relatively mild camber surfaces may be employed in the achievement of aerodynamic efficiencies comparable to those attainable if full theoretical leading-edge thrust could be achieved. The program provides an analysis as well as a design capability and is applicable to both subsonic and supersonic flow.

  12. Supersonic Aerodynamic Design Improvements of an Arrow-Wing HSCT Configuration Using Nonlinear Point Design Methods

    Science.gov (United States)

    Unger, Eric R.; Hager, James O.; Agrawal, Shreekant

    1999-01-01

    This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.

  13. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  14. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  15. Dominance of Radiated Aerodynamic Noise on Boundary-Layer Transition in Supersonic-Hypersonic Wind Tunnels. Theory and Application

    Science.gov (United States)

    1978-03-01

    since the radiated pressure f luc tuat ions t ravel along inc l ine rays s im i la r to, but somewhat steeper than, Mach waves [see Refer- ence...Supersonic Wind Tunnels," AEDC-TN-61-153 (AD270596), January 1962. 311 A E D C-TR -77-107 157. Tucker, Maurice . "Approximate Calculation of

  16. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    Science.gov (United States)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  17. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    Science.gov (United States)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  18. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  19. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    Science.gov (United States)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  20. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  1. Unstructured Grid Euler Method Assessment for Aerodynamics Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.

  2. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  3. Noise Trends of a 0.5 M (20 In.) Diameter Supersonic Throughflow Fan as Measured in an Unmodified Compressor Aerodynamic Test Facility

    Science.gov (United States)

    Dittmar, James H.; Hall, David G.; Moore, Royce D.

    1993-01-01

    The tone noise levels of a supersonic throughflow fan were measured at subsonic and supersonic axial duct Mach numbers. The noise in the inlet plenum showed no blade passing and harmonic tones at subsonic or supersonic axial flow conditions. At subsonic axial flow conditions, the supersonic throughflow fan showed no inlet plenum tones at fan operating conditions where tone noise had been previously measured for a subsonic fan design. This lower inlet-quadrant noise level for the supersonic throughflow fan was the result of high subsonic inlet velocities acting to reduce the noise propagating out the inlet. The fan noise, which was prevented from propagating upstream by the high subsonic inlet velocities, appeared to increase the noise in the exhaust duct at subsonic throughflow conditions. The exhaust duct noise decreased at supersonic axial throughflow Mach numbers, with the lowest blade passing and harmonic tones levels being observed at the design axial Mach number of 2.0. Multiple pure tone noise was observed in the inlet duct at subsonic axial flow Mach numbers but was seen only in the exhaust duct at supersonic axial flow conditions.

  4. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique

    Science.gov (United States)

    Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori

    2017-03-01

    xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.

  5. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  6. Catalogue of the Publications Issued by the Gas Dynamics Department, the Supersonics Division of Aerodynamics Department and by the Vibration Department between 1944 and 1950,

    Science.gov (United States)

    1979-12-01

    and the position of the centre of pressure on bodies of revolution at supersonic speeds. 18 Lawrence, T.F.C. Interim note on control effective...eid, J. 7, 9, 30 ichards, I.W. 4 ing, I.H. 44 oberts , D.N. 23 oyle, J.K. 23, 31, 32 89 chmidt, R. 32 hannon, J.F. 4 harp, N. 6 1, 14 haw, J.H. 16 Add

  7. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    Science.gov (United States)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  8. 超音速导弹弹翼结构的气动热弹性分析%Aerodynamic Thermal Elasticity Analysis of Wing Structure of Supersonic Speed Missile

    Institute of Scientific and Technical Information of China (English)

    刘立刚; 周凌; 孙辉

    2015-01-01

    The aerodynamic heat elasticity problem of the missile wing which flies in the low,moderate su-personic speed(Ma is less than 5)were studied. Firstly,the aerodynamic heat of the leading edge stagna-tion,the laminar area and the turbulent region were calculated separately and the temperature distribution curves of the missile wing surface were obtained. Secondly,the temperature field of the missile wing struc-ture with wall temperature as the boundary condition of temperature field was calculated with FEM soft-ware. Finally,the sequential coupling solution of the coupled-fields analysis module was used in FEM soft-ware for computing the thermal stress field,thermal strain field and thermal displacement field. According to the above arithmetic,the aerodynamic heat elasticity problem of a certain type of antiaircraft missile which flies in the maximum supersonic speed(Ma equals 3)was calculated. The following conclusions are obtained:the maximum of temperature of the missile wing surface caused by aerodynamic heat appears in the laminar and the turbulent flow connection and the maximum of thermal stress and thermal strain appear in the attachment point of the wing and the body of the missile. The maximum of thermal displacement ap-pears at the end of wing tip.%为了对弹翼这类典型结构在低、中超音速(Ma ﹤5)飞行状态下的气动热弹性问题进行校核分析;首先对前缘驻点、层流区和紊流区分别进行气动加热计算,得到弹翼蒙皮表面的温度分布曲线;其次,将壁温作为弹翼结构温度场表面边界条件,用通用有限元软件计算得到弹翼结构的温度场;最后,运用耦合场分析模块中的序贯耦合解法得到弹翼结构的热应力场,热应变场和热位移场;对飞行马赫数为3时的弹翼结构进行气动热弹性分析,得到如下结论:气动加热引起弹翼表面的最高温度出现在层流与紊流的转捩点;最大热应力与热应变均出现

  9. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    Science.gov (United States)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  10. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    Science.gov (United States)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  11. Test data from solid propellant plume aerodynamics test program in Ames 6 x 6 foot supersonic wind tunnel (shuttle test FA7) (Ames test 033-66)

    Science.gov (United States)

    Hair, L. M.

    1975-01-01

    The aerodynamic effects of plumes from hot combustion gases in the presence of a transonic external flow field were measured to advance plumes simulation technology, extend a previously acquired data base, and provide data to compare with the effects observed using cold gas plumes. A variety of underexpanded plumes issuing from the base of a strut-mounted ogive-cylinder body were produced by combusting solid propellant gas generators. The gas generator fired in a short-duration mode (200 to 300 msec). Propellants containing 16 percent and 2 percent A1 were used, with chamber pressures from 400 to 1800 psia. Conical nozzles of 15 deg half-angle were tested with area ratios of 4 and 8. Pressures were measured in the gas generator combustion chamber, along the nozzle wall, on the base, and along the body rear exterior. Schlieren photographs were taken for all tests. Test data are presented along with a description of the test setup and procedures.

  12. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  13. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  14. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  15. Handbook of Supersonic Aerodynamics. Volume 5

    Science.gov (United States)

    1953-08-01

    Beattie - Bridgeman equation of state was used instead. It is 2V - / B bB A ( 5 0 1 1 2 T (1- T 1 + -- - - T (1500.111... Equation 1500.111-2) A a Beattie - Bridgeman coefficient (cf. Equation 1500.111-2) b a Beattie - Bridgeman coefficient (cf. Equation 1500.111-2) b ( 1... Bridgeman coefficient (cf. Equation 1500.111-2)0 c a Beattie - Bridgeman coefficient (cf. Equation 1500.111-2) P1 M2 c ( RT (cf.

  16. Handbook of Supersonic Aerodynamics Volume 1

    Science.gov (United States)

    1950-04-01

    Use only for the dis- charge coefficients of nozzles and orifices fc(lc) Kinetic /(lc) lam (lc) Liquid phase, alternate for Local condition...factor Isentropic stagnation condi- tions; total Jet Joule’s constant; mechanical equivalent of heat Kinematic viscosity Kinetic Laminar...viscosity. Cinematic viscosity, (ftf/feo) Speed of SOUdd, Kean free path of moleoulos. (ft) T (°F ab«.). P/J>0 0 «• «— ^0 (lb/ft5) lb-sec

  17. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  18. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  19. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  20. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  1. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  2. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  3. Energy-Deposition to Reduce Skin Friction in Supersonic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  4. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  5. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  6. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  7. Aerodynamics of indirect thrust measurement by the impulse method

    Institute of Scientific and Technical Information of China (English)

    Cheng-Kang Wu; Hai-Xing Wang; Xian Meng; Xi Chen; Wen-Xia Pan

    2011-01-01

    The aerodynamic aspects of indirect thrust measurement by the impulse method have been studied both experimentally and numerically.The underlying basic aerodynamic principle is outlined, the phenomena in subsonic,supersonic and arc-heated jets are explored, and factors affecting the accuracy of the method are studied and discussed.Results show that the impulse method is reliable for indirect thrust measurement if certain basic requirements are met,and a simple guideline for its proper application is given.

  8. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  9. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  10. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  11. NASP aerodynamics

    Science.gov (United States)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  12. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  13. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and why...

  14. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  15. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  16. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  17. The research of optical windows used in aircraft sensor systems

    Institute of Scientific and Technical Information of China (English)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects.Considering the imaging performance,flat surfaces are traditionally used in the design of optical windows.For aircrafts operating at high speeds,the optical windows should be relatively aerodynamic,but a flat optical window may introduce unacceptably high drag to the airframes.The linear scanning infrared sensors used in aircrafts with,respectively,a fiat window,a spherical window and a toric window in front of the aircraft sensors are designed and compared.Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard,aerodynamic drag,narcissus effect,and imaging performance,so the optical window with a toric surface is demonstrated to be suited for this application.

  18. Atomic fluorescence study of high temperature aerodynamic levitation

    Science.gov (United States)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  19. Micro Ramps in Supersonic Turbulent Boundary Layers: An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of t

  20. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  1. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  2. Aerodynamic noise emission from turbulent shear layers.

    Science.gov (United States)

    Pao, S. P.

    1973-01-01

    The Phillips (1960) convected wave equation is employed in this paper to study aerodynamic noise emission processes in subsonic and supersonic shear layers. The wave equation in three spatial dimensions is first reduced to an ordinary differential equation by Fourier transformation and then solved via the WKBJ method. Three typical solutions are required for discussions in this paper. The current results are different from the classical conclusions. The effects of refraction, convection, Mach-number dependence and temperature dependence of turbulent noise emission are analyzed in the light of solutions to the Phillips equation.

  3. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  4. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  5. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  6. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  7. Handbook of Supersonic Aerodynamics. Section 8. Bodies of Revolution

    Science.gov (United States)

    1961-10-01

    0.6 0.4.-4. CD 0.2 Is/d 0.1 105 2 4 6 8 102 Red Fig. 6-39. Effect of Reynolds number on the pressure drag co- efficient of a spike-nosed hemisphere...Various Perimetral Conditions Imposed upon the Missile Geometry. AF Report 814-A-2, November 1953. 82. Heaslet, M. A. and Fuller, F. B. Axially Symmetric

  8. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  9. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  10. Window shopping

    Energy Technology Data Exchange (ETDEWEB)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  11. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.

  12. Parenthetical Windows

    DEFF Research Database (Denmark)

    Lemi, Esther; Triantafyllidis, Georgios

    2016-01-01

    Parenthetical Window is a project that engages scientific research in human perception providing a platform for users to experience their own limits and needs in their individual circadian rhythm. The presentation focuses on a case study in a community of dancers where the individual needs in light...... these for the construction of a final installation that focuses on the construction of a dark room that provides artificial stimuli through a window with only artificial information. The abstract translation of sound to image through artificial light is a common endeavour in the history of arts and its aesthetics, since...

  13. Classical Aerodynamic Theory

    Science.gov (United States)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  14. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...

  15. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...

  16. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    Science.gov (United States)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  17. Rudolf Hermann, wind tunnels and aerodynamics

    Science.gov (United States)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  18. Supersonic flow past a flat lattice of cylindrical rods

    Science.gov (United States)

    Guvernyuk, S. V.; Maksimov, F. A.

    2016-06-01

    Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.

  19. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  20. Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    Science.gov (United States)

    Silva, Walter A.

    2008-01-01

    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

  1. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  2. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  3. A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel

    NARCIS (Netherlands)

    Abbas, L.K.; Rui, X.; Marzocca, P.; Abdalla, M.; De Breuker, R.

    2011-01-01

    In this paper, the effect of the system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow is numerically investigated. The aeroelastic model investigated includes the third-order piston theory aerodynamics for modeling the flow-induced forces and the V

  4. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    strategies for overheating or to communicate with people in a more user informed way. The people participating in the study lived in different houses and had different backgrounds. They were involved in the project over a period of 3-4 months. The prolonged participation was facilitated through a variety......, as well as the opposite. The report also includes a special focus on overheating and people’s strategies against this. Knowing about what people appreciate in a window and their actual practices and the reasons for their behaviour may be useful in many different ways, for instance to inform public...

  5. Strategic Windows

    DEFF Research Database (Denmark)

    Risberg, Annette; King, David R.; Meglio, Olimpia

    We examine the importance of speed and timing in acquisitions with a framework that identifies management considerations for three interrelated acquisition phases (selection, deal closure and integration) from an acquiring firm’s perspective. Using a process perspective, we pinpoint items within...... acquisition phases that relate to speed. In particular, we present the idea of time-bounded strategic windows in acquisitions consistent with the notion of kairòs, where opportunities appear and must be pursued at the right time for success to occur....

  6. Window shopping

    OpenAIRE

    Shy, Oz

    2013-01-01

    The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

  7. Window shopping

    OpenAIRE

    SHY, Oz

    2013-01-01

    The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

  8. Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile

    Directory of Open Access Journals (Sweden)

    Ahmed F. M. Kridi

    2009-01-01

    Full Text Available The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined from the computed flow fields, shows the critical aerodynamic behavior observed in free flights.

  9. Aerodynamics: optimization in the windtunnel and flow calculation; Aerodynamik: Windkanaloptimierung und Stroemungsberechnung

    Energy Technology Data Exchange (ETDEWEB)

    Jehle-Graf, E.; Melchger, N.; Schwarz, V. [DaimlerChrysler AG, Stuttgart (DE). Mercedes Car Group (Germany)

    2004-10-15

    Aerodynamic development involves both optimizing aerodynamic forces and wind noise and also keeping outside mirrors and side windows free of soiling when driving in the rain. Given this range of tasks, the developer has an influence on the vehicle's fuel consumption, active safety, everyday practicality and wind noise. The following article discusses the tools and methods used in the aerodynamic development of the new A-Class and also the results achieved. (orig.)

  10. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  11. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  12. INTEGRATED AERODYNAMIC MEASUREMENTS

    NARCIS (Netherlands)

    SCHUTTE, HK

    1992-01-01

    The myoelastic-aerodynamic model of phonation implies that aerodynamic factors are crucial to the evaluation of voice function, Subglottal pressure and mean flow rate represent the vocal power source. If they can be related to the magnitude of the radiated sound power, they may provide an index of v

  13. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic...

  14. Technical and environmental challenges for the next generation supersonic transport

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)

    1994-12-31

    The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)

  15. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  16. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  17. Gasochromic windows

    Energy Technology Data Exchange (ETDEWEB)

    Wittwer, V.; Datz, M.; Ell, J.; Georg, A.; Graf, W.; Walze, G. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)

    2004-10-01

    Gasochromic windows can change their transmittance over a wide range. This change is caused by a thin layer of tungsten oxide (WO{sub 3}), covered by a very thin layer of platinum. Exposing this coating to diluted hydrogen gas leads to reduction of the WO{sub 3}, resulting in colouring. This process can be reversed by introducing diluted oxygen. The hydrogen and oxygen are produced by an electrolyser. Only small amounts of gas are needed for the switching process. The coatings are produced by sputtering. Water is needed in the WO{sub 3} films to allow rapid transport of the hydrogen. However, this water should not escape when the system is operated at higher temperatures, which can exceed 60 deg C. By adjusting the conditions of the sputtering process appropriately, a large amount of water can be incorporated in the films, which remains even up to temperatures above 100 deg C. The best transmittance values obtained for a coated double-glazed unit with a moderate film thickness (560 nm) and hydrogen concentrations below the combustion limit are 76% and 77% for solar and visual transmittance, respectively, in the bleached state and 5% and 6% for solar and visual transmittance, respectively, in the coloured state. Darker states can be obtained by applying thicker films of tungsten oxide without reducing the transmittance in the bleached state. Gasochromic coatings can also be deposited easily on plastic substrates and - because their coating structure is so simple - combined with prismatic microstructures, which allow light to be redirected. In addition, the gasochromic systems technology can be used with metal hydride systems. (Author)

  18. Extension and application of a scaling technique for duplication of in-flight aerodynamic heat flux in ground test facilities

    NARCIS (Netherlands)

    Veraar, R.G.

    2009-01-01

    To enable direct experimental duplication of the inflight heat flux distribution on supersonic and hypersonic vehicles, an aerodynamic heating scaling technique has been developed. The scaling technique is based on the analytical equations for convective heat transfer for laminar and turbulent bound

  19. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Directory of Open Access Journals (Sweden)

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  20. Aerodynamic Shutoff Valve

    Science.gov (United States)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  1. Aerodynamic analysis of complex configurations using unstructured grids

    Science.gov (United States)

    Frink, Neal T.; Parikh, Paresh; Pirzadeh, Shahyar

    1991-01-01

    The purpose of this paper is to assess the accuracy and utility of a new unstructured, inviscid, upwind flow solver for the aerodynamic analysis of two aircraft configurations. The two configurations consist of a low-wing transport with nacelle/pylon on and off, and a generic high-speed civil transport. Computations are made at subsonic and transonic Mach numbers for the low-wing transport and at transonic and low-supersonic speeds for the high-speed civil transport. The results include an assessment of grid sensitivity and provide comparisons with experimental data.

  2. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  3. Aerodynamic characteristics research on wide-speed range waverider configuration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

  4. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  5. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  6. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  7. Supersonic flutter analysis of thin cracked functionally graded material plates

    CERN Document Server

    Natarajan, S; Bordas, S

    2012-01-01

    In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.

  8. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  9. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  10. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  11. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  12. Analyzing the structure of the optical path difference of the supersonic film cooling

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.

  13. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...

  14. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  15. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  16. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    Science.gov (United States)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  17. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    Science.gov (United States)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  18. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    Science.gov (United States)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale

  19. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  20. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  1. Bibliography of Supersonic Cruise Research (SCR) program from 1977 to mid-1980

    Science.gov (United States)

    Hoffman, S.

    1980-01-01

    The supersonic cruise research (SCR) program, initiated in July 1972, includes system studies and the following disciplines: propulsion, stratospheric emission impact, structures and materials, aerodynamic performance, and stability and control. In a coordinated effort to provide a sound basis for any future consideration that may be given by the United States to the development of an acceptable commercial supersonic transport, integration of the technical disciplines was undertaken, analytical tools were developed, and wind tunnel, flight, and laboratory investigations were conducted. The present bibliography covers the time period from 1977 to mid-1980. It is arranged according to system studies and the above five SCR disciplines. There are 306 NASA reports and 135 articles, meeting papers, and company reports cited.

  2. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  3. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  4. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  5. Windows 7 for dummies

    CERN Document Server

    Rathbone, Andy

    2010-01-01

    Get more done and have more fun with Windows 7 Windows 7 is loaded with features, tools, and shortcuts designedto make life easier for all users. This handy guide is sure to makeWindows as clear as can be. It helps you get started, use foldersand files, find handy gadgets, and search on your PC or online. Open the book and find: Ways to find photos, music, and video on your PCAdvice on jazzing up the Windows 7 interfaceReasons for making the switch to Windows 7Tools for staying organizedSteps for setting up your user accounts and passwords

  6. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  7. Aerodynamic Leidenfrost effect

    Science.gov (United States)

    Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David

    2016-12-01

    When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.

  8. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  9. Hypervelocity Aerodynamics and Control

    Science.gov (United States)

    1990-06-06

    Report: Hypervelocity Aerodynamics and Control 12. PERSONAL AUTHOR(S) T. C. Adamson, Jr. and R. IA. Howe 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE...6] pulse applied. If the Mxyz system as shown is Fig. 3 r 3. , is used, then we have R21= k costo -t4 ksin yot 1 6r= ro 1 (4) -- (6k 2 - 5 -30k 2 sin

  10. Testing SiC fiber-reinforced ZrB2 sharp component in supersonic regime

    OpenAIRE

    Silvestroni, Laura; Monteverde, Frederic; Savino, Raffaele; SCITI, Diletta

    2012-01-01

    Ultra-high temperature ceramics are currently the most promising materials for thermal protection structures like wing leading edges in next generation space vehicles flying at hypersonic speed or/and re-entering the earth's atmosphere, which are characterized by sharp profiles to increase performances and maneuverability. In this contribution, the aero-dynamic behaviour of a very sharp ZrB2-SiC fiber composite is tested in a plasma wind tunnel in supersonic regime. A wedge with curvature rad...

  11. Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow

    Science.gov (United States)

    Kurilov, E. A.; Mikhlin, Yu. V.

    2007-09-01

    The paper studies the dynamics of nonlinear elastic cylindrical shells using the theory of shallow shells. The aerodynamic pressure on the shell in a supersonic flow is found using piston theory. The effect of the flow and initial deflections on the vibrations of the shell is analyzed in the flutter range. The normal modes of both perfect shells in a flow and shells with initial imperfections are studied. In the latter case, the trajectories of normal modes in the configuration space are nearly rectilinear, only one mode determined by the initial imperfections being stable

  12. Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    Science.gov (United States)

    Giles, G. L.

    1976-01-01

    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed.

  13. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  14. Some numerical calculations by using linear classical sonic theories approached from sub- or supersonic speeds

    Science.gov (United States)

    Yamamoto, Y.; Ando, S.

    1987-01-01

    The unsteady aerodynamics of a two-dimensional wing at sonic speed are studied by using so-called classical sonic theories (linear), approached from supersonic flow (M=1+0) or subsonic flow (M=1-0). In the former approach, the exact expressions of lift and lift distribution are obtained in terms of Fresnel integrals, while in the latter approach an integral equation must be solved, the kernel function of which is obtained from the subsonic Possio's equation and has a root singularity. The discrete analysis is adopted on the basis of the semicircle method (SCM) and the weighting function for subsonic-flow-Gauss-quadrature, as well as modified characteristics obtained from both approaches agree quite well with each other. The results obtained by the present computations are compared with those of DLM-C (subsonic 2D code) developed by ANDO et al, and are found to give a reasonable outer boundary for subsonic unsteady aerodynamics.

  15. Research on the Robustness of an Adaptive PID Control of a Kind of Supersonic Missile

    Directory of Open Access Journals (Sweden)

    Gangling Jiao

    2013-01-01

    Full Text Available In this study, the dynamic characteristic of missile system is viewed as a two-loop system, such as inner loop and outer loop and we design an adaptive PID control strategy for the pitch channel linear model of supersonic missile. The robustness of a double PID controller is analyzed by changing the aerodynamic coefficients. The control law is testified to be stable even the aerodynamic coefficients are changed between 0.7 and 1.7 times of its standard value and the control effect is compared with the sliding mode control strategy. Also the advantage and defect of both control strategy are summarized at the end of this study.

  16. Stator Blade Laser Window Research

    Science.gov (United States)

    Lugas, Grant A.

    2004-01-01

    All turbofan engines used in modern aviation contain a series of fan blades and compressor blades which are all connected to one drive shaft. Inside the jet engine between each set of blades are stator blades, which are pitched opposite of the fan and compressor blades, the stator blades are both rotational and axial fixed in place. The project that I was assigned to involves the QAT 22 fan test rig; which is currently under final design review and very soon will be fabricated. The purpose of this research facility is to better understand the effects of stator blades. Stator blades are used to straiten the air in a turbine. The researcher's primary aim is to determine what the airflow is like at both the leading edge and the trailing edge of a stator blade. My work focused on designing the windows usable for both a compressor rig and a test fan rig. The difference between the two is the test fan application will be looking into a stator blade array rather than just looking at the rotor. My discussion will include a detailed explanation of how the PIV laser window system functions fiom start to finish. I will also discuss how the information is gathered and organized. Further more I plan to talk about the purpose of this kind of research and the advantages to using this technology to determine the airflow characteristics of blade designs. Finally I will discuss the researcher s conclusion on the relationship between aerodynamics of a blade and how noise is produced. NASA's main goal with this particular facility is find ways to quiet engine noise by reducing the amount of cavitations that occurs around the blades of a turbofan engine. Additional information is included in the original extended abstract.

  17. Stator Blade Laser Window Research

    Science.gov (United States)

    Lugas, Grant A.

    2004-01-01

    All turbofan engines used in modern aviation contain a series of fan blades and compressor blades which are all connected to one drive shaft. Inside the jet engine between each set of blades are stator blades, which are pitched opposite of the fan and compressor blades, the stator blades are both rotational and axial fixed in place. The project that I was assigned to involves the QAT 22 fan test rig; which is currently under final design review and very soon will be fabricated. The purpose of this research facility is to better understand the effects of stator blades. Stator blades are used to straiten the air in a turbine. The researcher's primary aim is to determine what the airflow is like at both the leading edge and the trailing edge of a stator blade. My work focused on designing the windows usable for both a compressor rig and a test fan rig. The difference between the two is the test fan application will be looking into a stator blade array rather than just looking at the rotor. My discussion will include a detailed explanation of how the PIV laser window system functions fiom start to finish. I will also discuss how the information is gathered and organized. Further more I plan to talk about the purpose of this kind of research and the advantages to using this technology to determine the airflow characteristics of blade designs. Finally I will discuss the researcher s conclusion on the relationship between aerodynamics of a blade and how noise is produced. NASA's main goal with this particular facility is find ways to quiet engine noise by reducing the amount of cavitations that occurs around the blades of a turbofan engine. Additional information is included in the original extended abstract.

  18. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  19. Programming Windows Azure

    CERN Document Server

    Krishnan, Sriram

    2010-01-01

    Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

  20. Mastering Windows 7 Deployment

    CERN Document Server

    Finn, Aidan; van Surksum, Kenneth

    2011-01-01

    Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

  1. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  2. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  3. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  4. Optical wavefront distortion due to supersonic flow fields

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiQiang; FU Song

    2009-01-01

    The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.

  5. Air transparent soundproof window

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Kim

    2014-11-01

    Full Text Available A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  6. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  7. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  8. The Aerodynamic Plane Table

    Science.gov (United States)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  9. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  10. Multi-functional windows

    Science.gov (United States)

    Nag, Nagendra; Goldman, Lee M.; Balasubramanian, Sreeram; Sastri, Suri

    2013-06-01

    The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the physical properties of optically transparent materials currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows held in weight bearing frames. Novel material systems will have to be developed which combine different materials (e.g. ductile metals with transparent ceramics) into structures that combine transparency with structural integrity. Surmet's demonstrated ability to produce novel transparent ceramic/metal structures will allow us to produce such structures in the types of conformal shapes required for future aircraft applications. Furthermore, the ability to incorporate transparencies into such structures also holds out the promise of creating multi-functional windows which provide a broad range of capabilities that might include RF antennas and de-icing in addition to transparency. Recent results in this area will be presented.

  11. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  12. Subsonic potential aerodynamics for complex configurations - A general theory

    Science.gov (United States)

    Morino, L.; Kuo, C.-C.

    1974-01-01

    A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.

  13. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  14. Numerical Simulations of Morphology, Flow Structures and Forces for a Sonic Jet Exhausting in Supersonic Crossflow

    Directory of Open Access Journals (Sweden)

    S.B.H Shah

    2012-01-01

    Full Text Available A numerical study is performed for a sonic jet issuing from a blunted cone to provide possible directional control in supersonic crossflow by solving the unsteady Reynolds-averaged Navier-Stokes (RANS equations with the twoequation k −ω turbulence model. Results are presented in the form of static aerodynamic coefficients, computed at a free stream Mach number 4.0, with varying pressure ratios, incidence angle and keeping zero yaw and roll angles. The morphology and flow structure for the jet exhausting in crossflow at various pressure ratios is described in detail. The Flight control of the projectile can be accomplished by taking advantage of a complex shock-boundary layer interaction produced by jet interacting with the oncoming crossflow by altering pressure distribution in vicinity of the jet, a net increase in the net force can be utilized for maneuvering of vehicle and possible flight control. Computed static aerodynamic coefficients and pressure distribution using CFD analyses is with an accuracy of ± 5% in the supersonic range.

  15. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  16. Numerical Investigation of Supersonic Oscillatory Flow with Strong Interference over a Capsule-shaped Abort System

    Science.gov (United States)

    Wang, Yunpeng; Ozawa, Hiroshi; Nakamura, Yoshiaki

    The flow past a capsule-shaped space transportation system (STS) is numerically analyzed using computational fluid dynamics (CFD) for different free stream Mach numbers ranging from 1.2 to 5.0, where a capsule is modeled by a cone, and a rocket by a circular cylinder. The objective of this research is to study Mach number effects on phenomena of the supersonic aerodynamic interference with periodic flow oscillations at supersonic regime. So far we have considered two models: model A (without disk) and model B (with disk). It was found from experimental and computational results that the flow around model A becomes steady, where aerodynamic interaction is not observed, while in model B, flow becomes unsteady with periodic oscillations. This flow oscillation is considered to be a potentially high risk in separation of the capsule and rocket. Therefore, the present study focuses on the unsteady case of model B. Numerical results at M=3.0 compared well with experimental ones, which validates the present CFD. Time-averaged results are employed to see the whole trajectories of shock waves and the variation in amplitude of flow oscillation during one cycle. Moreover, a fence is proposed as a device to suppress the flow oscillation.

  17. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  18. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  19. Rails on Windows

    CERN Document Server

    Hibbs, Curt

    2007-01-01

    It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

  20. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  1. Windows 8 simplified

    CERN Document Server

    McFedries, Paul

    2012-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

  2. Windows 95 Beslutningsguide

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    1996-01-01

    Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

  3. The Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  4. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  5. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  6. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  7. Aerodynamics of Small Vehicles

    Science.gov (United States)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  8. Computer programs for calculating pressure distributions including vortex effects on supersonic monoplane or cruciform wing-body-tail combinations with round or elliptical bodies

    Science.gov (United States)

    Dillenius, M. F. E.; Nielsen, J. N.

    1979-01-01

    Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.

  9. Windows 10 Technical Preview

    OpenAIRE

    Jyväsjärvi, Teppo

    2015-01-01

    Tässä opinnäytetyössä tutustaan uuden kesällä 2015 virallisesti julkaistavan Windows 10 -käyttöjärjestelmän Technical Preview -kehitysversioon. Ensimmäinen Technical Preview -versio julkaistiin syksyllä 2014. Opinnäytetyössä tutustaan Windows 10:n uusin ominaisuuksiin ja tehdään vertailua aiemman Windows 8.1 -version kanssa. Työssä Windows 10 Technical Preview asennetaan virtuaalikoneelle, käydään läpi asennuksen eri vaiheet sekä suurimmat muutokset käyttöliittymässä ja sovelluksissa. Op...

  10. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  11. Windows Security patch required

    CERN Multimedia

    2003-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables, ... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  12. Windows Security patch required

    CERN Multimedia

    2003-01-01

    This concerns Windows PCs which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables, ... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  13. Windows Security patch required

    CERN Multimedia

    3004-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  14. Windows Security patch required

    CERN Multimedia

    2003-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  15. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  16. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  17. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  18. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  19. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    Science.gov (United States)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  20. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  1. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Science.gov (United States)

    Kolář, Jan

    2012-04-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  2. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  3. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  4. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  5. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  6. Aerodynamic control in compressible flow using microwave driven discharges

    Science.gov (United States)

    McAndrew, Brendan

    A new aerodynamic control scheme based on heating of the free stream flow is developed. The design, construction, and operation of a unique small scale wind tunnel to perform experiments involving this control scheme is detailed. Free stream heating is achieved by means of microwave driven discharges, and the resulting flow perturbations are used to alter the pressure distribution around a model in the flow. The experimental facility is also designed to allow the injection of an electron beam into the free stream for control of the discharge. Appropriate models for the fluid flow and discharge physics are developed, and comparisons of calculations based on those models are made with experimental results. The calculations have also been used to explore trends in parameters beyond the range possible in the experiments. The results of this work have been (1) the development of an operating facility capable of supporting free stream heat addition experiments in supersonic flow, (2) the development of a compatible instrumented model designed to make lift and drag measurements in a low pressure, high electrical noise environment, (3) a theoretical model to predict the change in breakdown threshold in the presence of an electron beam or other source of ionization, and (4) successful demonstration of aerodynamic control using free stream heat addition.

  7. An Aileron Flutter Experiment and Analysis Using Semi-Span Model for the Small Supersonic Experimental Aircraft

    Science.gov (United States)

    Saitoh, Kenichi; Tamayama, Masato; Kikuchi, Takao; Machida, Shigeru; Nakamichi, Jiro

    This paper reports a wind-tunnel experiment and analysis that have been conducted under the National Experimental Airplane for Supersonic Transports (NEXST-1) project of JAXA. In order to perform the flight experiment, the design of the vehicle was examined from the stand point of aeroelasticity. The aileron buzz as well as flutter was of much concern for its aileron system on the main wing. Therefore, both wind-tunnel test and analysis were carried out by using a semi-span model with fuselage. Although the buzz was not observed in the test, damping responses of the aileron rotation mode were obtained. Critical damping was observed in supersonic flow, that meant a buzz could occur in ``region C'' of Lambourne's classification. Linear unsteady aerodynamic analysis is applicable to this type of buzz and the characteristics of the buzz of the model is discussed.

  8. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.

  9. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    徐胜利; R.D.Archer; B.E.Milton; 岳朋涛

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj

  10. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  11. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  12. Introduction. Computational aerodynamics.

    Science.gov (United States)

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  13. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  14. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  15. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  16. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  17. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  18. An experimental system for release simulation of internal stores in a supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-02-01

    Full Text Available Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments. A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than 0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.

  19. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... are described.A method for estimation of the net energy flow on a yearly basis and/or during the heating season is presented. The method is able to combine the influence of window orientation, window size and window shape, type of glazing, frame area relative to total window area and type of spacer in sealed...

  20. The Luminaire Window

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine

    2017-01-01

    The importance of dynamic daylight to support health and well-being has been more and more recognized. People in hospitals and health care environments have a specific need for optimized daylight conditions. Daylight penetration through window openings is crucial to stimulate circadian rhythm...... and maintain a healthy sleep-awake pattern. At the same time, the window can provide a pleasant view and connection to the surroundings and enhance the perception of the interior space and materials. All three factors are recognized as important for human well-being and health, but never the less...

  1. Microsoft Windows networking essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

  2. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  3. Windows Azure mobile services

    CERN Document Server

    Johnson, Bruce

    2013-01-01

    Get up and running with Windows Azure Mobile Services Windows Azure Mobile Services (WAMS) is a turn-key backend solution for applications, mobile or otherwise, to utilize structured storage in the cloud. It includes basic data access functionality and built-in authentication with Microsoft Account, Facebook, Twitter and Google, as well as push notification to the client app. This compact, to the point book gives you just what you need to get up and running with these tools. Demonstrates how to add, update, delete and retrieve data using standard .NET classes or REST-based requestsDescribes h

  4. Microsoft Windows Security Essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

  5. BERKELEY LAB WINDOW

    Energy Technology Data Exchange (ETDEWEB)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  6. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  7. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....... In the present work we have extended the laminar oncoming flow in DVMFLOW to a turbulent one, modelled by seeding the upstream flow with vortex particles synthesized from prescribed atmospheric turbulence velocity spectra [3] . The discrete spectrum is sampled from the continuous spectrum subject to a lower cutoff...

  8. Simple cryogenic infrared window

    NARCIS (Netherlands)

    Hartemink, M.; Hartemink, M.; Godfried, H.P; Godfried, Herman

    1991-01-01

    A simple, cheap technique is reported that allows materials with both large and small thermal expansion coefficients to be mounted as windows in low temperature cryostats while at the same time avoiding thermal stresses. The construction may be thermally cycled many times with no change in its

  9. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    In a recent EU FP5 project, monolithic silica aerogel was further developed with respect to the production process at pilot-scale, its properties and the application as transparent insulation material in highly insulating and transparent windows. The aerogel production process has been optimised...

  10. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  11. Windows and lighting program

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  12. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  13. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  14. Influences of attack angle and mach number on aerodynamic characters of typical sections of extra-long blade in a steam turbine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On super-sonic or trans-sonic planar cascade wind tunnel of free jet intermittent type, wind blowing experiments were performed on the typical sections of stator and rotor blades in the last stage of ultra-ultra-critical steam turbine with extra-long blade of 1200mm. The influences of attack angle and Mach number on the aerodynamic performances of these sections of the blade profiles were verified, and their operating ranges were also specified.

  15. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  16. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  17. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    Science.gov (United States)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  18. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  19. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  20. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  1. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  2. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj

  3. Windows CE自定制Shell%Customizing Windows CE Shell

    Institute of Scientific and Technical Information of China (English)

    覃朗; 雷跃明

    2010-01-01

    Shell是用户访问操作系统的接口.Shell开发在Windows CE操作系统开发中占据一定的重要性.对Windows CE Shell进行了概述,并通过建立Shell模型,讲述如何自定制Windows CE Shell和定制Shell必须注意的问题,对Windows CE Shell的定制进行深入研究.

  4. Wind Tunnel Experimental Investigation on the Aerodynamic Characteristics of the Multifin Rockets and Missiles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞<2.0, with the increase of the fins' number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.

  5. Unsteady aerodynamics modeling for flight dynamics application

    Science.gov (United States)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  6. Unsteady aerodynamics modeling for flight dynamics application

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu

    2012-01-01

    In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  7. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...

  8. Process window metrology

    Science.gov (United States)

    Ausschnitt, Christopher P.; Chu, William; Hadel, Linda M.; Ho, Hok; Talvi, Peter

    2000-06-01

    This paper is the third of a series that defines a new approach to in-line lithography control. The first paper described the use of optically measurable line-shortening targets to enhance signal-to-noise and reduce measurement time. The second described the dual-tone optical critical dimension (OCD) measurement and analysis necessary to distinguish dose and defocus. Here we describe the marriage of dual-tone OCD to SEM-CD metrology that comprises what we call 'process window metrology' (PWM), the means to locate each measured site in dose and focus space relative to the allowed process window. PWM provides in-line process tracking and control essential to the successful implementation of low-k lithography.

  9. Duplication of Windows Services

    OpenAIRE

    Shan, Zhiyong; Chiueh, Tzi-cker; Wang, Xin

    2016-01-01

    OS-level virtualization techniques virtualize system resources at the system call interface, has the distinct advantage of smaller run-time resource requirements as compared to HAL-level virtualization techniques, and thus forms an important building block for virtualizing parallel and distributed applications such as a HPC clusters. Because the Windows operating system puts certain critical functionalities in privileged user-level system service processes, a complete OS-level virtualization ...

  10. Target Window Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-11

    The target window design implemented and tested in experiments at ANL have performed without failure for the available beam of 6 mm FWHM on a 12 mm diameter target. However, scaling that design to a 25 mm diameter target size for a 12 mm FWHM beam has proven problematic. Combined thermal and mechanical (pressure induced) stresses and strains are too high to maintain the small coolant gaps and provide adequate fatigue lifetime.

  11. An Aerodynamic Analysis of Deformed Wings in Subsonic and Supersonic Flow.

    Science.gov (United States)

    1981-04-01

    primary interest include wing twist, cam - bered airfoils, and arbitrary chordwise and spanwise deformations. For the case of w. ig twist, at any given...2.0100 MACH NO. = 2.0100 CR = 2.74,75 CR = 2.7475 CT = 0.0000 C CT - 0.0000 Y/(B/2) = 0.1000 Y /(B/2 = 0.14000 o 0L. C- L -- ( D C 0 CD CAD -c oD...No. Format Variable List 1 18A4 WING 2 7F10.0 SPAN,CR,CT,LAMDA,SAREA,CBAR,MACH 3 F10.0,15 ALPHA,KSTOP 4 1015 NC,NS, NX ,NY,NCF,NSF,NXF,NYF,NSPAN, NCORD

  12. Handbook of Supersonic Aerodynamics. Section 20. Wind Tunnel Instrumentation and Operation

    Science.gov (United States)

    1961-01-01

    stock can be selected and then etched with a solution of 34t concentrated sulphuric acid, 421 ortho-phosphoric acid, and 24% distilled water.) Then...mercury should be free from sulphur in order to avoid contam- ination of the mercury. Commercial plastic tubing has a number of advantages over rubber...coating with china clay ( kaolin ), a crystal- line solid having a refractive index of 1.56 and a white appearance when dry (Ref. 64). The china clay

  13. Flowfields around supersonic aerodynamic bodies under the action of asymmetric energy release

    Science.gov (United States)

    Azarova, O. A.; Knight, D.; Kolesnichenko, Yu. F.

    2013-06-01

    The interaction of an infinite microwave filament and a shock layer is analyzed numerically on the basis of the Euler system of equations. The filament is regarded as a heated rarefied channel (heat layer). Flow details for asymmetrical filament location are researched including the formation of a new position of the stagnation point and the dependence of the front drag force on the filament characteristics and location. The origin of a lift/pitch force in the case of zero angle of attack is discussed. This force is shown to be a function of the shift value from the symmetry axis of the heat layer and the degree of the gas rarefaction in it. The mechanism of the lift/pitch force origination is revealed. These phenomena are analyzed for blunt and pointed bodies at freestream Mach number 1.89 and a wide class of values of infinite filament characteristics: the rarefaction factor and the disposition relative to the body.

  14. Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction

    Science.gov (United States)

    2014-06-01

    The conical nose is 2.84 cal. long and is followed by a 7.16-cal cylindrical section. Four rectangular planform fins are located on the back end of...Turbulence Modeling for Unsteady Flow With Acoustic Resonance ; AIAA Paper 00-0473. Presented at 38th AIAA Aerospace Sciences Conference, Reno, NV

  15. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... performance of windows can be reached by development of each element of the window, but to gain a considerable improvement in the overall energy performance all elements of the windows need to be examined together and the construction optimised. This paper describes potential improvements of window elements...

  16. Aerodynamic design via control theory

    Science.gov (United States)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  17. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  18. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  19. Mobilní platforma Windows

    OpenAIRE

    Ženíšek, Jan

    2011-01-01

    This bachelor thesis describes to mobile operating system Windows Phone 8. That was introduced in half of the year 2012. The main aim this thesis is to introduce operating system Windows Phone 8. It includes all its parameters, features and technologies, which are necessary for future application development. Partial goal is to explain the possibilities and processes of the development not only for Windows Phone 8 but also for Windows 8. Another crucial goal is the illustrative example of usi...

  20. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  1. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  2. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  3. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  4. Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

    Science.gov (United States)

    Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.

    2011-01-01

    Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.

  5. The NASA High Speed ASE Project: Computational Analyses of a Low-Boom Supersonic Configuration

    Science.gov (United States)

    Silva, Walter A.; DeLaGarza, Antonio; Zink, Scott; Bounajem, Elias G.; Johnson, Christopher; Buonanno, Michael; Sanetrik, Mark D.; Yoo, Seung Y.; Kopasakis, George; Christhilf, David M.; Chwalowski, Pawel

    2014-01-01

    A summary of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The summary includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured and unstructured CFD grids, and discussion of the FEM development including sizing and structural constraints applied to the N+2 configuration. Linear results obtained to date include linear mode shapes and linear flutter boundaries. In addition to the tasks associated with the N+2 configuration, a summary of the work involving the development of AeroPropulsoServoElasticity (APSE) models is also discussed.

  6. Teach yourself visually Windows 10

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 visually with step-by-step instructions Teach Yourself VISUALLY Windows 10 is the visual learner's guide to the latest Windows upgrade. Completely updated to cover all the latest features, this book walks you step-by-step through over 150 essential Windows tasks. Using full color screen shots and clear instruction, you'll learn your way around the interface, set up user accounts, play media files, download photos from your camera, go online, set up email, and much more. You'll even learn how to customize Windows 10 to suit the way you work best, troubleshoot and repair common

  7. Beginner's guide to Windows 7

    CERN Document Server

    Holden, Susan

    2011-01-01

    This concise, accessible and down-to-earth guide will help you get the most out of your computer using Windows 7, whether you're a complete beginner or upgrading from previous Microsoft operating systems. You'll learn about exciting new features of Windows 7, including how to work with Windows 7 Libraries, how to communicate using Windows Live Mail, how to use Windows Live Photo Gallery, how to browse and search the web using Internet Explorer, and Version 8 and Accelerators.

  8. Windows Home Server users guide

    CERN Document Server

    Edney, Andrew

    2008-01-01

    Windows Home Server brings the idea of centralized storage, backup and computer management out of the enterprise and into the home. Windows Home Server is built for people with multiple computers at home and helps to synchronize them, keep them updated, stream media between them, and back them up centrally. Built on a similar foundation as the Microsoft server operating products, it's essentially Small Business Server for the home.This book details how to install, configure, and use Windows Home Server and explains how to connect to and manage different clients such as Windows XP, Windows Vist

  9. Windows 8.1 simplified

    CERN Document Server

    McFedries, Paul

    2013-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 400,000 copies sold, previous Windows editions are among the bestselling Visual books. Using a Visual approach, this book covers the new features of Windows 8.1 and provides step-by-step instructions for readers who are entirely new to the subject. Inside, you'll discover tasks on topics such as: Windows basics, creating movies, sharing their computer, working with and managing files, browsing the web, and new ways to customize Windows to w

  10. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  11. Aeroelastic passive control optimization of supersonic composite wing with external stores

    Science.gov (United States)

    Sulaeman, E.; Abdullah, N. A.; Kashif, S. M.

    2017-03-01

    This paper provides a study on passive aeroelastic control optimization, by means of aeroelastic tailoring, of a composite supersonic wing equipped with external stores. The objective of the optimization is to minimize wing weight by considering the aeroelastic flutter and divergence instability speeds as constraints at several flight altitudes. The optimization variables are the composite ply angle and skin thickness of the wing box, wing rib and its control surfaces. The aeroelastic instability speed is set as constraint such that it should be higher than the flutter speed of a metallic base line model of supersonic wing having previously published. A finite element analysis is applied to determine the stiffness and mass matric of the wing and its multi stores. The boundary element method in the form of doublet lattice method is used to model the unsteady aerodynamic load. The results indicate that, for the present wing configuration, the high modulus Graphite/Epoxy composite provides a desired higher flutter speed and lower wing weight compare to that of Kevlar/Epoxy composite as well as the base line metallic wing materials. The aeroelastic boundary thus can be enlarged to higher speed zone and in the same time reduce the structural weight which is important for a further optimization process.

  12. Sunlight Responsive Thermochromic Window System

    Energy Technology Data Exchange (ETDEWEB)

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

  13. Proceedings of the Special Course on Missile Aerodynamics, Held in Rhode-Saint-Genese, Belgium on 30 March-3 April 1987, Held in Athens, Greece on 18-19 May 1987 Held in Ankara, Turkey on 21-22 May 1987

    Science.gov (United States)

    1988-04-01

    from the Mach number downstream of this norma , shock. This is given by ~AA 2 (1+ 2_~ 2 LA M i/ Maximum internal performance is achieved when the...from the Supersonic/Hypersonic Arbitrary Body Program (S/ABP) 5 . 6 . 7 and Aerodynamic Preliminary Analysis Systems ( APAS ) 9 are com- pared with

  14. Windows Azure web sites

    CERN Document Server

    Chambers, James

    2013-01-01

    A no-nonsense guide to maintaining websites in Windows Azure If you're looking for a straightforward, practical guide to get Azure websites up and running, then this is the book for you. This to-the-point guide provides you with the tools you need to move and maintain a website in the cloud. You'll discover the features that most affect developers and learn how they can be leveraged to work to your advantage. Accompanying projects enhance your learning experience and help you to walk away with a thorough understanding of Azure's supported technologies, site deployment, and manageme

  15. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    In a recent EU FP5 project, monolithic silica aerogel was further developed with respect to the production process at pilot-scale, its properties and the application as transparent insulation material in highly insulating and transparent windows. The aerogel production process has been optimised...... the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most of the chemicals involved in the production process. A large number of aerogel glazing prototypes have been made with partly evacuated aerogel in between two layers of low iron...

  16. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2011-01-01

    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  17. Laplacian magic windows

    Science.gov (United States)

    Berry, M. V.

    2017-06-01

    A transparent sheet, flat to unaided vision but with a gentle surface relief, can concentrate light onto a screen with intensity reproducing any desired image: the sheet is a ‘magic window’. When the ray deflections are sufficiently small that there are no caustics between the window and the screen, the image intensity is the Laplacian function of the relief height function—a very simple approximation to general freeform optics. Therefore the desired relief is obtained by solving Poisson’s equation. Numerical simulations indicate that the Laplacian image approximation will apply to realistic situations.

  18. SAF for Windows

    DEFF Research Database (Denmark)

    Hansen, Timme

    2001-01-01

    SAF for Windows er et computerprogram til parametrisk konstruktion af translationsskaller. Skaloverfladernes tredimensionelle, facetterede form fremkommer ved en kombination af to todimensionelle formbestemmende kurver, som kan vælges og redigeres af brugeren. Programmet kan udfolde de genererede...... skaller, så facetternes sande størrelse vises, og danne en liste med alle mål. Både skallernes tredimensionelle og todimensionelle form kan eksporteres som DXF-filer til CAD programmer. Programmet indeholder stadig fejl - jeg arbejder på en ny version....

  19. Radiation controlling reversible window

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A. Jr.

    1980-01-01

    A coated glass glazing system is presented including a transparent glass substrate having one surface coated with a radiation absorptive film which is overcoated with a radiation reflective film by a technique which renders the radiation reflective film radiation absorptive at the surface contracting the radiating absorptive film. The coated glass system is used as glazing for storm windows which are adapted to be reversible so that the radiation reflective surface may be exposed to the outside of the dwelling during the warm seasons to prevent excessive solar radiation from entering a dwelling and reversed during cold seasons to absorb solar radiation and utilize it to aid in keeping the dwelling interior warm.

  20. Invariant sets for Windows

    CERN Document Server

    Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V

    1999-01-01

    This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical

  1. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a considerable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focussed on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... of the heating demand in typical single-family houses in Denmark and Greenland. The examined windows are typical new windows from Nordic countries and new proposals of improved windows with low thermal transmittance and high total solar energy transmittance. The results show that net energy gain can be increased...

  2. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    Science.gov (United States)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design

  3. Constraints on Relaxion Windows

    CERN Document Server

    Choi, Kiwoon

    2016-01-01

    We examine low energy phenomenology of the relaxion solution to the weak scale hierarchy problem. Assuming that the Hubble friction is responsible for the dissipation of relaxion energy, we identify the cosmological relaxion window which corresponds to the parameter region compatible with a given value of the acceptable number of inflationary $e$-foldings. We then discuss a variety of observational constraints on the relaxion window, while focusing on the case that the barrier potential to stabilize the relaxion is induced by new physics, rather than by low energy QCD dynamics. We find that majority of the parameter space with a relaxion mass $m_\\phi\\gtrsim 100$ eV or a relaxion decay constant $f\\lesssim 10^7$ GeV is excluded by existing constraints. There is an interesting small parameter region with $m_\\phi\\sim \\,0.2-1$ GeV and $f\\sim\\, {\\rm few}-10$ TeV, which is allowed by existing constraints, but can be probed soon by future beam dump experiment such as the SHiP experiment, or by improved EDM experiment...

  4. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  5. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  6. Simulating Magneto-Aerodynamic Actuator

    Science.gov (United States)

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  7. Phonatory aerodynamics in connected speech.

    Science.gov (United States)

    Gartner-Schmidt, Jackie L; Hirai, Ryoji; Dastolfo, Christina; Rosen, Clark A; Yu, Lan; Gillespie, Amanda I

    2015-12-01

    1) Present phonatory aerodynamic data for healthy controls (HCs) in connected speech; 2) contrast these findings between HCs and patients with nontreated unilateral vocal fold paralysis (UVFP); 3) present pre- and post-vocal fold augmentation outcomes for patients with UVFP; 4) contrast data from patients with post-operative laryngeal augmentation to HCs. Retrospective, single-blinded. For phase I, 20 HC participants were recruited. For phase II, 20 patients with UVFP were age- and gender-matched to the 20 HC participants used in phase I. For phase III, 20 patients with UVFP represented a pre- and posttreatment cohort. For phase IV, 20 of the HC participants from phase I and 20 of the postoperative UVFP patients from phase III were used for direct comparison. Aerodynamic measures captured from a sample of the Rainbow Passage included: number of breaths, mean phonatory airflow rate, total duration of passage, inspiratory airflow duration, and expiratory airflow duration. The VHI-10 was also obtained pre- and postoperative laryngeal augmentation. All phonatory aerodynamic measures were significantly increased in patients with preoperative UVFP than the HC group. Patients with laryngeal augmentation took significantly less breaths, had less mean phonatory airflow rate during voicing, and had shorter inspiratory airflow duration than the preoperative UVFP group. None of the postoperative measures returned to HC values. Significant improvement in the Voice Handicap Index-10 scores postlaryngeal augmentation was also found. Methodology described in this study improves upon existing aerodynamic voice assessment by capturing characteristics germane to UVFP patient complaints and measuring change before and after laryngeal augmentation in connected speech. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  9. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  10. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  11. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  12. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  13. An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet

    Science.gov (United States)

    LI, S.-M.; HANUSKA, C. A.; NG, W. F.

    2001-11-01

    An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.

  14. Computation of supersonic jet mixing noise for an axisymmetric convergent-divergent nozzle

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.

    1994-05-01

    The turbulent mixing noise of a supersonic jet is calculated for an axisymmetric convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy is adopted. The acoustics solution is based upon the methodology followed in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors (Ribner's assumption). Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The CFD solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  15. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  16. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  17. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  18. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  19. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a con-siderable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  20. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a considerable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focussed on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy perform-ance of windows in a simple...

  1. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  2. Redefining the Axion Window

    Science.gov (United States)

    Di Luzio, Luca; Mescia, Federico; Nardi, Enrico

    2017-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.

  3. Redefining the Axion Window

    CERN Document Server

    Di Luzio, Luca; Nardi, Enrico

    2016-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations $R_Q$ of the new heavy quarks $Q$. By requiring that $i)$ the $Q$ are sufficiently short lived to avoid issues with long lived strongly interacting relics, $ii)$ no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about twice (four times) larger than commonly assumed. Allowing for more than one $R_Q$, larger couplings, as well as complete axion-photon decoupling, become possible.

  4. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  5. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  6. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  7. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  8. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  9. Real Clifford Windowed Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    Mawardi BAHRI; Sriwulan ADJI; Ji Man ZHAO

    2011-01-01

    We study the windowed Fourier transform in the framework of Clifford analysis, which we call the Clifford windowed Fourier transform (CWFT). Based on the spectral representation of the Clifford Fourier transform (CFT), we derive several important properties such as shift, modulation,reconstruction formula, orthogonality relation, isometry, and reproducing kernel. We also present an example to show the differences between the classical windowed Fourier transform (WFT) and the CWFT. Finally, as an application we establish a Heisenberg type uncertainty principle for the CWFT.

  10. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  11. Windows 7 The Missing Manual

    CERN Document Server

    Pogue, David

    2010-01-01

    In early reviews, geeks raved about Windows 7. But if you're an ordinary mortal, learning what this new system is all about will be challenging. Fear not: David Pogue's Windows 7: The Missing Manual comes to the rescue. Like its predecessors, this book illuminates its subject with reader-friendly insight, plenty of wit, and hardnosed objectivity for beginners as well as veteran PC users. Windows 7 fixes many of Vista's most painful shortcomings. It's speedier, has fewer intrusive and nagging screens, and is more compatible with peripherals. Plus, Windows 7 introduces a slew of new features,

  12. Windows 7 the definitive guide

    CERN Document Server

    Stanek, William R

    2010-01-01

    This book provides everything you need to manage and maintain Windows 7. You'll learn all of the features and enhancements in complete detail, along with specifics for configuring the operating system to put you in full control. Bestselling author and Windows expert William Stanek doesn't just show you the steps you need to follow, he also tells you how features work, why they work, and how you can customize them to meet your needs. Learn how to squeeze every bit of power out of Windows 7 to take full advantage of its features and programs. Set up, customize, and tune Windows 7-Optimize its

  13. 探索Windows2001

    Institute of Scientific and Technical Information of China (English)

    李红

    2000-01-01

    Window S2000刚刚发布,微软就在开发其后继产品WindowS2001(产品代号Whistler),Windows 2001就是传说中的Windows Whistler,微软在.net计划中称之为“下个版本的Windows”,它将是第一个同时包含消费型和商业型操作系统代码的Windows,采用基于XML的全新用户界面(被称作“视觉风格”)。

  14. Microsoft Windows Operating System Essentials

    CERN Document Server

    Carpenter, Tom

    2012-01-01

    A full-color guide to key Windows 7 administration concepts and topics Windows 7 is the leading desktop software, yet it can be a difficult concept to grasp, especially for those new to the field of IT. Microsoft Windows Operating System Essentials is an ideal resource for anyone new to computer administration and looking for a career in computers. Delving into areas such as fundamental Windows 7 administration concepts and various desktop OS topics, this full-color book addresses the skills necessary for individuals looking to break into a career in IT. Each chapter begins with a list of topi

  15. Subject Responses to Electrochromic Windows

    Energy Technology Data Exchange (ETDEWEB)

    Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

    2006-03-03

    Forty-three subjects worked in a private office with switchable electrochromic windows, manually-operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3-60%. Analysis of subject responses and physical data collected during the work sessions showed that the electrochromic windows reduced the incidence of glare compared to working under a fixed transmittance (60%) condition. Subjects used the Venetian blinds less often and preferred the variable transmittance condition, but used slightly more electric lighting with it than they did when window transmittance was fixed.

  16. Beginning Windows 8.1

    CERN Document Server

    Halsey, Mike

    2013-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever and the 8.1 update enhances the paradigm further. Beginning Windows 8.1 takes you through the new features and helps you get more out of the familiar to reveal the fullest possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes w

  17. Femtosecond laser electronic excitation tagging for aerodynamic and thermodynamic measurements

    Science.gov (United States)

    Calvert, Nathan David

    This thesis presents applications of Femtosecond Laser Electronic Excitation Tagging (FLEET) to a variety of aerodynamic and thermodynamic measurements. FLEET tagged line characteristics such as intensity, width and spectral features are investigated in various flow conditions (pressure, temperature, velocity, steadiness, etc.) and environments (gas composition) for both temporally and spatially instantaneous and averaged data. Special attention is drawn to the nature of first and second positive systems of molecular nitrogen and the ramifications on FLEET measurements. Existing laser-based diagnostic techniques are summarized and FLEET is directly compared with Particle Image Velocimetry (PIV) in various low speed flows. Multidimensional velocity, acceleration, vorticity and other flow parameters are extracted in supersonic free jets and within an enclosed in-draft tunnel test section. Probability distribution functions of the mean and standard deviation of critical flow parameters are unveiled by utilizing a Bayesian statistical framework wherein likelihood functions are established from prior and posterior distributions. Advanced image processing techniques based on fuzzy logic are applied to single-shot FLEET images with low signal-to-noise ratio to improve image quality and reduce uncertainty in data processing algorithms. Lastly, FLEET second positive and first negative emission are considered at a wide range of pressures to correct for changes in select rovibrational peak magnitude and shape due to density from which bulk gas temperature may be extracted.

  18. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... Also a discussion of the use of passive and active aerodynamic devices is included such as, e.g., Vortex Generators and distributed active flaps. Finally the problem of wakes in wind farms is addressed and a section of the likely future development of aerodynamic models for wind turbines is included...

  19. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project will focus on the development and demonstration of hypersonic inflatable aeroshell technologies...

  20. Aerodynamics Laboratory Facilities, Equipment, and Capabilities

    Data.gov (United States)

    Federal Laboratory Consortium — The following facilities, equipment, and capabilities are available in the Aerodynamics Laboratory Facilities and Equipment (1) Subsonic, open-jet wind tunnel with...

  1. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor......-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...

  2. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

    CERN Document Server

    Carvey, Harlan

    2012-01-01

    Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

  3. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

    CERN Document Server

    Webber-Cross, Geoff

    2014-01-01

    This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica

  4. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  5. Inventions on Displaying and Resizing Windows

    OpenAIRE

    Mishra, Umakant

    2014-01-01

    Windows are used quite frequently in a GUI environment. The greatest advantage of using windows is that each window creates a virtual screen space. Hence, although the physical screen space is limited to a few inches, use of windows can create unlimited screen space to display innumerable items. The use of windows facilitates the user to open and interact with multiple programs or documents simultaneously in different windows. Sometimes a single program may also open multiple windows to displ...

  6. The basic aerodynamics of floatation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  7. The workplace window view

    DEFF Research Database (Denmark)

    Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik

    2015-01-01

    Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance and neighbourh......Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance...... and neighbourhood satisfaction. This study investigates whether relationships between window view, and work ability and job satisfaction also exist in the context of the workplace by focusing on office workers’ view satisfaction. The results showed that a view of natural elements was related to high view...... satisfaction, and that high view satisfaction was related to high work ability and high job satisfaction. Furthermore, the results indicated that job satisfaction mediated the effect of view satisfaction on work ability. These findings show that a view of a green outdoor environment at the workplace can...

  8. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...... a comprehensive list of window related standards and a list of Nordic research and development projects.Two programs are encloased in the handbook for calculation of solar radiation on inclined surfaces including a shadow correction and a simple program for evaluation of energy savings and risk of overtemperature....

  9. Securing Applications in Windows Phone

    Directory of Open Access Journals (Sweden)

    B. Venkat Sandeep

    2012-06-01

    Full Text Available Windows Phone 7 has been planned with speed in mind. Windows phone is the new baby from Microsoft which is impressed by its features. More than 80,000 apps have now been published in the Windows Phone Marketplace and new content is currently being added at the rate of 340 apps per day [1]. Although there are many benefits, these are not without risks. Most of today’s mobile applications are transaction based, the security is even greater. In this paper we will discuss about the security in mobile devices, and how the windows phone has supported in developing secure applications. Also discuss about the isolated storage feature in windows phone. As security is more important for the Mobile devices, this also discusses how the additional security is provided to the apps.

  10. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...... if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... with the minimum acceptable surface temperature regarding surface condensation or mold growth, implemented in the Danish Building Regulations in 2010, and the calculation method for this temperature based on international standards is discussed. The introduction of the minimum acceptable surface temperature has...

  11. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    of the heating demand in typical single-family houses in Denmark and Greenland. The examined windows are typical new windows from Nordic countries and new proposals of improved windows with low thermal transmittance and high total solar energy transmittance. The results show that net energy gain can be increased...... considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... bridges achieve this. Applying shutters or low emissivity coated roller blinds incorporated in the glazing that are activated during night time can improve the energy performance of windows. The results from this work show that it is possible to develop windows with a positive net energy in a fairly...

  12. Windows for tablets for dummies

    CERN Document Server

    Rathbone, Andy

    2013-01-01

    Just for you--Windows 8 from the tablet user's perspective If you're an experienced Windows user, you don't need a guide to everything that Windows 8 can do, just to those tools and functions that work on your tablet. And so here it is. This new book zeros in on what you need to know to work best on your tablet with Windows 8. Topics include navigating the new Windows 8 interface and how it works on a touchscreen, how to safely connect to the Internet, how to work with apps or share your tablet in a group, and much more. If you're a new tablet user, you'll particularly appre

  13. Prism Window for Optical Alignment

    Science.gov (United States)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  14. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  15. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  16. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  17. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  18. Aerodynamic seal assemblies for turbo-machinery

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  19. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  20. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  1. Perching aerodynamics and trajectory optimization

    Science.gov (United States)

    Wickenheiser, Adam; Garcia, Ephrahim

    2007-04-01

    Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.

  2. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  3. Aerodynamic Drag and Gyroscopic Stability

    CERN Document Server

    Courtney, Elya R

    2013-01-01

    This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

  4. Conformal ALON® and spinel windows

    Science.gov (United States)

    Goldman, Lee M.; Smith, Mark; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    The requirements for modern aircraft based reconnaissance systems are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the ability to produce windows in complex geometries currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows. ALON consists primarily of aluminum and oxygen, similar to that of alumina, with a small amount of nitrogen added to help stabilize the cubic gamma-AlON phase. ALON's chemical similarity to alumina, translates into a robust manufacturing process. This ease of processing has allowed Surmet to produce ALON windows and domes in a wide variety of geometries and sizes. Spinel (MgAl2O4) contains equal molar amounts of MgO and Al2O3, and is a cubic material, that transmits further into the Infrared than ALON. Spinel is produced via powder processing techniques similar to those used to produce ALON. Surmet is now applying the lessons learned with ALON to produce conformal spinel windows and domes as well.

  5. Opto-mechanical design of optical window for aero-optics effect simulation instruments

    Science.gov (United States)

    Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan

    2016-10-01

    A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.

  6. Windows 8 visual quick tips

    CERN Document Server

    McFedries, Paul

    2012-01-01

    Easy-in, easy-out format covers all the bells and whistles of Windows 8 If you want to learn how to work smarter and faster in Microsoft's Windows 8 operating system, this easy-to-use, compact guide delivers the goods. Designed for visual learners, it features short explanations and full-color screen shots on almost every page, and it's packed with timesaving tips and helpful productivity tricks. From enhancing performance and managing digital content to setting up security and much more, this handy guide will help you get more out of Windows 8. Uses full-color screen shots and short, step-by-

  7. Windows Phone 7 Made Simple

    CERN Document Server

    Trautschold, Martin

    2011-01-01

    With Windows Phone 7, Microsoft has created a completely new smartphone operating system that focuses on allowing users to be productive with their smartphone in new ways, while offering seamless integration and use of Microsoft Office Mobile as well as other productivity apps available in the Microsoft App Store. Windows Phone 7 Made Simple offers a clear, visual, step-by-step approach to using your Windows Phone 7 smartphone, no matter what the manufacturer. Author Jon Westfall is an expert in mobile devices, recognized by Microsoft as a "Most Valuable Professional" with experience

  8. Aerodynamic aircraft design methods and their notable applications: Survey of the activity in Japan

    Science.gov (United States)

    Fujii, Kozo; Takanashi, Susumu

    1991-01-01

    An overview of aerodynamic aircraft design methods and their recent applications in Japan is presented. A design code which was developed at the National Aerospace Laboratory (NAL) and is in use now is discussed, hence, most of the examples are the result of the collaborative work between heavy industry and the National Aerospace Laboratory. A wide variety of applications in transonic to supersonic flow regimes are presented. Although design of aircraft elements for external flows are the main focus, some of the internal flow applications are also presented. Recent applications of the design code, using the Navier Stokes and Euler equations in the analysis mode, include the design of HOPE (a space vehicle) and Upper Surface Blowing (USB) aircraft configurations.

  9. Numerical simulations of aerodynamic contribution of flows about a space-plane-type configuration

    Science.gov (United States)

    Matsushima, Kisa; Takanashi, Susume; Fujii, Kozo; Obayashi, Shigeru

    1987-01-01

    The slightly supersonic viscous flow about the space-plane under development at the National Aerospace Laboratory (NAL) in Japan was simulated numerically using the LU-ADI algorithm. The wind-tunnel testing for the same plane also was conducted with the computations in parallel. The main purpose of the simulation is to capture the phenomena which have a great deal of influence to the aerodynamic force and efficiency but is difficult to capture by experiments. It includes more accurate representation of vortical flows with high angles of attack of an aircraft. The space-plane shape geometry simulated is the simplified model of the real space-plane, which is a combination of a flat and slender body and a double-delta type wing. The comparison between experimental results and numerical ones will be done in the near future. It could be said that numerical results show the qualitatively reliable phenomena.

  10. The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain

    Science.gov (United States)

    Farassat, F.

    1984-01-01

    This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.

  11. Toward Improved CFD Predictions of Slender Airframe Aerodynamics Using the F-16XL Aircraft (CAWAPI-2)

    Science.gov (United States)

    Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce

    2014-01-01

    A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.

  12. Grab Windows training opportunities; check CERN Windows roadmap!

    CERN Multimedia

    IT Department

    2011-01-01

    CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

  13. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  14. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  15. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  16. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    the paper describes how the net energy gain from a complete typical window can be increased in a fairly simple way by reducing the frame width and using glass with low iron content. The changes primary increase the g-value. All improvements are based on existing technology and manufacturing methods...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  17. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  18. Aerodynamic research on tipvane windturbines

    Science.gov (United States)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  19. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  20. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  1. Rarefaction Effects in Hypersonic Aerodynamics

    Science.gov (United States)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  2. The basic aerodynamics of floatation

    Science.gov (United States)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  3. On Cup Anemometer Rotor Aerodynamics

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2012-05-01

    Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.

  4. Aerodynamic optimization of an HSCT configuration using variable-complexity modeling

    Science.gov (United States)

    Hutchison, M. G.; Mason, W. H.; Grossman, B.; Haftka, R. T.

    1993-01-01

    An approach to aerodynamic configuration optimization is presented for the high-speed civil transport (HSCT). A method to parameterize the wing shape, fuselage shape and nacelle placement is described. Variable-complexity design strategies are used to combine conceptual and preliminary-level design approaches, both to preserve interdisciplinary design influences and to reduce computational expense. Conceptual-design-level (approximate) methods are used to estimate aircraft weight, supersonic wave drag and drag due to lift, and landing angle of attack. The drag due to lift, wave drag and landing angle of attack are also evaluated using more detailed, preliminary-design-level techniques. New, approximate methods for estimating supersonic wave drag and drag due to lift are described. The methodology is applied to the minimization of the gross weight of an HSCT that flies at Mach 2.4 with a range of 5500 n.mi. Results are presented for wing planform shape optimization and for combined wing and fuselage optimization with nacelle placement. Case studies include both all-metal wings and advanced composite wings.

  5. A window on urban sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  6. Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    Science.gov (United States)

    Carlson, Harry W.; Mann, Michael J.

    1992-01-01

    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed.

  7. Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges

    Indian Academy of Sciences (India)

    Xiao-Yi Han; Jun Wang; Hai-Feng Cheng

    2014-02-01

    Utilizing thermoelectric technology to aerodynamic heat harvesting on the leading-edge is worth noticing in the thermal protection systems. In this paper, a nose-tip model in a supersonic flow field is developed to predict the thermoelectric performance of SiC ceramics structures. The generation performance is numerically investigated in terms of the computational fluid dynamics and the thermal conduction theory. The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2.5–4.5. The generated power reaches 1.708 W/m2 at a temperature difference of 757 K at = 4.5. With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy efficiency would be obtained with the increase of Mach number, with or without considering the Thomson heat. Moreover, under the higher Mach numbers, larger range of output current value is available.

  8. Effects of varying podded nacelle-nozzle installations on transonic aeropropulsive characteristics of a supersonic fighter aircraft

    Science.gov (United States)

    Capone, F. J.; Reubush, D. E.

    1983-01-01

    The aeropropulsive characteristics of an advanced twin engine fighter designed for supersonic cruise was investigated in the 16 foot Transonic Tunnel. The performance characteristics of advanced nonaxisymmetric nozzles installed in various nacelle locations, the effects of thrust induced forces on overall aircraft aerodynamics, the trim characteristics, and the thrust reverser performance were evaluated. The major model variables included nozzle power setting; nozzle duct aspect ratio; forward, mid, and aft nacelle axial locations; inboard and outboard underwing nacelle locations; and underwing and overwing nacelle locations. Thrust vectoring exhaust nozzle configurations included a wedge nozzle, a two dimensional convergent divergent nozzle, and a single expansion ramp nozzle, each with deflection angles up to 30 deg. In addition to the nonaxisymmetric nozzles, an axisymmetric nozzle installation was also tested. The use of a canard for trim was also assessed.

  9. Unsteady Aerodynamic Force Sensing from Strain Data

    Science.gov (United States)

    Pak, Chan-Gi

    2017-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.

  10. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  11. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  12. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    Science.gov (United States)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  13. 超音速靶机的总体设计与研究%Conceptual Design and Reserch of Supersonic Target Drone

    Institute of Scientific and Technical Information of China (English)

    刘靖; 刘志强

    2016-01-01

    According to the requirements of test and evaluation of weapon system, the general tech-nology requirements were put forward. The conceptual design of supersonic target drone on the aircraft design procedure was finished. The dynamic system, aerodynamic configuration and aerodynamic charac-teristics were designed in detail. The main flight performance was calculated. The foundation of engineer-ing implementation for the supersonic target drone has laid by the conceptual design.%根据武器系统试验需求,提出了超音速靶机的总体技术要求。按照飞行器设计的基本流程,完成了某型超音速靶机的总体设计,对该型靶机的动力系统、气动布局、气动特性等方面进行了详细设计,并对主要飞行性能进行了计算,为超音速靶机的工程实现打下了基础。

  14. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  15. Aerodynamic Characterization of a Modern Launch Vehicle

    Science.gov (United States)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  16. Prediction of Unsteady Transonic Aerodynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...

  17. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  18. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    Science.gov (United States)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  19. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  20. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  1. 拥抱Windows 10

    Institute of Scientific and Technical Information of China (English)

    王春海

    2015-01-01

    微软新一代操作系统Windows10已正式发布,新系统统一PC、平板、手机和Xbox等多个平台,在性能、安全性和用户体验方面都有全面提升,并对系统底层、开始菜单、操作中心等做出多项改进,包括更智慧的Cortana语音助理、全新多桌面体验和新的开始选单等。除此之外,Windows10还加强了安全性的设计,Windows10的内核版本直接从Windows8.1的6.4提升到了10.0,操作系统的底层架构和安全特性发生了多项重大变化。在初次使用Windows10的时候,可以看到“手机、平板”的风格到处都是。

  2. Switchable Materials for Smart Windows.

    Science.gov (United States)

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  3. Fluidic Actuation and Control of Munition Aerodynamics

    Science.gov (United States)

    2009-08-31

    RESULTS II. TECHNICAL BACKGOUND II.1 Aerodynamic Flow Control Active aerodynamic flow control techniques in recent years have primarily focused on... techniques used in previous studies have steady and unsteady blowing (Hsaio et. al., 1990), vibrating ribbons or flaps (Huang et. al., 1987), and usage...with 4 cables, and increased the tunnel speed until the lift produced by the wings balanced the model weight. Kiya et. al. (1990) used four piano

  4. The Aerodynamics of High Speed Aerial Weapons

    OpenAIRE

    Prince, Simon A.

    1999-01-01

    The focus of this work is the investigation of the complex compressible flow phenomena associated with high speed aerial weapons. A three dimen- sional multiblock finite volume flow solver was developed with the aim of studying the aerodynamics of missile configurations and their component structures. The first component of the study involved the aerodynamic investigation of the isolated components used in the design of conventional missile config- urations. The computati...

  5. Aerodynamic drag of modern soccer balls

    OpenAIRE

    Asai, Takeshi; SEO, KAZUYA

    2013-01-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through...

  6. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  7. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  8. Methods of the aerodynamical experiments with simulation of massflow-traction ratio of the power unit

    Science.gov (United States)

    Lokotko, A. V.

    2016-10-01

    Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.

  9. Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions

    Science.gov (United States)

    Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.

    2011-01-01

    The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.

  10. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  11. Spacecraft aerodynamics and trajectory simulation during aerobraking

    Institute of Scientific and Technical Information of China (English)

    Wen-pu ZHANG; Bo HAN; Cheng-yi ZHANG

    2010-01-01

    This paper uses a direct simulation Monte Carlo(DSMC)approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor(MGS)spacecraft.The research focuses on the flowfield and aerodynamic characteristics distribution under various free stream densities.The variation regularity of aerodynamic coefficients is analyzed.The paper also develops an aerodynamics-aeroheating-trajectory integrative simulation model to preliminarily calculate the aerobraking orbit transfer by combining the DSMC technique and the classical kinematics theory.The results show that the effect of the planetary atmospheric density,the spacecraft yaw,and the pitch attitudes on the spacecraft aerodynamics is significant.The numerical results are in good agreement with the existing results reported in the literature.The aerodynamics-aeroheating-trajectory integrative simulation model can simulate the orbit tran,sfer in the complete aerobraking mission.The current results of the spacecraft trajectory show that the aerobraking maneuvers have good performance of attitude control.

  12. Windows Server 2012 R2 administrator cookbook

    CERN Document Server

    Krause, Jordan

    2015-01-01

    This book is intended for system administrators and IT professionals with experience in Windows Server 2008 or Windows Server 2012 environments who are looking to acquire the skills and knowledge necessary to manage and maintain the core infrastructure required for a Windows Server 2012 and Windows Server 2012 R2 environment.

  13. Aeroacoustic Properties of Moderate Reynolds Number Elliptic and Rectangular Supersonic Jets.

    Science.gov (United States)

    Kinzie, Kevin Wayne

    1995-01-01

    The aerodynamic and acoustic properties of supersonic elliptic, rectangular, and circular jets are experimentally investigated. All three jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25,000 to 50,000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high velocity and low density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve high enough convective velocity to radiate noise through the Mach wave emission process. Experiments in the present work focus on comparisons between the cold and simulated heated jet conditions and on the beneficial aeroacoustic properties of non-circular jets. Comparisons are also made between the elliptic and rectangular jets. When helium is added to the jets, the instability wave phase velocity is found to approach or exceed the ambient sound speed. The radiated noise is also louder and directed at a higher angle from the jet axis. In addition, near field hot-wire spectra are found to match the far-field acoustic spectra only for the helium/air mixture case. These results demonstrate that there are significant differences between unheated and heated asymmetric jets in the Mach 1.5 speed range, many of which have been found previously for circular jets. The asymmetric jets were also found to radiate less noise than the round jet at comparable operating conditions. Strong similarities were also found between the aerodynamic and acoustic properties of the elliptic and rectangular jets.

  14. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  15. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  16. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  17. Teach yourself visually Windows 8

    CERN Document Server

    McFedries, Paul

    2012-01-01

    A practical guide for visual learners eager to get started with Windows 8 If you learn more quickly when you can see how things are done, this Visual guide is the easiest way to get up and running on Windows 8. It covers more than 150 essential Windows tasks, using full-color screen shots and step-by-step instructions to show you just what to do. Learn your way around the interface and how to install programs, set up user accounts, play music and other media files, download photos from your digital camera, go online, set up and secure an e-mail account, and much more. The tried-and-true format

  18. Windows Server 2012 : Uudet ominaisuudet ja muutokset

    OpenAIRE

    2013-01-01

    Tämän opintyön tarkoituksena on valottaa Windows Server 2012 -käyttöjärjestelmän muutoksia verrattuna vanhaan Windows Server 2008 R2 -versioon. Työ aloitettiin ennen Windows Server 2012 -julkaisua Release Candidate -version testauksella ja myöhemmin julkaisun jälkeen Windows Serverin kokeiluversiolla. Työssä on silti ajankohtaista tietoa Windows Server 2012:sta. Aluksi käsitellään Windows Servereiden kehityskaarta lyhyesti ja käsitellään uusinta Windows Serveriä tuotteena se...

  19. Windows 7 is supported at CERN

    CERN Multimedia

    IT Department

    2010-01-01

    The new version of the Windows operating system - Windows 7 - is now officially supported at CERN. Windows 7 32-bit is now the default operating system for the new computers at CERN. What’s new in Windows 7 Users of Windows XP will find many new features and options. Users of Windows Vista will feel very familiar with one major difference: higher performance and better responsiveness of the operating system. Other enhancements include: refined Aero desktop that makes it easier to navigate between your different application windows; new snapping windows that allows user to resize a window simply by dragging it to the edge of the screen and “pin” that allows grouping and arranging often accessed applications on the taskbar. Windows 7 introduces the new concept of libraries – containers for user files that have links to different local or network folders. By default, users can see four libraries: Documents, Music, Pictures and Videos. These libraries point to the cor...

  20. Windows 7 Server名称之谜

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    按理说,Windows 7 Server 也算得上是一款新系统,为何不见其介绍呢?其实“Windows 7 Server”只是我们这些Windows拥戴者给它的命名,微软在研发Windows7的服务器版本时,并没有用“Windows 7 Server”作为开发代号,而是命名为“Windows Server 2008 R2”,这表示Windows7的服务器版本并不像是从Windows 2000 Server到Windows Server 2003式的重大产品升级,只是对现有Windows Server2008的一次更新,或者说是Windows Seryer 2008的增强版。

  1. Aerodynamics of a hybrid airship

    Science.gov (United States)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  2. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  3. Skylon Aerodynamics and SABRE Plumes

    Science.gov (United States)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  4. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even if the wi......With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...

  5. Windows Vista Administrator's Pocket Guide

    CERN Document Server

    Stanek, William R

    2007-01-01

    Portable and precise, this pocket-sized guide delivers immediate answers for the day-to-day administration of Windows Vista. Zero in on core support and maintenance tasks using quick-reference tables, instructions, and lists. You'll get the precise information you need to solve problems and get the job done-whether you're at your desk or in the field! Get fast facts to: Install and configure Windows Vista-and optimize the user workspaceMaintain operating system components, hardware devices, and driversCreate user and group accounts-and control rights and permissionsAdminister group policy se

  6. *New* CRITICAL Windows Security patch

    CERN Multimedia

    2003-01-01

    On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

  7. *New*: CRITICAL Windows Security patch

    CERN Multimedia

    2003-01-01

    On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

  8. Experimental study of plasma window

    CERN Document Server

    Ben-Liang, Shi; Kun, Zhu; Yuan-Rong, Lu

    2013-01-01

    Plasma window is an advanced apparatus which can work as the interface between vacuum and high pressure region. It can be used in many applications which need atmosphere-vacuum interface, such as gas target, electron beam welding, synchrotron radiation and spallation neutron source. A test bench of plasma window is constructed in Peking University. A series of experiments and corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between vacuum and high pressure region.

  9. Microsoft Windows Server Administration Essentials

    CERN Document Server

    Carpenter, Tom

    2011-01-01

    The core concepts and technologies you need to administer a Windows Server OS Administering a Windows operating system (OS) can be a difficult topic to grasp, particularly if you are new to the field of IT. This full-color resource serves as an approachable introduction to understanding how to install a server, the various roles of a server, and how server performance and maintenance impacts a network. With a special focus placed on the new Microsoft Technology Associate (MTA) certificate, the straightforward, easy-to-understand tone is ideal for anyone new to computer administration looking t

  10. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    the paper describes how the net energy gain from a complete typical window can be increased in a fairly simple way by reducing the frame width and using glass with low iron content. The changes primary increase the g-value. All improvements are based on existing technology and manufacturing methods...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  11. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    Science.gov (United States)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat

  12. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  13. Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    2010-01-01

    We present a novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics. The method introduces a model for describing oncoming turbulence in two-dimensional discrete vortex method simulations by seeding the upstream flow with vortex particles. The turbulence...

  14. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential

  15. Pressure variation by a magnetohydrodynamic method at the surface of a body placed in a supersonic flow

    Science.gov (United States)

    Lapushkina, T. A.; Erofeev, A. V.; Ponyaev, S. A.

    2014-07-01

    This study is aimed at investigating the possibility of pressure variation near the surface of a body placed in a supersonic flow as a model of an aerofoil or the nose of an aircraft by organizing a surface gas discharge in a magnetic field transverse to the flow. The flow parameters and pressure are mainly affected by the ponderomotive Lorentz force acting on the gas in the direction orthogonal to the direction of the organized discharge current and leading to the removal or compression of the gas at the surface of the body and, hence, a variation of pressure. Experimental data on the visualization of the flow and on the pressure at the surface of the body are considered for various configurations of the current and intensities of the gas discharge and magnetic field; it is demonstrated that such configurations of the current and magnetic field near the surface of the body under investigation can be organized in such a way that the pressure at the front part as well as the upper and lower surfaces of the body under investigation can be increased or decreased, thus changing the aerodynamic drag and the aerofoil lift. Such a magnetohydrodynamic control over aerodynamic parameters of the aircraft can be used during takeoff and landing as well as during steady-state flight and also during the entrance into dense atmospheric layers. This will considerably reduce the thermal load on the surface of the body in the flow.

  16. Numerical investigation on the self-excited oscillation of wet steam flow in a supersonic turbine cascade

    Institute of Scientific and Technical Information of China (English)

    LI Liang; SUN Xiuling; LI Guojun; FENG Zhenping

    2006-01-01

    The self-excited flow oscillation due to supercritical heat addition during the condensation process in wet steam turbine is an important issue. With an Eulerian/Eulerian model, the self-excited oscillation of wet steam flow in a supersonic turbine cascade is investigated. A proper inlet supercooling results in the transition from steady flow to self-excited oscillating flow in the cascade of steam turbine.The frequency dependency on the inlet supercooling is not monotonic. The flow oscillation leads to non-synchronous periodical variation of the inlet and outlet mass flow rate. The aerodynamic force on the blade varies periodically due to the self-excited flow oscillation. With the frequency lies between 18.1-80.64 Hz, the oscillating flow is apt to act with the periodical variation of the inlet supercooling due to stator rotor interaction in a syntonic pattern, and results in larger aerodynamic force on the blade. The loss in the oscillating flow increases 20.64 % compared with that in the steady flow.

  17. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    Science.gov (United States)

    Khavaran, A.; Krejsa, E. A.; Kim, C. M.

    1992-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  18. In vivo recording of aerodynamic force with an aerodynamic force platform

    CERN Document Server

    Lentink, David; Ingersoll, Rivers

    2014-01-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on tethered experiments with robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here we demonstrate a new aerodynamic force platform (AFP) for nonintrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is ...

  19. Exceptional and Spinorial Conformal Windows

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Ryttov, Thomas

    2012-01-01

    We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...

  20. Aerodynamic stability of cable-stayed bridges under erection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; SUN Bing-nan; XIANG Hai-fan

    2005-01-01

    In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.

  1. Efficient supersonic air vehicle design using the Service-Oriented Computing Environment (SORCER

    Directory of Open Access Journals (Sweden)

    Burton Scott A.

    2014-01-01

    Full Text Available The Air Force Research Lab’s Multidisciplinary Science and Technology Center is investigating conceptual design processes and computing frameworks that could significantly impact the design of the next generation efficient supersonic air vehicle (ESAV. The ESAV conceptual design process must accommodate appropriate fidelity multidisciplinary engineering analyses (MDAs to assess the impact of new air vehicle technologies. These analyses may be coupled and computationally expensive, posing a challenge due to the large number of air vehicle configurations analyzed during conceptual design. In light of these observations, a design process using the Service-Oriented Computing Environment (SORCER software is implemented to combine propulsion, structures, aerodynamics, aeroelasticity, and performance in an integrated MDA. The SORCER software provides the automation and tight integration to grid computing resources necessary to achieve the volume of appropriate fidelity analyses required. Two design studies are performed using a gradient-based optimization method to produce long and short range ESAV wing designs. The studies demonstrate the capability of the ESAV MDA, the optimization algorithm, and the computational scalability and reliability of the SORCER software.

  2. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  3. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    windows have already been developed and prototypes constructed for laboratory test and a third generation of the window design is now in the developing and designing face in a new project. The first window constructed was made of wood profiles and a low-energy double glazing unit. The second and third......This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...

  4. Forensic Analysis of Windows Registry Against Intrusion

    Directory of Open Access Journals (Sweden)

    Haoyang Xie

    2012-03-01

    Full Text Available Windows Registry forensics is an important branch of computer and network forensics. Windows Registry is often considered as the heart of Windows Operating Systems because it contains allof the configuration setting of specific users, groups, hardware, software, and networks. Therefore, Windows Registry can be viewed as a gold mine of forensic evidences which could be used in courts. This paper introduces the basics of Windows Registry, describes its structure and its keys and subkeys thathave forensic values. This paper also discusses how the Windows Registry forensic keys can be applied in intrusion detection.

  5. Windows 8 and Office 2013 for dummies

    CERN Document Server

    Rathbone, Andy

    2013-01-01

    Learn to: Navigate the Windows 8 Start screenCreate user accounts and set passwordsUse Word, Excel®, PowerPoint®, and Outlook® Master the basics of Windows 8 and Office 2013! Windows and Office work together to turn your PC into a productivity tool. The unique Windows 8 interface combines with updates to Office 2013 to create a new computing experience. This book offers quick answers for when you get stuck. Learn your way around the Windows 8 Start screen and Charms bar as well as Office 2013 applications.The new Windows - see how to laun

  6. Predicting Electrochromic Smart Window Performance

    Energy Technology Data Exchange (ETDEWEB)

    Degerman Engfeldt, Johnny

    2012-07-01

    The building sector is one of the largest consumers of energy, where the cooling of buildings accounts for a large portion of the total energy consumption. Electrochromic (EC) smart windows have a great potential for increasing indoor comfort and saving large amounts of energy for buildings. An EC device can be viewed as a thin-film electrical battery whose charging state is manifested in optical absorption, i.e. the optical absorption increases with increased state-of-charge (SOC) and decreases with decreased state-of-charge. It is the EC technology's unique ability to control the absorption (transmittance) of solar energy and visible light in windows with small energy effort that can reduce buildings' cooling needs. Today, the EC technology is used to produce small windows and car rearview mirrors, and to reach the construction market it is crucial to be able to produce large area EC devices with satisfactory performance. A challenge with up-scaling is to design the EC device system with a rapid and uniform coloration (charging) and bleaching (discharging). In addition, up-scaling the EC technology is a large economic risk due to its expensive production equipment, thus making the choice of EC material and system extremely critical. Although this is a well-known issue, little work has been done to address and solve these problems. This thesis introduces a cost-efficient methodology, validated with experimental data, capable of predicting and optimizing EC device systems' performance in large area applications, such as EC smart windows. This methodology consists of an experimental set-up, experimental procedures and a two dimensional current distribution model. The experimental set-up, based on camera vision, is used in performing experimental procedures to develop and validate the model and methodology. The two-dimensional current distribution model takes secondary current distribution with charge transfer resistance, ohmic and time

  7. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  8. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  9. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  10. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  11. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  12. Supersonic collisions between two gas streams

    CERN Document Server

    Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu

    1995-01-01

    A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...

  13. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  14. Supersonic Magnetic Flows in the Quiet Sun

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A

    2012-01-01

    In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.

  15. Manufacturing and metrology for IR conformal windows and domes

    Science.gov (United States)

    Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate

    2017-05-01

    Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.

  16. Aerodynamic Jump for Long Rod Penetrators

    Directory of Open Access Journals (Sweden)

    Mark L. Bundy

    2000-04-01

    Full Text Available Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous change in the ,direction of motion at the origin of free night, nor is it the converse, i.e. a cumulativer~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a localised redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over ther4latively short region from entry into free flight until the yaw reaches its first maximum. The primary objective of this paper is to provide answtfrs to the questions like what is aerodynamic jump, what liauses it, !lnd wh~t aspects df the flight trajectory does it refer to, or account for .

  17. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  18. Aerodynamic properties of spherical balloon wind sensors.

    Science.gov (United States)

    Fichtl, G. H.; Demandel, R. E.; Krivo, S. J.

    1972-01-01

    A first-order theory of the fluctuating lift and drag coefficients associated with the aerodynamically induced motions of rising and falling spherical wind sensors is developed. The equations of motion of a sensor are perturbed about an equilibrium state in which the buoyancy force balances the mean vertical drag force. It is shown that, to within first order in perturbation quantities, the aerodynamic lift force is confined to the horizontal, and the fluctuating drag force associated with fluctuations in the drag coefficient acts along the vertical. The perturbation equations are transformed with Fourier-Stieltjes integrals. The resulting equations lead to relationships between the power spectra of the aerodynamically induced velocity components and the spectra of the fluctuating lift and drag coefficients.

  19. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  20. Modeling simulation of the thermal radiation for high-speed flight vehicles' aero-optical windows

    Science.gov (United States)

    Chen, Lei; Zhang, Liqin; Guo, Mingjiang

    2015-10-01

    When high-speed flight vehicles fly in the atmosphere, they can generate serious aero-optical effect. The optical window temperature rises sharply because of aerodynamic heating. It will form radiation interference that can lead infrared detectors to producing non-uniform radiation backgrounds, decreasing system SNR and detection range. Besides, there exits temperature difference due to uneven heating. Under the thermo-optical and elastic-optical effects, optical windows change into inhomogeneous mediums which influence the ray propagation. In this paper, a model of thermal radiation effect was built by a finite element analysis method. Firstly, the optical window was divided into uniform grids. Then, radiation distribution on the focal planes at different angles of the window's normal line and optical axis was obtained by tracing light rays of each grid. Finally, simulation results indicate that radiation distribution reflects the two directions-the length and width-of temperature distribution, and the change of angle causes the center of radiation distribution to shift to one direction of the image surface under the same window temperature.

  1. *NEW* CRITICAL Windows Security patches

    CERN Multimedia

    2003-01-01

    On 3 October and 10 September 2003, Microsoft issued new CRITICAL security patches MS03-040 and MS03-039. They must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security holes and patches are at: MS03-039: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp MS03-040: http://cern.ch/it-div/news/hotfix-MS03-040.asp http://www.microsoft.com/technet/security/bulletin/MS03-040.asp

  2. Electrochromic windows - Applications for aircraft

    Science.gov (United States)

    Harris, Caroline S.; Greenberg, Charles B.

    1989-04-01

    A transparent, solid-state, electrochromic device is described. It demonstrates deep switching in the near infrared and visible spectral regions and good room temperature cycling stability. The response appears reasonably uniform over a 14 cm x 28 cm area, which gives hope for achieving large parts for cockpit and cabin windows. The reversible darkening of the transparency, controlled by an applied voltage or current, has potential application in aircraft to reduce glare and solar heat load to pilots and passengers. The active material in the device is a thin tungsten oxide film which is incorporated into a complex, multilayered structure, essentially that of a transparent battery. The performance of the window is discussed in terms of its configuration, its similarities with commercial batteries and issues critical to aircraft.

  3. A Window of Chinese Folklore

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    PRESENI-DAY Chinese folk-lore is a window throughwhich one can see Chineseculture;one can see contemporarylife,but mostly one views traditional folk culture.China’s 5,000 years ofhistory,civilization,vast lands and national background have brought afascinating variety of local customsto China’s 56 nationalities.The fol-lowing is a brief introduction to their religious beliefs,sacrificial ritesand festive gatherings.

  4. Windows Memory Forensic Data Visualization

    Science.gov (United States)

    2014-06-12

    captures from Windows machines and the methodology for extracting digital artifacts from forensic memory captures. The two types of malware implemented on...proposed to improve upon the design implemented in the D3 JavaScript Visualization Tool. 7 II. Literature Review Due to the recent rise...18. Resource Slice Selected – Associated Process Nodes Highlighted. ... vice\\Nam~~~~~~~~ffi~~ iFr ~)~~~ ... vice\\NamedPipe\

  5. Exceptional and Spinorial Conformal Windows

    CERN Document Server

    Mojaza, Matin; Ryttov, Thomas A; Sannino, Francesco

    2012-01-01

    We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according to a spinorial representation. We investigate the phase diagram using a purely perturbative four loop analysis, the all-orders beta function and the ladder approximation.

  6. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  7. Aerodynamic Jump for Long Rod Penetrators

    OpenAIRE

    Mark L. Bundy

    2000-01-01

    Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous change in the ,direction of motion at the origin of free night, nor is it the converse, i.e. a cumulativer~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a localised redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over ther4latively short region from entry into free flight until the yaw reaches its first maximum. The primary...

  8. Conformal window and Landau singularities

    CERN Document Server

    Grunberg, G

    2001-01-01

    A physical characterization of Landau singularities is emphasized, which should trace the lower boundary N_f^* of the conformal window in QCD and supersymmetric QCD. A natural way to disentangle ``perturbative'' from ``non-perturbative'' contributions below N_f^* is suggested. Assuming an infrared fixed point is present in the perturbative part of the QCD coupling even in some range below N_f^* leads to the condition gamma(N_f^*)=1, where gamma is the critical exponent. Using the Banks-Zaks expansion, one gets 4window. Some evidence for such a fixed point in QCD is provided through a modified Banks-Zaks expansion. Conformal window amplitudes, which contain power contributions, are show...

  9. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  10. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... windows have already been developed and prototypes constructed for laboratory test and a third generation of the window design is now in the developing and designing face in a new project. The first window constructed was made of wood profiles and a low-energy double glazing unit. The second and third...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  11. Microsoft Windows Intune 20 Quickstart Administration

    CERN Document Server

    Overton, David

    2012-01-01

    This book is a concise and practical tutorial that shows you how to plan, set up and maintain Windows Intune and manage a group of PCs. If you are an administrator or partner who wants to plan, set up and maintain Windows Intune and manage a group of PCs then this book is for you . You should have a basic understanding of Windows administration, however, knowledge of Windows Intune would not be required.

  12. Windows Embedded创新不断

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    本刊讯 2月19日,微软Windows Embedded技术交流活动在微软办公室举行。微软的MVP(最有价值专家)详细介绍微软Windows Embedded的技术、开发和应用,包括:Windows EmbeddedCE、Windows XP Embedded、WEPOS等。

  13. Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.

  14. Windows shell扩展技术

    Institute of Scientific and Technical Information of China (English)

    唐东明

    2005-01-01

    Windows shell提供了很多扩展编程接口,可使程序编制人员丰富Windows shell的功能.文中详细阐述了Windows shell的扩展技术,并讲解了如何用ATL开发Win-dows shell扩展组件的技术和方法.

  15. Windowing Waveform Relaxation of Initial Value Problems

    Institute of Scientific and Technical Information of China (English)

    Yao-lin Jiang

    2006-01-01

    We present a windowing technique of waveform relaxation for dynamic systems. An effective estimation on window length is derived by an iterative error expression provided here. Relaxation processes can be speeded up if one takes the windowing technique in advance. Numerical experiments are given to further illustrate the theoretical analysis.

  16. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    of confocal elliptic windows and propose a new way to present the information when a spatial point process is considered. This method gives smooth changes for smooth expansions of the set of clusters. A simulation study is used to show how the elliptic windows outperforms the usual circular windows...

  17. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    2006-01-01

    windows and propose a new way to present the information when a spatial point process is considered. This method gives smooth changes for smooth expansions of the set of clusters. A simulation study is used to show how the elliptic windows outperforms the usual circular windows. The proposed method...

  18. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  19. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  20. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  1. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  2. Continuous Aerodynamic Modelling of Entry Shapes

    NARCIS (Netherlands)

    Dirkx, D.; Mooij, E.

    2011-01-01

    During the conceptual design phase of a re-entry vehicle, the vehicle shape can be varied and its impact on performance evaluated. To this end, the continuous modeling of the aerodynamic characteristics as a function of the shape is useful in exploring the full design space. Local inclination method

  3. An aerodynamic load criterion for airships

    Science.gov (United States)

    Woodward, D. E.

    1975-01-01

    A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

  4. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  5. Special Course on Aerodynamic Characteristics of Controls

    Science.gov (United States)

    1983-07-01

    EFFECTIVENESS MACH EFFECTS 0 PITCH. ROLL AND YAW CONTROL EFFECTIVENEWI DEGRAES AS AERODYNAMIC EFFECTIVENESS VARIES WITH: MACH WARER INCREASES * ANGLE OF...34badness" will be essentially a matter of the pilot’s judgement in any given case. The assessment of handling qualities by monitoring pilot performance

  6. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  7. Efficient Global Aerodynamic Modeling from Flight Data

    Science.gov (United States)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  8. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  9. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  10. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  11. Purged window apparatus utilizing heated purge gas

    Science.gov (United States)

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  12. Windows Command Line Administration Instant Reference

    CERN Document Server

    Mueller, John Paul

    2010-01-01

    The perfect companion to any book on Windows Server 2008 or Windows 7, and the quickest way to access critical information. Focusing just on the essentials of command-line interface (CLI), Windows Command-Line Administration Instant Reference easily shows how to quickly perform day-to-day tasks of Windows administration without ever touching the graphical user interface (GUI). Specifically designed for busy administrators, Windows Command-Line Administration Instant Reference replaces many tedious GUI steps with just one command at the command-line, while concise, easy to access answers provid

  13. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  14. Transonic Aerodynamic Characteristics of a Model of a Proposed Six-Engine Hull-Type Seaplane Designed for Supersonic Flight

    Science.gov (United States)

    Wornom, Dewey E.

    1960-01-01

    Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.

  15. Aerodynamic acceleration of heavy particles in a supersonic jet of a binary mixture of gases with disparate-mass components

    Science.gov (United States)

    Lazarev, Alexander V.; Tatarenko, Kira A.; Amerik, Alexander Yu.

    2017-08-01

    The method of moments for the ellipsoidal distribution function was used for solving the Boltzmann equation describing binary gas mixtures with large mass disparity and highly diluted heavy component. Analysis of the system of moment equations results in a simple analytic expression for the terminal slip velocities of components that depends on the conditions in the source of jet, composition of mixture, and C6 constant of the attractive branch of the interaction potential. The results are in good agreement with experimental data including low pressure conditions when the Miller-Andres correlation is unsatisfactory.

  16. Numerical and Experimental Investigation of a Supersonic Flow Field around Solid Fuel on an Inclined Flat Plate

    Directory of Open Access Journals (Sweden)

    Uzu-Kuei Hsu

    2009-01-01

    Full Text Available This research adopts a shock tube 16 meters long and with a 9 cm bore to create a supersonic, high-temperature, and high-pressure flowfield to observe the gasification and ignition of HTPB solid fuel under different environments. Also, full-scale 3D numerical simulation is executed to enhance the comprehension of this complex phenomenon. The CFD (Computational Fluid Dynamics code is based on the control volume method and the pre-conditioning method for solving the Navier-Stokes equations to simulate the compressible and incompressible coupling problem. In the tests, a HTPB slab is placed in the windowed-test section. Various test conditions generate different supersonic Mach numbers and environmental temperatures. In addition, the incident angles of the HTPB slab were changed relative to the incoming shock wave. Results show that as the Mach number around the slab section exceeded 1.25, the flowfield temperature achieved 1100 K, which is higher than the HTPB gasification temperature (930 K ~ 1090 K. Then, gasification occurred and a short-period ignition could be observed. In particular, when the slab angle was 7∘, the phenomenon became more visible. This is due to the flow field temperature increase when the slab angle was at 7∘.

  17. Aerodynamic shape optimization using control theory

    Science.gov (United States)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  18. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  19. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  20. Windows Vista已亮相

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Windows Vista企业版已于11月底发布,而个人版将于明年1月30日推出。权威调研机构IDC本周三预计,Vista明年的销量可达到9000万套。在明年新售PC机中,90%的个人PC将安装Vista操作系统,而企业PC安装Vista的比例将只有35%。

  1. EFEKTIFITAS VARIASI NILAI WINDOW LEVEL TERHADAP KUALITAS HASIL CT SCAN THORAX LUNG WINDOW

    OpenAIRE

    dani, Rahma

    2014-01-01

    EFEKTIFITAS VARIASI NILAI WINDOW LEVEL TERHADAP KUALITAS HASIL CT SCAN THORAX LUNG WINDOW Rahmadani Jurusan Fisika, FMIPA, Universitas Hasanuddin, Makassar 90245, Indonesia Pembimbing Utama : Prof. Dr. H. Halmar Halide, M.Sc Pembimbing Pertama : Dahlang Tahir, M.Sc. Phd ABSTRAK Telah dilakukan penelitian untuk mengetahui efek variasi nilai window level terhadap kualitas hasil CT Scann thorax lung window dengan pengaturan window width 1000,1500, 2000 dengan varias...

  2. Windows 2012 Server network security securing your Windows network systems and infrastructure

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

  3. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    Science.gov (United States)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  4. Development of a Plasma Injector for Supersonic Drag Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Methods to reduce the turbulent viscous skin friction stand out as paramount to increasing the energy efficiency, and therefore the aerodynamic efficiency of...

  5. Broken Windows and Collective Efficacy

    Directory of Open Access Journals (Sweden)

    Aldrin Abdullah

    2015-01-01

    Full Text Available The broken windows thesis posits that signs of disorder increase crime and fear, both directly and indirectly. Although considerable theoretical evidence exists to support the idea that disorder is positively related to fear of crime, the empirical literature on examining the indirect effect of the individual’s perception of incivilities on fear of crime is limited, especially in developing countries. This research was conducted to assess the indirect relationship between perceived disorder and fear of crime through collective efficacy. A total of 235 households from Penang, Malaysia, participated in this study. Results reveal that high perception of disorder is negatively associated with collective efficacy. High collective efficacy is associated with low fear of crime. Moreover, a significant and indirect effect of disorder on fear of crime exists through collective efficacy. The results provide empirical support for the broken windows theory in the Malaysian context and suggest that both environmental conditions and interactions of residents play a role in the perceived fear of crime.

  6. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  7. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  8. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  9. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  10. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...

  11. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  12. Multiresolution analysis of density fluctuation in supersonic mixing layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.

  13. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  14. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  15. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  16. Challenger Center's Window on the Universe

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J. J.; Smith, S.; Bobrowsky, M.; Radnofsky, M.; Perelmuter, J.-M.; Jaggar, L.

    2001-11-01

    Challenger Center for Space Science Education's Window on the Universe program aims to create a network of under-served communities across the nation dedicated to sustained science, math, and technology education. Window communities presently include Broken Arrow, OK; Muncie, IN; Moscow, ID; Nogales, AZ; Tuskegee, AL; Marquette, MI; Altamont, KS; Washington, D.C.; and other emerging sites. Window uses themes of human space flight and the space sciences as interdisciplinary means to inspire entire communities. Practicing scientists and engineers engaged in these disciplines are invited to volunteer to become a part of these communities for a week, each visitor reaching roughly 2000 K-12 students through individual classroom visits and Family Science Night events during an intense Window on the Universe Week. In the same Window Week, Challenger Center scientists and educators present a workshop for local educators to provide training in the use of a K-12 educational module built around a particular space science and exploration theme. Window communities follow a 3-year development: Year 1, join the network, experience Window Week presented by Challenger Center and visiting researchers; Year 2, same as Year 1 plus workshop on partnering with local organizations to develop sources of visiting researchers and to enhance connections with local resources; Year 3 and subsequent, the community stages its own Window Week, with Challenger Center providing new education modules and training workshops for "master educators" from the Window community, after which the master educators return home to conduct training workshops of their own. Challenger Center remains a resource and clearinghouse for Window communities to acquire experience, technical information, and opportunities for distance collaboration with other Window communities. Window on the Universe is dedicated to assessing degree of success vs. failure in each program component and as a whole, using pre- and post

  17. Air flow through a non-airconditioned bus with open windows

    Indian Academy of Sciences (India)

    S R Kale; S V Veeravalli; H D Punekar; M M Yelmule

    2007-08-01

    Open window buses without air-conditioning are a major mode of urban and inter-city transport in most countries. High occupancy combined with hot and humid conditions makes travel in these buses quite uncomfortable. In this study air flow through a bus has been studied that could be the basis for low cost and ecofriendly methods of increasing passenger comfort and possibly reduce drag. The aerodynamics of such a road vehicle has not been studied as previous investigations have been confined to vehicles with closed windows that present a smooth exterior to air flow. Using a 1:25 scaled Perspex model of an urban bus in Delhi, flow visualization was performed in a water channel. The Reynolds numbers were onetenth of a real bus moving at $10 m/s$. Smoke and tuft visualizations were also performed on an urban bus at 40 km/h. Numerical simulations were performed at the actual Reynolds number. Even though there were Reynolds number differences, the broad features were similar. Air enters the bus from the rear windows, moves to the front (relative to the bus) and exits from the front windows. Inside air velocity relative to the bus is about one-tenth of the free-stream velocity. The flow is highly three-dimensional and unsteady.

  18. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  19. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  20. Mimicking the humpback whale: An aerodynamic perspective

    Science.gov (United States)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.